JP4793750B2 - Surface coated cermet cutting tool with excellent chipping resistance in high-speed intermittent cutting of hard steel with excellent hard coating layer - Google Patents

Surface coated cermet cutting tool with excellent chipping resistance in high-speed intermittent cutting of hard steel with excellent hard coating layer Download PDF

Info

Publication number
JP4793750B2
JP4793750B2 JP2005120642A JP2005120642A JP4793750B2 JP 4793750 B2 JP4793750 B2 JP 4793750B2 JP 2005120642 A JP2005120642 A JP 2005120642A JP 2005120642 A JP2005120642 A JP 2005120642A JP 4793750 B2 JP4793750 B2 JP 4793750B2
Authority
JP
Japan
Prior art keywords
layer
inclination angle
degrees
range
modified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005120642A
Other languages
Japanese (ja)
Other versions
JP2006297517A (en
Inventor
尚志 本間
晃 長田
惠磁 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2005120642A priority Critical patent/JP4793750B2/en
Publication of JP2006297517A publication Critical patent/JP2006297517A/en
Application granted granted Critical
Publication of JP4793750B2 publication Critical patent/JP4793750B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、硬質被覆層がすぐれた高温強度を有し、特にすぐれた高温強度が要求される合金工具鋼や軸受鋼の焼入れ材などの高硬度鋼などの高速断続切削加工で、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具(以下、被覆サーメット工具という)に関するものである。   The present invention provides a hard coating layer in high-speed intermittent cutting of high-hardness steel, such as alloy tool steel and hardened material of bearing steel, in which the hard coating layer has excellent high-temperature strength and particularly excellent high-temperature strength is required. The present invention relates to a surface-coated cermet cutting tool that exhibits excellent chipping resistance (hereinafter referred to as a coated cermet tool).

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)下部層として、いずれも化学蒸着形成された、Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの1層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(b)上部層として、化学蒸着形成した状態でα型の結晶構造を有し、かつ1〜15μmの平均層厚を有する酸化アルミニウム層(以下、α型Al23層で示す)、
以上(a)および(b)で構成された硬質被覆層を形成してなる被覆サーメット工具が知られており、この被覆サーメット工具が、例えば各種の鋼や鋳鉄などの連続切削や断続切削に用いられていることも知られている。
特開平6−31503号公報
Conventionally, generally on the surface of a substrate (hereinafter collectively referred to as a tool substrate) composed of a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet. ,
(A) Ti carbide (hereinafter referred to as TiC) layer, nitride (hereinafter also referred to as TiN) layer, carbonitride (hereinafter referred to as TiCN) layer, all formed by chemical vapor deposition as the lower layer A Ti compound layer composed of one or more of a carbon oxide (hereinafter referred to as TiCO) layer and a carbonitride oxide (hereinafter referred to as TiCNO) layer and having a total average layer thickness of 3 to 20 μm,
(B) As an upper layer, an aluminum oxide layer (hereinafter referred to as an α-type Al 2 O 3 layer) having an α-type crystal structure in the state of chemical vapor deposition and having an average layer thickness of 1 to 15 μm,
A coated cermet tool formed by forming a hard coating layer composed of (a) and (b) above is known, and this coated cermet tool is used for continuous cutting and intermittent cutting of various steels and cast irons, for example. It is also known that
Japanese Unexamined Patent Publication No. 6-31503

近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は一段と高速化の傾向にあるが、上記の従来被覆サーメット工具においては、これを鋼や鋳鉄などの通常の条件での連続切削や断続切削に用いた場合には問題はないが、特にこれを合金工具鋼および軸受鋼の焼入れ材などのロックウエル硬さ(Cスケール)で50以上の高い硬さを有する高硬度鋼などの切削加工を、切削条件の最も厳しい高速断続切削、すなわち切刃部にきわめて短いピッチで繰り返し機械的衝撃の加わる高速断続切削に用いた場合、これを構成する硬質被覆層の下部層であるTi化合物層のうち、相対的に高い高温強度を有するTiCN層を所定層厚で形成しても、前記TiCN層の具備する高温強度が不十分である上、同上部層のα型Al23層はすぐれた高温硬さおよび耐熱性を具備するものの、高温強度のきわめて低いものであるために、前記の強い機械的衝撃に対して満足に対応することができず、この結果硬質被覆層にはチッピング(微小欠け)が発生し易くなることから、比較的短時間で使用寿命に至るのが現状である。 In recent years, the performance of cutting machines has been remarkable. On the other hand, there is a strong demand for labor saving, energy saving, and cost reduction for cutting work, and along with this, cutting work tends to be further accelerated. For coated cermet tools, there is no problem when this is used for continuous cutting and interrupted cutting under normal conditions such as steel and cast iron. However, this is especially useful for hardened materials such as alloy tool steel and bearing steel. Cutting of high hardness steel with high hardness (C scale) of 50 or more, high-speed intermittent cutting with the severest cutting conditions, that is, high-speed intermittent cutting with repeated mechanical impact on the cutting edge at an extremely short pitch Even if a TiCN layer having a relatively high high-temperature strength is formed with a predetermined layer thickness among the Ti compound layers that are lower layers of the hard coating layer constituting the Ti coating layer, the Ti layer On the high temperature strength which includes the N layer is insufficient, although the α-type the Al 2 O 3 layer of the upper layer is provided with excellent high-temperature hardness and heat resistance, because it is extremely low in high temperature strength, Since it is not possible to respond satisfactorily to the strong mechanical impact described above, the hard coating layer is likely to be chipped (small chipping), so that the service life is reached in a relatively short time. It is.

そこで、本発明者等は、上述のような観点から、上記の被覆サーメット工具の硬質被覆層の耐チッピング性向上をはかるべく、これの下部層として所定層厚で形成したTiCN層および上部層であるα型Al23層の一段の高温強度向上を図るべく研究を行った結果、
(1−a)通常、上記の従来被覆サーメット工具の硬質被覆層の下部層を構成するTiCN層(以下、「従来TiCN層」という)は、通常の化学蒸着装置で、
反応ガス組成−体積%で、TiCl:2〜10%、CHCN:0.5〜3%、N:10〜30%、H:残り、
反応雰囲気温度:800〜900℃、
反応雰囲気圧力:6〜20kPa、
の条件で形成されるが、これを、同じく通常の化学蒸着装置で、
反応ガス組成−体積%で、TiCl:0.2〜1%、CHCN:0.3〜2%、C:1〜3%、N:10〜30%、H:残り、
反応雰囲気温度:700〜780℃、
反応雰囲気圧力:25〜40kPa、
の条件で、かつ、2.5〜15μmの平均層厚で形成すると、この結果形成されたTiCN層(以下、「改質TiCN層」という)は、一段とすぐれた高温強度を具備するようになり、すぐれた耐機械的衝撃性を発揮するようになること。
In view of the above, the present inventors, in order to improve the chipping resistance of the hard coating layer of the above coated cermet tool, have a TiCN layer and an upper layer formed with a predetermined layer thickness as a lower layer thereof. As a result of conducting research to improve the high-temperature strength of one α-type Al 2 O 3 layer,
(1-a) Usually, the TiCN layer (hereinafter referred to as “conventional TiCN layer”) constituting the lower layer of the hard coating layer of the conventional coated cermet tool is a normal chemical vapor deposition apparatus,
Reaction gas composition - by volume%, TiCl 4: 2~10%, CH 3 CN: 0.5~3%, N 2: 10~30%, H 2: remainder,
Reaction atmosphere temperature: 800 to 900 ° C.
Reaction atmosphere pressure: 6-20 kPa,
It is formed under the conditions of, but this is also a normal chemical vapor deposition device,
Reaction gas composition - by volume%, TiCl 4: 0.2~1%, CH 3 CN: 0.3~2%, C 2 H 4: 1~3%, N 2: 10~30%, H 2: remaining,
Reaction atmosphere temperature: 700-780 ° C.
Reaction atmosphere pressure: 25-40 kPa,
And an average layer thickness of 2.5 to 15 μm, the resulting TiCN layer (hereinafter referred to as “modified TiCN layer”) has a much higher high-temperature strength. To show excellent mechanical shock resistance.

(1−b)上記の従来TiCN層と改質TiCN層について、電界放出型走査電子顕微鏡を用い、図1(a),(b)に概略説明図で示される通り、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射し、電子後方散乱回折像装置を用い、所定領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{110}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフを作成した場合、前記従来TiCN層は、図3に例示される通り、{110}面の測定傾斜角の分布が0〜45度の範囲内で不偏的な傾斜角度数分布グラフを示すのに対して、前記改質TiCN層は、図2に例示される通り、傾斜角区分の特定位置にシャープな最高ピークが現れ、このシャープな最高ピークは、反応ガス中に構成成分として添加したCの含有割合によってグラフ横軸の傾斜角区分に現れる位置が変わること。 (1-b) About the above-mentioned conventional TiCN layer and modified TiCN layer, using a field emission scanning electron microscope, as shown in the schematic explanatory diagrams in FIGS. Each crystal grain having a cubic crystal lattice existing therein is irradiated with an electron beam, and an electron backscatter diffraction image apparatus is used, and a predetermined region is spaced 0.1 μm / step from the normal line of the surface polished surface. Then, the inclination angle formed by the normal line of the {110} plane which is the crystal plane of the crystal grain is measured, and the measurement inclination angle within the range of 0 to 45 degrees out of the measurement inclination angles is 0.25 degrees. When the slope angle number distribution graph formed by dividing the pitches and counting the frequencies existing in each section is created, the conventional TiCN layer has a measured slope of the {110} plane as illustrated in FIG. Unbiased inclination angle number distribution in the range of angle distribution of 0 to 45 degrees In contrast to the rough, the modified TiCN layer, as illustrated in FIG. 2, shows a sharp maximum peak at a specific position in the tilt angle section, and this sharp maximum peak is a constituent component in the reaction gas. The position appearing in the tilt angle section of the horizontal axis of the graph changes depending on the content ratio of C 2 H 4 added as.

(1−c)上記の改質TiCN層は、上記の通り、反応ガス中に新たにCを1〜3%の割合で加え、一方同反応ガス中のTiClの含有割合は0.2〜1%と相対的に低くし、さらに反応雰囲気温度は700〜780℃と相対的に低く、かつ反応雰囲気圧力は25〜40kPaと相対的に高くした条件で形成され、形成された前記改質TiCN層は、上記傾斜角度数分布グラフにおいて、シャープな最高ピークが傾斜角区分の1.00〜10.00度の範囲内に現れると共に、0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の54〜75%の割合を占める傾斜角度数分布グラフを示すようになるが、この場合、試験結果によれば、反応ガス中のCの含有割合が1%未満でも、3%を越えて高くなっても、最高ピークの現れる傾斜角区分が1.00〜10.00度の範囲から外れてしまい、また反応雰囲気温度が780℃を越えたり、あるいは反応雰囲気圧力が25kPa未満であったりすると、0〜10度の範囲内に存在する度数の合計割合が、傾斜角度数分布グラフにおける度数全体の54%未満となってしまい、いずれの場合もTiCN層にすぐれた高温強度を確保することができず、さらに反応雰囲気温度が700℃未満であったり、あるいは反応雰囲気圧力が40kPaを越えたりすると、層の蒸着形成速度が著しく低下し、コストの点で望ましくなくないこと。 (1-c) In the modified TiCN layer, as described above, C 2 H 4 is newly added to the reaction gas at a ratio of 1 to 3%, while the content ratio of TiCl 4 in the reaction gas is 0. The reaction atmosphere temperature was relatively low as 700 to 780 ° C. and the reaction atmosphere pressure was relatively high as 25 to 40 kPa. The modified TiCN layer has a sharp maximum peak appearing in the range of 1.00 to 10.00 degrees of the tilt angle section and the frequency existing in the range of 0 to 10 degrees in the tilt angle distribution graph. An inclination angle distribution graph that occupies a ratio of 54 to 75% of the entire frequency in the inclination angle distribution graph is shown. In this case, according to the test results, C 2 H 4 in the reaction gas Even if the content is less than 1%, 3% Even if the temperature is higher than that, the inclination angle section where the highest peak appears is out of the range of 1.00 to 10.00 degrees, the reaction atmosphere temperature exceeds 780 ° C., or the reaction atmosphere pressure is less than 25 kPa. In other words, the total ratio of the frequencies existing in the range of 0 to 10 degrees becomes less than 54% of the entire frequencies in the inclination angle number distribution graph, and in any case, excellent high-temperature strength is ensured in the TiCN layer. Furthermore, if the reaction atmosphere temperature is lower than 700 ° C. or the reaction atmosphere pressure exceeds 40 kPa, the deposition rate of the layer is remarkably reduced, which is not desirable in terms of cost.

(2−a)上記の従来被覆サーメット工具の硬質被覆層の上部層であるα型Al23層(以下、「従来α型Al23層」という)を蒸着形成するに際して、例えばこれの蒸着形成に先だって、通常の化学蒸着装置にて、
反応ガス組成:容量%で、AlCl3:3〜10%、CO2:0.5〜3%、C24:0.01〜0.3%、H2:残り、
反応雰囲気温度:750〜900℃、
反応雰囲気圧力:3〜13kPa、
の低温条件で、Al23核を形成し、この場合前記Al23核は30〜200nmの平均層厚を有するAl23核薄膜であるのが望ましく、引き続いて、反応雰囲気を圧力:3〜13kPaの水素雰囲気に変え、反応雰囲気温度を1100〜1200℃に昇温した条件で前記Al23核薄膜に加熱処理を施した状態で、硬質被覆層としてのα型Al23層を通常の条件で形成すると、この結果の前記加熱処理Al23核薄膜上に蒸着形成されたα型Al23層(以下、「改質α型Al23層」という)は、α型Al23層本来の具備するすぐれた高温硬さおよび耐熱性に加えて、高温強度の著しく向上したものになること。
(2-a) When an α-type Al 2 O 3 layer (hereinafter referred to as “conventional α-type Al 2 O 3 layer”), which is an upper layer of the hard coating layer of the conventional coated cermet tool, is formed by vapor deposition, for example, Prior to the vapor deposition of the conventional chemical vapor deposition equipment,
Reaction gas composition:% by volume, AlCl 3 : 3 to 10%, CO 2 : 0.5 to 3%, C 2 H 4 : 0.01 to 0.3%, H 2 : remaining,
Reaction atmosphere temperature: 750 to 900 ° C.
Reaction atmosphere pressure: 3 to 13 kPa,
At low temperature conditions, to form a Al 2 O 3 nuclei, in this case the Al 2 O 3 nuclei and even desirable in Al 2 O 3 nuclei thin film with an average layer thickness of 30 to 200 nm, and subsequently, the reaction atmosphere Pressure: Changed to a hydrogen atmosphere of 3 to 13 kPa, α-type Al 2 as a hard coating layer in a state where the Al 2 O 3 core thin film was heated under the condition that the reaction atmosphere temperature was raised to 1100 to 1200 ° C. When the O 3 layer is formed under normal conditions, an α-type Al 2 O 3 layer (hereinafter referred to as “modified α-type Al 2 O 3 layer”) deposited on the heat-treated Al 2 O 3 core thin film as a result of this is formed. In addition to the excellent high temperature hardness and heat resistance inherent in the α-type Al 2 O 3 layer, the high temperature strength is remarkably improved.

(2−b)上記の従来α型Al23層と改質α型Al23層について、電界放出型走査電子顕微鏡を用い、図4(a),(b)に概略説明図で示される通り、表面研磨面の測定範囲内に存在する六方晶結晶格子を有するα型Al23結晶粒個々に電子線を照射し、電子後方散乱回折像装置を用い、所定領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフを作成した場合、前記従来α型Al23層は、図6に例示される通り、(0001)面の測定傾斜角の分布が0〜45度の範囲内で不偏的な傾斜角度数分布グラフを示すのに対して、前記加熱処理Al23核薄膜上に蒸着形成された改質α型Al23層は、図5に例示される通り、傾斜角区分の特定位置にシャープな最高ピークが現れ、このシャープな最高ピークは、前記Al23核薄膜の平均層厚を変化させることによりグラフ横軸の傾斜角区分に現れる位置が変わること。 (2-b) The conventional α-type Al 2 O 3 layer and the modified α-type Al 2 O 3 layer are schematically illustrated in FIGS. 4A and 4B using a field emission scanning electron microscope. As shown, each α-type Al 2 O 3 crystal grain having a hexagonal crystal lattice existing within the measurement range of the polished surface is irradiated with an electron beam, and an electron backscatter diffraction image apparatus is used to set a predetermined region to 0. At an interval of 1 μm / step, an inclination angle formed by a normal line of the (0001) plane, which is a crystal plane of the crystal grain, is measured with respect to a normal line of the polished surface. When the measured inclination angle within the range of 45 degrees is divided into pitches of 0.25 degrees and the inclination angle number distribution graph is formed by counting the frequencies existing in each division, the conventional α-type Al the 2 O 3 layer, as illustrated in FIG. 6, (0001) measurement inclination angle of the surface distribution of 0 to 45 degrees As against indicate unbiased inclination angle frequency distribution graph in囲内, wherein the heat treatment Al 2 O 3 nuclei thin reformed α-type Al 2 O 3 layer is deposited formed on, which is illustrated in Figure 5 A sharp maximum peak appears at a specific position in the tilt angle section, and this sharp maximum peak changes its position appearing in the tilt angle section on the horizontal axis of the graph by changing the average layer thickness of the Al 2 O 3 nuclear thin film. thing.

(2−c)試験結果によれば、上記Al23核薄膜の平均層厚を30〜200nmとすると、上記シャープな最高ピークが傾斜角区分の0.75〜10.00度の範囲内に現れると共に、0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45〜77%の割合を占める傾斜角度数分布グラフを示すようになること。 (2-c) According to the test results, when the average layer thickness of the Al 2 O 3 nuclear thin film is 30 to 200 nm, the sharp maximum peak is within the range of 0.75 to 10.00 degrees of the inclination angle section. And an inclination angle distribution graph in which the total frequency existing in the range of 0 to 10 degrees occupies 45 to 77% of the entire frequency in the inclination angle distribution graph.

(2−d)硬質被覆層の上部層が上記の改質α型Al23層、同下部層における1層が上記の改質TiCN層で構成された被覆サーメット工具は、前記硬質被覆層が前記改質α型Al23層および前記改質TiCN層によってすぐれた高温強度を具備するようになることから、特に激しい機械的衝撃を伴なう、合金工具鋼および軸受鋼の焼入れ材などの高硬度鋼などの高速断続切削加工でも、前記硬質被覆層がすぐれた耐チッピング性を発揮し、長期に亘ってすぐれた耐摩耗性を示すようになること。
以上(1−a)〜(2−d)に示される研究結果を得たのである。
(2-d) A coated cermet tool in which the upper layer of the hard coating layer is composed of the modified α-type Al 2 O 3 layer and one layer in the lower layer is composed of the modified TiCN layer is the hard coating layer. Is provided with excellent high-temperature strength by the modified α-type Al 2 O 3 layer and the modified TiCN layer, so that the hardened material for alloy tool steel and bearing steel with particularly severe mechanical impact. Even in high-speed intermittent cutting of high-hardness steel such as the above, the hard coating layer exhibits excellent chipping resistance and exhibits excellent wear resistance over a long period of time.
The research results shown in the above (1-a) to (2-d) were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、WC基超硬合金またはTiCN基サーメットで構成された工具基体の表面に蒸着形成した硬質被覆層を、
(a)いずれも化学蒸着形成された、TiC層、TiN層、TiCN層、TiCO層、およびTiCNO層のうちの1層以上からなり、かつ0.1〜5μmの合計平均層厚を有する密着性Ti化合物層と、2.5〜15μmの平均層厚を有する改質TiCN層からなる下部層、
(b)1〜15μmの平均層厚を有する改質α型Al層からなる上部層、
以上(a)および(b)で構成し、かつ、上記(a)の下部層における改質TiCN層を、
電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射し、電子後方散乱回折像装置を用い、所定領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{110}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、1.00〜10.00度の範囲内の傾斜角区分に最高ピークが存在すると共に、0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の54〜75%の割合を占める傾斜角度数分布グラフを示す改質TiCN層、
で構成し、さらに、上記(b)の改質α型Al層を、
化学蒸着形成された状態でα型の結晶構造を有し、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射し、電子後方散乱回折像装置を用い、所定領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、0.75〜10.00度の範囲内の傾斜角区分に最高ピークが存在すると共に、0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45〜77%の割合を占める傾斜角度数分布グラフを示す改質α型Al層、
で構成してなる、高硬度鋼の高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する被覆サーメット工具に特徴を有するものである。
The present invention was made based on the above research results, and a hard coating layer formed by vapor deposition on the surface of a tool base composed of a WC-based cemented carbide or TiCN-based cermet,
(A) All formed by chemical vapor deposition, comprising one or more of a TiC layer, a TiN layer, a TiCN layer, a TiCO layer, and a TiCNO layer, and having a total average layer thickness of 0.1 to 5 μm A lower layer comprising a Ti compound layer and a modified TiCN layer having an average layer thickness of 2.5 to 15 μm,
(B) an upper layer comprising a modified α-type Al 2 O 3 layer having an average layer thickness of 1 to 15 μm,
(A) and (b) above, and the modified TiCN layer in the lower layer of (a) above,
Using a field emission scanning electron microscope, each crystal grain having a cubic crystal lattice existing within the measurement range of the surface polished surface is irradiated with an electron beam, and an electron backscatter diffraction image apparatus is used to set a predetermined area to 0.1 μm. The inclination angle formed by the normal line of the {110} plane, which is the crystal plane of the crystal grain, is measured with respect to the normal line of the surface polished surface at an interval of / step. In the inclination angle number distribution graph obtained by dividing the measured inclination angles within the range of degrees into pitches of 0.25 degrees and totaling the frequencies existing in each division, 1.00 to 10.00 degrees Inclination angle number distribution in which the highest peak exists in the inclination angle section within the range, and the sum of the frequencies existing in the range of 0 to 10 degrees occupies 54 to 75% of the entire frequency in the inclination angle frequency distribution graph Modified TiCN layer showing graph,
And the modified α-type Al 2 O 3 layer of (b) above,
In the state of chemical vapor deposition, it has an α-type crystal structure, and a field emission scanning electron microscope is used to irradiate individual crystal grains having a hexagonal crystal lattice existing within the measurement range of the surface polished surface with an electron beam. Using an electron backscatter diffraction image apparatus, an inclination formed by a normal of (0001) that is a crystal plane of the crystal grain with respect to a normal of the surface-polished surface with a predetermined region at an interval of 0.1 μm / step The angle is measured, and the measured inclination angle within the range of 0 to 45 degrees is divided into 0.25 degree pitches among the measured inclination angles, and the degrees existing in the respective sections are totaled. In the angle distribution graph, the highest peak is present in the inclination angle section in the range of 0.75 to 10.00 degrees, and the total of the frequencies existing in the range of 0 to 10 degrees is in the inclination angle distribution graph. tilt in a proportion of 45 to 77 percent of the total frequency Reforming α type the Al 2 O 3 layer showing the angle frequency distribution graph,
It is characterized by a coated cermet tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting of high-hardness steel.

つぎに、この発明の被覆サーメット工具の硬質被覆層の構成層について、上記の通りに数値限定した理由を以下に説明する。
(a)下部層の密着性Ti化合物層
密着性Ti化合物層は、工具基体と上部層である改質α型Al23層および改質TiCN層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性向上に寄与する作用をもつが、その合計平均層厚が0.1μm未満では、所望のすぐれた密着性を確保することができず、一方前記密着性は5μmまでの合計平均層厚で充分であることから、その合計平均層厚を0.1〜5μmと定めた。
Next, the reason why the constituent layers of the hard coating layer of the coated cermet tool of the present invention are numerically limited as described above will be described below.
(A) Adhesive Ti compound layer of lower layer Adhesive Ti compound layer adheres firmly to both the tool substrate and the modified α-type Al 2 O 3 layer and the modified TiCN layer, which are the upper layer, and is therefore hard Although it has the effect | action which contributes to the adhesive improvement with respect to the tool base | substrate of a coating layer, if the total average layer thickness is less than 0.1 micrometer, desired outstanding adhesiveness cannot be ensured, On the other hand, the said adhesiveness is up to 5 micrometers. Therefore, the total average layer thickness was determined to be 0.1 to 5 μm.

(b)下部層の改質TiCN層
上記の通り、反応ガスの構成成分であるCの含有割合を1〜3%とすることにより、1.00〜10.00度の傾斜角区分範囲内に測定傾斜角の最高ピークが現れ、かつ反応雰囲気温度を700〜780℃、反応雰囲気圧力を25〜40kPaとすることにより、0〜10度の傾斜角区分内に存在する度数の合計割合が、傾斜角度数分布グラフにおける度数全体の54〜75%となる傾斜角度数分布グラフを示す改質TiCN層が形成されるようになり、この結果として改質TiCN層は一段とすぐれた高温強度を具備するようになるが、その平均層厚が2.5μm未満では所望のすぐれた高温強度を硬質被覆層に具備せしめることができず、一方その平均層厚が15μmを越えると、偏摩耗の原因となる熱塑性変形が発生し易くなり、摩耗が加速するようになることから、その平均層厚を2.5〜15μmと定めた。
(B) Modified TiCN layer of lower layer As described above, by setting the content ratio of C 2 H 4 which is a constituent component of the reaction gas to 1 to 3%, an inclination angle section of 1.00 to 10.00 degrees The highest peak of the measured tilt angle appears in the range, the reaction atmosphere temperature is 700 to 780 ° C., and the reaction atmosphere pressure is 25 to 40 kPa, so that the total ratio of the frequencies existing in the tilt angle section of 0 to 10 degrees. However, a modified TiCN layer showing an inclined angle number distribution graph that is 54 to 75% of the entire frequency in the inclined angle number distribution graph is formed, and as a result, the modified TiCN layer has a much higher temperature strength. However, if the average layer thickness is less than 2.5 μm, the desired excellent high-temperature strength cannot be provided in the hard coating layer, whereas if the average layer thickness exceeds 15 μm, it causes uneven wear. When That thermal plastic deformation is likely to occur, since it becomes worn accelerates, determined the average layer thickness and 2.5~15Myuemu.

(c)上部層の改質α型Al23
上記の通り加熱処理Al23核薄膜上に形成された改質α型Al23層には、Al23自体のもつすぐれた高温硬度と耐熱性によって硬質被覆層の耐摩耗性を向上させると共に、従来α型Al23層に比して、一段とすぐれた高温強度を有するので、硬質被覆層の耐チッピング性を一段と向上させる作用があるが、その平均層厚が1μm未満では前記作用を十分に発揮させることができず、一方その平均層厚が15μmを越えて厚くなりすぎると、チッピングが発生し易くなることから、その平均層厚を1〜15μmと定めた。
(C) the modified α type the Al 2 O 3 layer reforming α-type formed in said street heating Al 2 O 3 on the nuclear membrane the Al 2 O 3 layer of the upper layer has the Al 2 O 3 itself The high temperature hardness and heat resistance improve the wear resistance of the hard coating layer, and it has superior high temperature strength compared to the conventional α-type Al 2 O 3 layer, so the chipping resistance of the hard coating layer is improved. Although there is an effect of further improvement, if the average layer thickness is less than 1 μm, the above-mentioned effect cannot be fully exerted, while if the average layer thickness exceeds 15 μm, chipping is likely to occur. Therefore, the average layer thickness was determined to be 1 to 15 μm.

(d)加熱処理Al23核薄膜
この発明の被覆サーメット工具の硬質被覆層を構成する改質α型Al23層に関して、傾斜角度数分布グラフで最高ピークを示す傾斜角区分と加熱処理Al23核薄膜の平均層厚との間には密接な関係があり、この場合試験結果によれば、前記加熱処理Al23核薄膜の平均層厚を30〜200nmの範囲で変化させると、最高ピークが0.75〜10.00度の範囲内の傾斜角区分に現れると共に、0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45〜77%の割合を占める傾斜角度数分布グラフを示すようになるものであり、したがって、前記加熱処理Al23核薄膜の平均層厚が、30nm未満では、これの上に蒸着形成されるα型Al23層の傾斜角度数分布グラフの0〜10度の範囲内に現れるピーク高さが不十分、すなわち、前記0〜10度の範囲内に存在する度数の合計割合が、傾斜角度数分布グラフにおける度数全体の45%未満となってしまい、この場合上記の通り、前記α型Al23層に所望のすぐれた高温強度を確保することができず、この結果耐チッピング性に所望の向上効果が得られず、一方その平均層厚が200nmを越えると、最高ピークの現れる傾斜角区分が0.75〜10.00度の範囲から外れてしまい、この場合も前記α型Al23層に所望のすぐれた高温強度を確保することができない場合が生じることから、前記Al23核薄膜の平均層厚を30〜200nm、望ましくは同30〜150nmとしたのである。
(D) Heat-treated Al 2 O 3 core thin film Regarding the modified α-type Al 2 O 3 layer constituting the hard coating layer of the coated cermet tool of the present invention, the tilt angle segment showing the highest peak in the tilt angle number distribution graph and heating There is a close relationship between the average layer thickness of the treated Al 2 O 3 core thin film. In this case, according to the test results, the average layer thickness of the heat treated Al 2 O 3 core thin film is in the range of 30 to 200 nm. When it is changed, the highest peak appears in the inclination angle section in the range of 0.75 to 10.00 degrees, and the total of the frequencies existing in the range of 0 to 10 degrees is the total of the degrees in the inclination angle frequency distribution graph. An inclination angle number distribution graph occupying a ratio of 45 to 77% is shown. Therefore, when the average layer thickness of the heat-treated Al 2 O 3 core thin film is less than 30 nm, vapor deposition is formed thereon. inclination of α type the Al 2 O 3 layer which is The peak height appearing in the range of 0 to 10 degrees in the frequency distribution graph is insufficient, that is, the total ratio of the frequencies existing in the range of 0 to 10 degrees is 45% of the total frequency in the inclination angle frequency distribution graph. In this case, as described above, the α-type Al 2 O 3 layer cannot secure a desired excellent high-temperature strength, and as a result, a desired improvement effect cannot be obtained in chipping resistance. On the other hand, when the average layer thickness exceeds 200 nm, the inclination angle section where the highest peak appears is out of the range of 0.75 to 10.00 degrees, and in this case as well, the α-type Al 2 O 3 layer is excellent as desired. Since the case where the high temperature strength cannot be ensured occurs , the average layer thickness of the Al 2 O 3 core thin film is set to 30 to 200 nm, preferably 30 to 150 nm.

なお、切削工具の使用前後の識別を目的として、硬質被覆層の最表面層として黄金色の色調を有するTiN層を、必要に応じて蒸着形成してもよいが、この場合の平均層厚は0.1〜1μmでよく、これは0.1μm未満では、十分な識別効果が得られず、一方前記TiN層による前記識別効果は1μmまでの平均層厚で十分であるという理由からである。   In addition, for the purpose of identification before and after the use of the cutting tool, a TiN layer having a golden color tone may be vapor-deposited as necessary as the outermost surface layer of the hard coating layer, but the average layer thickness in this case is It may be 0.1 to 1 μm, and if the thickness is less than 0.1 μm, a sufficient discrimination effect cannot be obtained, while the discrimination effect by the TiN layer is sufficient for an average layer thickness of up to 1 μm.

この発明被覆サーメット工具は、特に激しい機械的衝撃を伴なう、合金工具鋼および軸受鋼の焼入れ材などの高硬度鋼などの高速断続切削でも、硬質被覆層の下部層を構成する改質TiCN層および上部層の改質α型Al23層が一段とすぐれた高温強度を有することから、硬質被覆層にチッピングの発生なく、すぐれた耐摩耗性を示すものである。 The coated cermet tool of the present invention is a modified TiCN that constitutes the lower layer of the hard coating layer even in high-speed intermittent cutting of high-hardness steel, such as a hardened material of alloy tool steel and bearing steel, with particularly severe mechanical impact. Since the modified α-type Al 2 O 3 layer of the layer and the upper layer has excellent high temperature strength, the hard coating layer exhibits excellent wear resistance without occurrence of chipping.

つぎに、この発明の被覆サーメット工具を実施例により具体的に説明する。   Next, the coated cermet tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの範囲内の所定の平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で48時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG120408に規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体A〜Fをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, all having a predetermined average particle diameter in the range of 1 to 3 μm, And Co powders, these raw material powders were blended in the blending composition shown in Table 1, further added with wax, ball milled in acetone for 48 hours, dried under reduced pressure, and then pressured to a predetermined shape at a pressure of 98 MPa. The green compact is press-molded, and this green compact is vacuum-sintered at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour in a vacuum of 5 Pa. After sintering, R: By performing a honing process of 0.07 mm, tool bases A to F made of a WC-base cemented carbide having a throwaway tip shape defined in ISO · CNMG120408 were manufactured.

また、原料粉末として、いずれも0.5〜2μmの範囲内の所定の平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで48時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG120408のチップ形状をもったTiCN基サーメット製の工具基体b〜fを形成した。 Further, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, all having a predetermined average particle diameter in the range of 0.5 to 2 μm, TaC powder, WC powder, Co powder, and Ni powder are prepared, and these raw material powders are blended into the blending composition shown in Table 2, wet mixed by a ball mill for 48 hours, dried, and then compacted at a pressure of 98 MPa. The green compact is pressed into a body, and the green compact is sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour. After sintering, the cutting edge portion is subjected to a honing process of R: 0.07 mm. The tool bases b to f made of TiCN base cermet having the chip shape of ISO standard / CNMG120408 were formed.

つぎに、これらの工具基体A〜Fおよび工具基体b〜fの表面に、通常の化学蒸着装置を用い、表3および表4に示される条件にて、硬質被覆層の下部層として改質TiCN層および密着性Ti化合物層を、表5に示される組み合わせで、かつ目標層厚で蒸着形成し、ついで、
反応ガス組成:容量%で、AlCl3:6.5%、CO2:1.6%、C24:0.13%、H2:残り、
反応雰囲気温度:820℃、
反応雰囲気圧力:8kPa、
時間:5〜80分、
の低温条件で表6に示される目標層厚のAl23核薄膜を形成した後(前記Al23核薄膜の層厚と処理時間の関係は実験により予め調査されている)、反応雰囲気を圧力:8kPaの水素雰囲気に変え、反応雰囲気温度を1135℃に昇温した条件で前記Al23核薄膜に加熱処理を施し、引続いて、同じく表3に示される条件で、同じく表6に示される目標層厚の改質α型Al23層を硬質被覆層の上部層として蒸着することにより本発明被覆サーメット工具1〜12をそれぞれ製造した。
Next, on the surfaces of the tool bases A to F and the tool bases b to f , modified TiCN is used as a lower layer of the hard coating layer under the conditions shown in Tables 3 and 4 using a normal chemical vapor deposition apparatus. A layer and an adhesive Ti compound layer are vapor-deposited in the combinations shown in Table 5 and with a target layer thickness;
Reaction gas composition: volume%, AlCl 3 : 6.5%, CO 2 : 1.6%, C 2 H 4 : 0.13%, H 2 : remaining,
Reaction atmosphere temperature: 820 ° C.
Reaction atmosphere pressure: 8 kPa,
Time: 5-80 minutes
After forming an Al 2 O 3 nucleus thin film having the target layer thickness shown in Table 6 under the low temperature conditions (the relationship between the layer thickness of the Al 2 O 3 nucleus thin film and the processing time has been investigated in advance by experiments), the reaction The atmosphere was changed to a hydrogen atmosphere at a pressure of 8 kPa, and the Al 2 O 3 core thin film was subjected to heat treatment under the conditions where the reaction atmosphere temperature was raised to 1135 ° C., and then under the same conditions as shown in Table 3, The coated cermet tools 1 to 12 of the present invention were manufactured by depositing a modified α-type Al 2 O 3 layer having a target layer thickness shown in Table 6 as an upper layer of the hard coating layer.

また、比較の目的で、上記の工具基体A〜Fおよび工具基体b〜fの表面に、同じく通常の化学蒸着装置を用い、表3,4に示される条件にて、硬質被覆層の下部層として従来TiCN層および密着性Ti化合物層を、表8に示される組み合わせで、かつ目標層厚で蒸着形成し、ついで、同じく表3に示される条件で、同じく表9に示される目標層厚の従来α型Al23層を硬質被覆層の上部層として蒸着形成することにより従来被覆サーメット工具1〜12をそれぞれ製造した。 For the purpose of comparison, the lower layers of the hard coating layer are formed on the surfaces of the tool bases A to F and the tool bases b to f using the same ordinary chemical vapor deposition apparatus under the conditions shown in Tables 3 and 4. The conventional TiCN layer and the adhesive Ti compound layer are formed by vapor deposition in the combination shown in Table 8 and with the target layer thickness. Then, under the conditions shown in Table 3, the target layer thickness is also shown in Table 9. Conventionally coated cermet tools 1 to 12 were manufactured by vapor-depositing a conventional α-type Al 2 O 3 layer as an upper layer of the hard coating layer.

ついで、上記の本発明被覆サーメット工具と従来被覆サーメット工具の硬質被覆層を構成する改質TiCN層および従来TiCN層、さらに改質α型Al23層および従来α型Al23層について、電界放出型走査電子顕微鏡を用いて、傾斜角度数分布グラフをそれぞれ作成した。
すなわち、上記傾斜角度数分布グラフは、上記の改質TiCN層および従来TiCN層、並びに改質α型Al23層および従来α型Al23層の表面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記改質TiCN層および従来TiCN層については結晶粒の結晶面である{110}面、前記改質α型Al23層および従来α型Al23層については結晶粒の結晶面である(0001)面のそれぞれ法線がなす傾斜角を測定し、この測定結果に基づいて、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより作成した。
Next, the modified TiCN layer and the conventional TiCN layer, the modified α-type Al 2 O 3 layer, and the conventional α-type Al 2 O 3 layer constituting the hard coating layer of the above-described coated cermet tool of the present invention and the conventional coated cermet tool Using the field emission type scanning electron microscope, an inclination angle number distribution graph was prepared.
That is, the inclination angle number distribution graph is a state where the surfaces of the modified TiCN layer and the conventional TiCN layer, the modified α-type Al 2 O 3 layer and the conventional α-type Al 2 O 3 layer are polished surfaces, A cube which is set in a lens barrel of a field emission scanning electron microscope and is present in the measurement range of the surface polishing surface with an electron beam having an acceleration voltage of 15 kV at an incident angle of 70 degrees and an irradiation current of 1 nA on the polishing surface. Each of the crystal grains having a crystal lattice is irradiated, and an electron backscatter diffraction image apparatus is used to divide the 30 × 50 μm region at a spacing of 0.1 μm / step with respect to the normal of the surface polished surface. The crystalline TiCN layer and the conventional TiCN layer are {110} planes that are crystal planes of crystal grains, and the modified α-type Al 2 O 3 layer and the conventional α-type Al 2 O 3 layer are crystal planes of crystal grains ( Inclination made by each normal of the (0001) plane An angle is measured, and based on this measurement result, among the measured inclination angles, a measurement inclination angle within a range of 0 to 45 degrees is divided for each pitch of 0.25 degrees and exists in each division. Created by counting the frequencies.

この結果得られた各種の改質TiCN層および従来TiCN層の傾斜角度数分布グラフにおいて、{110}面が最高ピークを示す傾斜角区分、並びに0〜10度の範囲内の傾斜角区分内に存在する傾斜角度数の傾斜角度数分布グラフ全体の傾斜角度数に占める割合を表5,8に、さらに、同じく各種の改質α型Al23層および従来α型Al23層の傾斜角度数分布グラフにおいて、(0001)面が最高ピークを示す傾斜角区分、並びに0〜10度の範囲内の傾斜角区分内に存在する傾斜角度数の傾斜角度数分布グラフ全体の傾斜角度数に占める割合を表6,9にそれぞれ示した。 In the gradient angle distribution graphs of the various modified TiCN layers and conventional TiCN layers obtained as a result, the {110} plane has the highest peak, and the tilt angle within the range of 0 to 10 degrees. Tables 5 and 8 show the ratio of the existing inclination angle number to the inclination angle number of the entire inclination angle distribution graph. Further, various modified α-type Al 2 O 3 layers and conventional α-type Al 2 O 3 layers are also shown. In the inclination angle distribution graph, the inclination angle number of the entire inclination angle distribution graph of the inclination angle number existing in the inclination angle section where the (0001) plane has the highest peak and the inclination angle section in the range of 0 to 10 degrees. Tables 6 and 9 show the proportions of

上記の各種の傾斜角度数分布グラフにおいて、表5,6にそれぞれ示される通り、本発明被覆サーメット工具の改質TiCN層は、いずれも{110}面の測定傾斜角の分布が1.00〜10.00度の範囲内の傾斜角区分に最高ピークが現れ、かつ0〜10度の範囲内の傾斜角区分内に存在する傾斜角度数の割合が54〜75%である傾斜角度数分布グラフを示し、また、本発明被覆サーメット工具の加熱処理Al23核薄膜上に形成された改質α型Al23層も、いずれも(0001)面の測定傾斜角の分布が0.75〜10.00度の範囲内の傾斜角区分に最高ピークが現れ、かつ0〜10度の範囲内の傾斜角区分内に存在する傾斜角度数の割合が45〜77%である傾斜角度数分布グラフを示すのに対して、表8,9にそれぞれ示される通り、従来被覆サーメット工具の従来TiCN層は、いずれも{110}面の測定傾斜角の分布が0〜45度の範囲内で不偏的で、最高ピークが存在せず、0〜10度の範囲内の傾斜角区分内に存在する傾斜角度数の割合も30%以下である傾斜角度数分布グラフを示し、さらに、従来被覆サーメット工具の従来α型Al23層も、いずれも(0001)面の測定傾斜角の分布が0〜45度の範囲内で不偏的で、最高ピークが存在せず、0〜10度の範囲内の傾斜角区分内に存在する傾斜角度数の割合も30%以下である傾斜角度数分布グラフを示すものであった。
なお、図2は、本発明被覆サーメット工具10の改質TiCN層の傾斜角度数分布グラフ、図3は、従来被覆サーメット工具6の従来TiCN層の傾斜角度数分布グラフ、図5は、本発明被覆サーメット工具10の改質α型Al23層の傾斜角度数分布グラフ、図6は、従来被覆サーメット工具6の従来α型Al23層の傾斜角度数分布グラフをそれぞれ示すものである。
In the various inclination angle distribution graphs described above, as shown in Tables 5 and 6, the modified TiCN layer of the coated cermet tool of the present invention has a measured inclination angle distribution on the {110} plane of 1.00 to 1.00. An inclination angle number distribution graph in which the highest peak appears in the inclination angle section within the range of 10.00 degrees, and the ratio of the inclination angle numbers existing in the inclination angle section within the range of 0 to 10 degrees is 54 to 75%. The modified α-type Al 2 O 3 layer formed on the heat-treated Al 2 O 3 core thin film of the coated cermet tool of the present invention has a measured inclination angle distribution of (0001) plane of 0. The number of inclination angles in which the highest peak appears in the inclination angle section in the range of 75 to 10.00 degrees, and the ratio of the inclination angle numbers existing in the inclination angle section in the range of 0 to 10 degrees is 45 to 77%. Tables 8 and 9 show distribution graphs As can be seen, the conventional TiCN layers of the conventional coated cermet tools are all unbiased within the range of the measured inclination angle of the {110} plane within the range of 0 to 45 degrees, the highest peak does not exist, and 0 to 10 degrees. 2 shows an inclination angle number distribution graph in which the ratio of the inclination angle number existing in the inclination angle section within the range is 30% or less, and in addition, all of the conventional α-type Al 2 O 3 layer of the conventional coated cermet tool ( The distribution of the measured inclination angle of the (0001) plane is unbiased within the range of 0 to 45 degrees, the highest peak does not exist, and the ratio of the number of inclination angles existing in the inclination angle section within the range of 0 to 10 degrees An inclination angle number distribution graph of 30% or less was shown.
2 is an inclination angle distribution graph of the modified TiCN layer of the coated cermet tool 10 of the present invention, FIG. 3 is an inclination angle distribution graph of the conventional TiCN layer of the conventional coated cermet tool 6, and FIG. inclination angle frequency distribution graph of the reformed α-type the Al 2 O 3 layer, 6 a coated cermet tool 10 shows a conventional coated cermet tool 6 of the conventional α type the Al 2 O 3 layer inclination angle frequency distribution graphs, respectively is there.

さらに、上記の本発明被覆サーメット工具1〜12および従来被覆サーメット工具1〜12について、これの硬質被覆層の構成層を電子線マイクロアナライザー(EPMA)およびオージェ分光分析装置を用いて観察(層の縦断面を観察)したところ、前者および後者とも目標組成と実質的に同じ組成を有するTiCN層およびTi化合物層と、α型Al23層からなることが確認された。また、これらの被覆サーメット工具の硬質被覆層の構成層の厚さを、走査型電子顕微鏡を用いて測定(同じく縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。 Further, regarding the coated cermet tools 1 to 12 of the present invention and the conventional coated cermet tools 1 to 12 , the constituent layers of the hard coating layer were observed using an electron beam microanalyzer (EPMA) and an Auger spectroscopic analyzer (layer When the longitudinal section was observed), it was confirmed that both the former and the latter were composed of a TiCN layer and a Ti compound layer having substantially the same composition as the target composition, and an α-type Al 2 O 3 layer. Moreover, when the thickness of the constituent layer of the hard coating layer of these coated cermet tools was measured using a scanning electron microscope (same longitudinal section measurement), the average layer thickness (substantially the same as the target layer thickness) Average value of 5-point measurement) was shown.

つぎに、上記の各種の被覆サーメット工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆サーメット工具1〜12および従来被覆サーメット工具1〜12について、
被削材:JIS・SKS31の焼入れ材(硬さ:HC62)の長さ方向等間隔4本縦溝入り丸棒、
切削速度:190m/min、
切り込み:0.1mm、
送り:0.08mm/rev、
切削時間:10分、
の条件(切削条件A)での合金工具鋼の乾式高速断続切削試験(通常の切削速度は90m/min)、
被削材:JIS・SKD61の焼入れ材(硬さ:HC55)の長さ方向等間隔4本縦溝入り丸棒、
切削速度:250m/min、
切り込み:0.1mm、
送り:0.15mm/rev、
切削時間:10分、
の条件(切削条件B)での合金工具鋼の乾式高速断続切削試験(通常の切削速度は120m/min)、
被削材:JIS・SCM415の浸炭焼入れ材(硬さ:HC60)の長さ方向等間隔4本縦溝入り丸棒、
切削速度:220m/min、
切り込み:0.12mm、
送り:0.1mm/rev、
切削時間:10分、
の条件(切削条件C)での浸炭焼入れ鋼の乾式高速断続切削試験(通常の切削速度は120m/min)を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表8に示した。
Next, with the various coated cermet tools described above, the present coated cermet tools 1 to 12 and the conventional coated cermet tools 1 to 12 in a state where all the above-mentioned various coated cermet tools are screwed to the tip of the tool steel tool with a fixing jig.
Workpiece: hardened material of JIS · SKS31 (Hardness: H R C62) in the length direction at equal intervals of four longitudinal grooves containing round bar,
Cutting speed: 190 m / min,
Incision: 0.1 mm,
Feed: 0.08mm / rev,
Cutting time: 10 minutes,
Dry high-speed intermittent cutting test of alloy tool steel under the above conditions (cutting condition A) (normal cutting speed is 90 m / min),
Workpiece: hardened material of JIS · SKD61 (hardness: H R C55) in the length direction at equal intervals of four longitudinal grooves containing round bar,
Cutting speed: 250 m / min,
Incision: 0.1 mm,
Feed: 0.15mm / rev,
Cutting time: 10 minutes,
Dry high-speed intermittent cutting test of alloy tool steel under the above conditions (cutting condition B) (normal cutting speed is 120 m / min),
Work material: JIS · SCM415 carburized quenching material (hardness: H R C60) lengthwise equal four round grooved round bars,
Cutting speed: 220 m / min,
Cutting depth: 0.12 mm,
Feed: 0.1 mm / rev,
Cutting time: 10 minutes,
A dry high-speed intermittent cutting test (normal cutting speed is 120 m / min) of carburized and hardened steel under the above conditions (cutting condition C), and the flank wear width of the cutting edge was measured in any cutting test. The measurement results are shown in Table 8.

Figure 0004793750
Figure 0004793750

Figure 0004793750
Figure 0004793750

Figure 0004793750
Figure 0004793750

Figure 0004793750
Figure 0004793750

Figure 0004793750
Figure 0004793750

Figure 0004793750
Figure 0004793750

Figure 0004793750
Figure 0004793750

Figure 0004793750
Figure 0004793750

Figure 0004793750
Figure 0004793750

Figure 0004793750
Figure 0004793750

表5〜10に示される結果から、本発明被覆サーメット工具1〜12は、いずれも硬質被覆層の下部層のうちの1層が、{110}面の傾斜角が1.00〜10.00度の範囲内の傾斜角区分で最高ピークを示すと共に、0〜10度の傾斜角区分範囲内に存在する度数の合計割合が54〜75%を占める傾斜角度数分布グラフを示す改質TiCN層で構成され、さらに、同上部層が、(0001)面の傾斜角が0.75〜10.00度の範囲内の傾斜角区分で最高ピークを示すと共に、0〜10度の範囲内に存在する合計度数割合が45〜77%を占める傾斜角度数分布グラフを示す改質α型Al23層で構成され、硬質被覆層がきわめてすぐれた高温強度を具備するようになることから、特に合金工具鋼や軸受鋼の焼入れ材などの高硬度鋼などの高速断続切削でも、切刃部におけるチッピング発生が著しく抑制され、すぐれた耐摩耗性を示すのに対して、硬質被覆層の下部層のうちの1層が、{110}面の測定傾斜角の分布が0〜45度の範囲内で不偏的で、最高ピークが存在しない傾斜角度数分布グラフを示す従来TiCN層で構成され、さらに、同上部層が、(0001)面の測定傾斜角の分布が0〜45度の範囲内で不偏的で、最高ピークが存在しない傾斜角度数分布グラフを示す従来α型Al23層で構成された従来被覆サーメット工具1〜12においては、いずれも前記高硬度鋼の高速断続切削では硬質被覆層の高温強度不足が原因で、充分な耐機械的衝撃性を発揮することができず、こと結果切刃部にチッピングが発生し、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 5 to 10, in the coated cermet tools 1 to 12 of the present invention, one of the lower layers of the hard coating layer has an inclination angle of {110} plane of 1.00 to 10.00. Modified TiCN layer showing an inclination angle distribution graph showing the highest peak in the inclination angle section within the range of degrees and a total ratio of the frequencies existing in the inclination angle section range of 0 to 10 degrees occupying 54 to 75% Furthermore, the upper layer has the highest peak in the inclination angle section with the inclination angle of (0001) plane in the range of 0.75 to 10.00 degrees, and exists in the range of 0 to 10 degrees. In particular, it is composed of a modified α-type Al 2 O 3 layer showing an inclination angle frequency distribution graph in which the total frequency ratio occupies 45 to 77% , and the hard coating layer has particularly excellent high-temperature strength. High hardness for hardened alloy tool steel and bearing steel Even in high-speed intermittent cutting, etc., the occurrence of chipping at the cutting edge is remarkably suppressed, and excellent wear resistance is exhibited. On the other hand, one of the lower layers of the hard coating layer has a measured inclination of the {110} plane. It is composed of a conventional TiCN layer showing an inclination angle number distribution graph in which the angle distribution is unbiased within the range of 0 to 45 degrees and does not have the highest peak, and further, the upper layer has a measured inclination angle of the (0001) plane. In the conventional coated cermet tools 1 to 12 composed of the conventional α-type Al 2 O 3 layer showing the inclination angle number distribution graph that is unbiased within the range of 0 to 45 degrees and does not have the highest peak, However, high-speed intermittent cutting of the above hard steel cannot exhibit sufficient mechanical shock resistance due to insufficient high-temperature strength of the hard coating layer, resulting in chipping at the cutting edge, which is relatively short. Can reach the service life in time it is obvious.

上述のように、この発明の被覆サーメット工具は、各種鋼や鋳鉄などの通常の条件での連続切削や断続切削は勿論のこと、特に高温強度が要求される高硬度鋼の高速断続切削でもすぐれた耐チッピング性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated cermet tool of the present invention is excellent not only for continuous cutting and interrupted cutting under normal conditions such as various steels and cast iron, but also for high-speed interrupted cutting of high-hardness steel requiring high-temperature strength. It exhibits excellent chipping resistance and exhibits excellent cutting performance over a long period of time, so that it can sufficiently satisfy cutting equipment performance, labor saving and energy saving, and cost reduction. It is.

硬質被覆層を構成する各種TiCN層における結晶粒の{110}面の傾斜角の測定範囲を示す概略説明図である。It is a schematic explanatory drawing which shows the measurement range of the inclination angle of the {110} plane of the crystal grain in the various TiCN layers which comprise a hard coating layer. 本発明被覆サーメット工具10の硬質被覆層の下部層を構成する改質TiCN層の{110}面の傾斜角度数分布グラフである。The inclination angle frequency distribution graph of the {110} plane of the reformed TiCN layer constituting the lower layer of the hard coating layer of the present invention coated cermet tool 10. 従来被覆サーメット工具6の硬質被覆層下部層を構成する従来TiCNの{110}面の傾斜角度数分布グラフである。It is the inclination angle number distribution graph of the {110} plane of the conventional TiCN which comprises the hard coating layer lower layer of the conventional coating cermet tool 6. 硬質被覆層の上部層を構成する各種α型Al23層における結晶粒の(0001)面の傾斜角の測定範囲を示す概略説明図である。It is a schematic diagram illustrating a measurement range of the inclination angle of the crystal grains (0001) plane in various α type the Al 2 O 3 layer constituting the upper layer of the hard coating layer. 本発明被覆サーメット工具10の硬質被覆層の上部層を構成する改質α型Al23層の(0001)面の傾斜角度数分布グラフである。The inclination angle frequency distribution graph of the (0001) plane of the reforming α type the Al 2 O 3 layer constituting the upper layer of the hard coating layer of the present invention coated cermet tool 10. 従来被覆サーメット工具6の硬質被覆層の上部層を構成する従来α型Al23層の(0001)面の傾斜角度数分布グラフである。It is a gradient angle number distribution graph of the (0001) plane of the conventional α-type Al 2 O 3 layer constituting the upper layer of the hard coating layer of the conventional coated cermet tool 6.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に蒸着形成した硬質被覆層を、
(a)いずれも化学蒸着形成された、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層以上からなり、かつ0.1〜5μmの合計平均層厚を有する密着性Ti化合物層と、2.5〜15μmの平均層厚を有する改質炭窒化チタン層からなる下部層、
(b)1〜15μmの平均層厚を有し、かつ化学蒸着形成された状態でα型の結晶構造を有する改質α型酸化アルミニウム層からなる上部層、
以上(a)および(b)で構成し、かつ、上記(a)の下部層における改質炭窒化チタン層を、
電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射し、電子後方散乱回折像装置を用い、所定領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{110}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、1.00〜10.00度の範囲内の傾斜角区分に最高ピークが存在すると共に、0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の54〜75%の割合を占める傾斜角度数分布グラフを示す改質炭窒化チタン層、
で構成し、さらに、上記(b)の改質α型酸化アルミニウム層を、
電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射し、電子後方散乱回折像装置を用い、所定領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、0.75〜10.00度の範囲内の傾斜角区分に最高ピークが存在すると共に、0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45〜77%の割合を占める傾斜角度数分布グラフを示す改質α型酸化アルミニウム層、
で構成したことを特徴とする高硬度鋼の高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具。
A hard coating layer formed by vapor deposition on the surface of a tool base made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
(A) All are formed of one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer, and carbonitride layer formed by chemical vapor deposition, and 0.1 to 5 μm An adhesive Ti compound layer having a total average layer thickness, and a lower layer comprising a modified titanium carbonitride layer having an average layer thickness of 2.5 to 15 μm,
(B) an upper layer composed of a modified α-type aluminum oxide layer having an average layer thickness of 1 to 15 μm and having an α-type crystal structure in a state of chemical vapor deposition;
(A) and (b) above, and the modified titanium carbonitride layer in the lower layer of (a),
Using a field emission scanning electron microscope, each crystal grain having a cubic crystal lattice existing within the measurement range of the surface polished surface is irradiated with an electron beam, and an electron backscatter diffraction image apparatus is used to set a predetermined area to 0.1 μm. The inclination angle formed by the normal line of the {110} plane, which is the crystal plane of the crystal grain, is measured with respect to the normal line of the surface polished surface at an interval of / step. In the inclination angle number distribution graph obtained by dividing the measured inclination angles within the range of degrees into pitches of 0.25 degrees and totaling the frequencies existing in each division, 1.00 to 10.00 degrees Inclination angle number distribution in which the highest peak exists in the inclination angle section within the range, and the sum of the frequencies existing in the range of 0 to 10 degrees occupies 54 to 75% of the entire frequency in the inclination angle frequency distribution graph Modified titanium carbonitride layer showing graph,
In addition, the modified α-type aluminum oxide layer of (b) above,
Using a field emission scanning electron microscope, irradiate an electron beam to each crystal grain having a hexagonal crystal lattice existing in the measurement range of the surface polished surface, and use an electron backscatter diffraction image apparatus to set a predetermined area to 0.1 μm. The inclination angle formed by the normal line of (0001), which is the crystal plane of the crystal grain, is measured with respect to the normal line of the surface polished surface at an interval of / step , and 0 to 45 degrees of the measured inclination angle. In the inclination angle number distribution graph obtained by dividing the measured inclination angle within the range of 0.25 degrees every pitch and adding up the frequencies existing in each division, the range of 0.75 to 10.00 degrees Inclination angle distribution graph in which the highest peak exists in the inclination angle section and the sum of the frequencies existing in the range of 0 to 10 degrees occupies a ratio of 45 to 77% of the entire frequency in the inclination angle distribution graph Modified α-type aluminum oxide showing Layers,
A surface-coated cermet cutting tool that exhibits excellent chipping resistance in high-speed intermittent cutting of high-hardness steel characterized by comprising a hard coating layer.
JP2005120642A 2005-04-19 2005-04-19 Surface coated cermet cutting tool with excellent chipping resistance in high-speed intermittent cutting of hard steel with excellent hard coating layer Active JP4793750B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005120642A JP4793750B2 (en) 2005-04-19 2005-04-19 Surface coated cermet cutting tool with excellent chipping resistance in high-speed intermittent cutting of hard steel with excellent hard coating layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005120642A JP4793750B2 (en) 2005-04-19 2005-04-19 Surface coated cermet cutting tool with excellent chipping resistance in high-speed intermittent cutting of hard steel with excellent hard coating layer

Publications (2)

Publication Number Publication Date
JP2006297517A JP2006297517A (en) 2006-11-02
JP4793750B2 true JP4793750B2 (en) 2011-10-12

Family

ID=37466215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005120642A Active JP4793750B2 (en) 2005-04-19 2005-04-19 Surface coated cermet cutting tool with excellent chipping resistance in high-speed intermittent cutting of hard steel with excellent hard coating layer

Country Status (1)

Country Link
JP (1) JP4793750B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5182501B2 (en) * 2008-07-09 2013-04-17 三菱マテリアル株式会社 Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5483110B2 (en) * 2010-09-30 2014-05-07 三菱マテリアル株式会社 Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5590329B2 (en) * 2011-02-03 2014-09-17 三菱マテリアル株式会社 Surface coated cutting tool with excellent chipping resistance and chipping resistance with excellent hard coating layer
JP5748125B2 (en) * 2011-08-31 2015-07-15 三菱マテリアル株式会社 A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP5892380B2 (en) * 2012-06-29 2016-03-23 三菱マテリアル株式会社 Surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance with a hard coating layer in high-speed intermittent cutting

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE514737C2 (en) * 1994-03-22 2001-04-09 Sandvik Ab Coated carbide cutting tool
JP4004133B2 (en) * 1998-03-10 2007-11-07 日立ツール株式会社 Titanium carbonitride coated tool
JP2004284003A (en) * 2003-02-28 2004-10-14 Mitsubishi Materials Corp Surface-coated cermet cutting tool exhibiting excellent chipping resistance in hard coated layer

Also Published As

Publication number Publication date
JP2006297517A (en) 2006-11-02

Similar Documents

Publication Publication Date Title
JP4518260B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP4645983B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP2006289556A (en) Surface-coated cermet cutting tool having hard coating layer for exhibiting superior chipping resistance in high speed intermittent cutting work
JP2006231433A (en) Surface-coated cermet cutting tool with hard coating layer exerting excellent chipping resistance in high-speed intermittent cutting
JP2006334721A (en) SURFACE COATED CERMET CUTTING TOOL WITH THICKENED alpha TYPE ALUMINUM OXIDE LAYER EXHIBITING EXCELLENT CHIPPING RESISTANCE
JP4512989B2 (en) Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer
JP4811782B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer
JP4793750B2 (en) Surface coated cermet cutting tool with excellent chipping resistance in high-speed intermittent cutting of hard steel with excellent hard coating layer
JP4730522B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer
JP4793749B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP2005246597A (en) Surface coated cubic boron nitride sintered material-made cutting tool having excellent chipping resistance in hard coated layer
JP2006334710A (en) Surface coated cermet cutting tool whose hard coating layer exhibits high chipping resistance in high-speed heavy cutting operation
JP2008080476A (en) Surface coated cutting tool with hard coated layer exerting excellent abrasion resistance in high speed cutting work
JP2006315154A (en) SURFACE COATED CERMET CUTTING TOOL IN WHICH THICK FILM alpha-TYPE ALUMINUM OXIDE LAYER EXHIBITS EXCELLENT CHIPPING RESISTANCE
JP2009006427A (en) Surface coated cutting tool
JP4474647B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP2006289546A (en) Surface-coated cermet cutting tool having hard coating layer for exhibiting superior chipping resistance in high speed intermittent cutting work
JP4466848B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP2005238437A (en) Surface-coated cermet cutting tool having hard coating layer exhibiting superior abrasion resistance in high speed cutting
JP4747338B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP2007185751A (en) Surface coated cermet-made cutting tool having hard coating layer exhibiting excellent chipping resistance in cutting material hard to work
JP5019257B2 (en) Surface coated cutting tool
JP2005279914A (en) Surface coated cermet-made cutting tool having hard coating layer exhibiting excellent chipping resistance
JP2005246598A (en) Surface-coated cermet cutting tool having hard coating layer exhibiting excellent chipping resistance
JP4730703B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110704

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4793750

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110717

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3