JP4793749B2 - Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting - Google Patents

Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting Download PDF

Info

Publication number
JP4793749B2
JP4793749B2 JP2005116535A JP2005116535A JP4793749B2 JP 4793749 B2 JP4793749 B2 JP 4793749B2 JP 2005116535 A JP2005116535 A JP 2005116535A JP 2005116535 A JP2005116535 A JP 2005116535A JP 4793749 B2 JP4793749 B2 JP 4793749B2
Authority
JP
Japan
Prior art keywords
layer
degrees
hard coating
inclination angle
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005116535A
Other languages
Japanese (ja)
Other versions
JP2006289586A (en
Inventor
惠滋 中村
晃 長田
尚志 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2005116535A priority Critical patent/JP4793749B2/en
Publication of JP2006289586A publication Critical patent/JP2006289586A/en
Application granted granted Critical
Publication of JP4793749B2 publication Critical patent/JP4793749B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、特に各種の鋼や鋳鉄などの被削材の断続切削加工を、高速切削条件で行った場合にも、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具(以下、被覆サーメット工具という)に関するものである。   This invention is a surface-coated cermet cutting tool that exhibits excellent chipping resistance even when intermittent cutting of various materials such as steel and cast iron is performed under high-speed cutting conditions ( Hereinafter, it is related to a coated cermet tool.

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)下部層が、いずれも化学蒸着形成された、Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、
(b)上部層が、1〜15μmの平均層厚、および化学蒸着した状態でα型の結晶構造を有し、さらに、
組成式:(Al1−XCr、(ただし、原子比で、X:0.01〜0.1)、
を満足するAl−Cr複合酸化物[以下、α型(Al,Cr)23で示す)層、
以上(a)および(b)で構成された硬質被覆層を蒸着形成してなる被覆サーメット工具が知られており、この被覆サーメット工具が、例えば各種の鋼や鋳鉄などの連続切削や断続切削に用いられることも良く知られるところである。
Conventionally, generally on the surface of a substrate (hereinafter collectively referred to as a tool substrate) composed of a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet. ,
(A) Ti carbide (hereinafter referred to as TiC) layer, nitride (hereinafter also referred to as TiN) layer, carbonitride (hereinafter referred to as TiCN) layer formed by chemical vapor deposition of the lower layers. A Ti compound comprising one or more of a carbon oxide (hereinafter referred to as TiCO) layer and a carbonitride oxide (hereinafter referred to as TiCNO) layer and having an overall average layer thickness of 3 to 20 μm layer,
(B) the upper layer has an average layer thickness of 1 to 15 μm and an α-type crystal structure in the state of chemical vapor deposition;
Composition formula: (Al 1-X Cr X ) 2 O 3, ( provided that an atomic ratio, X: 0.01 to 0.1),
Al—Cr composite oxide (hereinafter referred to as α-type (Al, Cr) 2 O 3 ) layer satisfying
There is known a coated cermet tool formed by vapor-depositing a hard coating layer composed of (a) and (b) above, and this coated cermet tool can be used for continuous cutting and intermittent cutting of various steels and cast irons, for example. It is well known that it is used.

上記の従来被覆サーメット工具において、これの硬質被覆層の構成層は、一般に粒状結晶組織を有し、さらに、下部層であるTi化合物層を構成するTiCN層を、層自身の強度向上を目的として、通常の化学蒸着装置にて、反応ガスとして有機炭窒化物、例えばCHCNを含む混合ガスを使用し、700〜950℃の中温温度域で化学蒸着することにより形成して縦長成長結晶組織をもつようにすることも知られている。 In the above-described conventional coated cermet tool, the constituent layer of the hard coating layer generally has a granular crystal structure, and the TiCN layer constituting the Ti compound layer as the lower layer is intended to improve the strength of the layer itself. In a normal chemical vapor deposition apparatus, a vertically grown crystal structure is formed by chemical vapor deposition at a medium temperature range of 700 to 950 ° C. using a mixed gas containing an organic carbonitride such as CH 3 CN as a reaction gas. It is also known to have

また、上記の従来被覆サーメット工具の硬質被覆層を構成する従来α型(Al,Cr)23層が、
反応ガス組成:容量%で、AlCl:2.3〜4%、CrCl:0.04〜0.26%、CO:6〜8%、HCl:1.5〜3%、H2S:0.05〜0.2%、H2:残り、
反応雰囲気温度:1020〜1050℃、
反応雰囲気圧力:6〜10kPa、
の条件で蒸着形成されることも知られている。
特開昭52−66508号公報 特開平6−8010号公報
Further, the conventional α-type (Al, Cr) 2 O 3 layer constituting the hard coating layer of the above-described conventional coated cermet tool,
Reaction gas composition: by volume%, AlCl 3: 2.3~4%, CrCl 3: 0.04~0.26%, CO 2: 6~8%, HCl: 1.5~3%, H 2 S : 0.05~0.2%, H 2: remainder,
Reaction atmosphere temperature: 1020 to 1050 ° C.
Reaction atmosphere pressure: 6 to 10 kPa,
It is also known that vapor deposition is performed under the following conditions.
JP 52-66508 A Japanese Patent Laid-Open No. 6-8010

近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高速化の傾向にあるが、上記の従来被覆サーメット工具においては、これを鋼や鋳鉄などの通常の条件での連続切削加工や断続切削加工に用いた場合には問題はないが、特にこれを断続切削加工を高速加工条件で行うのに用いた場合には、硬質被覆層を構成する従来α型(Al,Cr)23層が機械的および熱的に十分な耐衝撃性を具備するものでないために、前記硬質被覆層にチッピング(微少欠け)が発生し易くなり、この結果比較的短時間で使用寿命に至るのが現状である。 In recent years, the performance of cutting equipment has been remarkable. On the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for cutting, and along with this, cutting tends to be faster. There is no problem with cermet tools when they are used for continuous cutting and interrupted cutting under normal conditions such as steel and cast iron, but this is especially useful for performing intermittent cutting under high-speed machining conditions. If the conventional α-type (Al, Cr) 2 O 3 layer constituting the hard coating layer does not have sufficient mechanical and thermal shock resistance, the hard coating layer is chipped ( At present, it is easy to generate a minute chip), and as a result, the service life is reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、上記の従来α型(Al,Cr)23層が硬質被覆層の上部層を構成する被覆サーメット工具に着目し、特に前記従来α型(Al,Cr)23層の耐衝撃性向上を図るべく研究を行った結果、
(a)被覆サーメット工具の硬質被覆層を構成する上部層を形成するに際して、まず、例えば、通常の化学蒸着装置にて、
反応ガス組成:容量%で、AlCl:2.3〜4%、CrCl:0.04〜0.26%、CO:6〜8%、HCl:1.5〜3%、H2S:0.05〜0.2%、H2:残り、
反応雰囲気温度:750〜900℃、
反応雰囲気圧力:6〜10kPa、
の条件で、下部層であるTi化合物層の表面に、
組成式:(Al1−XCr、(ただし、原子比で、X:0.01〜0.1)を満足する(Al,Cr)23核を形成し、この場合前記(Al,Cr)23核は20〜200nm(0.02〜0.2μm)の平均層厚を有する(Al,Cr)23核薄膜であるのが望ましく、引き続いて、加熱雰囲気を圧力:3〜13kPaの水素雰囲気に変え、かつ加熱雰囲気温度を1100〜1200℃に昇温した条件で前記(Al,Cr)23核薄膜に加熱処理を施した状態で、硬質被覆層の上部層として、
反応ガス組成:容量%で、AlCl:2.3〜4%、CrCl:0.04〜0.26%、CO:6〜8%、HCl:1.5〜3%、H2S:0.05〜0.2%、H2:残り、
反応雰囲気温度:1020〜1050℃、
反応雰囲気圧力:6〜10kPa、
の条件で、同じく組成式:(Al1−XCr、(ただし、原子比で、X:0.01〜0.1を満足する(Al,Cr)層を形成すると、この結果の前記(Al,Cr)23核薄膜上に蒸着形成された(Al,Cr)23層は、化学蒸着した状態でα型の結晶構造を有し、かつ高温強度が一段と向上し、機械的熱的にすぐれた耐衝撃性を具備するようになること。
In view of the above, the present inventors pay attention to the above-described conventional cermet tool in which the conventional α-type (Al, Cr) 2 O 3 layer constitutes the upper layer of the hard coating layer. As a result of research to improve the impact resistance of the mold (Al, Cr) 2 O 3 layer,
(A) When forming the upper layer constituting the hard coating layer of the coated cermet tool, first, for example, in a normal chemical vapor deposition apparatus,
Reaction gas composition: by volume%, AlCl 3: 2.3~4%, CrCl 3: 0.04~0.26%, CO 2: 6~8%, HCl: 1.5~3%, H 2 S : 0.05~0.2%, H 2: remainder,
Reaction atmosphere temperature: 750 to 900 ° C.
Reaction atmosphere pressure: 6 to 10 kPa,
On the surface of the Ti compound layer as the lower layer under the conditions
In this case, (Al, Cr) 2 O 3 nuclei satisfying the composition formula: (Al 1-X Cr X ) 2 O 3 (wherein the atomic ratio is X: 0.01 to 0.1) are formed. The (Al, Cr) 2 O 3 nuclei are preferably (Al, Cr) 2 O 3 nuclei thin films having an average layer thickness of 20 to 200 nm (0.02 to 0.2 μm), followed by heating. In a state where the (Al, Cr) 2 O 3 core thin film is subjected to heat treatment under the condition that the pressure is changed to a hydrogen atmosphere of 3 to 13 kPa and the heating atmosphere temperature is raised to 1100 to 1200 ° C. As the upper layer of
Reaction gas composition: by volume%, AlCl 3: 2.3~4%, CrCl 3: 0.04~0.26%, CO 2: 6~8%, HCl: 1.5~3%, H 2 S : 0.05~0.2%, H 2: remainder,
Reaction atmosphere temperature: 1020 to 1050 ° C.
Reaction atmosphere pressure: 6 to 10 kPa,
The same compositional formula: (Al 1-X Cr X ) 2 O 3 (wherein, the (Al, Cr) 2 O 3 layer satisfying the X: 0.01-0.1 atomic ratio is formed) Then, the (Al, Cr) 2 O 3 layer deposited on the (Al, Cr) 2 O 3 nuclear thin film as a result has an α-type crystal structure in the state of chemical vapor deposition and has a high temperature strength. Will be further improved and will have excellent mechanical and thermal shock resistance.

(b)上記(a)の加熱処理(Al,Cr)23核薄膜上に蒸着形成された(Al,Cr)23層(以下、「改質α型(Al,Cr)23層」という)は、上記の従来α型(Al,Cr)23層と同じコランダム型六方最密晶の結晶構造、すなわち格子点にAl、Cr、および酸素からなる構成原子がそれぞれ存在するコランダム型六方最密晶の結晶構造を有する結晶粒で構成されること。 (B) (Al, Cr) 2 O 3 layer (hereinafter referred to as “modified α-type (Al, Cr) 2 O”) deposited on the heat-treated (Al, Cr) 2 O 3 core thin film of (a) above. The three- layer structure) is the same corundum hexagonal close-packed crystal structure as the conventional α-type (Al, Cr) 2 O 3 layer described above, that is, there are constituent atoms composed of Al, Cr, and oxygen at lattice points. Corundum-type hexagonal close-packed crystal grains having a crystal structure.

(c)上記の従来被覆サーメット工具の硬質被覆層の上部層を構成する従来α型(Al,Cr)23層と上記(a)および(b)の改質α型(Al,Cr)23層について、
電界放出型走査電子顕微鏡を用い、図1(a),(b)に概略説明図で示される通り、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射し、電子後方散乱回折像装置を用い、所定領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフを作成した場合、前記従来α型(Al,Cr)23層は、図3に例示される通り、(0001)面の測定傾斜角の分布が0〜45度の範囲内で不偏的な傾斜角度数分布グラフを示すのに対して、前記改質α型(Al,Cr)2 3 層は、図2に例示される通り、1.25〜10.00度の範囲内にシャープな最高ピークが現れる傾斜角度数分布グラフを示すこと。
(C) The conventional α-type (Al, Cr) 2 O 3 layer constituting the upper layer of the hard coating layer of the conventional coated cermet tool and the modified α-type (Al, Cr) of (a) and (b) above About 2 O 3 layer
Using a field emission scanning electron microscope, as shown in the schematic explanatory diagrams in FIGS. 1A and 1B, an electron beam is individually applied to each crystal grain having a hexagonal crystal lattice existing within the measurement range of the surface polished surface. Irradiate and use an electron backscatter diffraction image apparatus, and a predetermined area is spaced at a distance of 0.1 μm / step, and the normal line of the (0001) plane which is the crystal plane of the crystal grain with respect to the normal line of the polished surface Is measured, and the measured inclination angles within the range of 0 to 45 degrees out of the measured inclination angles are divided into pitches of 0.25 degrees, and the frequencies existing in each division are tabulated. As shown in FIG. 3, the conventional α-type (Al, Cr) 2 O 3 layer has a measured inclination angle distribution of (0001) plane of 0 to 45 degrees. In contrast to an unbiased inclination angle number distribution graph within the range of l, Cr) are 2 O 3 layer, as illustrated in FIG. 2, to show the inclination angle frequency distribution graph highest peak sharp appears within the range of 1.25 to 10.00 degrees.

(d)上記改質α型(Al,Cr)23層の形成に際して、層中のCr含有割合および加熱処理(Al,Cr)23核薄膜の平均層厚を、上記の通りそれぞれ1〜10原子%および20〜200nmとすることによって、傾斜角度数分布グラフでの上記シャープな最高ピークが傾斜角区分の1.25〜10.00度の範囲内に現れると共に、0〜10度の範囲内に存在する度数の合計(この度数合計と前記最高ピークの高さは比例関係にある)が、傾斜角度数分布グラフにおける度数全体の45〜89%の割合を占める傾斜角度数分布グラフを示すようになり、したがって、層中のCr含有割合および加熱処理(Al,Cr)23核薄膜の平均層厚のいずれかでも上記の範囲から外れると、傾斜角度数分布グラフで0〜10度の範囲内の傾斜角度数の割合が45%未満になってしまい、所望の高温強度向上効果が得られなくなること。 (D) When forming the modified α-type (Al, Cr) 2 O 3 layer, the Cr content ratio in the layer and the average layer thickness of the heat-treated (Al, Cr) 2 O 3 core thin film are as described above. By setting 1 to 10 atomic% and 20 to 200 nm, the sharp maximum peak in the tilt angle number distribution graph appears in the range of 1.25 to 10.00 degrees of the tilt angle section, and 0 to 10 degrees. An inclination angle frequency distribution graph in which the total of frequencies existing in the range of (the frequency total and the height of the highest peak are in a proportional relationship) occupy 45 to 89% of the entire frequency in the inclination angle frequency distribution graph Therefore, if any of the Cr content ratio in the layer and the average layer thickness of the heat treatment (Al, Cr) 2 O 3 core thin film is out of the above range, 0 to 0 in the gradient angle distribution graph. Within 10 degrees The proportion of the swash angle number becomes less than 45%, made it impossible to obtain desired high-temperature strength enhancing effect.

(e)上記の改質α型(Al,Cr)23層は、上記従来α型(Al,Cr)23層の有する高温硬さおよび耐熱性と同等のすぐれた高温硬さと耐熱性を有するのに加えて、前記従来α型(Al,Cr)23層に比して一段と高い高温強度を有し、機械的熱的にすぐれた耐衝撃性を具備するので、これを硬質被覆層の上部層として蒸着形成してなる被覆サーメット工具は、同下部層であるTi化合物層が具備するすぐれた高温強度と相俟って、特に激しい機械的熱的衝撃を伴なう高速断続切削加工でも、同じく前記従来α型(Al,Cr)23層を上部層として蒸着形成してなる従来被覆サーメット工具に比して、硬質被覆層が一段とすぐれた耐チッピング性を発揮すること。
以上(a)〜(e)に示される研究結果を得たのである。
(E) The modified α-type (Al, Cr) 2 O 3 layer has excellent high-temperature hardness and heat resistance equivalent to the high-temperature hardness and heat resistance of the conventional α-type (Al, Cr) 2 O 3 layer. In addition to the above properties, the conventional α-type (Al, Cr) 2 O 3 layer has a higher high-temperature strength and mechanical and thermal shock resistance. The coated cermet tool formed by vapor deposition as the upper layer of the hard coating layer, combined with the excellent high-temperature strength of the Ti compound layer, which is the lower layer, is especially high speed with severe mechanical thermal shock. Even in intermittent cutting, the hard coating layer exhibits even better chipping resistance than the conventional coated cermet tool formed by vapor deposition with the conventional α-type (Al, Cr) 2 O 3 layer as the upper layer. thing.
The research results shown in (a) to (e) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、WC基超硬合金またはTiCN基サーメットで構成された工具基体の表面に、
(a)下部層が、いずれも化学蒸着形成された、TiC層、TiN層、TiCN層、TiCO層、およびTiCNO層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、
(b)上部層が、1〜15μmの平均層厚、および化学蒸着した状態でα型の結晶構造を有し、さらに、
組成式:(Al1−XCr、(ただし、原子比で、X:0.01〜0.1)、
を満足すると共に、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射し、電子後方散乱回折像装置を用い、所定領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、1.25〜10.00度の範囲内の傾斜角区分に最高ピークが存在すると共に、0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45〜89%の割合を占める傾斜角度数分布グラフを示す改質α型(Al,Cr)23層、
以上(a)および(b)で構成された硬質被覆層を蒸着形成してなる、硬質被覆層が高速断続切削加工ですぐれた耐チッピング性を発揮する被覆サーメット工具に特徴を有するものである。
The present invention has been made based on the above research results, and on the surface of a tool base composed of a WC-based cemented carbide or TiCN-based cermet,
(A) The lower layer is formed of one or more of TiC layer, TiN layer, TiCN layer, TiCO layer, and TiCNO layer, all formed by chemical vapor deposition, and an overall average layer of 3 to 20 μm A Ti compound layer having a thickness;
(B) the upper layer has an average layer thickness of 1 to 15 μm and an α-type crystal structure in the state of chemical vapor deposition;
Composition formula: (Al 1-X Cr X ) 2 O 3, ( provided that an atomic ratio, X: 0.01 to 0.1),
Using a field emission scanning electron microscope, each crystal grain having a hexagonal crystal lattice existing within the measurement range of the surface polished surface is irradiated with an electron beam, and an electron backscatter diffraction image apparatus is used to The region is measured at an interval of 0.1 μm / step, and an inclination angle formed by a normal line of the (0001) plane that is a crystal plane of the crystal grain is measured with respect to a normal line of the surface-polished surface, Among them, in the inclination angle number distribution graph obtained by dividing the measured inclination angles within the range of 0 to 45 degrees for each pitch of 0.25 degrees and totaling the frequencies existing in each section, 1.25 to The highest peak exists in the inclination angle section within the range of 10.00 degrees, and the total of the frequencies existing within the range of 0 to 10 degrees represents a ratio of 45 to 89% of the entire degrees in the inclination angle frequency distribution graph. Revised graph showing the distribution of the number of tilt angles Α-type (Al, Cr) 2 O 3 layer,
The hard coating layer formed by vapor-depositing the hard coating layer composed of (a) and (b) above is characterized by a coated cermet tool that exhibits excellent chipping resistance in high-speed intermittent cutting.

以下に、この発明の被覆サーメット工具の硬質被覆層の構成層において、上記の通りに数値限定した理由を説明する。
(a)下部層のTi化合物層
Ti化合物層は、改質α型(Al,Cr)23層の下部層として存在し、自身の具備するすぐれた高温強度によって硬質被覆層の高温強度向上に寄与するほか、工具基体と改質α型(Al,Cr)23層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性を向上させる作用を有するが、その平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方その平均層厚が20μmを越えると、特に高熱発生を伴なう高速切削では熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その平均層厚を3〜20μmと定めた。
Hereinafter, the reason why the constituent layers of the hard coating layer of the coated cermet tool of the present invention are numerically limited as described above will be described.
(A) Ti compound layer of the lower layer The Ti compound layer exists as a lower layer of the modified α-type (Al, Cr) 2 O 3 layer, and the high temperature strength of the hard coating layer is improved by its excellent high temperature strength. In addition to the tool substrate and the modified α-type (Al, Cr) 2 O 3 layer, and thus has an effect of improving the adhesion of the hard coating layer to the tool substrate. If the layer thickness is less than 3 μm, the above-mentioned effect cannot be sufficiently exerted. On the other hand, if the average layer thickness exceeds 20 μm, thermoplastic deformation is likely to occur particularly in high-speed cutting accompanied by high heat generation, which is uneven. Since it causes wear, the average layer thickness is determined to be 3 to 20 μm.

(b)上部層の改質α型(Al,Cr)23
上記の改質α型(Al,Cr)23層において、これの構成成分であるAlは層の高温硬さおよび耐熱性を向上させ、同Cr成分には、上記の通り加熱処理(Al,Cr)23核薄膜中のCr成分との共存において、傾斜角度数分布グラフの0〜10度の範囲内に存在する度数の分布割合を高め、これを45〜89%のきわめて高い分布割合にして、層の高温強度を向上させる作用を有するが、この場合Crの含有割合を示すX値が原子比で0.01未満では前記作用に所望の向上効果を確保することができず、一方同X値が0.1を越えると傾斜角度数分布グラフの0〜10度の範囲内に存在する度数の分布割合が45%未満となってしまい、所望の高温強度の確保が困難になることから、前記X値を0.01〜0.1と定めた。
また、上記の通り加熱処理(Al,Cr)23核薄膜の平均層厚も改質α型(Al,Cr)23層の傾斜角度数分布グラフの0〜10度の範囲内に存在する度数の分布割合に影響を及ぼし、その平均層厚が20nmでは傾斜角度数分布グラフの0〜10度の範囲内に存在する度数の分布割合を45〜89%にすることができず、この結果所望のすぐれた高温強度が得られず、一方その平均層厚が200nmを越えても0〜10度の範囲内に存在する度数の分布割合は45%未満となってしまうことから、その平均層厚を20〜200nmとするのが望ましい。
さらに、上記改質α型(Al,Cr)23層は、上記の通りα型(Al,Cr)23層自体のもつすぐれた高温硬さと耐熱性に加えて、さらに一段とすぐれた高温強度を有するが、その平均層厚が1μm未満では前記改質α型(Al,Cr)23層の有する前記の特性を硬質被覆層に十分に具備せしめることができず、一方その平均層厚が15μmを越えると、偏摩耗の原因となる熱塑性変形が発生し易くなり、摩耗が加速するようになることから、その平均層厚を1〜15μmと定めた。
(B) Modified α-type (Al, Cr) 2 O 3 layer of the upper layer In the above-mentioned modified α-type (Al, Cr) 2 O 3 layer, the constituent component Al is the high-temperature hardness of the layer and In the coexistence with the Cr component in the heat treatment (Al, Cr) 2 O 3 core thin film as described above, the Cr component is within the range of 0 to 10 degrees of the inclination angle number distribution graph. The distribution ratio of the existing frequency is increased, and this is made into a very high distribution ratio of 45 to 89% to improve the high temperature strength of the layer. In this case, the X value indicating the Cr content ratio is 0 in atomic ratio. If it is less than .01, a desired improvement effect cannot be ensured in the above action, while if the same X value exceeds 0.1, the frequency distribution ratio existing in the range of 0 to 10 degrees in the inclination angle frequency distribution graph. Will be less than 45%, making it difficult to ensure the desired high-temperature strength. The X value was defined as 0.01 to 0.1.
Further, as described above, the average thickness of the heat-treated (Al, Cr) 2 O 3 core thin film is also within the range of 0 to 10 degrees in the gradient angle distribution graph of the modified α-type (Al, Cr) 2 O 3 layer. It affects the distribution ratio of the existing frequencies, and when the average layer thickness is 20 nm, the distribution ratio of the frequencies existing in the range of 0 to 10 degrees in the tilt angle distribution graph cannot be 45 to 89% , As a result, the desired excellent high-temperature strength cannot be obtained. On the other hand, even if the average layer thickness exceeds 200 nm, the frequency distribution ratio existing in the range of 0 to 10 degrees is less than 45%. The average layer thickness is desirably 20 to 200 nm.
Furthermore, the modified α-type (Al, Cr) 2 O 3 layer was further improved in addition to the excellent high-temperature hardness and heat resistance of the α-type (Al, Cr) 2 O 3 layer itself as described above. Although it has high-temperature strength, if its average layer thickness is less than 1 μm, the above-mentioned properties of the modified α-type (Al, Cr) 2 O 3 layer cannot be sufficiently provided in the hard coating layer, while its average If the layer thickness exceeds 15 μm, thermoplastic deformation that causes uneven wear tends to occur, and wear accelerates. Therefore, the average layer thickness was set to 1 to 15 μm.

なお、切削工具の使用前後の識別を目的として、黄金色の色調を有するTiN層を、必要に応じて硬質被覆層の最表面層として蒸着形成してもよいが、この場合の平均層厚は0.1〜1μmでよく、これは0.1μm未満では、十分な識別効果が得られず、一方前記TiN層による前記識別効果は1μmまでの平均層厚で十分であるという理由からである。   In addition, for the purpose of identification before and after the use of the cutting tool, a TiN layer having a golden color tone may be vapor-deposited as the outermost surface layer of the hard coating layer as necessary, but the average layer thickness in this case is It may be 0.1 to 1 μm, and if the thickness is less than 0.1 μm, a sufficient discrimination effect cannot be obtained, while the discrimination effect by the TiN layer is sufficient for an average layer thickness of up to 1 μm.

この発明被覆サーメット工具は、各種の鋼や鋳鉄などの切削加工を、強い機械的熱的衝撃を伴なう断続切削加工を高速切削条件で行うのに用いた場合にも、硬質被覆層の上部層を構成する改質α型(Al,Cr)23層が、従来α型(Al,Cr)23層のもつすぐれた高温硬さおよび耐熱性と同等の高温硬さおよび耐熱性を具備するのに加えて、一段とすぐれた高温強度を具備することから、すぐれた耐チッピング性を発揮し、使用寿命の一層の延命化を可能とするものである。 The coated cermet tool according to the present invention can be used to cut various types of steel and cast iron, etc., when performing intermittent cutting with strong mechanical thermal shock under high-speed cutting conditions. The modified α-type (Al, Cr) 2 O 3 layer constituting the layer is equivalent to the excellent high-temperature hardness and heat resistance of the conventional α-type (Al, Cr) 2 O 3 layer. In addition to having a high temperature strength, the chip has excellent chipping resistance and can further extend the service life.

つぎに、この発明の被覆サーメット工具を実施例により具体的に説明する。   Next, the coated cermet tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも2〜4μmの範囲内の所定の平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で30時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG160412に規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体A〜Fをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder all having a predetermined average particle diameter in the range of 2 to 4 μm, And Co powders, these raw material powders are blended in the blending composition shown in Table 1, further added with wax, ball mill mixed in acetone for 30 hours, dried under reduced pressure, and then pressed to a predetermined shape at a pressure of 98 MPa. The green compact is press-molded, and this green compact is vacuum-sintered at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour in a vacuum of 5 Pa. After sintering, R: By performing a honing process of 0.07 mm, tool bases A to F made of a WC-base cemented carbide having a throwaway tip shape defined in ISO · CNMG 160412 were produced.

また、原料粉末として、いずれも0.5〜2μmの範囲内の所定の平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで35時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG160412のチップ形状をもったTiCN基サーメット製の工具基体a〜d,fを形成した。 Further, as raw material powders, TiCN (TiC / TiN = 50/50 by mass ratio) powder, Mo 2 C powder, NbC powder, TaC powder, each having a predetermined average particle diameter in the range of 0.5 to 2 μm, WC powder, Co powder, and Ni powder are prepared. These raw material powders are blended in the blending composition shown in Table 2, wet-mixed for 35 hours with a ball mill, dried, and then pressed into a compact at a pressure of 98 MPa. The green compact is molded and sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour. After sintering, the cutting edge portion is subjected to a honing process of R: 0.07 mm. Thus, tool bases a to d and f made of TiCN base cermet having a chip shape of ISO standard / CNMG 160412 were formed.

ついで、これらの工具基体A〜Fおよび工具基体a〜d,fのそれぞれを、通常の化学蒸着装置に装入し、まず、表3(表3中のl−TiCNは特開平6−8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)に示される条件にて、表5に示される組み合わせおよび目標層厚でTi化合物層を硬質被覆層の下部層として蒸着形成し、ついで、同じく表4に示される条件で、表6に示される組み合わせおよび目標層厚で加熱処理(Al,Cr)23核薄膜[表4では核薄膜で示す](a)〜(h)および改質α型(Al,Cr)23層[表4では改質層で示す](A)〜(H)を硬質被覆層の上部層として蒸着形成することにより本発明被覆サーメット工具1〜12をそれぞれ製造した。 Next, each of the tool bases A to F and the tool bases a to d and f was charged into a normal chemical vapor deposition apparatus. First, Table 3 (l-TiCN in Table 3 is JP-A-6-8010). Table 5 shows the conditions for forming a TiCN layer having a vertically elongated crystal structure described in the publication, and the other conditions for forming a normal granular crystal structure. The Ti compound layer is deposited as a lower layer of the hard coating layer with the combination and the target layer thickness, and then heat treatment (Al, Cr) with the combination and the target layer thickness shown in Table 6 under the same conditions as shown in Table 4 ) 2 O 3 nuclear thin film [shown as nuclear thin film in Table 4] (a) to (h) and modified α-type (Al, Cr) 2 O 3 layer [shown as modified layer in Table 4] (A) to (H) is formed by vapor deposition as the upper layer of the hard coating layer. The covering cermet tools 1 to 12 were prepared, respectively.

また、比較の目的で、硬質被覆層の上部層として、上記の核薄膜(a)〜(h)および改質層(A)〜(H)に代って、表5に示される条件で、表7に示される組み合わせおよび目標層厚で従来α型(Al,Cr)23層[表5では従来層で示す](A)〜(H)を形成する以外は同一の条件で従来被覆サーメット工具1〜12をそれぞれ製造した。 In addition, for the purpose of comparison, as the upper layer of the hard coating layer, instead of the above-described nuclear thin films (a) to (h) and the modified layers (A) to (H), under the conditions shown in Table 5, Conventional coating under the same conditions except forming the conventional α-type (Al, Cr) 2 O 3 layer [shown as conventional layer in Table 5] (A) to (H) with the combinations and target layer thicknesses shown in Table 7 Cermet tools 1 to 12 were produced.

ついで、上記の本発明被覆サーメット工具1〜12および従来被覆サーメット工具1〜12の硬質被覆層の上部層を構成する改質α型(Al,Cr)23層および従来α型(Al,Cr)23層のそれぞれについて、電界放出型走査電子顕微鏡を用いて、傾斜角度数分布グラフをそれぞれ作成した。
すなわち、上記傾斜角度数分布グラフは、上記の改質α型(Al,Cr)2 3 層および従来α型(Al,Cr)23層の表面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、この測定結果に基づいて、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより作成した。
Then, the reformed α-type constituting the upper layer of the hard coating layer of the present invention described above coated cermet tools 1 to 12 and conventional coated cermet tools 1 to 12 (Al, Cr) 2 O 3 layer and conventional α-type (Al, For each of the Cr) 2 O 3 layers, an inclination angle number distribution graph was created using a field emission scanning electron microscope.
That is, the gradient angle distribution graph shows the field emission with the surfaces of the modified α-type (Al, Cr) 2 O 3 layer and the conventional α-type (Al, Cr) 2 O 3 layer as the polished surface. A hexagonal crystal that is set in a lens barrel of a scanning electron microscope and exists in the measurement range of the surface polished surface with an electron beam with an acceleration voltage of 15 kV at an incident angle of 70 degrees and an irradiation current of 1 nA on the polished surface Each crystal grain having a lattice is irradiated, and an electron backscatter diffraction image apparatus is used, and a 30 × 50 μm region is spaced at a spacing of 0.1 μm / step with respect to the normal line of the surface polished surface. The inclination angle formed by the normal line of the (0001) plane that is the crystal plane is measured, and based on the measurement result, the measurement inclination angle within the range of 0 to 45 degrees is set to 0.25 degrees among the measurement inclination angles. And categorize each pitch, and count the frequencies existing in each division It was created by the.

この結果得られた各種の改質α型(Al,Cr)2 3 層および従来α型(Al,Cr)23層の傾斜角度数分布グラフにおいて、(0001)面が最高ピークを示す傾斜角区分、並びに0〜10度の範囲内の傾斜角区分内に存在する傾斜角度数の傾斜角度数分布グラフ全体の傾斜角度数に占める割合をそれぞれ表6,7にそれぞれ示した。 In the gradient angle distribution graphs of various modified α-type (Al, Cr) 2 O 3 layers and conventional α-type (Al, Cr) 2 O 3 layers obtained as a result, the (0001) plane shows the highest peak. Tables 6 and 7 show the ratio of the number of inclination angles existing in the inclination angle section and the inclination angle distribution graph in the range of 0 to 10 degrees to the entire inclination angle distribution graph.

上記の各種の傾斜角度数分布グラフにおいて、表6,7にそれぞれ示される通り、本発明被覆サーメット工具の改質α型(Al,Cr)2 3 層は、いずれも(0001)面の測定傾斜角の分布が1.25〜10.00度の範囲内の傾斜角区分に最高ピークが現れ、かつ0〜10度の範囲内の傾斜角区分内に存在する傾斜角度数の割合が45〜89%である傾斜角度数分布グラフを示すのに対して、従来被覆サーメット工具の従来α型(Al,Cr)23層は、いずれも(0001)面の測定傾斜角の分布が0〜45度の範囲内で不偏的で、最高ピークが存在せず、0〜10度の範囲内の傾斜角区分内に存在する傾斜角度数の割合も30%以下である傾斜角度数分布グラフを示すものであった。
なお、図2は、本発明被覆サーメット工具4の改質α型(Al,Cr)2 3 層の傾斜角度数分布グラフ、図3は、従来被覆サーメット工具4の従来α型(Al,Cr)23層の傾斜角度数分布グラフをそれぞれ示すものである。
In the above-mentioned various inclination angle number distribution graphs, as shown in Tables 6 and 7, the modified α-type (Al, Cr) 2 O 3 layer of the coated cermet tool of the present invention is all measured on the (0001) plane. The highest peak appears in the inclination angle section where the inclination angle distribution is in the range of 1.25 to 10.00 degrees, and the ratio of the number of inclination angles existing in the inclination angle section in the range of 0 to 10 degrees is 45 to While the inclination angle number distribution graph is 89% , the conventional α-type (Al, Cr) 2 O 3 layer of the conventional coated cermet tool has a distribution of measured inclination angles on the (0001) plane of 0 to 0. An inclination angle number distribution graph in which the highest peak does not exist within the range of 45 degrees, the ratio of the inclination angle numbers existing in the inclination angle section within the range of 0 to 10 degrees is 30% or less is shown. It was a thing.
2 is a graph showing the distribution of inclination angle numbers of the modified α-type (Al, Cr) 2 O 3 layer of the coated cermet tool 4 of the present invention, and FIG. 3 is the conventional α-type (Al, Cr) of the conventional coated cermet tool 4. ) Each of the inclination angle number distribution graphs of the 2 O 3 layer is shown.

さらに、上記の本発明被覆サーメット工具1〜12および従来被覆サーメット工具1〜12について、これの硬質被覆層の構成層を電子線マイクロアナライザー(EPMA)およびオージェ分光分析装置を用いて観察(層の縦断面を観察)したところ、前者ではいずれも目標組成と実質的に同じ組成を有するTi化合物層と改質α型(Al,Cr)2 3 層からなることが確認された。一方後者でも、いずれも同じく目標組成と実質的に同じ組成を有するTi化合物層と従来α型(Al,Cr)23層からなることが確認された。また、これらの被覆サーメット工具の硬質被覆層の構成層の厚さを、走査型電子顕微鏡を用いて測定(同じく縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。 Further, regarding the coated cermet tools 1 to 12 of the present invention and the conventional coated cermet tools 1 to 12 , the constituent layers of the hard coating layer were observed using an electron beam microanalyzer (EPMA) and an Auger spectroscopic analyzer (layer When the longitudinal section was observed), it was confirmed that the former consisted of a Ti compound layer and a modified α-type (Al, Cr) 2 O 3 layer having substantially the same composition as the target composition. On the other hand, it was confirmed that both of the latter consisted of a Ti compound layer having substantially the same composition as the target composition and a conventional α-type (Al, Cr) 2 O 3 layer. Moreover, when the thickness of the constituent layer of the hard coating layer of these coated cermet tools was measured using a scanning electron microscope (same longitudinal section measurement), the average layer thickness (substantially the same as the target layer thickness) Average value of 5-point measurement) was shown.

つぎに、上記の本発明被覆サーメット工具1〜12および従来被覆サーメット工具1〜12各種の被覆サーメット工具について、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・SCM440の長さ方向等間隔4本縦溝入り丸棒、
切削速度:355m/min、
切り込み:1.7mm、
送り:0.22mm/rev、
切削時間:10分、
の条件(切削条件Aという)での合金鋼の乾式高速断続切削試験(通常の切削速度は250m/min)、
被削材:JIS・FC250の長さ方向等間隔4本縦溝入り丸棒、
切削速度:420m/min、
切り込み:1.8mm、
送り:0.3mm/rev、
切削時間:10分、
の条件(切削条件Bという)での鋳鉄の乾式高速断続切削試験(通常の切削速度は300m/min)、さらに、
被削材:JIS・S15Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:400m/min、
切り込み:1.7mm、
送り:0.3mm/rev、
切削時間10分、
の条件(切削条件Cという)での炭素鋼の乾式高速断続切削試験(通常の切削速度は270m/min)を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表8に示した。
Next, for the various coated cermet tools of the present invention coated cermet tools 1 to 12 and the conventional coated cermet tools 1 to 12 , all of them are screwed to the tip of the tool steel tool with a fixing jig,
Work material: JIS · SCM440 lengthwise equidistant 4 vertical grooved round bar,
Cutting speed: 355 m / min,
Incision: 1.7 mm,
Feed: 0.22mm / rev,
Cutting time: 10 minutes,
Dry high-speed intermittent cutting test (normal cutting speed is 250 m / min) of alloy steel under the above conditions (referred to as cutting condition A),
Work material: JIS / FC250 lengthwise equidistant round bars with 4 vertical grooves,
Cutting speed: 420 m / min,
Cutting depth: 1.8mm,
Feed: 0.3mm / rev,
Cutting time: 10 minutes,
A dry high-speed intermittent cutting test (normal cutting speed is 300 m / min) of cast iron under the following conditions (referred to as cutting conditions B),
Work material: JIS / S15C lengthwise equal length 4 vertical grooved round bars,
Cutting speed: 400 m / min,
Incision: 1.7 mm,
Feed: 0.3mm / rev,
Cutting time 10 minutes,
The dry high-speed intermittent cutting test (normal cutting speed is 270 m / min) of carbon steel under the above conditions (referred to as cutting condition C), and the flank wear width of the cutting edge was measured in any cutting test. The measurement results are shown in Table 8.

Figure 0004793749
Figure 0004793749

Figure 0004793749
Figure 0004793749

Figure 0004793749
Figure 0004793749

Figure 0004793749
Figure 0004793749

Figure 0004793749
Figure 0004793749

Figure 0004793749
Figure 0004793749

Figure 0004793749
Figure 0004793749

Figure 0004793749
Figure 0004793749

表6〜8に示される結果から、本発明被覆サーメット工具1〜12は、いずれも硬質被覆層の上部層が、1.25〜10.00度の範囲内の傾斜角区分に最高ピークが存在すると共に、0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45〜89%の割合を占める傾斜角度数分布グラフを示す改質α型(Al,Cr)23層で構成され、機械的熱的衝撃がきわめて高い鋼や鋳鉄の高速断続切削でも、前記改質α型(Al,Cr)23層が自身の具備するすぐれた高温硬さおよび耐熱性に加えて、一段とすぐれた高温強度を有し、すぐれた耐チッピング性を発揮することから、硬質被覆層のチッピング発生が著しく抑制され、すぐれた耐摩耗性を示すのに対して、硬質被覆層の上部層が、前記0〜10度の範囲内に存在する度数の分布割合が30%以下の傾斜角度数分布グラフを示す従来α型(Al,Cr)23層で構成された従来被覆サーメット工具1〜12においては、いずれも高速断続切削では硬質被覆層の耐機械的衝撃性が不十分であるために、硬質被覆層にチッピングが発生し、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 6 to 8, in the coated cermet tools 1 to 12 of the present invention, the upper layer of the hard coating layer has the highest peak in the inclination angle section within the range of 1.25 to 10.00 degrees. In addition, the modified α-type (Al, Cr) showing a tilt angle number distribution graph in which the total frequency within the range of 0 to 10 degrees occupies 45 to 89% of the entire frequency in the tilt angle number distribution graph ) Excellent high-temperature hardness of the modified α-type (Al, Cr) 2 O 3 layer itself even in high-speed intermittent cutting of steel and cast iron, which is composed of 2 O 3 layer and has extremely high mechanical and thermal shock. In addition to heat resistance, it has excellent high-temperature strength and exhibits excellent chipping resistance, so that the occurrence of chipping in the hard coating layer is remarkably suppressed, while showing excellent wear resistance. The upper layer of the hard coating layer is 0-1 In the conventional coated cermet tools 1 to 12 in which the distribution ratio of power is constituted by the conventional α-type (Al, Cr) 2 O 3 layer shows an inclination angle frequency distribution graph of the 30% that is present in the range of degrees, either However, it is clear that in high-speed intermittent cutting, the mechanical impact resistance of the hard coating layer is insufficient, so that chipping occurs in the hard coating layer and the service life is reached in a relatively short time.

上述のように、この発明の被覆サーメット工具は、各種の鋼や鋳鉄などの通常の条件での連続切削加工や断続切削加工は勿論のこと、特に高い高温強度が要求される高速断続切削加工でも硬質被覆層がすぐれた耐チッピング性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated cermet tool of the present invention can be used not only for continuous cutting and intermittent cutting under normal conditions such as various types of steel and cast iron, but also for high-speed intermittent cutting that requires particularly high high-temperature strength. Since the hard coating layer exhibits excellent chipping resistance and exhibits excellent cutting performance over a long period of time, it is sufficient for improving the performance of cutting equipment, saving labor and energy, and reducing costs It can respond to satisfaction.

硬質被覆層を構成するα型(Al,Cr)2 3 層における結晶粒の(0001)面の傾斜角の測定範囲を示す概略説明図である。It is a schematic diagram illustrating a measurement range of the inclination angle of the crystal grains (0001) plane in the hard coating layer α type which constitutes the (Al, Cr) 2 O 3 layer. 本発明被覆サーメット工具4の硬質被覆層を構成する改質α型(Al,Cr)23層の傾斜角度数分布グラフである。It is an inclination angle number distribution graph of the modified α type (Al, Cr) 2 O 3 layer constituting the hard coating layer of the coated cermet tool 4 of the present invention. 従来被覆サーメット工具4の硬質被覆層を構成する従来α型(Al,Cr)23層の傾斜角度数分布グラフである。5 is a graph showing the distribution of the number of inclination angles of a conventional α-type (Al, Cr) 2 O 3 layer constituting a hard coating layer of a conventional coated cermet tool 4.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a)下部層が、いずれも化学蒸着形成された、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、
(b)上部層が、1〜15μmの平均層厚、および化学蒸着した状態でα型の結晶構造を有し、さらに、
組成式:(Al1−XCr、(ただし、原子比で、X:0.01〜0.1)、
を満足すると共に、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射し、電子後方散乱回折像装置を用い、所定領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、1.25〜10.00度の範囲内の傾斜角区分に最高ピークが存在すると共に、0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45〜89%の割合を占める傾斜角度数分布グラフを示す改質Al−Cr複合酸化物層、
以上(a)および(b)で構成された硬質被覆層を蒸着形成してなる、硬質被覆層が高速断続切削加工ですぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具。
On the surface of the tool base composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(A) The lower layer is composed of one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer, and carbonitride oxide layer formed by chemical vapor deposition. And a Ti compound layer having an overall average layer thickness of 3 to 20 μm,
(B) the upper layer has an average layer thickness of 1 to 15 μm and an α-type crystal structure in the state of chemical vapor deposition;
Composition formula: (Al 1-X Cr X ) 2 O 3, ( provided that an atomic ratio, X: 0.01 to 0.1),
Using a field emission scanning electron microscope, each crystal grain having a hexagonal crystal lattice existing within the measurement range of the surface polished surface is irradiated with an electron beam, and an electron backscatter diffraction image apparatus is used to The region is measured at an interval of 0.1 μm / step, and an inclination angle formed by a normal line of the (0001) plane that is a crystal plane of the crystal grain is measured with respect to a normal line of the surface-polished surface, Among them, in the inclination angle number distribution graph obtained by dividing the measured inclination angles within the range of 0 to 45 degrees for each pitch of 0.25 degrees and totaling the frequencies existing in each section, 1.25 to The highest peak exists in the inclination angle section within the range of 10.00 degrees, and the total of the frequencies existing within the range of 0 to 10 degrees represents a ratio of 45 to 89% of the entire degrees in the inclination angle frequency distribution graph. Revised graph showing the distribution of the number of tilt angles Al-Cr composite oxide layer,
A surface-coated cermet cutting tool in which the hard coating layer formed by vapor deposition of the hard coating layer configured in the above (a) and (b) exhibits excellent chipping resistance in high-speed intermittent cutting.
JP2005116535A 2005-04-14 2005-04-14 Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting Active JP4793749B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005116535A JP4793749B2 (en) 2005-04-14 2005-04-14 Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005116535A JP4793749B2 (en) 2005-04-14 2005-04-14 Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting

Publications (2)

Publication Number Publication Date
JP2006289586A JP2006289586A (en) 2006-10-26
JP4793749B2 true JP4793749B2 (en) 2011-10-12

Family

ID=37410721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005116535A Active JP4793749B2 (en) 2005-04-14 2005-04-14 Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting

Country Status (1)

Country Link
JP (1) JP4793749B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5035979B2 (en) * 2007-09-19 2012-09-26 国立大学法人東京工業大学 Surface-coated cutting tool that exhibits high wear resistance with a hard coating layer in high-speed milling and a method for producing the same
JP5035980B2 (en) * 2007-09-19 2012-09-26 国立大学法人東京工業大学 Surface-coated cutting tool that exhibits high wear resistance with a hard coating layer in high-speed milling and a method for producing the same
JP5234512B2 (en) * 2008-12-25 2013-07-10 三菱マテリアル株式会社 Surface coated cutting tool
WO2010106811A1 (en) 2009-03-18 2010-09-23 三菱マテリアル株式会社 Surface-coated cutting tool

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5853065B2 (en) * 1975-11-29 1983-11-26 トウシバタンガロイ カブシキガイシヤ Nisouhifukukoshitsubutsutai
JP2001322003A (en) * 2000-05-12 2001-11-20 Mitsubishi Materials Corp Surface coated tungsten carbide group cemented carbide cutting tool having physically depositing hard coating layer with excellent chipping resistance
JP2004284003A (en) * 2003-02-28 2004-10-14 Mitsubishi Materials Corp Surface-coated cermet cutting tool exhibiting excellent chipping resistance in hard coated layer

Also Published As

Publication number Publication date
JP2006289586A (en) 2006-10-26

Similar Documents

Publication Publication Date Title
JP4645983B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP4518260B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP2006289556A (en) Surface-coated cermet cutting tool having hard coating layer for exhibiting superior chipping resistance in high speed intermittent cutting work
JP4512989B2 (en) Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer
JP4793749B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP4793750B2 (en) Surface coated cermet cutting tool with excellent chipping resistance in high-speed intermittent cutting of hard steel with excellent hard coating layer
JP4474643B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP2007167987A (en) Surface coated cermet-made cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed cutting material hard to cut
JP5003308B2 (en) Surface coated cutting tool
JP5023896B2 (en) Surface coated cutting tool
JP5029099B2 (en) Surface coated cutting tool with excellent wear resistance with high hard coating layer in high speed cutting
JP4811787B2 (en) Surface-coated cermet cutting tool with excellent grain interface strength in modified κ-type aluminum oxide layer of hard coating layer
JP2006289546A (en) Surface-coated cermet cutting tool having hard coating layer for exhibiting superior chipping resistance in high speed intermittent cutting work
JP5286931B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance with a hard coating layer in high-speed heavy cutting
JP2009056562A (en) Surface-coated cutting tool
JP4474644B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP4748361B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance with hard coating layer in difficult-to-cut materials
JP5067963B2 (en) Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP4857950B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high-speed intermittent cutting
JP4747338B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP2006116621A (en) Surface-coated cermet cutting tool with hard coating layer exerting excellent chipping resistance in high-speed intermittent cutting
JP4483510B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP5019257B2 (en) Surface coated cutting tool
JP4894406B2 (en) Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting
JP2005279914A (en) Surface coated cermet-made cutting tool having hard coating layer exhibiting excellent chipping resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110704

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4793749

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110717

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3