JP5035980B2 - Surface-coated cutting tool that exhibits high wear resistance with a hard coating layer in high-speed milling and a method for producing the same - Google Patents

Surface-coated cutting tool that exhibits high wear resistance with a hard coating layer in high-speed milling and a method for producing the same Download PDF

Info

Publication number
JP5035980B2
JP5035980B2 JP2007241962A JP2007241962A JP5035980B2 JP 5035980 B2 JP5035980 B2 JP 5035980B2 JP 2007241962 A JP2007241962 A JP 2007241962A JP 2007241962 A JP2007241962 A JP 2007241962A JP 5035980 B2 JP5035980 B2 JP 5035980B2
Authority
JP
Japan
Prior art keywords
layer
chromium
aluminum
titanium
plane orientation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007241962A
Other languages
Japanese (ja)
Other versions
JP2009072838A (en
Inventor
和夫 篠崎
尚樹 脇谷
晃 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Tokyo Institute of Technology NUC
Original Assignee
Mitsubishi Materials Corp
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Tokyo Institute of Technology NUC filed Critical Mitsubishi Materials Corp
Priority to JP2007241962A priority Critical patent/JP5035980B2/en
Publication of JP2009072838A publication Critical patent/JP2009072838A/en
Application granted granted Critical
Publication of JP5035980B2 publication Critical patent/JP5035980B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、鋼や鋳鉄等の高速ミーリング加工において、硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具(以下、被覆工具という)およびその製造方法に関する。   The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent wear resistance with a hard coating layer in high-speed milling processing of steel, cast iron, and the like, and a method for manufacturing the same.

従来、被覆工具として、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットからなる基体(以下、これらを総称して工具基体という)の表面に、
(a)化学蒸着で形成されたチタンの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなり、かつ0.5〜15μmの全体平均層厚を有するチタン化合物層からなる下部層、
(b)化学蒸着で形成された、0.5〜13μmの平均層厚を有し、アルミニウムとの合量に占めるクロムの含有割合(Cr/(Al+Cr))が0.05〜0.35(但し、原子比)であるクロムとアルミニウムの酸化物固溶体[以下、(Cr,Al)で示す]層からなる上部層、
で構成された硬質被覆層を形成してなる被覆工具が知られている。
Conventionally, as a coated tool, on the surface of a base made of tungsten carbide (hereinafter referred to as WC) base cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) base cermet (hereinafter collectively referred to as a tool base). ,
(A) Titanium carbide (hereinafter referred to as TiC) layer, nitride (hereinafter also referred to as TiN) layer, carbonitride (hereinafter referred to as TiCN) layer, carbon oxide (hereinafter referred to as TiC) layer formed by chemical vapor deposition The lower part which consists of a titanium compound layer which consists of one layer or two or more layers of a carbonitride oxide (henceforth TiCNO) layer and a total average layer thickness of 0.5-15 micrometers. layer,
(B) The content ratio of chromium (Cr / (Al + Cr)) in the total amount with aluminum having an average layer thickness of 0.5 to 13 μm formed by chemical vapor deposition is 0.05 to 0.35 ( However, an upper layer comprising an oxide solid solution [hereinafter referred to as (Cr, Al) 2 O 3 ] layer of chromium and aluminum having an atomic ratio)
There is known a coated tool formed by forming a hard coating layer composed of

そして、上記被覆工具は、前記Ti化合物層からなる下部層を化学蒸着で形成した後、例えば、通常の化学蒸着装置を用いて、
反応ガス組成(容量%): AlCl 1.43〜2.09%、CrCl 0.11〜0.77%、CO 5〜6 %、HCl 2〜3 %、H:残り、
反応雰囲気温度: 980〜1050 ℃、
反応雰囲気圧力: 10〜20 kPa、
の条件で上部層を化学蒸着で形成することにより製造されることが知られている。
And after the said coating tool forms the lower layer which consists of the said Ti compound layer by chemical vapor deposition, for example, using a normal chemical vapor deposition apparatus,
Reaction gas composition (volume%): AlCl 3 1.43 to 2.09%, CrCl 2 0.11 to 0.77%, CO 2 5 to 6%, HCl 2 to 3%, H 2 : remaining,
Reaction atmosphere temperature: 980-1050 ° C.
Reaction atmosphere pressure: 10-20 kPa,
It is known that the upper layer is manufactured by chemical vapor deposition under the following conditions.

また、工具基体の表面に、硬質被覆層として、チタン化合物層、チタンとアルミニウムの窒化物固溶体[以下、(Ti,Al)Nで示す]層からなる下部層、酸化アルミニウム[以下、Alで示す]からなる上部層を蒸着形成してなる被覆工具も知られており、そして、上記下部層の(Ti,Al)N層は、通常のアークイオンプレーティング装置にて、装置内を例えば500℃に加熱した状態で、所定組成のTi−Al合金からなるカソード電極(蒸発源)とアノード電極との間に例えば100Aの電流を印加してアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば2Paの反応雰囲気とし、一方工具基体には例えば−50Vのバイアス電圧を印加するという条件で、物理蒸着することにより形成されることも知られている。 Further, on the surface of the tool base, as a hard coating layer, a titanium compound layer, a lower layer composed of a titanium and aluminum nitride solid solution [hereinafter referred to as (Ti, Al) N] layer, aluminum oxide [hereinafter referred to as Al 2 O 3 )] is also known, and the (Ti, Al) N layer of the lower layer is formed in the inside of the apparatus by a normal arc ion plating apparatus. For example, in a state heated to 500 ° C., an arc discharge is generated by applying a current of, for example, 100 A between a cathode electrode (evaporation source) made of a Ti—Al alloy having a predetermined composition and an anode electrode, and simultaneously reacting in the apparatus. Formed by physical vapor deposition under the condition that nitrogen gas is introduced as a gas to form a reaction atmosphere of, for example, 2 Pa, while a bias voltage of, for example, −50 V is applied to the tool base. It is also known to be.

さらに、工具基体の表面に、硬質被覆層として、(Ti,Al)N層からなる下部層、クロム酸化物[以下、Crで示す]層あるいは(Cr,Al)層からなる中間層、酸化アルミニウム[以下、Alで示す]層からなる上部層を蒸着形成してなる被覆工具が知られており、そして、上記下部層の(Ti,Al)N層は、通常のアークイオンプレーティング(AIP)により形成され、また、中間層および上部層は、アンバランスドマグネトロンスパッタ(UBMS)による物理蒸着にて形成されることも知られている。 Further, on the surface of the tool base, as a hard coating layer, a lower layer made of a (Ti, Al) N layer, a chromium oxide [hereinafter referred to as Cr 2 O 3 ] layer or a (Cr, Al) 2 O 3 layer There is known a coated tool formed by vapor-depositing an upper layer composed of an intermediate layer, an aluminum oxide (hereinafter referred to as Al 2 O 3 ) layer, and the (Ti, Al) N layer as the lower layer is It is also known that it is formed by ordinary arc ion plating (AIP), and the intermediate layer and the upper layer are formed by physical vapor deposition by unbalanced magnetron sputtering (UBMS).

上記のごとき従来の被覆工具においては、その硬質被覆層は、通常、CVD法、アークイオンプレーティング、マグネトロンスパッタリング、アンバランスドマグネトロンスパッタ等のPVD法によって形成されていたが、近時、ダイナミックオーロラPLD(Pulsed Laser Deposition)法による薄膜の成膜法が注目されている。
ダイナミックオーロラPLD法に用いられる装置の概要を図1に示すが、このダイナミックオーロラPLD法によれば、ターゲットにエキシマレーザーを照射し、ターゲット−基板間に配置した電磁石で磁場を印加・調整して成膜すると、成膜に関与するプルーム(電子、イオン、中性の原子や分子、多原子分子やクラスタ等の集合体)を高い電子温度や運動エネルギーを維持した状態で用いることができるため、成膜の結晶構造や特性を制御できる上、多種類のターゲットを使用することができ、さらに、ターゲットと膜組成のズレが少なく、コンタミネーションも少なくできることが知られている。
特開昭54−153758号公報 特許第2644710号明細書 特開平9−291353号公報 特開2002−53946号公報 セラミックデータブック2004,工業と製品, Vol.32,No.86,p.111〜115
In the conventional coated tools as described above, the hard coating layer is usually formed by PVD methods such as CVD, arc ion plating, magnetron sputtering, unbalanced magnetron sputtering, etc. A thin film deposition method using a PLD (Pulsed Laser Deposition) method has attracted attention.
The outline of the apparatus used for the dynamic aurora PLD method is shown in FIG. 1. According to the dynamic aurora PLD method, an excimer laser is irradiated to the target, and a magnetic field is applied and adjusted by an electromagnet disposed between the target and the substrate. When a film is formed, plumes (electrons, ions, neutral atoms and molecules, aggregates of polyatomic molecules and clusters, etc.) involved in film formation can be used while maintaining a high electron temperature and kinetic energy. It is known that the crystal structure and characteristics of the film formation can be controlled, a wide variety of targets can be used, and there is little deviation between the target and the film composition, and contamination can be reduced.
JP 54-153758 A Japanese Patent No. 2644710 Japanese Patent Laid-Open No. 9-291353 JP 2002-53946 A Ceramic Data Book 2004, Industry and Products, Vol. 32, no. 86, p. 111-115

近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は一段と厳しい条件下で行われる傾向にあるが、上記の従来被覆工具においては、これを鋼や鋳鉄などの通常の条件での切削加工に用いた場合には問題はないが、特にこれを切削条件の厳しい高速ミーリング加工に用いた場合は、硬質被覆層の層間付着強度が不十分である場合には欠損・剥離を生じたり、また、硬質被覆層の耐摩耗性が不十分である場合には摩耗損傷が大となり、いずれの場合にも、比較的短時間で使用寿命に至るという問題点があった。   In recent years, the performance of cutting equipment has been remarkable, while on the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for cutting, and with this, cutting tends to be performed under severer conditions. In the above conventional coated tools, there is no problem when this is used for cutting under normal conditions such as steel and cast iron, but especially when this is used for high-speed milling with severe cutting conditions. If the interlayer adhesion strength of the coating layer is insufficient, defects or delamination may occur, and if the wear resistance of the hard coating layer is insufficient, wear damage will be large. There was a problem that the service life was reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、硬質被覆層を構成する各層間の付着強度を高めるとともに、硬質被覆層の耐摩耗性をも高めるべく鋭意研究を行った結果、硬質被覆層の層構造および硬質被覆層の形成方法について、以下の知見を得た。
(a)例えば、従来被覆工具の硬質被覆層の層構造において、化学蒸着で形成されたTiC層、TiN層、TiCN層あるいは物理蒸着で形成された(Ti,Al)N層等のTi化合物層の上面に、(Cr,Al)層を形成し、さらにこの上にAl23層を形成することにより、Al23層の備えるすぐれた高温硬さと耐熱性を生かし、硬質被覆層の耐摩耗性を改善することも考えられるが、このような層構造の硬質被覆層は特に層間付着強度が不十分なために、層間剥離、欠損、チッピングの発生が避けられない。
In view of the above, the present inventors have conducted intensive research to increase the adhesion strength between the layers constituting the hard coating layer and to improve the wear resistance of the hard coating layer. The following knowledge was acquired about the layer structure of a layer, and the formation method of a hard coating layer.
(A) For example, in a layer structure of a hard coating layer of a conventional coated tool, a Ti compound layer such as a TiC layer formed by chemical vapor deposition, a TiN layer, a TiCN layer, or a (Ti, Al) N layer formed by physical vapor deposition By forming a (Cr, Al) 2 O 3 layer on the upper surface of the substrate, and further forming an Al 2 O 3 layer thereon, the high temperature hardness and heat resistance of the Al 2 O 3 layer are utilized to make it hard Although it is conceivable to improve the wear resistance of the coating layer, the hard coating layer having such a layer structure has an inadequate interlayer adhesion strength, and therefore, delamination, chipping and chipping cannot be avoided.

(b)しかし、ダイナミックオーロラPLD法により硬質被覆層の成膜を行った場合、成膜した各層の層間付着強度を向上させることができ、また、硬質被覆層を構成する各層の結晶性、結晶構造を制御することによって、硬質被覆層全体としての高温強度の改善が図れるとともに、切削条件に適った結晶構造、結晶性の層を形成することができるので、耐チッピング性の向上とともに耐摩耗性の向上を図ることもできる。
すなわち、ダイナミックオーロラPLD法によれば、例えば、工具基体の温度を500〜850℃に保持し、酸素分圧を1×10−2〜10Paとした真空雰囲気中で、2000Ga以下の磁場を印加した状態で、ターゲットにレーザー、望ましくはエキシマレーザー、を照射することにより、所望の特性を備えた硬質被覆層の成膜を行うことができる。
(B) However, when a hard coating layer is formed by the dynamic aurora PLD method, the interlayer adhesion strength of each layer can be improved, and the crystallinity and crystal of each layer constituting the hard coating layer can be improved. By controlling the structure, it is possible to improve the high-temperature strength of the hard coating layer as a whole and to form a crystal structure and a crystalline layer suitable for the cutting conditions, so as to improve chipping resistance and wear resistance. Can also be improved.
That is, according to the dynamic aurora PLD method, for example, a magnetic field of 2000 Ga or less was applied in a vacuum atmosphere in which the temperature of the tool base was maintained at 500 to 850 ° C. and the oxygen partial pressure was 1 × 10 −2 to 10 Pa. In this state, a hard coating layer having desired characteristics can be formed by irradiating the target with a laser, preferably an excimer laser.

(c)本発明の被覆工具の場合、まず、工具基体表面に、Ti化合物からなる下部層を化学蒸着および/または物理蒸着で形成する。
次に、イットリウム安定化ジルコニア(以下、YSZで示す)焼結体をターゲットとし、前記(b)の温度条件、雰囲気条件、磁場条件の範囲内の条件で、前記YSZターゲットにレーザーを照射し、化学蒸着および/または物理蒸着で形成された下部層の上に、(001)面配向性を有するYSZ層からなる密着層を形成する。
ついで、同じく前記(b)の温度条件、雰囲気条件、磁場条件の範囲内の条件で、クロム酸化物(以下、Crで示す)からなるターゲット、あるいは、Crおよびα−アルミナ(以下、α−Alで示す)の混合体からなるターゲットにレーザーを照射し、(0001)面配向性を有するCr層あるいは(Cr,Al)層からなる中間層を形成する。
次に、同じく前記(b)の温度条件、雰囲気条件、磁場条件の範囲内の条件で、Crおよびα−Al混合体からなるターゲット、あるいは、α−Alからなるターゲットにレーザーを照射し、(0001)面配向性を有する(Cr,Al)層あるいはα−Al層からなる上部層を形成する。
なお、使用するレーザーはエキシマレーザーであることが望ましい。
上記のように、通常のCVD法、PVD法により基体上に下部層を形成した後、ダイナミックオーロラPLD法により、所定の面配向性を有する密着層、中間層、上部層からなる硬質被覆層を形成することができる。
(C) In the case of the coated tool of the present invention, first, a lower layer made of a Ti compound is formed on the tool base surface by chemical vapor deposition and / or physical vapor deposition.
Next, the target is a sintered body of yttrium-stabilized zirconia (hereinafter referred to as YSZ), and the YSZ target is irradiated with a laser under the conditions of the temperature condition, atmospheric condition, and magnetic field condition of (b), An adhesion layer composed of a YSZ layer having (001) plane orientation is formed on the lower layer formed by chemical vapor deposition and / or physical vapor deposition.
Next, a target made of chromium oxide (hereinafter referred to as Cr 2 O 3 ), or Cr 2 O 3 and α-alumina, under the same conditions of temperature, atmosphere, and magnetic field as in (b) above. A target composed of a mixture (hereinafter referred to as α-Al 2 O 3 ) is irradiated with a laser, and an intermediate composed of a Cr 2 O 3 layer or a (Cr, Al) 2 O 3 layer having (0001) plane orientation. Form a layer.
Next, from the target consisting of a mixture of Cr 2 O 3 and α-Al 2 O 3 , or α-Al 2 O 3 under the same temperature conditions, atmospheric conditions, and magnetic field conditions as in (b) above. A target is irradiated with a laser to form an upper layer made of a (Cr, Al) 2 O 3 layer or an α-Al 2 O 3 layer having (0001) plane orientation.
The laser used is preferably an excimer laser.
As described above, after forming a lower layer on a substrate by a normal CVD method or PVD method, a hard coating layer comprising an adhesion layer, an intermediate layer, and an upper layer having a predetermined plane orientation is formed by a dynamic aurora PLD method. Can be formed.

(d)上記(c)のダイナミックオーロラPLD法による成膜において、磁場を印加した状態で、下部層と上部層の間に、(001)面配向性を有するYSZからなる密着層、(0001)面配向性を有するCr層あるいは(Cr,Al)層からなる中間層を介在形成することにより、各層間の付着強度が向上し、また、上部層の面配向度も高まるため、硬質被覆層全体としての高温強度、耐摩耗性が大幅に改善される。 (D) In the film formation by the dynamic aurora PLD method of (c) above, an adhesion layer made of YSZ having (001) plane orientation between the lower layer and the upper layer with a magnetic field applied, (0001) By interposing and forming an intermediate layer composed of a Cr 2 O 3 layer or a (Cr, Al) 2 O 3 layer having plane orientation, the adhesion strength between the respective layers is improved, and the plane orientation degree of the upper layer is also increased. Therefore, the high temperature strength and wear resistance of the entire hard coating layer are greatly improved.

(e)また、上記(c)のダイナミックオーロラPLD法によるCr層あるいは(Cr,Al)層からなる中間層の成膜にあたり、α−AlおよびCrの混合体ターゲットのα−AlとCrの混合比率、レーザー照射条件(照射量、照射時間)、印加磁場条件等の成膜条件を調整することにより、中間層に含有されるAlとCrの含有割合および中間層の配向度を変化させることができ、その結果として、上部層として形成される(Cr,Al)層あるいはα−Al層の配向度、上部層に含有されるCrの含有割合を制御することができ、中間層、上部層に、所定のすぐれた耐チッピング性および耐摩耗性を付与することができる。
例えば、中間層におけるCr含有割合(Cr/(Al+Cr))が0.2〜1となるように成膜条件を調整すると、上部層としては、(Cr/(Al+Cr))が0〜0.15の、(0001)面配向性を有するα−Al層あるいは(0001)面配向性を有する(Cr,Al)層が優先的に形成されるようになる。
なお、中間層におけるCr含有割合(Cr/(Al+Cr))=1とは、中間層がCr層で構成されていることであるから、この場合は、Crターゲットへのレーザー照射を行うということであり、さらに、上部層におけるCr含有割合(Cr/(Al+Cr))=0とは、上部層がα−Al層で構成されていることであるから、この場合は、α−Alターゲットへのレーザー照射を行うということに他ならない。
また、中間層、上部層は、一つの層にて形成する必要はなく、例えば、中間層がCr層と(Cr,Al)層の複層構造として形成され、また、上部層がα−Al層と(Cr,Al)層の複層構造として形成されていても、本発明の目的を何ら損なうものではない。
(E) In forming the intermediate layer composed of the Cr 2 O 3 layer or the (Cr, Al) 2 O 3 layer by the dynamic aurora PLD method of (c) above, α-Al 2 O 3 and Cr 2 O 3 By adjusting the film formation conditions such as the mixing ratio of α-Al 2 O 3 and Cr 2 O 3 in the mixture target, laser irradiation conditions (irradiation amount, irradiation time), applied magnetic field conditions, etc. The content ratio of Al and Cr and the degree of orientation of the intermediate layer can be changed. As a result, the degree of orientation of the (Cr, Al) 2 O 3 layer or α-Al 2 O 3 layer formed as the upper layer can be changed. The content ratio of Cr contained in the upper layer can be controlled, and predetermined excellent chipping resistance and wear resistance can be imparted to the intermediate layer and the upper layer.
For example, when the film forming conditions are adjusted so that the Cr content ratio (Cr / (Al + Cr)) in the intermediate layer is 0.2 to 1, the upper layer has (Cr / (Al + Cr)) of 0 to 0.15. The α-Al 2 O 3 layer having (0001) plane orientation or the (Cr, Al) 2 O 3 layer having (0001) plane orientation is preferentially formed.
In addition, since the Cr content ratio (Cr / (Al + Cr)) = 1 in the intermediate layer means that the intermediate layer is composed of a Cr 2 O 3 layer, in this case, the laser to the Cr 2 O 3 target In this case, the irradiation is performed, and the Cr content ratio (Cr / (Al + Cr)) = 0 in the upper layer means that the upper layer is composed of an α-Al 2 O 3 layer. Is nothing other than performing laser irradiation on the α-Al 2 O 3 target.
Further, the intermediate layer and the upper layer do not need to be formed as a single layer. For example, the intermediate layer is formed as a multilayer structure of a Cr 2 O 3 layer and a (Cr, Al) 2 O 3 layer, Even if the upper layer is formed as a multilayer structure of the α-Al 2 O 3 layer and the (Cr, Al) 2 O 3 layer, the object of the present invention is not impaired.

(f)前記(c)、(d)においては、密着層として、(001)配向性を有するYSZ層を形成したが、YSZ層自体、(001)配向性を有さなくて所定の高温強度を備えていること、また、YSZ層が(001)配向性を有さないでも、中間層、上部層である程度の(0001)面配向性が得られることから、被覆工具として、特にすぐれた高温強度、耐摩耗性を必要としないような場合、例えば、過酷な条件下での切削加工を行わないような場合、には、上記YSZ層が(001)配向性を有さなくて、硬質被覆層全体としては、ある程度の層間密着強度、耐摩耗性を備えているので、(001)面配向性を有するYSZ層に替えて、(001)面配向性を有さないYSZ層を密着層として設けることも可能である。 (F) In the above (c) and (d), a YSZ layer having (001) orientation was formed as an adhesion layer, but the YSZ layer itself does not have (001) orientation and has a predetermined high-temperature strength. In addition, even if the YSZ layer does not have (001) orientation, a certain degree of (0001) plane orientation can be obtained in the intermediate layer and the upper layer. When strength and wear resistance are not required, for example, when cutting under severe conditions is not performed, the YSZ layer does not have (001) orientation and is hard-coated. Since the entire layer has a certain degree of interlayer adhesion strength and wear resistance, instead of the YSZ layer having (001) plane orientation, a YSZ layer having no (001) plane orientation is used as the adhesion layer. It is also possible to provide it.

この発明は、上記の知見に基づいてなされたものであって、
「(1) 炭化タングステン(WC)基超硬合金または炭窒化チタン(TiCN)基サーメットで構成された工具基体の表面に、
(a)下部層として、0.3〜3μmの合計層厚を有するチタンの炭化物(TiC)層、チタンの窒化物(TiN)層、チタンの炭窒化物(TiCN)層およびチタンとアルミニウムの複合窒化物((Ti,Al)N)層のうちの1層または2層以上からなるチタン化合物層、
(b)密着層として、0.02〜0.2μmの層厚を有し、かつ、(001)面配向性を有するイットリウム安定化ジルコニア(YSZ)層、
(c)中間層として、0.02〜0.2μmの合計層厚を有し、さらに、(0001)面配向性を有し、かつ、アルミニウムとの合量に占めるクロムの含有割合(Cr/(Cr+Al))が0.2〜1(但し、原子比)であるクロムとアルミニウムの酸化物固溶体((Cr,Al))層、あるいは、クロムの酸化物(Cr)層、
(d)上部層として、0.3〜3μmの層厚を有し、さらに、(0001)面配向性を有し、かつ、アルミニウムとの合量に占めるクロムの含有割合(Cr/(Cr+Al))が0.15以下(但し、原子比)である六方晶の結晶構造を有するクロムとアルミニウムの酸化物固溶体((Cr,Al))層、あるいは、α−アルミナ(α−Al)層、
上記(a)〜(d)の下部層、密着層、中間層および上部層からなる硬質被覆層を設けた表面被覆切削工具。
(2) 炭化タングステン(WC)基超硬合金または炭窒化チタン(TiCN)基サーメットで構成された工具基体の表面に、
(a)化学蒸着又は物理蒸着により、チタンの炭化物(TiC)層、チタンの窒化物(TiN)層、チタンの炭窒化物(TiCN)層およびチタンとアルミニウムの複合窒化物((Ti,Al)N)層のうちの1層または2層以上からなるチタン化合物層を、0.3〜3μmの合計層厚になるまで蒸着して下部層を形成し、
(b)次に、工具基体の温度を500〜850℃に保持し、雰囲気中の酸素分圧を1×10−2〜10Paとした真空雰囲気中で、2000Ga以下の磁場を印加した状態で、イットリウム安定化ジルコニア(YSZ)からなるターゲットにレーザーを照射して、前記下部層表面に、0.02〜0.2μmの層厚の(001)面配向性を有するイットリウム安定化ジルコニア(YSZ)層からなる密着層を形成し、
(c)次いで、クロム酸化物(Cr)またはクロム酸化物(Cr)とα−アルミナ(α−Al)の混合体からなるターゲットに、上記(b)と同様な条件でレーザーを照射し、前記密着層表面に、0.02〜0.2μmの層厚の(0001)面配向性を有し、かつ、アルミニウムとの合量に占めるクロムの含有割合(Cr/(Cr+Al))が0.2〜1(但し、原子比)であるクロムとアルミニウムの酸化物固溶体((Cr,Al))層、あるいは、クロムの酸化物(Cr)層からなる中間層を形成し、
(d)その後、α−アルミナ(α−Al)またはクロム酸化物(Cr)とα−アルミナ(α−Al)の混合体からなるターゲットに、上記(b)と同様な条件でレーザーを照射することにより、前記中間層表面に、0.3〜3μmの層厚を有し、かつ、アルミニウムとの合量に占めるクロムの含有割合(Cr/(Cr+Al))が0.15以下(但し、原子比)である六方晶の結晶構造を有するクロムとアルミニウムの酸化物固溶体((Cr,Al))層、あるいは、α−アルミナ(α−Al)層からなる上部層を形成する、
ことを特徴とする下部層、密着層、中間層および上部層からなる硬質被覆層を設けた表面被覆切削工具の製造方法。」
に特徴を有するものである。
This invention has been made based on the above findings,
“(1) On the surface of a tool base made of tungsten carbide (WC) -based cemented carbide or titanium carbonitride (TiCN) -based cermet,
(A) Titanium carbide (TiC) layer, titanium nitride (TiN) layer, titanium carbonitride (TiCN) layer, and composite of titanium and aluminum having a total layer thickness of 0.3 to 3 μm as the lower layer A titanium compound layer comprising one or more of nitride ((Ti, Al) N) layers,
(B) as an adhesion layer, an yttrium-stabilized zirconia (YSZ) layer having a layer thickness of 0.02 to 0.2 μm and having (001) plane orientation;
(C) The intermediate layer has a total layer thickness of 0.02 to 0.2 μm, further has (0001) plane orientation, and the chromium content in the total amount with aluminum (Cr / Chromium and aluminum oxide solid solution ((Cr, Al) 2 O 3 ) layer or chromium oxide (Cr 2 O 3 ) layer having (Cr + Al)) of 0.2 to 1 (however, atomic ratio) ,
(D) The upper layer has a layer thickness of 0.3 to 3 μm, further has (0001) plane orientation, and the chromium content in the total amount with aluminum (Cr / (Cr + Al) ) Is 0.15 or less (however, in atomic ratio), a chromium and aluminum oxide solid solution ((Cr, Al) 2 O 3 ) layer having a hexagonal crystal structure, or α-alumina (α-Al 2) O 3 ) layer,
A surface-coated cutting tool provided with a hard coating layer comprising the lower layer, the adhesion layer, the intermediate layer, and the upper layer of the above (a) to (d).
(2) On the surface of the tool base made of tungsten carbide (WC) based cemented carbide or titanium carbonitride (TiCN) based cermet,
(A) Titanium carbide (TiC) layer, titanium nitride (TiN) layer, titanium carbonitride (TiCN) layer and titanium-aluminum composite nitride ((Ti, Al) by chemical vapor deposition or physical vapor deposition N) a titanium compound layer consisting of one or more of the layers is deposited until a total layer thickness of 0.3 to 3 μm is formed to form a lower layer,
(B) Next, in a vacuum atmosphere in which the temperature of the tool base is maintained at 500 to 850 ° C. and the oxygen partial pressure in the atmosphere is 1 × 10 −2 to 10 Pa, a magnetic field of 2000 Ga or less is applied, A target made of yttrium-stabilized zirconia (YSZ) is irradiated with laser, and a yttrium-stabilized zirconia (YSZ) layer having a (001) plane orientation with a layer thickness of 0.02 to 0.2 μm on the surface of the lower layer Forming an adhesion layer consisting of
(C) Next, a target made of chromium oxide (Cr 2 O 3 ) or a mixture of chromium oxide (Cr 2 O 3 ) and α-alumina (α-Al 2 O 3 ) is the same as (b) above. When irradiated with a laser under various conditions, the adhesion layer surface has a (0001) plane orientation with a layer thickness of 0.02 to 0.2 μm, and the chromium content in the total amount with aluminum (Cr / (Cr + Al)) is a chromium-aluminum oxide solid solution ((Cr, Al) 2 O 3 ) layer or a chromium oxide (Cr 2 O 3 ) having an atomic ratio of 0.2 to 1. Forming an intermediate layer of layers,
(D) Thereafter, α-alumina (α-Al 2 O 3 ) or a target composed of a mixture of chromium oxide (Cr 2 O 3 ) and α-alumina (α-Al 2 O 3 ) is applied to the target (b) By irradiating the laser under the same conditions as above, the intermediate layer surface has a layer thickness of 0.3 to 3 μm, and the chromium content in the total amount with aluminum (Cr / (Cr + Al)) Is an oxide solid solution ((Cr, Al) 2 O 3 ) layer of chromium and aluminum having a hexagonal crystal structure of 0.15 or less (however, in atomic ratio), or α-alumina (α-Al 2 O 3 ) forming an upper layer consisting of layers,
A method for producing a surface-coated cutting tool provided with a hard coating layer comprising a lower layer, an adhesion layer, an intermediate layer, and an upper layer. "
It has the characteristics.

以下に、この発明の被覆工具の硬質被覆層および被覆工具の製造方法について、詳細に説明する。   Below, the hard coating layer of the coated tool of this invention and the manufacturing method of a coated tool are demonstrated in detail.

(1)下部層(Ti化合物層)
通常のCVD法、PVD法等により形成されるTi化合物層からなる下部層は、自身の具備するすぐれた高温強度によって硬質被覆層に高温強度を保持せしめるほか、工具基体とYSZ層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性向上に寄与する作用を有するが、その合計平均層厚が0.3μm未満では、前記作用を十分に発揮させることができず、一方その合計層厚が3μmを越えると、特に高熱発生を伴う高速ミーリングのような高速切削加工では熱疲労を起し易くなり、これが熱亀裂の原因となることから、その合計層厚を0.3〜3μmと定めた。
(1) Lower layer (Ti compound layer)
The lower layer made of the Ti compound layer formed by the ordinary CVD method, PVD method, etc. allows the hard coating layer to maintain the high temperature strength by its excellent high temperature strength, as well as both the tool base and the YSZ layer. It has an effect of firmly adhering, and thus contributing to an improvement in the adhesion of the hard coating layer to the tool substrate. However, when the total average layer thickness is less than 0.3 μm, the above-mentioned effect cannot be exhibited sufficiently, When the total layer thickness exceeds 3 μm, thermal fatigue tends to occur particularly in high-speed cutting such as high-speed milling accompanied by high heat generation, and this causes thermal cracks. It was determined to be 3 μm.

(2)密着層(YSZ層)
密着層を構成する(001)面配向性を有するイットリウム安定化ジルコニア(YSZ)層は、ダイナミックオーロラPLD法により、例えば、下部層を設けた工具基体の温度を500〜850℃に保持し、雰囲気中の酸素分圧を1×10−2〜10Paとした真空雰囲気中で、2000Ga以下の磁場を印加した状態で、ターゲットにレーザーを照射することにより形成できるが、下部層および中間層のいずれとも強固な密着性を有し硬質被覆層の高温強度を改善するため、高速切削加工において、硬質被覆層にチッピングが発生することを防止する。
また、YSZ層が(001)面配向性を有することによって、この上に蒸着形成される中間層の(0001)面配向度が高められ、また、その結果として、上部層の(0001)面配向度も高められることから、高速ミーリングのような厳しい条件下での高速切削加工において、硬質被覆層の耐摩耗性が一段と向上する。
ただ、YSZ層の層厚が0.02μm未満では、層間接合強度の向上の効果は少なく、また、層厚が0.2μmを超えるとYSZ結晶が粒成長しやすくなり、その結果、YSZ層の強度が低下するため、密着層としてのYSZ層の層厚は0.02〜0.2μmと定めた。
なお、既に述べたように、YSZ層が(001)面配向性を持たない場合でも、硬質被覆層は所定の耐チッピング性、耐摩耗性を備えているので、高速ミーリング加工ほどに耐チッピング性、耐摩耗性が要求されない穏やかな切削条件であれば、(001)面配向性を持たないYSZ層を密着層として設けることも可能である。
(2) Adhesion layer (YSZ layer)
The yttrium-stabilized zirconia (YSZ) layer having (001) plane orientation constituting the adhesion layer is, for example, maintained at a temperature of 500 to 850 ° C. of the tool base provided with the lower layer by the dynamic aurora PLD method. It can be formed by irradiating a target with a laser in a vacuum atmosphere with an oxygen partial pressure of 1 × 10 −2 to 10 Pa and applying a magnetic field of 2000 Ga or less. Both the lower layer and the intermediate layer In order to improve the high temperature strength of the hard coating layer with strong adhesion, chipping is prevented from occurring in the hard coating layer in high-speed cutting.
In addition, since the YSZ layer has (001) plane orientation, the (0001) plane orientation degree of the intermediate layer formed thereon is increased, and as a result, the (0001) plane orientation of the upper layer is increased. Therefore, the wear resistance of the hard coating layer is further improved in high-speed cutting under severe conditions such as high-speed milling.
However, if the layer thickness of the YSZ layer is less than 0.02 μm, the effect of improving the interlayer bonding strength is small, and if the layer thickness exceeds 0.2 μm, the YSZ crystal tends to grow, and as a result, the YSZ layer Since the strength decreases, the thickness of the YSZ layer as the adhesion layer is determined to be 0.02 to 0.2 μm.
As already described, even when the YSZ layer does not have (001) plane orientation, the hard coating layer has predetermined chipping resistance and wear resistance, so that it is as chipping resistant as high-speed milling. It is also possible to provide a YSZ layer having no (001) plane orientation as an adhesion layer under mild cutting conditions that do not require wear resistance.

(3)中間層
ダイナミックオーロラPLD法により、YSZ層の上に中間層を形成すると、成膜に用いるターゲットの種類に応じた中間層が形成されるが、アルミニウムとの合量に占めるクロムの含有割合(Cr/(Cr+Al))が0.2〜1(但し、原子比)である(Cr,Al)層を中間層として形成した場合、あるいは、Cr層を中間層として形成した場合、いずれの場合にも、(0001)面配向性を有する中間層が形成され、そして、中間層が(0001)面配向性を有することにより、この上に形成される上部層の(0001)面配向度がより高まり、すぐれた耐摩耗性を備えるようになる。
中間層を形成するターゲットとしては、CrあるいはCrとα−Alとの混合体を使用することができるが、例えば、Crとα−Alとの混合体ターゲットを用い、蒸着層を設けた工具基体の温度を500〜850℃に保持し、雰囲気中の酸素分圧を1×10−2〜10Paの真空雰囲気という条件の下で、ターゲットにレーザー照射を行い、2000Ga以下の磁場を印加した状態で成膜することによって、(0001)面配向性を有し、しかも、アルミニウムとの合量に占めるクロムの含有割合(Cr/(Cr+Al))が0.2以上(但し、原子比)である(Cr,Al)層を中間層として形成することができる。
そして、この(Cr,Al)層を中間層として設けた場合には、上部層形成用ターゲットの種類に応じて、(0001)面に配向した(Cr,Al)層あるいは(0001)面に配向したα−Al層が上部層として形成され、そして、この上部層は、高速ミーリングという厳しい切削条件下でも、すぐれた耐摩耗性を発揮する。
なお、中間層形成用ターゲットにおいて、クロムの含有割合(Cr/(Cr+Al))が1とは、即ち、Crターゲットを使用することであるが、このターゲットを用いて、(0001)面配向性を有するCr中間層を形成し、さらに、この上に上部層を形成した場合にも、Cr中間層の上には、(0001)面に配向した(Cr,Al)層あるいは(0001)面に配向したα−Al層からなる耐摩耗性にすぐれた上部層が形成される。
中間層の層厚は、0.02μm未満であると各層の層間強度の向上、硬質被覆層全体としての高温強度の向上が図れないばかりか、この上に形成される上部層の配向度を高めることができず、一方、層厚が0.2μmを超えると、中間層の結晶粒が粒成長しやすくなり、その結果、上部層の(Cr,Al)層、α−Al層も粒成長を起こし、硬質被覆層にチッピングが発生しやすくなるため、中間層の層厚は0.02〜0.2μmと定めた。
(3) Intermediate layer
When the intermediate layer is formed on the YSZ layer by the dynamic aurora PLD method, an intermediate layer corresponding to the type of target used for film formation is formed, but the chromium content in the total amount with aluminum (Cr / ( (Cr + Al)) is 0.2 to 1 (provided that the atomic ratio) is (Cr, Al) 2 O 3 layer formed as an intermediate layer, or Cr 2 O 3 layer formed as an intermediate layer, In this case, an intermediate layer having (0001) plane orientation is formed, and since the intermediate layer has (0001) plane orientation, the degree of (0001) plane orientation of the upper layer formed thereon is increased. Will increase and will have better wear resistance.
As the target for forming the intermediate layer, it is possible to use a mixture of Cr 2 O 3 or Cr 2 O 3 and α-Al 2 O 3, for example, Cr 2 O 3 and α-Al 2 O 3 The target of the tool base provided with the vapor deposition layer is maintained at 500 to 850 ° C., and the oxygen partial pressure in the atmosphere is 1 × 10 −2 to 10 Pa in a vacuum atmosphere. Is irradiated with a laser, and a film is formed in a state where a magnetic field of 2000 Ga or less is applied, so that it has (0001) plane orientation and the content ratio of chromium in the total amount with aluminum (Cr / (Cr + Al) ) Is 0.2 or more (however, the atomic ratio), and a (Cr, Al) 2 O 3 layer can be formed as an intermediate layer.
When this (Cr, Al) 2 O 3 layer is provided as an intermediate layer, the (Cr, Al) 2 O 3 layer oriented in the (0001) plane or according to the type of the upper layer forming target or An α-Al 2 O 3 layer oriented in the (0001) plane is formed as an upper layer, and this upper layer exhibits excellent wear resistance even under severe cutting conditions such as high-speed milling.
In the intermediate layer forming target, the chromium content ratio (Cr / (Cr + Al)) is 1, that is, a Cr 2 O 3 target is used. Even when a Cr 2 O 3 intermediate layer having orientation is formed and an upper layer is formed thereon, the Cr 2 O 3 intermediate layer is oriented on the (0001) plane (Cr, Al ) An upper layer having excellent wear resistance is formed of a 2 O 3 layer or an α-Al 2 O 3 layer oriented in the (0001) plane.
If the thickness of the intermediate layer is less than 0.02 μm, the interlayer strength of each layer cannot be improved and the high-temperature strength of the hard coating layer as a whole cannot be improved, and the degree of orientation of the upper layer formed thereon can be increased. On the other hand, if the layer thickness exceeds 0.2 μm, the crystal grains of the intermediate layer easily grow, and as a result, the upper layer (Cr, Al) 2 O 3 layer, α-Al 2 O Since the three layers also cause grain growth and chipping easily occurs in the hard coating layer, the thickness of the intermediate layer is determined to be 0.02 to 0.2 μm.

(4)上部層
上部層形成用ターゲットとして、α−AlあるいはCrとα−Alとの混合体を用い、中間層を設けた工具基体の温度を500〜850℃に保持し、雰囲気中の酸素分圧を1×10−2〜10Paの真空雰囲気という条件の下で、ターゲットにレーザー照射を行い、2000Ga以下の磁場を印加した状態で成膜することによって、上部層形成用ターゲットの種類に応じて、(0001)面に配向した(Cr,Al)層あるいは(0001)面に配向したα−Al層が形成されるが、上部層が(Cr,Al)層である場合、アルミニウムとの合量に占めるクロムの含有割合(Cr/(Cr+Al))が0.15(但し、原子比)を超えると、上部層の硬度低下が生じ、その結果、耐摩耗性の低下を招くことから、上部層を(Cr,Al)層で構成する場合には、(Cr/(Cr+Al))で示されるCrの含有割合を0.15以下(但し、原子比)とする必要がある。
なお、Cr/(Cr+Al)で示されるCrの含有割合が0とは、上部層を形成するターゲットとしてα−Alを用い、上部層をα−Al層で形成することに他ならないが、(0001)面配向性を有する中間層の上に、磁場が印加された状態で成膜されることによって、上部層として、(0001)面配向度の高いα−Al層が形成され、そして、このα−Al層からなる上部層は、すぐれた高温硬さを有する。
また、(0001)面配向性を有する(Cr,Al)層あるいは(0001)面配向性を有するα−Al層からなる上部層は、中間層との密着性・付着強度にも優れているため、硬質被覆層全体としてのすぐれた高温強度を有する。
したがって、上部層として、(0001)面配向性を有する(Cr,Al)層あるいは(0001)面配向性を有するα−Al層を蒸着形成した本発明の被覆工具は、高熱発生を伴い、かつ、高速ミーリングという厳しい切削条件で用いられた場合であっても、すぐれた耐チッピング性とともにすぐれた耐摩耗性を示し、工具特性が格段に改善されたものとなる。
ただ、上部層の層厚が0.3μm未満では、すぐれた工具特性を十分発揮することはできず、一方、層厚が3μmを超えると、切刃部に欠損・チッピングを発生しやすくなるので、上部層の層厚は0.3〜3μmと定めた。
(4) Upper layer As a target for forming the upper layer, α-Al 2 O 3 or a mixture of Cr 2 O 3 and α-Al 2 O 3 is used, and the temperature of the tool base provided with the intermediate layer is set to 500 to 850. By maintaining the temperature at 0 ° C. and subjecting the target to laser irradiation under the condition of a vacuum atmosphere of 1 × 10 −2 to 10 Pa in the oxygen partial pressure in the atmosphere, a film is formed in a state where a magnetic field of 2000 Ga or less is applied, Depending on the type of target for forming the upper layer, a (Cr, Al) 2 O 3 layer oriented in the (0001) plane or an α-Al 2 O 3 layer oriented in the (0001) plane is formed. Is a (Cr, Al) 2 O 3 layer, if the chromium content (Cr / (Cr + Al)) in the total amount with aluminum exceeds 0.15 (however, the atomic ratio), the hardness of the upper layer Decrease, the result Since deteriorating the abrasion resistance, when configured in the upper layer (Cr, Al) 2 O 3 layer, (Cr / (Cr + Al)) at 0.15 or less content of Cr as shown ( However, it is necessary to use an atomic ratio).
Note that the Cr content ratio represented by Cr / (Cr + Al) is 0, that α-Al 2 O 3 is used as a target for forming the upper layer, and the upper layer is formed of the α-Al 2 O 3 layer. Although it is none other than, an α-Al 2 O 3 having a high degree of orientation of (0001) plane is formed as an upper layer by forming a film on the intermediate layer having (0001) plane orientation while applying a magnetic field. A layer is formed and the upper layer consisting of this α-Al 2 O 3 layer has excellent high temperature hardness.
Further, the upper layer composed of (Cr, Al) 2 O 3 layer having (0001) plane orientation or α-Al 2 O 3 layer having (0001) plane orientation has adhesion and adhesion strength with the intermediate layer. Therefore, it has excellent high-temperature strength as a whole hard coating layer.
Therefore, the coated tool of the present invention in which an (Cr) Al) 2 O 3 layer having (0001) plane orientation or an α-Al 2 O 3 layer having (0001) plane orientation is formed as an upper layer by vapor deposition, Even when it is used under severe cutting conditions such as high heat generation and high speed milling, it exhibits excellent wear resistance as well as excellent chipping resistance, and the tool characteristics are remarkably improved.
However, when the thickness of the upper layer is less than 0.3 μm, excellent tool characteristics cannot be fully exerted. On the other hand, when the layer thickness exceeds 3 μm, it becomes easy to cause chipping and chipping at the cutting edge. The layer thickness of the upper layer was determined to be 0.3 to 3 μm.

(5)ダイナミックオーロラPLD法による成膜条件
本発明では、従来から知られているCVD法、PVD法により、まず、工具基体表面に、TiC層、TiN層、TiCN層および(Ti,Al)N層のうちの1層または2層以上からなるチタン化合物層を、0.3〜3μmの合計層厚になるまで蒸着して下部層を形成した後、ダイナミックオーロラPLD法により、密着層、中間層および上部層を成膜形成する。
ダイナミックオーロラPLD法は、永久磁石を用い磁場を発生させていた従来のPLD法に比べて、基板温度を高めることが可能であり、磁場の強弱を自由にコントロールでき、さらに、ターゲットあるいは基板に印加する磁場を調整して、成膜の結晶構造、特性を自由に制御できるという利点を有するが、本発明は、ダイナミックオーロラPLD法によるこれらの利点を生かしつつ、同時に、工具基体(基板)に成膜する、密着層、中間層および上部層の種類、成膜条件を特定することにより、被覆工具の硬質被覆層に要求される耐チッピング性および耐摩耗性という特有の課題の解決を図ったものである。
すなわち、ダイナミックオーロラPLD法による成膜にあたり、ターゲットにレーザーを照射して密着層、中間層および上部層を形成する際に、成膜速度および結晶配向性を高めるためには、工具基体の温度を500〜850℃に保持する必要があり、また、各層、酸化物の酸素量を適正範囲に制御するためには、雰囲気条件を、O分圧が1×10−2〜10Paの真空雰囲気とする必要があり、さらに、各層の結晶配向性や結晶構造、結晶粒の成長を制御するためには、印加磁場を2000G以下の範囲で調節することが必要である。
そして、通常のCVD法、PVD法により工具基体に下部層を形成した後、前記温度条件、雰囲気条件および磁場条件の下で、ダイナミックオーロラPLD法により密着層としての(001)面配向性を有するYSZ層を成膜し、ついで、CrあるいはCrとα−Alの混合体からなるターゲットにレーザーを照射して、(0001)面配向性を有する(Cr,Al)層あるいはCr層からなる中間層を形成し、その後、α−AlあるいはCrとα−Alの混合体からなるターゲットにレーザーを照射して、(0001)面配向性を有するα−Al層あるいは(Cr,Al)層からなる上部層を形成するが、このように成膜した各層は強固な付着強度を有しており、また、ターゲットの種類、レーザーの照射条件、磁場の印加条件等を調整することによって、各層の膜組成、結晶構造、結晶配向性を制御することができ、その結果として、すぐれた耐チッピング性とすぐれた耐摩耗性を備えた硬質被覆層を形成することができる。
したがって、上記のような方法で製造した被覆工具は、高い発熱を伴う高速ミーリングという厳しい条件下での切削加工においても、長期に亘ってすぐれた耐チッピング性とすぐれた耐摩耗性を発揮する。
(5) Film formation conditions by dynamic aurora PLD method In the present invention, a TiC layer, a TiN layer, a TiCN layer, and a (Ti, Al) N are first formed on the tool base surface by a conventionally known CVD method or PVD method. After forming a lower layer by vapor-depositing a titanium compound layer composed of one or more of the layers to a total layer thickness of 0.3 to 3 μm, an adhesion layer, an intermediate layer are formed by a dynamic aurora PLD method. And the upper layer is formed.
The dynamic aurora PLD method can increase the substrate temperature compared to the conventional PLD method that uses a permanent magnet to generate a magnetic field, can freely control the strength of the magnetic field, and can be applied to the target or substrate. The crystal structure and characteristics of the film formation can be freely controlled by adjusting the magnetic field to be formed. However, the present invention takes advantage of these advantages of the dynamic aurora PLD method and at the same time forms a tool substrate (substrate). A solution to the specific problems of chipping resistance and wear resistance required for hard coating layers of coated tools by specifying the types of adhesion layer, intermediate layer and upper layer to be formed, and film formation conditions It is.
That is, when forming a contact layer, an intermediate layer and an upper layer by irradiating a target with a laser during film formation by the dynamic aurora PLD method, in order to increase the film formation rate and the crystal orientation, the temperature of the tool base is set to It is necessary to hold at 500 to 850 ° C., and in order to control the oxygen amount of each layer and oxide within an appropriate range, the atmospheric conditions are a vacuum atmosphere with an O 2 partial pressure of 1 × 10 −2 to 10 Pa. Furthermore, in order to control the crystal orientation, crystal structure, and crystal grain growth of each layer, it is necessary to adjust the applied magnetic field within a range of 2000 G or less.
Then, after forming a lower layer on the tool base by a normal CVD method or PVD method, it has (001) plane orientation as an adhesion layer by a dynamic aurora PLD method under the temperature conditions, atmospheric conditions and magnetic field conditions. A YSZ layer is formed, and then a target made of Cr 2 O 3 or a mixture of Cr 2 O 3 and α-Al 2 O 3 is irradiated with a laser to have (0001) plane orientation (Cr, Al ) Form an intermediate layer made of 2 O 3 layer or Cr 2 O 3 layer, and then irradiate a target made of α-Al 2 O 3 or a mixture of Cr 2 O 3 and α-Al 2 O 3 with a laser. Te, (0001) plane orientation alpha-Al 2 O 3 layer or with a (Cr, Al) forms a top layer consisting of 2 O 3 layer, each layer was formed in this way have a strong adhesion strength In addition, by adjusting the target type, laser irradiation conditions, magnetic field application conditions, etc., the film composition, crystal structure, and crystal orientation of each layer can be controlled. A hard coating layer having chipping properties and excellent wear resistance can be formed.
Therefore, the coated tool manufactured by the method as described above exhibits excellent chipping resistance and excellent wear resistance over a long period of time even in cutting under severe conditions such as high-speed milling with high heat generation.

この発明の被覆工具は、硬質被覆層を構成する層としてTi化合物層からなる下部層、(001)面配向性を有するYSZ層からなる密着層、(0001)面配向性を有する(Cr,Al)層、Cr層からなる中間層および(0001)面配向性を有するα−Al層、(Cr,Al)層からなる上部層が形成され、このような層構造によって各層間の付着強度が高められ、硬質被覆層が全体としてすぐれた高温強度を具備し、また、特に、上部層が、(0001)面配向性が高められたα−Al層、(Cr,Al)層で構成されることによって、上部層がすぐれた耐摩耗性を具備することから、この発明の被覆工具は、例えば、鋼や鋳鉄等の高速ミーリング加工において、すぐれた耐チッピング性とすぐれた耐摩耗性を発揮し、長期に亘ってすぐれた工具特性を示すとともに、工具寿命の延命化が図られる。
また、この発明による被覆工具の製造方法は、予め、CVD法、PVD法により所定の下部層が形成された工具基体に対して、ダイナミックオーロラPLD法を利用し、しかも、ターゲットの種類、組成、成膜条件等を選定し、所望の密着層、中間層および上部層を形成することができ、またさらに、これによって所望の結晶構造、結晶配向性を備えた上部層を形成することができるので、耐チッピング性および耐摩耗性にすぐれた被覆工具を、簡易かつ確実に製造することができる。
The coated tool of this invention has a lower layer made of a Ti compound layer as a layer constituting a hard coating layer, an adhesion layer made of a YSZ layer having (001) plane orientation, and (0001) plane orientation (Cr, Al ) An intermediate layer composed of 2 O 3 layer, Cr 2 O 3 layer, an α-Al 2 O 3 layer having (0001) plane orientation, and an upper layer composed of (Cr, Al) 2 O 3 layer are formed. With such a layer structure, the adhesion strength between the respective layers is increased, the hard coating layer has an excellent high-temperature strength as a whole, and in particular, the upper layer is α-Al 2 having an enhanced (0001) plane orientation. Since the upper layer has excellent wear resistance by being composed of the O 3 layer and the (Cr, Al) 2 O 3 layer, the coated tool of the present invention is, for example, a high-speed milling such as steel or cast iron. Excellent chip resistance in processing It exhibits excellent wear resistance and wear resistance, exhibits excellent tool characteristics over a long period of time, and prolongs the tool life.
Further, the method for manufacturing a coated tool according to the present invention uses a dynamic aurora PLD method for a tool base on which a predetermined lower layer is formed in advance by a CVD method and a PVD method. By selecting the film formation conditions, etc., it is possible to form the desired adhesion layer, intermediate layer and upper layer, and furthermore, this makes it possible to form the upper layer with the desired crystal structure and crystal orientation. A coated tool excellent in chipping resistance and wear resistance can be easily and reliably produced.

つぎに、この発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.06mmのホーニング加工を施すことにより、ISO規格にSPMN120308として規定されるインサート形状をもったWC基超硬合金製の工具基体A〜Fをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, and Co powder each having an average particle diameter of 1 to 3 μm are prepared. The raw material powder is blended in the blending composition shown in Table 1, added with wax, ball mill mixed in acetone for 24 hours, dried under reduced pressure, and press-molded into a green compact of a predetermined shape at a pressure of 98 MPa. The green compact is vacuum-sintered in a vacuum of 5 Pa at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour. After sintering, the cutting edge is subjected to a honing process of R: 0.06 mm. Thus, tool bases A to F made of a WC-based cemented carbide having an insert shape defined as SPMN120308 in the ISO standard were manufactured.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比で、TiC/TiN=50/50)粉末、Mo2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.06mmのホーニング加工を施すことにより、ISO規格にSPMN120308として規定されるインサート形状をもったTiCN基サーメット製の工具基体a〜fを形成した。 Further, as raw material powders, TiCN (mass ratio, TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC, all having an average particle diameter of 0.5 to 2 μm. Prepare powder, Co powder, and Ni powder, blend these raw material powders into the composition shown in Table 2, wet mix with a ball mill for 24 hours, dry, and press-mold into a green compact at 98 MPa pressure The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after sintering, the cutting edge portion was subjected to a honing process of R: 0.06 mm. Then, tool bases a to f made of TiCN-based cermet having an insert shape specified as SPMN120308 in the ISO standard were formed.

ついで、これらの工具基体A〜Fおよび工具基体a〜fのそれぞれを、通常の化学蒸着装置またはアークイオンプレーティング装置に装入し、
(a)まず、表3(表3中のl−TiCNは特開平6−8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)に示される条件にて、表5、6に示される目標層厚のTi化合物層を硬質被覆層の下部層として蒸着形成した。
ついで、下部層を形成した上記工具基体をダイナミックオーロラPLD装置に装入し、
(b)まず、表4に示される成膜条件で、YSZターゲットに対してエキシマレーザーを照射し、工具基体の下部層の上に、表5、6に示される目標層厚の(001)配向性を有する密着層(YSZ層)を形成し、
(c)ついで、同じく表4に示される条件で、各種のターゲットに対してエキシマレーザーを照射し、密着層の上に、表5,6に示される目標層厚の、かつ、(0001)面配向性を有する中間層((Cr,Al)層、Cr層)を形成し、
(d)その後、同じく表4に示される条件で、各種のターゲットに対してエキシマレーザーを照射し、(0001)面配向性を有する中間層の上に、表5,6に示される目標層厚の、かつ、(0001)面配向性を有する上部層(α−Al層、(Cr,Al)層)を形成することにより、本発明被覆工具1〜16を製造した。
Next, each of the tool bases A to F and the tool bases a to f is charged into a normal chemical vapor deposition apparatus or arc ion plating apparatus,
(A) First, Table 3 (l-TiCN in Table 3 indicates the conditions for forming a TiCN layer having a vertically elongated crystal structure described in JP-A-6-8010, and the other conditions are ordinary granularity. The Ti compound layer having the target layer thickness shown in Tables 5 and 6 was vapor-deposited as the lower layer of the hard coating layer under the conditions shown in FIG.
Next, the above-mentioned tool base on which the lower layer is formed is charged into the dynamic aurora PLD apparatus,
(B) First, the YSZ target is irradiated with an excimer laser under the film formation conditions shown in Table 4, and the (001) orientation of the target layer thickness shown in Tables 5 and 6 is formed on the lower layer of the tool base. Forming an adhesive layer (YSZ layer) having
(C) Next, excimer laser was irradiated to various targets under the same conditions as shown in Table 4, and the target layer thicknesses shown in Tables 5 and 6 and the (0001) plane were formed on the adhesion layer. Forming an intermediate layer ((Cr, Al) 2 O 3 layer, Cr 2 O 3 layer) having orientation;
(D) Thereafter, various targets are irradiated with excimer laser under the conditions shown in Table 4, and the target layer thicknesses shown in Tables 5 and 6 are formed on the intermediate layer having (0001) plane orientation. By forming the upper layer (α-Al 2 O 3 layer, (Cr, Al) 2 O 3 layer) having (0001) plane orientation, the inventive coated tools 1 to 16 were produced.

また、比較の目的で、特開2002−53946号公報(特許文献4に同じ)に示されるアークイオンプレーティング法とアンバランスドマグネトロンスパッタ法により、表7に示されるような(Ti,Al)N層(本発明の下部層に相当)、(Cr,Al)層あるいはCr層(本発明の中間層に相当)、およびAl層(本発明の上部層に相当。ただし、結晶構造は、α、α+γあるいは非晶質)という層構造の硬質被覆層を形成し、比較被覆工具1〜8をそれぞれ製造した。
つまり、工具基体表面に対して、Ti−Al合金ターゲットを用いたアークイオンプレーティング法で層厚3μmの(Ti,Al)N層を形成する。
続いて、Cr層を形成する場合には、アルゴンと酸素の混合雰囲気下でCrターゲットを用いたUBMS法でCr層を形成し、また、(Cr,Al)層を形成する場合には、Cr−Alターゲットを用い、窒素雰囲気下にてアークイオンプレーティング法で(Cr,Al)N層を形成した後に酸化雰囲気下にて450℃で酸化することにより(Cr,Al)層を形成する。
次に、アルゴンと酸素の混合雰囲気下でAlターゲットを用いたUBMS法でAl層を形成することにより、比較被覆工具1〜8を製造した。
For comparison purposes, the arc ion plating method and the unbalanced magnetron sputtering method disclosed in JP-A-2002-53946 (same as Patent Document 4) (Ti, Al) as shown in Table 7 are used. N layer (corresponding to the lower layer of the present invention), (Cr, Al) 2 O 3 layer or Cr 2 O 3 layer (corresponding to the intermediate layer of the present invention), and Al 2 O 3 layer (corresponding to the upper layer of the present invention) However, a hard coating layer having a crystal structure of α, α + γ, or amorphous) was formed, and comparative coating tools 1 to 8 were produced.
That is, a (Ti, Al) N layer having a layer thickness of 3 μm is formed on the tool base surface by arc ion plating using a Ti—Al alloy target.
Subsequently, in the case of forming the Cr 2 O 3 layer is formed of Cr 2 O 3 layer in UBMS process using a Cr target in a mixed atmosphere of argon and oxygen, also, (Cr, Al) 2 O 3 In the case of forming a layer, a Cr—Al target is used, and a (Cr, Al) N layer is formed by an arc ion plating method in a nitrogen atmosphere and then oxidized at 450 ° C. in an oxidizing atmosphere ( A Cr, Al) 2 O 3 layer is formed.
Next, comparative coated tools 1 to 8 were manufactured by forming an Al 2 O 3 layer by a UBMS method using an Al target in a mixed atmosphere of argon and oxygen.

ついで、上記の本発明被覆工具1〜16および比較被覆工具1〜8について、これらの硬質被覆層の構成層をオージェ分光分析装置を用いて観察(層の縦断面を観察)したところ、目標組成と実質的に同じ組成を有することが確認され、また、これらの被覆工具の硬質被覆層の構成層の厚さを、走査型電子顕微鏡を用いて測定(同じく縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。
また、本発明被覆工具1〜16の硬質被覆層を構成する密着層、中間層、上部層および比較被覆工具1〜8の硬質被覆層の上部層について、X線回折によりその結晶構造を同定するとともに、結晶配向度を評価した。
その結果を表5〜7に示す。
Next, for the above-described inventive coated tools 1 to 16 and comparative coated tools 1 to 8, the constituent layers of these hard coating layers were observed using an Auger spectroscopic analyzer (observed longitudinal section of the layers). And the thickness of the constituent layer of the hard coating layer of these coated tools was measured using a scanning electron microscope (same longitudinal section measurement). The average layer thickness (average value of 5-point measurement) substantially the same as the target layer thickness was shown.
Moreover, about the adhesion layer, intermediate | middle layer, upper layer which comprises the hard coating layer of this invention coating tool 1-16, and the upper layer of the hard coating layer of the comparative coating tool 1-8, the crystal structure is identified by X-ray diffraction. At the same time, the degree of crystal orientation was evaluated.
The results are shown in Tables 5-7.

ここで、密着層YSZの配向性は、2θが20〜80°の範囲において(002)面の回折ピークが最強ピークであるときを(001)配向であるとした。
また、Cr、(Cr,Al)、Al層の配向性は、下式により算出したTC(006)の値が2以上であるときを(0001)配向であるとした。
TC(hkl)=I(hkl)/I(hkl)×[1/n×ΣI(hkl)/I(hkl)]
I(hkl)=(hkl)面の回折強度の測定値
(hkl)=ASTMによる(hkl)面の標準強度
n=計算に使用した回折面の数(7)
使用した回折面:(012),(104),(110),(006),(113),(024),(116)
Here, the orientation of the adhesion layer YSZ was defined as the (001) orientation when the diffraction peak of the (002) plane was the strongest peak in the range of 2θ of 20 to 80 °.
The orientation of the Cr 2 O 3 , (Cr, Al) 2 O 3 , and Al 2 O 3 layers is (0001) orientation when the value of TC (006) calculated by the following formula is 2 or more. It was.
TC (hkl) = I (hkl) / I 0 (hkl) × [1 / n × ΣI (hkl) / I 0 (hkl)]
Measured value of diffraction intensity of I (hkl) = (hkl) plane I 0 (hkl) = standard intensity of (hkl) plane by ASTM n = number of diffraction planes used for calculation (7)
Diffraction surfaces used: (012), (104), (110), (006), (113), (024), (116)

つぎに、上記の本発明被覆工具1〜16および比較被覆工具1〜8について、次の切削条件A〜Cにより、単刃での高速ミーリング加工を実施した。
[切削条件A]
被削材: JIS・SS400のブロック材、
切削速度: 480 m/min、
切り込み: 2.5 mm、
切削幅: 10 mm(センターカット)
一刃送り量: 0.2 mm/刃、
切削時間: 10 分、
の条件での軟鋼の乾式高速切削試験(通常の切削速度は、280m/min)。
[切削条件B]
被削材: JIS・S45Cのブロック材、
切削速度: 450 m/min、
切り込み: 1.5 mm、
切削幅: 3 mm(ダウンカット)
一刃送り量: 0.2 mm/刃、
切削時間: 5 分、
の条件での炭素鋼の乾式高速切削試験(通常の切削速度は、200m/min)。
[切削条件C]
被削材: JIS・FCD450のブロック、
切削速度: 450 m/min、
切り込み: 2.5 mm、
切削幅: 5 mm(センターカット)
一刃送り量: 0.2 mm/刃、
切削時間: 10 分、
の条件でのダクタイル鋳鉄の湿式高速切削試験(通常の切削速度は、200m/min)。
そして、上記の各切削試験における切刃の逃げ面摩耗幅を測定し、この測定結果を表8に示した。
Next, high-speed milling with a single blade was performed on the above-described inventive coated tools 1 to 16 and comparative coated tools 1 to 8 under the following cutting conditions A to C.
[Cutting conditions A]
Work material: Block material of JIS / SS400,
Cutting speed: 480 m / min,
Cutting depth: 2.5 mm,
Cutting width: 10 mm (center cut)
Single blade feed rate: 0.2 mm / tooth,
Cutting time: 10 minutes,
Dry high-speed cutting test of mild steel under normal conditions (normal cutting speed is 280 m / min).
[Cutting conditions B]
Work material: Block material of JIS / S45C,
Cutting speed: 450 m / min,
Cutting depth: 1.5 mm,
Cutting width: 3 mm (down cut)
Single blade feed rate: 0.2 mm / tooth,
Cutting time: 5 minutes,
Dry high-speed cutting test of carbon steel under the conditions (normal cutting speed is 200 m / min).
[Cutting conditions C]
Work material: JIS / FCD450 block,
Cutting speed: 450 m / min,
Cutting depth: 2.5 mm,
Cutting width: 5 mm (center cut)
Single blade feed rate: 0.2 mm / tooth,
Cutting time: 10 minutes,
Wet high-speed cutting test of ductile cast iron under the conditions (normal cutting speed is 200 m / min).
The flank wear width of the cutting edge in each of the above cutting tests was measured, and the measurement results are shown in Table 8.

Figure 0005035980
Figure 0005035980

Figure 0005035980
Figure 0005035980

Figure 0005035980
Figure 0005035980

Figure 0005035980
Figure 0005035980

Figure 0005035980
Figure 0005035980

Figure 0005035980
Figure 0005035980

Figure 0005035980
Figure 0005035980

Figure 0005035980
Figure 0005035980

表5〜8に示される結果から、本発明被覆工具1〜16はいずれも、下部層と上部層の間に、(001)面配向性を有する密着層および(0001)面配向性を有する中間層が介在形成され、さらに、上部層は、(0001)面配向性を有する(Cr,Al)層あるいは(0001)面配向性を有するα−Al層で形成されているため、硬質被覆層各層間の密着強度が大で、硬質被覆層全体としての高温強度も高いため、高速ミーリング切削においてすぐれた耐チッピング性を示し、また、密着層が(001)面配向性を有し、その結果、中間層および上部層が(0001)面配向度の高い結晶構造であるため、高速ミーリング切削においてもすぐれた耐摩耗性を示している。
また、本発明被覆工具1〜16の製造方法は、通常のCVD法あるいはPVD法により硬質被覆層の下部層を形成し、ついで、所定条件下でのダイナミックオーロラPLD法により、硬質被覆層の密着層、中間層および上部層を形成するものであるが、ターゲットの種類、組成を選択し、所定の条件下で、ターゲットにレーザーを照射して、結晶配向性の高められた所定の結晶構造の各層を形成することができるので、高速ミーリングという厳しい切削条件下で要求される工具特性を備えた被覆工具を、簡易な方法でかつ確実に製造することができる。
From the results shown in Tables 5 to 8, all of the coated tools 1 to 16 of the present invention have an adhesion layer having (001) plane orientation and an intermediate having (0001) plane orientation between the lower layer and the upper layer. The upper layer is formed of a (Cr, Al) 2 O 3 layer having (0001) plane orientation or an α-Al 2 O 3 layer having (0001) plane orientation. Therefore, the adhesion strength between the hard coating layers is large, and the high-temperature strength of the entire hard coating layer is high, so that it exhibits excellent chipping resistance in high-speed milling cutting, and the adhesion layer has (001) plane orientation. As a result, since the intermediate layer and the upper layer have a crystal structure with a high degree of (0001) orientation, they exhibit excellent wear resistance even in high-speed milling cutting.
Moreover, the manufacturing method of this invention coated tool 1-16 forms the lower layer of a hard coating layer by normal CVD method or PVD method, and then adheres a hard coating layer by the dynamic aurora PLD method under a predetermined condition. A layer, an intermediate layer, and an upper layer are formed. The type and composition of the target are selected, and the target is irradiated with a laser under a predetermined condition to obtain a predetermined crystal structure with improved crystal orientation. Since each layer can be formed, a coated tool having tool characteristics required under severe cutting conditions such as high-speed milling can be reliably produced by a simple method.

これに対して、硬質被覆層の(Ti,Al)N層(本発明の下部層に相当)がアークイオンプレーティング法で形成され、Cr層あるいは(Cr,Al)層(本発明の中間層に相当)とAl23層(本発明の上部層に相当)がアンバランスドマグネトロンスパッタ法で形成された比較被覆工具1〜8においては、(001)配向性を有するYSZ層が設けられておらず、Cr層あるいは(Cr,Al)層(中間層)とAl23層(上部層)の(0001)面配向度が低く、また、Al23層(上部層)の結晶構造を制御することができない(α−Al相、γ−Al相、非晶質相の各相が形成されるが、特定の結晶構造のAl相を安定的に形成することができない)ため、硬質被覆層の各層間の密着強度が十分でなく、硬質被覆層全体としての耐摩耗性も不十分であり、高速ミーリング加工において層間剥離、欠損、チッピングを発生しやすく、その結果、比較的短時間で使用寿命に至るものであった。 In contrast, a hard coating layer (Ti, Al) N layer (corresponding to the lower layer of the present invention) is formed by an arc ion plating method, and a Cr 2 O 3 layer or a (Cr, Al) 2 O 3 layer. In comparative coated tools 1 to 8 (corresponding to the intermediate layer of the present invention) and Al 2 O 3 layer (corresponding to the upper layer of the present invention) formed by the unbalanced magnetron sputtering method, the (001) orientation was The YSZ layer is not provided, and the (0001) plane orientation degree of the Cr 2 O 3 layer or the (Cr, Al) 2 O 3 layer (intermediate layer) and the Al 2 O 3 layer (upper layer) is low, The crystal structure of the Al 2 O 3 layer (upper layer) cannot be controlled (alpha-Al 2 O 3 phase, γ-Al 2 O 3 phase and amorphous phase are formed, but specific The Al 2 O 3 phase having a crystal structure of Adhesion strength between each layer of the cover layer is not sufficient, and the wear resistance of the hard coating layer as a whole is insufficient, and delamination, chipping, and chipping are likely to occur in high-speed milling, resulting in a relatively short time. The service life was reached.

上述のように、この発明の被覆工具およびその製造方法は、鋼や鋳鉄などの各種被削材の高速ミーリング加工のような厳しい切削条件下でも、チッピングの発生なく、すぐれた耐摩耗性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool and the manufacturing method thereof according to the present invention show excellent wear resistance without occurrence of chipping even under severe cutting conditions such as high-speed milling of various work materials such as steel and cast iron. Since it exhibits excellent cutting performance over a long period of time, it can satisfactorily respond to higher performance of the cutting device, labor saving and energy saving of cutting, and further cost reduction.

ダイナミックオーロラPLD法に用いられる装置の概要説明図である。It is a general | schematic explanatory drawing of the apparatus used for the dynamic aurora PLD method.

Claims (2)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a)下部層として、0.3〜3μmの合計層厚を有するチタンの炭化物層、チタンの窒化物層、チタンの炭窒化物層およびチタンとアルミニウムの複合窒化物層のうちの1層または2層以上からなるチタン化合物層、
(b)密着層として、0.02〜0.2μmの層厚を有し、かつ、(001)面配向性を有するイットリウム安定化ジルコニア層、
(c)中間層として、0.02〜0.2μmの合計層厚を有し、さらに、(0001)面配向性を有し、かつ、アルミニウムとの合量に占めるクロムの含有割合(Cr/(Cr+Al))が0.2〜1(但し、原子比)であるクロムとアルミニウムの酸化物固溶体層、あるいは、クロムの酸化物層、
(d)上部層として、0.3〜3μmの層厚を有し、さらに、(0001)面配向性を有し、かつ、アルミニウムとの合量に占めるクロムの含有割合(Cr/(Cr+Al))が0.15以下(但し、原子比)である六方晶の結晶構造を有するクロムとアルミニウムの酸化物固溶体層、あるいは、α−アルミナ層、
上記(a)〜(d)の下部層、密着層、中間層および上部層からなる硬質被覆層を設けた表面被覆切削工具。
On the surface of the tool base composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(A) as a lower layer, one of a titanium carbide layer, a titanium nitride layer, a titanium carbonitride layer, and a composite nitride layer of titanium and aluminum having a total layer thickness of 0.3 to 3 μm, or A titanium compound layer composed of two or more layers,
(B) As an adhesion layer, an yttrium-stabilized zirconia layer having a layer thickness of 0.02 to 0.2 μm and having (001) plane orientation;
(C) The intermediate layer has a total layer thickness of 0.02 to 0.2 μm, further has (0001) plane orientation, and the chromium content in the total amount with aluminum (Cr / (Cr + Al)) 0.2 to 1 (however, atomic ratio) chromium and aluminum oxide solid solution layer, or chromium oxide layer,
(D) The upper layer has a layer thickness of 0.3 to 3 μm, further has (0001) plane orientation, and the chromium content in the total amount with aluminum (Cr / (Cr + Al) ) Is 0.15 or less (however, the atomic ratio), a chromium and aluminum oxide solid solution layer having a hexagonal crystal structure, or an α-alumina layer,
A surface-coated cutting tool provided with a hard coating layer comprising the lower layer, the adhesion layer, the intermediate layer, and the upper layer of the above (a) to (d).
炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a)化学蒸着又は物理蒸着により、チタンの炭化物層、チタンの窒化物層、チタンの炭窒化物層およびチタンとアルミニウムの複合窒化物層のうちの1層または2層以上からなるチタン化合物層を、0.3〜3μmの合計層厚になるまで蒸着して下部層を形成し、
(b)次に、工具基体の温度を500〜850℃に保持し、雰囲気中の酸素分圧を1×10−2〜10Paとした真空雰囲気中で、2000Ga以下の磁場を印加した状態で、イットリウム安定化ジルコニアからなるターゲットにレーザーを照射して、前記下部層表面に、0.02〜0.2μmの層厚の(001)面配向性を有するイットリウム安定化ジルコニア層からなる密着層を形成し、
(c)次いで、クロム酸化物またはクロム酸化物とα−アルミナの混合体からなるターゲットに、上記(b)と同様な条件でレーザーを照射し、前記密着層表面に、0.02〜0.2μmの層厚の(0001)面配向性を有し、かつ、アルミニウムとの合量に占めるクロムの含有割合(Cr/(Cr+Al))が0.2〜1(但し、原子比)であるクロムとアルミニウムの酸化物固溶体層、あるいは、クロムの酸化物層からなる中間層を形成し、
(d)その後、α−アルミナまたはクロム酸化物とα−アルミナの混合体からなるターゲットに、上記(b)と同様な条件でレーザーを照射することにより、前記中間層表面に、0.3〜3μmの層厚を有し、かつ、アルミニウムとの合量に占めるクロムの含有割合(Cr/(Cr+Al))が0.15以下(但し、原子比)である六方晶の結晶構造を有するクロムとアルミニウムの酸化物固溶体層、あるいは、α−アルミナ層からなる上部層を形成する、
ことを特徴とする下部層、密着層、中間層および上部層からなる硬質被覆層を設けた表面被覆切削工具の製造方法。
On the surface of the tool base composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(A) A titanium compound layer comprising one or more of a titanium carbide layer, a titanium nitride layer, a titanium carbonitride layer, and a composite nitride layer of titanium and aluminum by chemical vapor deposition or physical vapor deposition. Is deposited to a total layer thickness of 0.3-3 μm to form a lower layer,
(B) Next, in a vacuum atmosphere in which the temperature of the tool base is maintained at 500 to 850 ° C. and the oxygen partial pressure in the atmosphere is 1 × 10 −2 to 10 Pa, a magnetic field of 2000 Ga or less is applied, A target made of yttrium-stabilized zirconia is irradiated with a laser to form an adhesion layer made of yttrium-stabilized zirconia layer having a (001) plane orientation with a layer thickness of 0.02 to 0.2 μm on the surface of the lower layer. And
(C) Next, a target composed of chromium oxide or a mixture of chromium oxide and α-alumina is irradiated with a laser under the same conditions as in (b) above, and 0.02 to 0.0. Chromium having a (0001) plane orientation with a layer thickness of 2 μm and a chromium content (Cr / (Cr + Al)) in the total amount with aluminum of 0.2 to 1 (however, atomic ratio) And an intermediate layer composed of an oxide solid solution layer of aluminum or a chromium oxide layer,
(D) Thereafter, a target made of α-alumina or a mixture of chromium oxide and α-alumina is irradiated with a laser under the same conditions as in the above (b), so that the surface of the intermediate layer is 0.3 to Chromium having a layer thickness of 3 μm and having a hexagonal crystal structure in which the chromium content (Cr / (Cr + Al)) in the total amount with aluminum is 0.15 or less (however, the atomic ratio); Forming an aluminum oxide solid solution layer or an upper layer made of an α-alumina layer;
A method for producing a surface-coated cutting tool provided with a hard coating layer comprising a lower layer, an adhesion layer, an intermediate layer, and an upper layer.
JP2007241962A 2007-09-19 2007-09-19 Surface-coated cutting tool that exhibits high wear resistance with a hard coating layer in high-speed milling and a method for producing the same Active JP5035980B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007241962A JP5035980B2 (en) 2007-09-19 2007-09-19 Surface-coated cutting tool that exhibits high wear resistance with a hard coating layer in high-speed milling and a method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007241962A JP5035980B2 (en) 2007-09-19 2007-09-19 Surface-coated cutting tool that exhibits high wear resistance with a hard coating layer in high-speed milling and a method for producing the same

Publications (2)

Publication Number Publication Date
JP2009072838A JP2009072838A (en) 2009-04-09
JP5035980B2 true JP5035980B2 (en) 2012-09-26

Family

ID=40608356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007241962A Active JP5035980B2 (en) 2007-09-19 2007-09-19 Surface-coated cutting tool that exhibits high wear resistance with a hard coating layer in high-speed milling and a method for producing the same

Country Status (1)

Country Link
JP (1) JP5035980B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5035979B2 (en) * 2007-09-19 2012-09-26 国立大学法人東京工業大学 Surface-coated cutting tool that exhibits high wear resistance with a hard coating layer in high-speed milling and a method for producing the same
JP5555835B2 (en) * 2010-03-19 2014-07-23 国立大学法人東京工業大学 Surface-coated cutting tool with excellent wear resistance and method for producing the same
JP5555834B2 (en) * 2010-03-19 2014-07-23 国立大学法人東京工業大学 Surface-coated cutting tool for milling with excellent wear resistance and method for producing the same
CN112831752A (en) * 2020-12-31 2021-05-25 上海应用技术大学 Preparation method of C-doped TiAlN coating

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62170472A (en) * 1986-01-23 1987-07-27 Agency Of Ind Science & Technol Laser vapor deposition device with cleaning mechanism
JP3833288B2 (en) * 1994-10-04 2006-10-11 住友電工ハードメタル株式会社 Coated hard alloy
JPH11256316A (en) * 1998-03-13 1999-09-21 Shigeo Asai Method for controlling crystal bearing of vapor deposited film by magnetic field
JP2006289546A (en) * 2005-04-11 2006-10-26 Mitsubishi Materials Corp Surface-coated cermet cutting tool having hard coating layer for exhibiting superior chipping resistance in high speed intermittent cutting work
JP4793749B2 (en) * 2005-04-14 2011-10-12 三菱マテリアル株式会社 Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP2006297533A (en) * 2005-04-20 2006-11-02 Tungaloy Corp Aluminum oxide coated tool member
JP2006334720A (en) * 2005-06-02 2006-12-14 Tungaloy Corp Coated tool member
JP4968674B2 (en) * 2007-03-19 2012-07-04 国立大学法人東京工業大学 Surface-coated cutting tool with excellent chipping resistance and wear resistance with excellent hard coating layer in high-speed cutting and method for manufacturing the same
JP5035979B2 (en) * 2007-09-19 2012-09-26 国立大学法人東京工業大学 Surface-coated cutting tool that exhibits high wear resistance with a hard coating layer in high-speed milling and a method for producing the same

Also Published As

Publication number Publication date
JP2009072838A (en) 2009-04-09

Similar Documents

Publication Publication Date Title
EP3269479B1 (en) Surface-coated cutting tool and method for manufacturing same
JP6268530B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6620482B2 (en) Surface coated cutting tool with excellent chipping resistance
JP6548071B2 (en) Surface coated cutting tool exhibiting excellent chipping resistance with hard coating layer
JP6417959B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
WO2014034730A1 (en) Surface-coated cutting tool
JP6011249B2 (en) Surface coated cutting tool
US10920325B2 (en) Method for producing a hard material layer on a substrate, hard material layer, machining tool and coating source
JP5555835B2 (en) Surface-coated cutting tool with excellent wear resistance and method for producing the same
JP2017056497A (en) Surface coat cutting tool allowing hard coat layer to exhibit superior chipping resistance
JP5035980B2 (en) Surface-coated cutting tool that exhibits high wear resistance with a hard coating layer in high-speed milling and a method for producing the same
JP5440345B2 (en) Surface coated cutting tool
JP4968674B2 (en) Surface-coated cutting tool with excellent chipping resistance and wear resistance with excellent hard coating layer in high-speed cutting and method for manufacturing the same
JP5035979B2 (en) Surface-coated cutting tool that exhibits high wear resistance with a hard coating layer in high-speed milling and a method for producing the same
JP5088469B2 (en) Surface-coated cutting tool exhibiting excellent fracture resistance with hard coating layer in heavy-duty machining and manufacturing method thereof
JP2009101490A (en) Surface-coated cutting tool having hard coating layer exerting excellent lubricity and wear resistance in high-speed cutting
JP2020151774A (en) Surface coated cutting tool superior in thermal crack resistance and chipping resistance
JP2019084671A (en) Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance and wear resistance
JP5979438B2 (en) Surface coated cutting tool
JP2009166193A (en) Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting
JP5555834B2 (en) Surface-coated cutting tool for milling with excellent wear resistance and method for producing the same
JP6930446B2 (en) Hard film, hard film coating tool and its manufacturing method
JP5979437B2 (en) Surface coated cutting tool
KR100305885B1 (en) Coating alloy for a cutting tool/an abrasion resistance tool
JP2019171483A (en) Surface-coated cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120629

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5035980

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250