JP5979438B2 - Surface coated cutting tool - Google Patents

Surface coated cutting tool Download PDF

Info

Publication number
JP5979438B2
JP5979438B2 JP2012240626A JP2012240626A JP5979438B2 JP 5979438 B2 JP5979438 B2 JP 5979438B2 JP 2012240626 A JP2012240626 A JP 2012240626A JP 2012240626 A JP2012240626 A JP 2012240626A JP 5979438 B2 JP5979438 B2 JP 5979438B2
Authority
JP
Japan
Prior art keywords
layer
cutting
thin layer
modulus
young
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012240626A
Other languages
Japanese (ja)
Other versions
JP2014087917A (en
Inventor
大介 風見
大介 風見
英利 淺沼
英利 淺沼
智行 益野
智行 益野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2012240626A priority Critical patent/JP5979438B2/en
Publication of JP2014087917A publication Critical patent/JP2014087917A/en
Application granted granted Critical
Publication of JP5979438B2 publication Critical patent/JP5979438B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、表面被覆切削工具(以下、被覆工具という)に関し、さらに詳しくは、例えば、軟鋼、一般鋼、高硬度鋼等を、高熱発生を伴うとともに切刃部に対して大きな機械的負荷がかかる高速条件で切削加工した場合に、硬質被覆層がすぐれた耐欠損性と耐摩耗性を発揮する被覆工具に関するものである。 The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool). More specifically, for example, mild steel, general steel, high-hardness steel, and the like are accompanied by high heat generation and a large mechanical load is applied to the cutting edge portion. The present invention relates to a coated tool that exhibits excellent chipping resistance and wear resistance when a hard coating layer is cut under such high-speed conditions.

一般に、被覆工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるインサート、被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、またインサートを着脱自在に取り付けてソリッドタイプのエンドミルと同様に切削加工を行うインサート式エンドミル工具などが知られている。   In general, coated tools are used for turning and planing of work materials such as various types of steel and cast iron, inserts that can be used detachably attached to the tip of a cutting tool, drilling processing of work materials, etc. There are drills, miniature drills, solid type end mills used for chamfering, grooving, shoulder processing, etc. of the work material, etc. Also, inserts are detachably attached and cutting is performed in the same way as solid type end mills Insert type end mill tools are known.

近年、金属材料の切削加工においては高能率化の要求が高く、切削速度を高速化させることが求められている。このため、切削工具の工具基体表面を被覆する被膜に対して耐摩耗性や耐欠損性を向上させることが要求されている。
したがって、このような要求を満足するべく前記被膜の開発が種々行なわれている。例えば、特許文献1は、そのような被膜としてAlとCrとを含む特定組成の化合物を用いること(所謂AlCr系被膜)を提案している。
In recent years, there is a high demand for higher efficiency in cutting metal materials, and it is required to increase the cutting speed. For this reason, it is requested | required that a wear resistance and a fracture | rupture resistance should be improved with respect to the film which coat | covers the tool base | substrate surface of a cutting tool.
Therefore, various developments of the coating have been made to satisfy such requirements. For example, Patent Document 1 proposes to use a compound having a specific composition containing Al and Cr as such a coating (so-called AlCr-based coating).

また、特許文献2は、表面被覆切削工具の工具基体上に被膜を形成するものであって、この被膜が、第1超多層膜と第2超多層膜とを各々1以上交互に積層させてなる複合超多層膜を含み、前記第1超多層膜が、A1層とB層とを各々1層以上交互に積層することにより構成され、前記第2超多層膜が、A2層とC層とを各々1層以上交互に積層することにより構成され、前記A1層とA2層が、各々TiN、TiCN、TiAlNまたはTiAlCNのいずれかにより構成され、前記B層が、TiSiNまたはTiSiCNにより構成され、前記C層が、AlCrNまたはAlCrCNにより構成されることにより、耐熱性と耐摩耗性を維持しつつ、脆性の問題を低減した被膜を有する表面被覆切削工具を提供することを開示している。   Further, Patent Document 2 forms a film on a tool base of a surface-coated cutting tool, and the film is formed by alternately laminating one or more first super multi-layer films and second super multi-layer films. The first super multi-layer film is formed by alternately laminating one or more layers of A1 and B layers, and the second super multi-layer film is composed of an A2 layer and a C layer. Are alternately stacked, each of the A1 layer and the A2 layer is composed of any one of TiN, TiCN, TiAlN, or TiAlCN, and the B layer is composed of TiSiN or TiSiCN, It discloses that the C layer is composed of AlCrN or AlCrCN, thereby providing a surface-coated cutting tool having a coating with reduced brittleness problems while maintaining heat resistance and wear resistance.

さらに、別の従来被覆工具として、例えば、図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に工具基体を装入し、ヒーターで工具基体を、450℃の温度に加熱した状態で、アノード電極と所定組成を有するAl−Cr合金がセットされたカソード電極(蒸発源)との間に、電流:100Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して窒素雰囲気とし、一方、前記工具基体には、例えば、−200Vのバイアス電圧を印加した条件で、工具基体の表面に蒸発した粒子を蒸着させることにより(Al,Cr)N層からなる硬質被覆層が形成されることも知られている(例えば、特許文献3参照)。   Further, as another conventional coated tool, for example, an arc ion plating apparatus, which is one of physical vapor deposition apparatuses shown schematically in FIG. 2, is loaded with a tool base, and the tool base is heated to 450 ° C. with a heater. While being heated to a temperature, an arc discharge is generated between the anode electrode and a cathode electrode (evaporation source) on which an Al—Cr alloy having a predetermined composition is set under the condition of current: 100 A and simultaneously reacts in the apparatus. Nitrogen gas is introduced as a gas to form a nitrogen atmosphere. On the other hand, by evaporating evaporated particles on the surface of the tool base under the condition that a bias voltage of −200 V is applied (Al, Cr, for example) ) It is also known that a hard coating layer composed of an N layer is formed (see, for example, Patent Document 3).

特表2006−524748号公報JP-T-2006-524748 特開2000−334606号公報JP 2000-334606 A 特開2000−271699号公報(第8頁[0055]段落)JP 2000-271699 A (page 8, paragraph [0055])

ところが、近年の切削加工装置の自動化はめざましく、一方で切削加工に対する省力化および省エネ化、さらには低コスト化の要求は強く、これに伴い、切削工具には被削材の材種できるだけ影響を受けない汎用性、すなわち、できるだけ多くの材種の切削加工が可能な切削工具が求められる傾向にあるが、(Al,Cr)N層からなる被覆層を用いた従来被覆工具においては、これを、鋼や鋳鉄などの被削材の通常切削速度での切削加工に用いた場合には問題ないが、軟鋼、一般鋼、高硬度鋼等を、高い発熱を伴うとともに、切刃部への衝撃性および溶着性が著しい高速切削条件で切削した場合には、(Al,Cr)N層は高硬度な皮膜であるが、その硬度や高い残留応力のため、皮膜自体が崩壊したり、剥離したりする問題があり、この結果、切刃部における欠損(微少欠け)の発生が急激に増加し、これが原因で比較的短時間で使用寿命に至るのが現状である。   However, the automation of cutting machines in recent years has been remarkable. On the other hand, there is a strong demand for labor saving, energy saving, and cost reduction for cutting, and as a result, cutting tools have as much influence as possible on the type of work material. There is a tendency to find a versatile tool that does not receive, that is, a cutting tool capable of cutting as many grades as possible. However, in a conventional coated tool using a coating layer composed of an (Al, Cr) N layer, this is not the case. Although there is no problem when used for cutting materials such as steel and cast iron at the normal cutting speed, mild steel, general steel, high hardness steel, etc. are accompanied by high heat generation and impact on the cutting edge. (Al, Cr) N layer is a high hardness film when it is cut under high-speed cutting conditions that have remarkable properties and weldability. However, due to its hardness and high residual stress, the film itself may collapse or peel off. Or this problem Fruit, occurs rapidly increased in defects in the cutting edge (small chipping), which is at present, leading to a relatively short time service life due.

例えば、特許文献1によれば、耐摩耗性と耐欠損性をある程度向上させることは可能であるが、このようなAlCr系被膜固有の問題として脆性を示すことから切削時の衝撃等により被膜自体が破壊したり剥離したりするという問題があった。
また、特許文献2による提案によっても、過酷な切削条件下においては被膜自体の破壊や剥離を十分に防止することができない場合があった。
そこで、本発明が解決しようとする技術的課題、すなわち、本発明の目的は、軟鋼、一般鋼、高硬度鋼等を、高熱発生を伴う高速切削条件で切削した場合においてもすぐれた耐摩耗性および耐欠損性を発揮する被覆工具を提供することである。
For example, according to Patent Document 1, although it is possible to improve the wear resistance and fracture resistance to some extent, since the problem inherent to such an AlCr-based film shows brittleness, the film itself due to impact during cutting or the like. There was a problem of breaking or peeling.
Further, even according to the proposal in Patent Document 2, there are cases where the coating itself cannot be sufficiently prevented from being broken or peeled off under severe cutting conditions.
Therefore, the technical problem to be solved by the present invention, that is, the object of the present invention is to provide excellent wear resistance even when mild steel, general steel, high hardness steel, etc. are cut under high-speed cutting conditions with high heat generation. And providing a coated tool exhibiting fracture resistance.

そこで、本発明者らは、前述のような観点から、特に軟鋼、一般鋼、高硬度鋼等の切削加工を、高速切削条件で切削加工した場合に、硬質被覆層がすぐれた耐摩耗性および耐欠損性を併せ持つ被覆工具を開発すべく、鋭意研究を行った。
その結果、
(1)(Al,Cr)N層は、高硬度な皮膜であり、硬質被覆層に適した材質ではあるが、従来の成膜方法で形成した場合、ヤング率が高くなり、これが原因で、皮膜の靭性が低下し、欠損の発生が増加する。
(2)本発明者らは、(Al,Cr)N層のヤング率は、膜形成時のバイアス電圧と反応雰囲気圧を調整することにより再現性よく、コントロールすることができることを見出したが、(Al,Cr)N層をすべてヤング率が低い層として形成すると、(Al,Cr)N層の有する高硬度であるという特性を生かすことができず、耐摩耗性が低下してしまう。
(3)そこで、本発明者らは、硬質被覆層を低ヤング率の(Al,Cr)N層からなる薄層Aと耐熱性および耐摩耗性にすぐれた(Al,Ti)N層からなる薄層Bとを交互積層させることにより、低ヤング率の(Al,Cr)N層が有する欠点を(Al,Ti)N層との交互積層により補完し合い、従来被覆層にないすぐれた切削性能を有する硬質被覆層を得ることができるという全く新規な知見を得た。
本発明は、このような知見に基づき、薄層A、薄層Bの組成、一層平均層厚、ヤング率、総平均層厚などと切削性能との関係を詳しく解析した結果得られたものであって、具体的には、以下のような構成からなる。
工具基体の表面に、硬質被覆層としてAlとCrとの合量に占めるCrの含有割合が25〜50原子%となるようにCr成分を含有させたAlとCrの複合窒化物層であってヤング率aが150GPa≦a≦300GPaである低ヤング率層(以下、低ヤング率(Al,Cr)N層と示す)を薄層Aとして0.1〜1.0μmの平均層厚で形成し、この上に、AlとTiとの合量に占めるTiの含有割合が25〜55原子%となるようにTi成分を含有させたAlとTiの複合窒化物層(以下、(Al,Ti)N層と示す)であってヤング率bが400GPa≦b≦550GPaである(Al,Ti)N層を薄層Bとして0.1〜1.0μmの平均層厚で形成し、さらにその上に薄層A、薄層Bを順次形成し、総平均層厚が1.0〜10μmである交互積層構造を有する層を形成する。この結果、薄層Aの低ヤング率(Al,Cr)N層が、すぐれた密着性、耐欠損性を示し、薄層Bを構成する(Al,Ti)N層が、すぐれた耐摩耗性、耐熱性を示すと共に、低ヤング率(Al,Cr)N層と(Al,Ti)N層のそれぞれ組成の異なる層を交互積層として形成することにより、それぞれの層の粒子の成長の粗大化が防止され、粒子の微細化が図られ、膜強度が向上するとともに、この積層構造によってクラックの伝播・進展が防止されることで耐欠損性、耐チッピング性が向上する。これらの相乗効果により、すぐれた耐欠損性、耐摩耗性、耐熱性が発揮されるという新規な知見を得て、かかる知見に基づき、本発明を完成するに至った。
In view of the above, the inventors of the present invention have excellent wear resistance and a hard coating layer, particularly when cutting of mild steel, general steel, high hardness steel and the like under high-speed cutting conditions. In order to develop a coated tool that has both fracture resistance, we conducted intensive research.
as a result,
(1) The (Al, Cr) N layer is a high-hardness film and is a material suitable for the hard coating layer. However, when formed by a conventional film formation method, the Young's modulus increases, and this is the cause. The toughness of the film decreases and the occurrence of defects increases.
(2) The present inventors have found that the Young's modulus of the (Al, Cr) N layer can be controlled with good reproducibility by adjusting the bias voltage and reaction atmosphere pressure during film formation. If the (Al, Cr) N layer is formed as a layer having a low Young's modulus, the high hardness of the (Al, Cr) N layer cannot be utilized, and the wear resistance is reduced.
(3) Accordingly, the inventors of the present invention have a hard coating layer composed of a thin layer A composed of an (Al, Cr) N layer having a low Young's modulus and an (Al, Ti) N layer superior in heat resistance and wear resistance. By alternately laminating the thin layer B, the disadvantages of the (Al, Cr) N layer with a low Young's modulus are complemented by the alternate laminating with the (Al, Ti) N layer, and excellent cutting that does not exist in the conventional coating layer A completely new finding was obtained that a hard coating layer having performance can be obtained.
The present invention was obtained as a result of detailed analysis of the relationship between the composition of the thin layer A and the thin layer B, the single layer average layer thickness, the Young's modulus, the total average layer thickness and the cutting performance based on such knowledge. Specifically, the configuration is as follows.
A composite nitride layer of Al and Cr in which a Cr component is contained on the surface of the tool base so that the content ratio of Cr in the total amount of Al and Cr as a hard coating layer is 25 to 50 atomic%. A low Young's modulus layer (hereinafter referred to as a low Young's modulus (Al, Cr) N layer) having a Young's modulus a of 150 GPa ≦ a ≦ 300 GPa is formed as a thin layer A with an average layer thickness of 0.1 to 1.0 μm. On top of this, a composite nitride layer of Al and Ti containing a Ti component so that the Ti content in the total amount of Al and Ti is 25 to 55 atomic% (hereinafter referred to as (Al, Ti) An (Al, Ti) N layer having a Young's modulus b of 400 GPa ≦ b ≦ 550 GPa is formed as a thin layer B with an average layer thickness of 0.1 to 1.0 μm, and further thereon A thin layer A and a thin layer B are sequentially formed, and the total average layer thickness is 1.0 to 10 μm Forming a layer having alternating layered structure that. As a result, the low Young's modulus (Al, Cr) N layer of the thin layer A exhibits excellent adhesion and fracture resistance, and the (Al, Ti) N layer constituting the thin layer B has excellent wear resistance. In addition to exhibiting heat resistance, the layers of different composition of the low Young's modulus (Al, Cr) N layer and (Al, Ti) N layer are formed as alternating layers, so that the grain growth of each layer becomes coarse Is prevented, particles are miniaturized, film strength is improved, and crack propagation and progress are prevented by this laminated structure, thereby improving chipping resistance and chipping resistance. By these synergistic effects, the inventors have obtained new knowledge that excellent chipping resistance, wear resistance, and heat resistance are exhibited, and based on such knowledge, the present invention has been completed.

本発明は、前記研究結果に基づいてなされたものであって、
「(1) 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に硬質被覆層を形成してなる表面被覆切削工具において、
前記硬質被覆層が、
(a)0.1〜1.0μmの平均層厚を有し、かつ、
組成式:(Al1−xCr)N(ここで、xはAlとCrの合量に占めるCrの含有割合を示し、原子比で、0.25≦x≦0.50である)を満足し、ヤング率aが150GPa≦a≦300GPaであるAlとCrとの複合窒化物からなる薄層Aと、
(b)0.1〜1.0μmの平均層厚を有し、かつ、
組成式:(Al1−yTi)N(ここで、yはAlとTiの合量に占めるTiの含有割合を示し、原子比で、0.25≦y≦0.55である)を満足し、ヤング率bが400GPa≦b≦550GPaであるAlとTiとの複合窒化物からなる薄層B、
(c)工具基体直上が薄層Aであり、薄層Aと薄層Bとの交互積層構造を有し、総平均層厚が1.0〜10μmである、
前記(a)〜(c)の条件を満たすことを特徴とする表面被覆切削工具。」
を特徴とする。
The present invention has been made based on the research results,
“(1) In a surface-coated cutting tool in which a hard coating layer is formed on the surface of a tool base composed of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
The hard coating layer is
(A) having an average layer thickness of 0.1 to 1.0 μm, and
Composition formula: (Al 1-x Cr x ) N (where x represents the content ratio of Cr in the total amount of Al and Cr, and the atomic ratio is 0.25 ≦ x ≦ 0.50) Satisfied, a thin layer A composed of a composite nitride of Al and Cr having a Young's modulus a of 150 GPa ≦ a ≦ 300 GPa,
(B) having an average layer thickness of 0.1 to 1.0 μm, and
Composition formula: (Al 1-y Ti y ) N (where y represents the content ratio of Ti in the total amount of Al and Ti, and the atomic ratio is 0.25 ≦ y ≦ 0.55) Satisfactory, thin layer B made of a composite nitride of Al and Ti with Young's modulus b of 400 GPa ≦ b ≦ 550 GPa,
(C) Immediately above the tool substrate is the thin layer A, and has an alternate laminated structure of the thin layer A and the thin layer B, and the total average layer thickness is 1.0 to 10 μm.
A surface-coated cutting tool characterized by satisfying the conditions (a) to (c). "
It is characterized by.

次に、本発明の被覆工具の硬質被覆層の構成層に関し、前記の通りに数値限定した理由を説明する。   Next, the reason why the numerical values of the constituent layers of the hard coating layer of the coated tool of the present invention are limited as described above will be described.

(a)薄層Aを構成する(Al,Cr)N層の組成およびヤング率:
交互積層構造の1層である薄層Aを構成する(Al,Cr)N層の構成成分であるAl成分には硬質被覆層における高温硬さを向上させ、同Cr成分には高温強度を向上させる作用があるが、Alとの合量に占めるCrの含有割合を示すx値(原子比、以下同じ)が0.25未満になると、相対的にAlの含有割合が増加することによって、結晶構造が立方晶から六方晶へ変化し、皮膜硬さが低下するので、少なくとも所定の皮膜硬さを保持するためには、Alとの合量に占めるCrの含有割合を示すx値を0.25以上とする必要がある。一方、Alとの合量に占めるCrの含有割合を示すx値が同0.50を越えると、相対的にAlの含有割合が減少し、高速切削加工で必要とされる高温硬さを確保することができず、チッピングの発生を防止することが困難になることからx値を0.25〜0.50と定めた。
(A) Composition and Young's modulus of (Al, Cr) N layer constituting thin layer A:
The Al component, which is a component of the (Al, Cr) N layer that constitutes the thin layer A, which is one layer of the alternately laminated structure, improves the high temperature hardness of the hard coating layer, and the Cr component improves the high temperature strength. However, when the x value (atomic ratio, the same applies hereinafter) indicating the Cr content in the total amount with Al is less than 0.25, the Al content is relatively increased, so that Since the structure changes from cubic to hexagonal and the film hardness decreases, in order to maintain at least the predetermined film hardness, the x value indicating the Cr content in the total amount with Al is set to 0. It needs to be 25 or more. On the other hand, when the x value indicating the Cr content in the total amount with Al exceeds 0.50, the Al content decreases relatively, ensuring high-temperature hardness required for high-speed cutting. The x value was determined to be 0.25 to 0.50 because it was difficult to prevent chipping from occurring.

また、薄層Aを構成する(Al,Cr)N層のヤング率が150〜300GPaである低ヤング率とすることで外部応力が加わった際の皮膜の変形量が増加し、クラック等の発生を阻止するため、耐欠損性を向上させることができる。ここで、前記ヤング率を150〜300GPaに限定した理由は、ヤング率を150GPaよりも下げることは、耐摩耗性の低下が著しいため好ましくなく、一方、300GPaより大きくなると皮膜靭性の低下による耐欠損性が低下してしまうため、皮膜の崩壊や剥離が起こりやすくなる。したがって、下部層の奏する機能をより効果的に発揮させるために、ヤング率を150〜300GPaに限定した。   In addition, by making the Young's modulus of the (Al, Cr) N layer constituting the thin layer A a low Young's modulus of 150 to 300 GPa, the amount of deformation of the film increases when external stress is applied, and cracks are generated. Therefore, the chipping resistance can be improved. Here, the reason why the Young's modulus is limited to 150 to 300 GPa is that lowering the Young's modulus to less than 150 GPa is not preferable because the wear resistance is remarkably lowered. Since the properties are reduced, the coating is likely to collapse or peel off. Therefore, the Young's modulus is limited to 150 to 300 GPa in order to more effectively exert the function performed by the lower layer.

(b)薄層B層を構成する(Al,Ti)N層の組成およびヤング率:
薄層Aと共に交互積層構造を構成する薄層Bの(Al,Ti)N層は、層全体に亘って均質な高温硬さと耐熱性および靭性を示すが、その構成成分であるTi成分によって、すぐれた高温強度を備えるようになり、また、Al成分によって、高温硬さと耐熱性を補完する。そのため、高温切削条件下でも低摩擦係数が維持され、すぐれた耐熱性を発揮するようになるが、Alとの合量に占めるTiの含有割合を示すy値(原子比、以下同じ)が0.25未満になると、高温強度を確保することができないために刃先の境界部分において異常損傷を生じ欠損を発生しやすくなるため長寿命を期待することはできず、一方、Alとの合量に占めるTiの含有割合を示すy値が0.55を越えると、相対的にAlの含有割合が減少し、高速切削加工で必要とされる高温硬さ確保することができないばかりか、耐摩耗性も低下し、チッピング発生を防止することが困難になることから、y値を0.25〜0.55と定めた。
(B) Composition and Young's modulus of (Al, Ti) N layer constituting thin layer B layer:
The (Al, Ti) N layer of the thin layer B that constitutes an alternating laminated structure together with the thin layer A exhibits a uniform high temperature hardness and heat resistance and toughness throughout the entire layer, but by the Ti component that is a constituent component thereof, It has excellent high-temperature strength, and the Al component complements high-temperature hardness and heat resistance. Therefore, a low friction coefficient is maintained even under high-temperature cutting conditions, and excellent heat resistance is exhibited, but the y value (atomic ratio, the same applies hereinafter) indicating the Ti content in the total amount with Al is 0. If it is less than .25, high temperature strength cannot be secured, and abnormal damage is caused at the boundary portion of the cutting edge and defects are likely to occur, so a long life cannot be expected. If the y value indicating the Ti content ratio exceeds 0.55, the Al content ratio is relatively decreased, and not only the high-temperature hardness required for high-speed cutting cannot be secured, but also wear resistance. The y value was determined to be 0.25 to 0.55 because it is difficult to prevent the occurrence of chipping.

また、薄層Bを構成する(Al,Ti)N層については、期待される耐欠損性、耐摩耗性、耐熱性を十分に発揮させるためには、被削材や切削条件に限らず、ヤング率が400〜550GPaであるとき(Al,Ti)N層の有する耐摩耗性、耐熱性、耐欠損性がより有効に発揮される。そのため、本発明においては、薄層Bの(Al,Ti)N層のヤング率は400〜550GPaと定めた。 In addition, the (Al, Ti) N layer constituting the thin layer B is not limited to the work material and cutting conditions in order to sufficiently exhibit the expected fracture resistance, wear resistance, and heat resistance. When the Young's modulus is 400 to 550 GPa, the wear resistance, heat resistance, and fracture resistance of the (Al, Ti) N layer are more effectively exhibited. Therefore, in the present invention, the Young's modulus of the (Al, Ti) N layer of the thin layer B is set to 400 to 550 GPa.

(c)薄層Aおよび薄層Bの平均層厚ならびに硬質被覆層の総平均層厚:
本発明の硬質被覆層は、それぞれの組成の異なる薄層Aと薄層Bとを交互に積層して構成した交互積層構造とすることで、それぞれの層の粒子の成長の粗大化が防止され、粒子の微細化が図られ、膜強度が向上するとともに、この積層構造によってクラックの伝播・進展が防止されることで耐欠損性、耐チッピング性が向上するが、薄層Aおよび薄層Bの平均層厚が0.1μm未満になると、各薄層を所定組成のものとして明確に形成することが困難であるばかりか、各薄層の有する前記のすぐれた特性を発揮することができない。一方、それぞれの層厚が1.0μmを超えると、粒子の粗大化による膜強度の低下により、耐欠損性、耐チッピング性が低下することから、薄層A、薄層Bのそれぞれの層厚を、0.1〜1.0μmと定めた。
また、硬質被覆層の総平均層厚が、1.0μm未満では、前述した交互積層構造の備えるすぐれた耐欠損性、耐チッピング性を十分に発揮することができず、一方、10μmを超えると、反対に、チッピング、欠損を発生しやすくなるので、硬質被覆層の総平均層厚は、1.0〜10μmと定めた。
(C) The average layer thickness of the thin layers A and B and the total average layer thickness of the hard coating layer:
The hard coating layer of the present invention has an alternate laminated structure in which thin layers A and thin layers B having different compositions are alternately laminated, thereby preventing the growth of particles in each layer from being coarsened. In addition to reducing the size of the particles and improving the film strength, the lamination structure prevents crack propagation and progress, thereby improving the chipping resistance and chipping resistance. When the average layer thickness is less than 0.1 μm, it is difficult to clearly form each thin layer as having a predetermined composition, and the above-mentioned excellent characteristics possessed by each thin layer cannot be exhibited. On the other hand, if each layer thickness exceeds 1.0 μm, the chip strength and chipping resistance decrease due to the decrease in film strength due to the coarsening of the particles. Was determined to be 0.1 to 1.0 μm.
In addition, when the total average layer thickness of the hard coating layer is less than 1.0 μm, the excellent chipping resistance and chipping resistance provided by the above-described alternate laminated structure cannot be sufficiently exhibited, while when it exceeds 10 μm. On the contrary, since chipping and defects are likely to occur, the total average layer thickness of the hard coating layer was determined to be 1.0 to 10 μm.

加えて、特に限定するわけではないが、薄層Aを構成する(Al,Cr)N層の結晶構造と薄層Bを構成する(Al,Ti)N層の結晶構造をと同じ立方晶とすることにより、層間の密着性が向上し、層間剥離による寿命劣化の問題が解消されるため好ましい。 In addition, although not specifically limited, the crystal structure of the (Al, Cr) N layer constituting the thin layer A and the crystal structure of the (Al, Ti) N layer constituting the thin layer B are the same cubic crystal. By doing so, the adhesion between the layers is improved, and the problem of deterioration of the life due to delamination is solved, which is preferable.

なお、本発明の硬質被覆層を構成する薄層Aを構成する(Al,Cr)N層および薄層Bを構成する(Al,Ti)N層は、例えば、図1に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に工具基体を装入し、ヒーターで装置内を、例えば、500℃の温度に加熱した状態で、
(a)装置内に所定組成のAl−Cr合金からなるカソード電極(蒸発源)を配置し、アノード電極とカソード電極(蒸発源)としてのAl−Cr合金との間に、例えば、電流:110Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば、0.8Paの反応雰囲気とし、一方、工具基体には、例えば、−20Vのバイアス電圧を印加した条件で所定時間蒸着することにより、所定の目標層厚、ヤング率の薄層Aである(Al,Cr)層が形成される。
(b)ついで、アノード電極とカソード電極(蒸発源)としてのAl−Ti合金との間に、例えば、電流:110Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば、3.0Paの反応雰囲気とし、工具基体には、例えば、−100Vのバイアス電圧を印加した条件で所定時間蒸着することにより、薄層Aの上に、所定の目標層厚の薄層Bである(Al,Ti)N層が形成される。
前記(a)、(b)を所定の総目標層厚になるまで、交互に繰り返すことにより、本発明の硬質被覆層を蒸着形成することができる。すなわち、反応雰囲気圧と工具基体に印加するバイアス電圧を調整することで、薄層Aを構成する(Al,Cr)N層のヤング率をコントロールすることができる。
The (Al, Cr) N layer constituting the thin layer A constituting the hard coating layer of the present invention and the (Al, Ti) N layer constituting the thin layer B are shown schematically in FIG. 1, for example. In a state where a tool base is loaded into an arc ion plating apparatus which is a kind of physical vapor deposition apparatus, and the inside of the apparatus is heated to a temperature of, for example, 500 ° C. with a heater.
(A) A cathode electrode (evaporation source) made of an Al—Cr alloy having a predetermined composition is disposed in the apparatus, and a current of, for example, 110 A is provided between the anode electrode and the Al—Cr alloy as the cathode electrode (evaporation source). At the same time, arc discharge was generated, and simultaneously nitrogen gas was introduced into the apparatus as a reaction gas to obtain a reaction atmosphere of, for example, 0.8 Pa. On the other hand, a bias voltage of, for example, −20 V was applied to the tool base. By depositing for a predetermined time under conditions, an (Al, Cr) layer which is a thin layer A having a predetermined target layer thickness and Young's modulus is formed.
(B) Next, for example, an arc discharge is generated between the anode electrode and the Al—Ti alloy as the cathode electrode (evaporation source) under the condition of current: 110 A, and at the same time, nitrogen gas is introduced into the apparatus as a reaction gas. Then, for example, the reaction atmosphere is set to 3.0 Pa, and the tool base is deposited on the thin layer A for a predetermined time under a condition in which a bias voltage of, for example, −100 V is applied. The (Al, Ti) N layer which is the thin layer B is formed.
By repeating the steps (a) and (b) alternately until a predetermined total target layer thickness is obtained, the hard coating layer of the present invention can be formed by vapor deposition. That is, the Young's modulus of the (Al, Cr) N layer constituting the thin layer A can be controlled by adjusting the reaction atmospheric pressure and the bias voltage applied to the tool base.

本発明の被覆工具の一態様によれば、硬質被覆層が低ヤング率(Al,Cr)N層からなる薄層Aと(Al,Ti)N層からなる薄層Bとの交互積層構造であることによって、薄層Aが奏するすぐれた耐欠損性および密着性と、薄層Bが奏するすぐれた高温硬さと耐熱性および靭性との相乗効果によって、硬質被覆層は、すぐれた高温硬さ、耐熱性、高温強度、耐摩耗性、潤滑性、耐衝撃性、耐欠損性、耐チッピング性を有することから、その結果、特に、軟鋼、一般鋼、高硬度鋼等の大きな発熱を伴い、かつ、高負荷のかかる高速切削加工であっても、長期に亘ってすぐれた耐摩耗性、耐欠損性を発揮するものである。   According to one aspect of the coated tool of the present invention, the hard coating layer has an alternately laminated structure of a thin layer A composed of a low Young's modulus (Al, Cr) N layer and a thin layer B composed of an (Al, Ti) N layer. By virtue of the synergistic effect of the excellent fracture resistance and adhesion exhibited by the thin layer A and the excellent high temperature hardness and heat resistance and toughness exhibited by the thin layer B, the hard coating layer has excellent high temperature hardness, Because it has heat resistance, high temperature strength, wear resistance, lubricity, impact resistance, chipping resistance, chipping resistance, as a result, it is accompanied by large heat generation, especially mild steel, general steel, high hardness steel, etc. Even in high-speed cutting with a high load, it exhibits excellent wear resistance and fracture resistance over a long period of time.

本発明被覆工具および比較被覆工具を構成する硬質被覆層を形成するのに用いたアークイオンプレーティング装置を示し、(a)は概略平面図、(b)は概略正面図である。The arc ion plating apparatus used for forming the hard coating layer which comprises this invention coated tool and a comparative coated tool is shown, (a) is a schematic plan view, (b) is a schematic front view. 従来技術を説明する従来のアークイオンプレーティング装置の概略説明図である。It is a schematic explanatory drawing of the conventional arc ion plating apparatus explaining a prior art. 本発明被覆工具を構成する硬質被覆層の縦断面膜構成図である。It is a longitudinal cross-sectional film | membrane structural view of the hard coating layer which comprises this invention coated tool.

つぎに、本発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、ISO規格・CNMG120408のインサート形状をもったWC基超硬合金製の工具基体A−1〜A−10を形成した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders are blended into the composition shown in Table 1, wet mixed by a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. Medium, sintered at 1400 ° C. for 1 hour, and after sintering, tool bases A-1 to A-10 made of WC-base cemented carbide having an ISO standard / CNMG120408 insert shape were formed. .

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比で、TiC/TiN=50/50)粉末、MoC粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、ISO規格・CNMG120408のインサート形状をもったTiCN基サーメット製の工具基体B−1〜B−6を形成した。 In addition, as raw material powders, TiCN (mass ratio, TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC, all having an average particle diameter of 0.5 to 2 μm. Prepare powder, Co powder, and Ni powder, mix these raw material powders into the composition shown in Table 2, wet mix for 24 hours with a ball mill, dry, and press-mold into green compact at 100 MPa pressure Then, this green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, a tool substrate B made of TiCN base cermet having an ISO standard / CNMG120408 insert shape was used. -1 to B-6 were formed.

(a)ついで、前記工具基体A−1〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部に沿って装着し、前記回転テーブルを挟んで対向する2つのカソード電極(蒸発源)を配置し、第1の電極として、薄層A形成用の所定組成を有するAl−Cr合金、第2の電極として、薄層B形成用の所定組成を有するAl−Ti合金を配置し、
(b)まず、装置内を排気して0.1 Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、回転テーブル上で自転しながら回転する工具基体に−1000Vの直流バイアス電圧を印加し、かつAl−Cr合金(カソード電極)とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面をボンバード洗浄し、
(c)次に、装置内に反応ガスとして窒素ガスを導入して0.5〜1.0Paの反応雰囲気とすると共に、回転テーブル上で自転しながら回転する工具基体に−20〜−30Vの直流バイアス電圧を印加し、かつ、カソード電極の前記Al−Cr合金とアノード電極との間に120Aの電流を流してアーク放電を発生させ、工具基体の表面に、表3に示される目標組成、目標層厚の薄層Aとしての(Al,Cr)N層を蒸着形成した後、カソード電極(蒸発源)とアノード電極との間のアーク放電を停止し、
(d)引き続いて装置内雰囲気を0.5〜9.0Paの窒素雰囲気に保持して、回転テーブル上で自転しながら回転する工具基体に−20〜−150Vの直流バイアス電圧を印加し、カソード電極(蒸発源)であるAl−Ti合金電極とアノード電極との間に120Aの電流を流してアーク放電を発生させて、表3に示される目標組成、目標層厚の薄層Bとしての(Al,Ti)N層を蒸着形成した。
前記(c)、(d)を交互に繰り返して、表3に示される総目標層厚の交互積層構造の硬質被覆層を工具基体上に蒸着形成し、本発明被覆工具としての表面被覆インサート(以下、本発明被覆インサートと云う)1〜16をそれぞれ製造した。
薄層Aのヤング率の制御は、前述のようにバイアス電圧と窒素分圧を制御することにより行った。すなわち、低バイアス電圧、低窒素分圧とすることで、薄層Aの(Al,Cr)N層のヤング率を低ヤング率に制御することができる。また、薄層Bの(Al,Ti)N層のヤング率の制御は、前述のようにバイアス電圧と窒素分圧を制御することにより行った。すなわち、−20〜150V、かつ0.5〜9.0Paの範囲で成膜することで400〜550GPaに制御することができる。薄層Aおよび薄層Bの形成条件(バイアス電圧、窒素分圧)、ヤング率を同じく表3に示す。
また、ヤング率の測定は、ナノインデンター(MTSシステムズ社の商標)を用いてナノインデンテーション法による測定を行った。さらに本発明被覆インサート1〜16の薄層Aおよび薄層Bについて、X線回折装置を用いて、その結晶構造を特定した。それらの結果を同じく表3に示した。
(A) Next, each of the tool bases A-1 to A-10 and B-1 to B-6 is ultrasonically cleaned in acetone and dried, and then the arc ion plating apparatus shown in FIG. A first electrode is provided with two cathode electrodes (evaporation sources) that are mounted along the outer peripheral portion at a predetermined distance in the radial direction from the central axis on the inner rotary table, and that face each other across the rotary table. An Al—Cr alloy having a predetermined composition for forming the thin layer A, and an Al—Ti alloy having a predetermined composition for forming the thin layer B as the second electrode,
(B) First, the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, and the inside of the apparatus is heated to 500 ° C. with a heater, and then rotated to a tool base that rotates while rotating on a rotary table. A DC bias voltage is applied, and an arc discharge is generated by flowing a current of 100 A between the Al—Cr alloy (cathode electrode) and the anode electrode, and the tool base surface is bombard washed.
(C) Next, nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 0.5 to 1.0 Pa, and a tool base that rotates while rotating on a rotary table is set to −20 to −30 V. A direct current bias voltage was applied and a current of 120 A was passed between the Al—Cr alloy of the cathode electrode and the anode electrode to generate an arc discharge, and the target composition shown in Table 3 was formed on the surface of the tool base. After vapor-depositing the (Al, Cr) N layer as the thin layer A having the target layer thickness, the arc discharge between the cathode electrode (evaporation source) and the anode electrode is stopped,
(D) Subsequently, the atmosphere in the apparatus is maintained in a nitrogen atmosphere of 0.5 to 9.0 Pa, and a DC bias voltage of −20 to −150 V is applied to the tool base that rotates while rotating on the rotary table, and the cathode A current of 120 A is passed between an Al—Ti alloy electrode, which is an electrode (evaporation source), and an anode electrode to generate an arc discharge, and a thin layer B having a target composition and a target layer thickness shown in Table 3 ( An Al, Ti) N layer was deposited.
By alternately repeating the steps (c) and (d), a hard coating layer having an alternate laminated structure having a total target layer thickness shown in Table 3 is formed on the tool substrate by vapor deposition, and the surface coating insert ( Hereinafter, the present invention coated inserts) 1 to 16 were produced.
The Young's modulus of the thin layer A was controlled by controlling the bias voltage and the nitrogen partial pressure as described above. That is, by setting a low bias voltage and a low nitrogen partial pressure, the Young's modulus of the (Al, Cr) N layer of the thin layer A can be controlled to a low Young's modulus. The Young's modulus of the (Al, Ti) N layer of the thin layer B was controlled by controlling the bias voltage and the nitrogen partial pressure as described above. That is, it can control to 400-550 GPa by forming into a film in the range of -20-150V and 0.5-9.0Pa. The conditions for forming the thin layer A and the thin layer B (bias voltage, nitrogen partial pressure) and Young's modulus are also shown in Table 3.
The Young's modulus was measured by a nanoindentation method using a nanoindenter (trademark of MTS Systems). Furthermore, about the thin layer A and the thin layer B of this invention covering insert 1-16, the crystal structure was specified using the X-ray-diffraction apparatus. The results are also shown in Table 3.

また、比較の目的で、
(a)前記工具基体A−1〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部に沿って装着し、前記回転テーブルを挟んで対向する2つのカソード電極(蒸発源)を配置し、第1の電極として、薄層A形成用の所定組成を有するAl−Cr合金、第2の電極として、薄層B形成用の所定組成を有するAl−Ti合金を配置し、
(b)まず、装置内を排気して0.1 Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、回転テーブル上で自転しながら回転する工具基体に−1000Vの直流バイアス電圧を印加し、かつAl−Cr合金(カソード電極)とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面をボンバード洗浄し、
(c)次に、装置内に反応ガスとして窒素ガスを導入して0.5〜9.0Paの反応雰囲気とすると共に、回転テーブル上で自転しながら回転する工具基体に−20〜−500Vの直流バイアス電圧を印加し、かつ、カソード電極の前記Al−Cr合金とアノード電極との間に120Aの電流を流してアーク放電を発生させ、工具基体の表面に、表4に示される目標組成、目標層厚の薄層Aとしての(Al,Cr)N層を蒸着形成した後、カソード電極(蒸発源)とアノード電極との間のアーク放電を停止し、
(d)引き続いて装置内雰囲気を0.5〜9.0Paの窒素雰囲気に保持して、回転テーブル上で自転しながら回転する工具基体に−20〜−150Vの直流バイアス電圧を印加し、カソード電極(蒸発源)であるAl−Ti合金電極とアノード電極との間に120Aの電流を流してアーク放電を発生させて、表4に示される目標組成、目標層厚の薄層Bとしての(Al,Ti)N層を蒸着形成した。
前記(c)、(d)を交互に繰り返して、表4に示される総目標層厚の交互積層構造の硬質被覆層を工具基体上に蒸着形成し、比較被覆工具としての表面被覆インサート(以下、本発明被覆インサートと云う)1〜8をそれぞれ製造した。各層の形成条件(バイアス電圧、窒素分圧)を同じく表4に示す。さらに、比較被覆インサート1〜8について、前記と同様の方法によりヤング率および結晶構造を測定した。それらの結果を同じく表4に示した。
For comparison purposes,
(A) Each of the tool bases A-1 to A-10 and B-1 to B-6 is ultrasonically cleaned in acetone and dried, and then in the arc ion plating apparatus shown in FIG. Attached along the outer periphery at a predetermined distance in the radial direction from the central axis on the rotary table, two cathode electrodes (evaporation sources) facing each other across the rotary table are arranged, and the first electrode is An Al—Cr alloy having a predetermined composition for forming the thin layer A and an Al—Ti alloy having a predetermined composition for forming the thin layer B are disposed as the second electrode,
(B) First, the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, and the inside of the apparatus is heated to 500 ° C. with a heater, and then rotated to a tool base that rotates while rotating on a rotary table. A DC bias voltage is applied, and an arc discharge is generated by flowing a current of 100 A between the Al—Cr alloy (cathode electrode) and the anode electrode, and the tool base surface is bombard washed.
(C) Next, nitrogen gas is introduced into the apparatus as a reaction gas to obtain a reaction atmosphere of 0.5 to 9.0 Pa, and a tool base rotating while rotating on a rotary table is set to −20 to −500 V. A direct current bias voltage was applied, and a current of 120 A was passed between the Al—Cr alloy of the cathode electrode and the anode electrode to generate an arc discharge, and the target composition shown in Table 4 was formed on the surface of the tool base. After vapor-depositing the (Al, Cr) N layer as the thin layer A having the target layer thickness, the arc discharge between the cathode electrode (evaporation source) and the anode electrode is stopped,
(D) Subsequently, the atmosphere in the apparatus is maintained in a nitrogen atmosphere of 0.5 to 9.0 Pa, and a DC bias voltage of −20 to −150 V is applied to the tool base that rotates while rotating on the rotary table, and the cathode A current of 120 A is passed between the Al—Ti alloy electrode, which is an electrode (evaporation source), and the anode electrode to generate an arc discharge, and the thin film B having the target composition and the target layer thickness shown in Table 4 ( An Al, Ti) N layer was deposited.
By alternately repeating the steps (c) and (d), a hard coating layer having an alternate laminated structure having a total target layer thickness shown in Table 4 is formed on the tool substrate by vapor deposition. (Referred to as a coated insert of the present invention) 1 to 8 were produced. The formation conditions (bias voltage, nitrogen partial pressure) of each layer are also shown in Table 4. Furthermore, the Young's modulus and crystal structure of the comparative coated inserts 1 to 8 were measured by the same method as described above. The results are also shown in Table 4.

被削材:JIS・S10C(HB200)の丸棒、
切削速度: 300m/min.、
切り込み: 2.5mm、
送り: 0.4mm/rev.、
切削時間: 14分、
の条件(切削条件A)での炭素鋼の乾式高速高送り切削加工試験(通常の切削速度および送りは、それぞれ、200m/min.、0.3mm/rev.)、
被削材:JIS・SCM415(HB280)の丸棒、
切削速度: 280m/min.、
切り込み: 3.0 mm、
送り: 0.3mm/rev.、
切削時間: 10分、
の条件(切削条件B)での合金鋼の乾式高速高切込切削加工試験(通常の切削速度および切込は、それぞれ、190m/min.、2.0mm.)、
被削材:JIS・SCM420H(HRC61)の丸棒、
切削速度: 100m/min.、
切り込み: 0.35mm、
送り: 0.2mm/rev.、
切削時間: 7分、
の条件(切削条件C)での焼入鋼の乾式高速高切込・高送り切削加工試験(通常の切削速度、切込および送りは、それぞれ、60 m/min.、0.2mm.、0.1mm/rev.)、
を行い、いずれの高速切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表5、表6に示した。
Work material: JIS S10C (HB200) round bar,
Cutting speed: 300 m / min. ,
Cutting depth: 2.5mm,
Feed: 0.4 mm / rev. ,
Cutting time: 14 minutes
Of carbon steel under the above conditions (cutting conditions A) (normal cutting speed and feed are 200 m / min. And 0.3 mm / rev., Respectively),
Work material: JIS / SCM415 (HB280) round bar,
Cutting speed: 280 m / min. ,
Cutting depth: 3.0 mm,
Feed: 0.3 mm / rev. ,
Cutting time: 10 minutes,
Dry high-speed high-cut cutting test of alloy steel under the following conditions (cutting condition B) (normal cutting speed and cutting are 190 m / min. And 2.0 mm., Respectively),
Work material: JIS / SCM420H (HRC61) round bar,
Cutting speed: 100 m / min. ,
Cutting depth: 0.35mm,
Feed: 0.2 mm / rev. ,
Cutting time: 7 minutes
(High cutting speed, cutting and feed are 60 m / min., 0.2 mm., 0 respectively) .1 mm / rev.),
The flank wear width of the cutting edge was measured in any high-speed cutting test. The measurement results are shown in Tables 5 and 6.

実施例1と同様、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr粉末、TiN粉末、TaN粉末、およびCo粉末からなる原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、直径が13mmの工具基体形成用丸棒焼結体を形成し、さらに前記の丸棒焼結体から、研削加工にて、切刃部の直径×長さが10mm×22mmの寸法、並びにねじれ角30度の4枚刃スクエア形状をもったWC基超硬合金製の工具基体(エンドミル)A−1〜A−10をそれぞれ製造した。 As in Example 1, all of WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder having an average particle diameter of 1 to 3 μm. The raw material powder consisting of the above is blended in the composition shown in Table 1, wet mixed for 72 hours with a ball mill, dried, and then pressed into a green compact at a pressure of 100 MPa. , Temperature: Sintered at 1400 ° C. for 1 hour to form a round tool sintered body for forming a tool base having a diameter of 13 mm. WC-base cemented carbide tool bases (end mills) A-1 to A-10 having a four-blade square shape with a diameter x length of 10 mm x 22 mm and a twist angle of 30 degrees were manufactured, respectively. .

ついで、これらの工具基体(エンドミル)A−1〜A−10の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、実施例1と同一の条件で、表7に示される目標組成、目標層厚、ヤング率、結晶構造の(Al,Cr)N層からなる薄層Aと、表7に示される目標組成、目標層厚、ヤング率、結晶構造の(Al,Ti)N層からなる薄層Bとの交互積層構造からなる表7に示される目標総層厚の硬質被覆層を蒸着形成することにより、本発明被覆工具としての本発明表面被覆超硬製エンドミル(以下、本発明被覆エンドミルと云う)1〜10をそれぞれ製造した。   Then, the surfaces of these tool bases (end mills) A-1 to A-10 were ultrasonically cleaned in acetone and dried, and then charged into the arc ion plating apparatus shown in FIG. 1, the target composition, target layer thickness, Young's modulus, thin layer A composed of (Al, Cr) N layer of crystal structure shown in Table 7, and target composition, target layer thickness shown in Table 7 The coated tool of the present invention is formed by vapor-depositing a hard coating layer having a target total layer thickness shown in Table 7 having an alternately laminated structure with a thin layer B made of an (Al, Ti) N layer having a Young's modulus and a crystal structure. The present invention surface-coated carbide end mills (hereinafter referred to as the present invention-coated end mills) 1 to 10 were produced.

また、比較の目的で、前記工具基体(エンドミル)A−1〜A−5の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、実施例1と同様工程で、表8に示される形成条件(バイアス電圧、窒素分圧)を用いて、表8に示される目標組成、目標層厚、ヤング率、結晶構造の(Al,Cr)N層からなる薄層Aと、表8に示される目標組成、目標層厚、ヤング率、結晶構造の(Al,Ti)N層からなる薄層Bとの交互積層構造からなる表8に示される目標総層厚の硬質被覆層を蒸着形成することにより、比較被覆工具としての表面被覆超硬製エンドミル(以下、比較被覆エンドミルと云う)1〜5をそれぞれ製造した。
つぎに、本発明被覆エンドミル1〜10および比較被覆エンドミル1〜5について、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・S10C(HB200)の板材、
切削速度: 300m/min.、
溝深さ(切り込み):5.0mm、
テーブル送り: 2000mm/min.、
の条件(切削条件D)での炭素鋼の乾式高速溝切削加工試験(通常の切削速度およびテーブル送りは、それぞれ、200m/min.、1400mm/min.)、
被削材−平面寸法:100mm×250 mm、厚さ:50mmのJIS・SCM415(HB280)の板材、
切削速度: 250m/min.、
溝深さ(切り込み):3.0mm、
テーブル送り: 1800mm/min.、
の条件(切削条件E)での合金鋼の乾式高速溝切削加工試験(通常の切削速度およびテーブル送りは、それぞれ、150m/min.、1400mm/min.)、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SCM420H(HRC61)の板材、
切削速度: 100m/min.、
溝深さ(切り込み):1.0mm、
テーブル送り: 300mm/min.、
の条件(切削条件F)での焼入鋼の乾式高速溝切削加工試験(通常の切削速度およびテーブル送りは、それぞれ、50m/min.、210mm/min.)、
をそれぞれ行い、いずれの高速溝切削加工試験でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。この測定結果を同じく表7、表8にそれぞれ示した。
For comparison purposes, the surfaces of the tool bases (end mills) A-1 to A-5 are ultrasonically cleaned in acetone and dried, and then loaded into the arc ion plating apparatus shown in FIG. In the same process as in Example 1, using the formation conditions (bias voltage, nitrogen partial pressure) shown in Table 8, the target composition, target layer thickness, Young's modulus, crystal structure (Al, Table 8 consisting of an alternating layered structure of thin layer A consisting of Cr) N layers and thin layer B consisting of (Al, Ti) N layers of the target composition, target layer thickness, Young's modulus and crystal structure shown in Table 8 Surface-coated carbide end mills (hereinafter referred to as comparative coated end mills) 1 to 5 as comparative coated tools were produced by vapor-depositing a hard coating layer having a target total layer thickness shown in FIG.
Next, for the present invention coated end mills 1-10 and comparative coated end mills 1-5,
Work material-Plane dimension: 100 mm x 250 mm, thickness: 50 mm JIS S10C (HB200) plate material,
Cutting speed: 300 m / min. ,
Groove depth (cut): 5.0 mm,
Table feed: 2000 mm / min. ,
Carbon steel dry high-speed grooving test under normal conditions (cutting conditions D) (normal cutting speed and table feed are 200 m / min. And 1400 mm / min., Respectively),
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SCM415 (HB280) plate material,
Cutting speed: 250 m / min. ,
Groove depth (cut): 3.0 mm,
Table feed: 1800 mm / min. ,
(High cutting speed and table feed are 150 m / min. And 1400 mm / min., Respectively)
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SCM420H (HRC61) plate material,
Cutting speed: 100 m / min. ,
Groove depth (cut): 1.0 mm,
Table feed: 300 mm / min. ,
(High cutting speed and table feed are 50 m / min and 210 mm / min, respectively)
In each high-speed groove cutting test, the cutting groove length was measured until the flank wear width of the outer peripheral edge of the cutting edge reached 0.1 mm, which is a guide for the service life. The measurement results are also shown in Tables 7 and 8, respectively.

実施例2で製造した直径が13mmの丸棒焼結体を用い、この丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ8mm×22mmの寸法、並びにねじれ角30度の2枚刃形状をもったWC基超硬合金製の工具基体(ドリル)A−1〜A−10をそれぞれ製造した。   The round bar sintered body with a diameter of 13 mm manufactured in Example 2 was used, and from this round bar sintered body, the dimensions of the groove forming part diameter × length were 8 mm × 22 mm and the twist angle by grinding. WC-base cemented carbide tool bases (drills) A-1 to A-10 having a 30-degree two-blade shape were produced, respectively.

ついで、これらの工具基体(ドリル)A−1〜A−10の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、実施例1と同一の条件で、表9に示される目標組成、目標層厚およびヤング率の(Al,Cr)N層からなる薄層Aと、同じく表9に示される目標組成、目標層厚およびヤング率の(Al,Ti)N層からなる薄層Bとの交互積層構造からなる同じく表9に示される目標総層厚の硬質被覆層を蒸着形成することにより、本発明被覆工具としての本発明表面被覆超硬製ドリル(以下、本発明被覆ドリルと云う)1〜10をそれぞれ製造した。   Next, the cutting edges of these tool bases (drills) A-1 to A-10 are subjected to honing, ultrasonically cleaned in acetone, and dried to the arc ion plating apparatus shown in FIG. The thin film A composed of the (Al, Cr) N layer having the target composition, target layer thickness, and Young's modulus shown in Table 9 under the same conditions as in Example 1, and the target composition also shown in Table 9 By subjecting the present invention to vapor deposition of a hard coating layer having the target total layer thickness shown in Table 9, which consists of an alternately laminated structure with the thin layer B consisting of the (Al, Ti) N layer having the target layer thickness and Young's modulus. The surface-coated carbide drills of the present invention (hereinafter referred to as the present invention-coated drills) 1 to 10 as coated tools were produced, respectively.

また、比較の目的で、前記工具基体(ドリル)A−1〜A−5の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、実施例1と同様工程で、表10に示される形成条件(バイアス電圧、窒素分圧)を用いて、表10に示される目標組成、目標層厚、ヤング率、結晶構造の(Al,Cr)N層からなる薄層Aと、表10に示される目標組成、目標層厚、ヤング率、結晶構造の(Al,Ti)N層からなる薄層Bとの交互積層構造からなる表10に示される目標総層厚の硬質被覆層を蒸着形成することにより、比較被覆工具としての表面被覆超硬製ドリル(以下、比較被覆ドリルと云う)1〜5をそれぞれ製造した。   For comparison purposes, the surfaces of the tool bases (drills) A-1 to A-5 are subjected to honing, ultrasonically cleaned in acetone and dried, and the arc ion plate shown in FIG. The target composition, target layer thickness, Young's modulus, and crystal shown in Table 10 were charged in the same process as in Example 1 using the formation conditions (bias voltage and nitrogen partial pressure) shown in Table 10 in the same process as Example 1. Alternating lamination of thin layer A composed of (Al, Cr) N layers having a structure and thin layer B composed of (Al, Ti) N layers having a target composition, target layer thickness, Young's modulus and crystal structure shown in Table 10 Surface-coated carbide drills (hereinafter referred to as comparative coated drills) 1 to 5 as comparative coated tools were manufactured by vapor-depositing a hard coated layer having a target total layer thickness shown in Table 10 having a structure. .

つぎに、本発明被覆ドリル1〜10および比較被覆ドリル1〜5について、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・S10C(HB200)の板材、
切削速度: 170m/min.、
送り: 0.40mm/rev.、
穴深さ: 6mm、
の条件(切削条件G)での炭素鋼の乾式高速穴あけ加工試験(通常の切削速度および送りは、それぞれ、100m/min.、0.3mm/rev.)、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SCM415(HB280)の板材、
切削速度: 130m/min.、
送り: 0.35mm/rev.、
穴深さ: 6mm、
の条件(切削条件H)での合金鋼の乾式高速穴あけ加工試験(通常の切削速度および送りは、それぞれ、80m/min.、0.25mm/rev.)、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SCM420H(HRC61)の板材、
切削速度: 50m/min.、
送り: 0.20mm/rev.、
穴深さ: 6mm、
の条件(切削条件I)での焼入鋼の乾式高速穴あけ加工試験(通常の切削速度および送りは、それぞれ、30m/min.、0.12mm/rev.)、
をそれぞれ行い、いずれの乾式高速穴あけ加工試験でも先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を同じく表9、表10にそれぞれ示した。
Next, for the present invention coated drills 1-10 and comparative coated drills 1-5,
Work material-Plane dimension: 100 mm x 250 mm, thickness: 50 mm JIS S10C (HB200) plate material,
Cutting speed: 170 m / min. ,
Feed: 0.40 mm / rev. ,
Hole depth: 6mm,
Carbon steel dry high speed drilling test under normal conditions (cutting condition G) (normal cutting speed and feed are 100 m / min. And 0.3 mm / rev., Respectively),
Work material-Plane dimension: 100 mm x 250 mm, thickness: 50 mm JIS / SCM415 (HB280) plate material,
Cutting speed: 130 m / min. ,
Feed: 0.35 mm / rev. ,
Hole depth: 6mm,
(High cutting speed and feed are 80 m / min. And 0.25 mm / rev., Respectively)
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SCM420H (HRC61) plate material,
Cutting speed: 50 m / min. ,
Feed: 0.20 mm / rev. ,
Hole depth: 6mm,
(High cutting speed and feed rate are 30 m / min. And 0.12 mm / rev., Respectively)
In each dry high-speed drilling test, the number of drilling processes until the flank wear width of the tip cutting edge surface reached 0.3 mm was measured. The measurement results are also shown in Table 9 and Table 10, respectively.

この結果得られた本発明被覆工具としての本発明被覆インサート1〜16、本発明被覆エンドミル1〜10、および本発明被覆ドリル1〜10の硬質被覆層を構成する薄層Aである(Al,Cr)N層と薄層Bである(Al,Ti)N層の組成、並びに、比較被覆工具としての比較被覆インサート1〜8、比較被覆エンドミル1〜5、および比較被覆ドリル1〜5の硬質被覆層を構成する薄層Aである(Al,Cr)N層と薄層Bである(Al,Ti)N層の組成を、透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。   As a result of this, it is a thin layer A constituting the hard coating layer of the present invention coated inserts 1-16 as the present invention coated tool, the present coated end mill 1-10, and the present coated drill 1-10 (Al, Cr) N layer and thin layer B (Al, Ti) N layer composition, comparative coated inserts 1-8 as comparative coated tools, comparative coated end mills 1-5, and comparative coated drills 1-5 hard The composition of the (Al, Cr) N layer, which is the thin layer A and the (Al, Ti) N layer, which is the thin layer B constituting the coating layer, is measured by energy dispersive X-ray analysis using a transmission electron microscope. As a result, each showed substantially the same composition as the target composition.

また、前記硬質被覆層を構成する各層の平均層厚を走査型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に等しい平均層厚(5ヶ所の平均値)を示した。   Moreover, when the average layer thickness of each layer which comprises the said hard coating layer was cross-sectional measured using the scanning electron microscope, all showed the average layer thickness (average value of five places) substantially equal to target layer thickness. .

表3〜10に示される結果から、本発明被覆工具は、所定の組成、目標層厚、ヤング率の薄層Aと、所定の組成、目標層厚の薄層Bとからなる交互積層構造を有する硬質被覆層を形成した結果、薄層Aである低ヤング率の(Al,Cr)N層が工具基体表面に強固に密着接合した状態で、すぐれた耐欠損性、高温硬さ、高温強度を有するとともに、薄層Bである(Al,Ti)N層によって、耐熱性および耐摩耗性が向上し、組成が異なる薄層Aと薄層Bとの交互積層による相乗効果によって、耐衝撃性、耐チッピング性、耐クラック進展性を向上させる結果、軟鋼、一般鋼、高硬度鋼等の高速切削加工でも、すぐれた耐欠損性が確保され、チッピングの発生なく、長期に亘ってすぐれた耐摩耗性を発揮する。これに対して、硬質被覆層として、組成が異なる薄層Aと薄層Bとの交互積層構造を有するものの、薄層Aの(Al,Cr)N層のヤング率が制御されていないか、各層の組成、目標層厚が本発明で規定する範囲を逸脱する比較被覆工具においては、いずれも軟鋼、一般鋼、高硬度鋼等の高速切削加工では、耐摩耗性が十分でなく、かつ皮膜の靭性が低下するために、切刃部にチッピングが発生するようになり、比較的短時間で使用寿命に至ることが明らかである。   From the results shown in Tables 3 to 10, the coated tool of the present invention has an alternately laminated structure including a thin layer A having a predetermined composition, a target layer thickness, and a Young's modulus, and a thin layer B having a predetermined composition and a target layer thickness. As a result of forming a hard coating layer, the thin layer A (Al, Cr) N layer having a low Young's modulus is firmly adhered and bonded to the surface of the tool substrate, providing excellent fracture resistance, high temperature hardness, and high temperature strength. In addition, the (Al, Ti) N layer, which is a thin layer B, improves heat resistance and wear resistance, and has an impact resistance due to a synergistic effect by alternately laminating thin layers A and B having different compositions. As a result of improving chipping resistance and crack progress resistance, excellent chipping resistance is ensured even in high-speed cutting such as mild steel, general steel, and high hardness steel, and chipping does not occur and excellent long-term resistance. Exhibits abrasion. On the other hand, as the hard coating layer, although it has an alternate laminated structure of thin layers A and thin layers B having different compositions, the Young's modulus of the (Al, Cr) N layer of the thin layer A is not controlled. In the comparative coated tool whose composition of each layer and target layer thickness deviate from the range specified in the present invention, the wear resistance is not sufficient in high-speed cutting such as mild steel, general steel, high hardness steel, etc. It is clear that chipping occurs at the cutting edge due to the lowering of the toughness, and the service life is reached in a relatively short time.

前述のように、本発明の被覆工具は、一般的な被削材の切削加工は勿論のこと、特に、軟鋼、一般鋼、高硬度鋼等の高速切削加工でもすぐれた耐摩耗性と耐欠損性を発揮し、長期に亘ってすぐれた切削性能を示すものであるから、切削加工装置の自動化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention is excellent in wear resistance and fracture resistance not only in cutting of general work materials, but also in high-speed cutting of soft steel, general steel, hard steel, etc. Since it exhibits excellent cutting performance and exhibits excellent cutting performance over a long period of time, it can satisfactorily respond to automation of the cutting apparatus, labor saving and energy saving of cutting, and cost reduction.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に硬質被覆層を形成してなる表面被覆切削工具において、
前記硬質被覆層が、
(a)0.1〜1.0μmの平均層厚を有し、かつ、
組成式:(Al1−xCr)N(ここで、xはAlとCrの合量に占めるCrの含有割合を示し、原子比で、0.25≦x≦0.50である)を満足し、ヤング率aが150GPa≦a≦300GPaであるAlとCrとの複合窒化物からなる薄層Aと、
(b)0.1〜1.0μmの平均層厚を有し、かつ、
組成式:(Al1−yTi)N(ここで、yはAlとTiの合量に占めるTiの含有割合を示し、原子比で、0.25≦y≦0.55である)を満足し、ヤング率bが400GPa≦b≦550GPaであるAlとTiとの複合窒化物層からなる薄層Bと、
(c)工具基体直上が薄層Aであり、薄層Aと薄層Bとの交互積層構造を有し、総平均層厚が1.0〜10μmである、
前記(a)〜(c)の条件を満たすことを特徴とする表面被覆切削工具。
In a surface-coated cutting tool formed by forming a hard coating layer on the surface of a tool base composed of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
The hard coating layer is
(A) having an average layer thickness of 0.1 to 1.0 μm, and
Composition formula: (Al 1-x Cr x ) N (where x represents the content ratio of Cr in the total amount of Al and Cr, and the atomic ratio is 0.25 ≦ x ≦ 0.50) Satisfied, a thin layer A composed of a composite nitride of Al and Cr having a Young's modulus a of 150 GPa ≦ a ≦ 300 GPa,
(B) having an average layer thickness of 0.1 to 1.0 μm, and
Composition formula: (Al 1-y Ti y ) N (where y represents the content ratio of Ti in the total amount of Al and Ti, and the atomic ratio is 0.25 ≦ y ≦ 0.55) A thin layer B composed of a composite nitride layer of Al and Ti satisfying and having a Young's modulus b of 400 GPa ≦ b ≦ 550 GPa;
(C) Immediately above the tool substrate is the thin layer A, and has an alternate laminated structure of the thin layer A and the thin layer B, and the total average layer thickness is 1.0 to 10 μm.
A surface-coated cutting tool characterized by satisfying the conditions (a) to (c).
JP2012240626A 2012-10-31 2012-10-31 Surface coated cutting tool Active JP5979438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012240626A JP5979438B2 (en) 2012-10-31 2012-10-31 Surface coated cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012240626A JP5979438B2 (en) 2012-10-31 2012-10-31 Surface coated cutting tool

Publications (2)

Publication Number Publication Date
JP2014087917A JP2014087917A (en) 2014-05-15
JP5979438B2 true JP5979438B2 (en) 2016-08-24

Family

ID=50790286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012240626A Active JP5979438B2 (en) 2012-10-31 2012-10-31 Surface coated cutting tool

Country Status (1)

Country Link
JP (1) JP5979438B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3715026A4 (en) * 2017-11-20 2021-04-14 Mitsubishi Hitachi Tool Engineering, Ltd. Coated cutting tool
US11666976B2 (en) 2019-03-18 2023-06-06 Moldino Tool Engineering, Ltd. Coated cutting tool
US11965235B2 (en) 2019-05-09 2024-04-23 Moldino Tool Engineering, Ltd. Coated cutting tool

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6888598B2 (en) * 2018-11-02 2021-06-16 井関農機株式会社 Transplant machine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006070730A1 (en) * 2004-12-28 2006-07-06 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool and process for producing the same
JP2009101491A (en) * 2007-10-25 2009-05-14 Mitsubishi Materials Corp Surface-coated cutting tool having hard coating layer exerting excellent lubricity and wear resistance in high-speed cutting
US7947363B2 (en) * 2007-12-14 2011-05-24 Kennametal Inc. Coated article with nanolayered coating scheme
JPWO2010150335A1 (en) * 2009-06-22 2012-12-06 株式会社タンガロイ Coated cubic boron nitride sintered body tool
JP2011147946A (en) * 2010-01-19 2011-08-04 Daido Steel Co Ltd Warm/hot forging die and method of manufacturing the same
US8409734B2 (en) * 2011-03-04 2013-04-02 Kennametal Inc. Coated substrates and methods of making same
CN102922052B (en) * 2012-09-28 2014-10-22 武汉大学 AlTiN-AlCrN super hard nano multilayer composite coating hob and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3715026A4 (en) * 2017-11-20 2021-04-14 Mitsubishi Hitachi Tool Engineering, Ltd. Coated cutting tool
US11052464B2 (en) 2017-11-20 2021-07-06 Moldino Tool Engineering, Ltd. Coated cutting tool
US11666976B2 (en) 2019-03-18 2023-06-06 Moldino Tool Engineering, Ltd. Coated cutting tool
US11965235B2 (en) 2019-05-09 2024-04-23 Moldino Tool Engineering, Ltd. Coated cutting tool

Also Published As

Publication number Publication date
JP2014087917A (en) 2014-05-15

Similar Documents

Publication Publication Date Title
JP6011249B2 (en) Surface coated cutting tool
JP5488824B2 (en) Surface-coated cutting tool that exhibits excellent peeling resistance and excellent wear resistance due to high-speed cutting of hard difficult-to-cut materials
JP5594576B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP5594577B2 (en) Surface coated cutting tool
JP6331003B2 (en) Surface coated cutting tool
JP5979438B2 (en) Surface coated cutting tool
JP5440345B2 (en) Surface coated cutting tool
JP2016185589A (en) Surface-coated cutting tool
JP5440353B2 (en) Surface coated cutting tool
JP5429693B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP5979437B2 (en) Surface coated cutting tool
JP5975342B2 (en) Surface coated cutting tool
JP5454788B2 (en) Surface coated cutting tool
JP5459618B2 (en) Surface coated cutting tool
JP2016175161A (en) Surface-coated cutting tool
JP6206289B2 (en) Surface coated cutting tool
JP6471546B2 (en) Surface coated cutting tool
JP5975343B2 (en) Surface coated cutting tool
JP5975338B2 (en) Surface coated cutting tool
JP5440352B2 (en) Surface coated cutting tool
JP5499861B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5440350B2 (en) Surface coated cutting tool
JP2008260097A (en) Surface-coated cutting tool
JP6206288B2 (en) Surface coated cutting tool
JP2015182160A (en) surface-coated cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160713

R150 Certificate of patent or registration of utility model

Ref document number: 5979438

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250