JP2011147946A - Warm/hot forging die and method of manufacturing the same - Google Patents

Warm/hot forging die and method of manufacturing the same Download PDF

Info

Publication number
JP2011147946A
JP2011147946A JP2010009281A JP2010009281A JP2011147946A JP 2011147946 A JP2011147946 A JP 2011147946A JP 2010009281 A JP2010009281 A JP 2010009281A JP 2010009281 A JP2010009281 A JP 2010009281A JP 2011147946 A JP2011147946 A JP 2011147946A
Authority
JP
Japan
Prior art keywords
wear
film
hot forging
layer
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010009281A
Other languages
Japanese (ja)
Inventor
Tetsuya Masuda
哲也 増田
Takayuki Shimizu
崇行 清水
Koichiro Inoue
幸一郎 井上
Takaya Ishii
孝也 石井
Tetsuya Watanabe
哲也 渡邉
Kiichi Kobayashi
喜一 小林
Toshihiro Kitagawa
利博 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAIDO AMISTAR CO Ltd
Daido Steel Co Ltd
Nissin Electric Co Ltd
Original Assignee
DAIDO AMISTAR CO Ltd
Daido Steel Co Ltd
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAIDO AMISTAR CO Ltd, Daido Steel Co Ltd, Nissin Electric Co Ltd filed Critical DAIDO AMISTAR CO Ltd
Priority to JP2010009281A priority Critical patent/JP2011147946A/en
Priority to CN2011100231159A priority patent/CN102127733A/en
Publication of JP2011147946A publication Critical patent/JP2011147946A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a warm/hot forging die in which wear during a forging work and also thermal fatigue crack are suppressed and the large crack and chipping of the die are prevented, and which is excellent in durability and to provide a method of manufacturing the same. <P>SOLUTION: The warm/hot forging die has a designed surface to which a wear resisting coating film is given. The wear resisting coating film is a multilayer film in which a first layer (0&lt;x&lt;1) composed of (Al<SB>x</SB>Cr<SB>1-x</SB>)N and a second layer (0&lt;y&lt;1) composed of (Ti<SB>y</SB>Al<SB>1-y</SB>)N are alternately laminated and the thickness of each layer of the adjacent first layer and second layer is at least &le;15 nm and the thickness of all the coating film of the multilayer coating film is 1-20 &mu;m. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、温熱間鍛造用金型及びその製造方法に関し、特に、耐摩耗性に優れるとともに、耐酸化性及び耐ヒートチェック性などの熱疲労特性にも優れた温熱間鍛造用金型及びその製造方法に関する。   The present invention relates to a hot forging die and a manufacturing method thereof, and in particular, a hot forging die having excellent wear resistance and thermal fatigue properties such as oxidation resistance and heat check resistance and the like. It relates to a manufacturing method.

切削工具や冷間金型などにおいて、窒化処理やショットピーニングなどの表面硬化処理によってその耐摩耗性の向上が図られている。近年、より高い加工精度への要求に伴って、より耐摩耗性に優れた表面硬化処理が求められ、その1つとして、PVD法による高い硬さの表面皮膜を被処理材に与える表面硬化処理が行われている。   In a cutting tool, a cold mold, etc., the wear resistance is improved by a surface hardening process such as nitriding or shot peening. In recent years, with demands for higher processing accuracy, surface hardening treatments with higher wear resistance have been demanded, and as one of them, surface hardening treatments that impart a high-hardness surface film to the material to be treated by the PVD method Has been done.

例えば、特許文献1では、PVD法によって形成されたAlの酸化物による皮膜は耐摩耗性に非常に優れるものの、安定した皮膜の形成が難しく、他方、Ti、Hf、Zr等の窒化物は安定した皮膜を形成できるものの、耐摩耗性、特に、高速切削用途での耐摩耗性が不足すると述べている。その上で、同文献では、Al、Siを含む所定の金属元素の窒化物、酸化物、炭化物、炭窒化物、ホウ化物のうちの1つ以上の化合物からなる第1層と、Al、Siを含む所定の金属元素のうちの2種の金属元素からなる合金の窒化物、酸化物、炭化物、炭窒化物及び/若しくはホウ化物からなる第2層と、をPVD法により、積層周期0.4nm〜50nmで積層し、全体の皮膜厚さを0.5〜10μmとした多層皮膜を被処理材に与えることを開示している。かかる多層皮膜は、安定してPVD法によって形成できるとともに、高い硬さを有し良好な耐摩耗性を与え、しかも界面の整合性に優れるから剥離の少ない皮膜であって、結果的に、被処理材により優れた耐摩耗性を与え得ると述べている。   For example, in Patent Document 1, although an Al oxide film formed by the PVD method is very excellent in wear resistance, it is difficult to form a stable film, while nitrides such as Ti, Hf, and Zr are stable. Although it is possible to form a coated film, it is said that the wear resistance, particularly the wear resistance in high-speed cutting applications, is insufficient. In addition, in this document, a first layer made of one or more compounds of nitride, oxide, carbide, carbonitride, and boride of a predetermined metal element containing Al and Si, and Al and Si And a second layer made of a nitride, oxide, carbide, carbonitride and / or boride of an alloy made of two kinds of metal elements of a predetermined metal element containing a predetermined number of metal elements by a PVD method. It discloses that a multi-layer coating having a thickness of 4 to 50 nm and a total coating thickness of 0.5 to 10 μm is applied to the material to be treated. Such a multilayer film can be stably formed by the PVD method, has high hardness and good wear resistance, and is excellent in interfacial consistency, and is therefore a film with little peeling. It states that the treated material can give excellent wear resistance.

上記した特許文献1のように、一般的に、工具鋼にPVD法によって多層皮膜を与えることで、表面若しくは多層皮膜中に発生したクラックが多層界面において積層方向へ伝搬することを抑制されるから、単層皮膜よりも耐衝撃性などを高め得る。つまり、工具としての使用時に受ける衝撃に対して皮膜の割れや剥離の発生を防止でき、結果として、より優れた耐摩耗性を与え得る。   As in the above-mentioned Patent Document 1, generally, by giving a multilayer coating to the tool steel by the PVD method, it is possible to suppress propagation of cracks generated in the surface or the multilayer coating in the stacking direction at the multilayer interface. In addition, impact resistance and the like can be improved as compared with a single layer coating. That is, it is possible to prevent the occurrence of cracking and peeling of the film against the impact received during use as a tool, and as a result, it is possible to provide more excellent wear resistance.

例えば、特許文献2では、PVD法により、TiC1−x(0≦x≦0.6)からなる第1層と、(AlTi1−y)(N1−z)(0.56≦y≦0.75,0.6≦z≦1)からなる第2層とが交互に隣接して4層以上積層し、且つ、多層皮膜の総皮膜厚さが0.6〜12μmである工作工具の耐摩耗皮膜が開示されている。上記したように、多層皮膜構造により、表面近傍で発生したクラックの成長を緩和・阻止できて、皮膜の割れや剥離の発生を防止し、優れた耐摩耗性を与え得ると述べている。 For example, in Patent Document 2, a PVD method is used to form a first layer made of TiC x N 1-x (0 ≦ x ≦ 0.6), (Al y Ti 1-y ) (N z C 1-z ) ( 4 or more layers stacked alternately adjacent to each other and the second layer of 0.56 ≦ y ≦ 0.75, 0.6 ≦ z ≦ 1), and the total coating thickness of the multilayer coating is 0.6 to A wear-resistant coating for machine tools that is 12 μm is disclosed. As described above, it is stated that the multilayer coating structure can alleviate and prevent the growth of cracks generated near the surface, prevent the coating from cracking and peeling, and provide excellent wear resistance.

更に、PVD法の一種であるイオンプレーティング法による皮膜は、緻密であって高い硬さであるため耐摩耗性により優れるとされている。一方で、例えば、特許文献3では、このような緻密な皮膜は高い残留圧縮応力を有するから、皮膜をある程度以上に厚く形成すると被処理材との密着性が低下し、バランス良く耐摩耗性を向上せしめるような実用的な厚さの皮膜を形成することは困難であると述べている。その上で、同文献では、Ti窒化物(若しくは、炭窒化物)からなる第1層とTiAlの窒化物(若しくは、炭窒化物)からなる第2層とについて、配向性を異にしながら交互に積層させるとともに第1層と第2層との間に所定の中間層を配置した多層皮膜をイオンプレーティング法で与えた工具を開示している。配向性の異なる2種の皮膜を積層させることで、緻密で高い硬さの実用的な厚さの皮膜を残留圧縮応力を高めることなく形成できて、故に、被処理材との密着性を損なわず耐摩耗性の高い皮膜を与え得ると述べている。   Furthermore, a film formed by an ion plating method, which is a kind of PVD method, is considered to be more excellent in wear resistance because it is dense and has high hardness. On the other hand, for example, in Patent Document 3, such a dense film has a high residual compressive stress. Therefore, when the film is formed to be thicker than a certain degree, the adhesion with the material to be treated is lowered, and the wear resistance is well balanced. It states that it is difficult to form a film having a practical thickness that can be improved. Furthermore, in this document, the first layer made of Ti nitride (or carbonitride) and the second layer made of TiAl nitride (or carbonitride) are alternately arranged with different orientations. A tool is disclosed in which a multilayer coating having a predetermined intermediate layer disposed between a first layer and a second layer is applied by an ion plating method. By laminating two types of films with different orientations, a dense and practically hard film with a practical thickness can be formed without increasing the residual compressive stress, and therefore the adhesion to the material to be treated is impaired. It states that it can provide a highly abrasion-resistant film.

なお、同文献では、イオンプレーティング法による皮膜が高い残留圧縮応力を有する理由として、結晶成長で優先成長方位が与えられることを挙げている。すなわち、柱状の結晶構造を持つ皮膜が形成されるが、1つの柱状の結晶粒子は内部欠陥の極めて少ない単結晶となり、かかる結晶が連続して皮膜を形成して、皮膜の厚さの増加に伴い残留圧縮応力が増加する、と述べている。   In this document, the reason why the film formed by the ion plating method has a high residual compressive stress is that a preferential growth orientation is given by crystal growth. That is, a film having a columnar crystal structure is formed, but one columnar crystal particle becomes a single crystal having very few internal defects, and such crystals continuously form a film to increase the thickness of the film. Along with this, the residual compressive stress increases.

ところで、切削工具などと同様に、温熱間鍛造用金型においても鍛造時の機械的な摩耗が問題となっている。この鍛造時の摩耗を抑制するため、鍛造工程毎に金型意匠面に繰り返し潤滑材を塗布して金型を使用している。一方で、金型意匠面には、高温の被鍛造材との接触による加熱と、潤滑材の塗布による冷却とを繰り返し与えられることから、熱応力によってヒートチェックやヒートクラックなどの熱疲労亀裂が生じ、金型の大きな割れや欠けの原因になるといった問題が生じていた。そこでこのような温熱間鍛造用金型の特に金型意匠面に表面硬化処理を施すことが検討された。   Incidentally, mechanical wear during forging has become a problem in hot forging dies as well as cutting tools. In order to suppress this wear during forging, a mold is used by repeatedly applying a lubricant to the mold design surface for each forging process. On the other hand, because the mold design surface is repeatedly heated by contact with the high-temperature forged material and cooled by the application of the lubricant, thermal fatigue cracks such as heat check and heat crack are caused by thermal stress. As a result, problems such as large cracks and chipping of the mold occurred. Therefore, it has been studied to perform surface hardening treatment on the mold design surface of such a hot forging mold.

例えば、特許文献4では、SKD61などの熱間金型用合金鋼に研磨材を圧縮空気とともに噴射して、表面近傍の表層に層状加工組織を伴わないナノ結晶組織を生成させた後に、プラズマ窒化で表層下方に窒素を拡散させ、更に、イオンプレーティング法を含むPVD法により最表面に窒化クロム(CrN)等からなる硬質セラミックス層を形成した温熱間鍛造用金型を開示している。層状加工組織を伴わないナノ結晶組織の付与により高い硬さ及び靱性の向上を達成し、金型意匠面の摩耗損失や熱疲労亀裂の生成を抑止すると述べている。なお、窒化クロム(CrN)からなる硬質セラミックス層は、機械的な摩耗に対する耐摩耗性皮膜ではなく、主に耐溶損性を付与するための皮膜である。   For example, in Patent Document 4, after a polishing material is sprayed together with compressed air on a hot mold alloy steel such as SKD61 to form a nanocrystalline structure without a layered processed structure on the surface layer near the surface, plasma nitriding is performed. 1 discloses a hot forging die in which nitrogen is diffused below the surface layer and a hard ceramic layer made of chromium nitride (CrN) or the like is formed on the outermost surface by a PVD method including an ion plating method. He states that by applying a nanocrystalline structure without a layered structure, high hardness and toughness can be improved, and wear loss and thermal fatigue cracks on the mold design surface are suppressed. The hard ceramic layer made of chromium nitride (CrN) is not a wear-resistant film against mechanical wear but a film mainly for imparting resistance to melting damage.

特開平7−205361号公報JP-A-7-205361 特開平6−136514号公報JP-A-6-136514 特開平10−76407号公報JP-A-10-76407 特開2008−223122号公報JP 2008-223122 A

温熱間鍛造用金型においても、より高い加工精度への要求に伴って、PVD法による高い硬さの表面皮膜を金型材に与える表面硬化処理が検討されている。ここでも、鍛造加工時における機械的な摩耗とともに、熱疲労亀裂を起因とする金型の大きな割れや欠けを防止できることも求められる。   Also in the hot forging die, a surface hardening treatment for imparting a high hardness surface film to the die material by the PVD method is being studied in accordance with a demand for higher processing accuracy. Here, it is also required to prevent large cracks and chipping of the mold due to thermal fatigue cracks as well as mechanical wear during forging.

本発明は、かかる事情に鑑みてなされたものであって、その目的とするところは、鍛造加工時における摩耗とともに、ヒートチェックなどの熱疲労亀裂を抑制し金型の大きな割れや欠けを防止でき、耐久性に優れた温熱間鍛造用金型及びその製造方法の提供である。   The present invention has been made in view of such circumstances, and its purpose is to suppress thermal fatigue cracks such as heat check as well as wear during forging and prevent large cracks and chips of the mold. The present invention provides a hot forging die having excellent durability and a method for producing the same.

本発明者は、耐酸化温度が1000度以上と一般的な耐摩耗性皮膜に使用されているTiNやCrNよりも高く、高い硬さを有する故に耐摩耗性に優れるAlCrN膜やTiAlN膜などの窒化皮膜について研究を進めていた。鍛造加工時における摩耗に加え、ヒートチェックなどの熱疲労亀裂に対しても耐久性を与えるには、前記した窒化皮膜を交互に積層させた多層皮膜を形成して、より耐摩耗性に優れる皮膜を与えられるのではないかと考えた。そこで、一般的な工具用途に比べ、使用環境、特に使用温度環境において過酷な温熱間鍛造用金型の用途に適用するには多層皮膜をどう構成すべきかを検討し、本発明に至った。   The inventor has an oxidation resistance temperature of 1000 ° C. or higher, which is higher than TiN and CrN used for general wear-resistant coatings, and has high hardness, and thus has excellent wear resistance such as AlCrN films and TiAlN films. Research on nitride films was underway. In order to provide durability against thermal fatigue cracks such as heat check in addition to wear during forging, a multi-layered film in which the above-mentioned nitride films are alternately laminated is formed to provide a film with higher wear resistance. I thought that I might be given. Therefore, the present inventors have studied how to form a multilayer coating to be applied to a use of a hot forging die that is harsh in a use environment, particularly in a use temperature environment, as compared with a general tool use, and have reached the present invention.

そこで、本発明による温熱間鍛造用金型は、金型意匠面に耐摩耗性皮膜を与えた温熱間鍛造用金型であって、前記耐摩耗性皮膜は、イオンプレーティング法により、(AlCr1−x)Nからなる第1層(但し、0<x<1)と、(TiAl1−y)Nからなる第2層(但し、0<y<1)と、を交互に積層させた多層皮膜であり、隣り合う前記第1層及び前記第2層の各層の厚さが少なくとも15nm以下であるとともに、前記多層皮膜の総皮膜厚さは1μm以上20μm以下であることを特徴とする。 Therefore, the hot forging die according to the present invention is a hot forging die in which a wear-resistant coating is provided on the mold design surface, and the wear-resistant coating is formed by (Al x Cr 1-x ) N first layer (where 0 <x <1) and (Ti y Al 1-y ) N second layer (where 0 <y <1) are alternately arranged The thickness of each of the adjacent first and second layers is at least 15 nm or less, and the total thickness of the multilayer coating is 1 μm or more and 20 μm or less. Features.

かかる発明によれば、鍛造加工時における摩耗とともに、熱疲労亀裂を抑制し金型の大きな割れや欠けを防止でき、耐久性に優れた温熱間鍛造用金型を提供できるのである。ここで、温熱間鍛造時の400℃から1000℃以上といった広い温度範囲でも高い硬さを有する(AlCr1−x)Nは特に鍛造加工時における高い耐摩耗性を与える。また、同温度範囲の酸化雰囲気であっても安定な(AlCr1−x)Nや(TiAl1−y)Nは熱疲労亀裂の原因となり得る酸化による表面の凹凸を減じ得て、熱疲労亀裂を起因とする金型の大きな割れや欠けを防止する。つまり、これら(AlCr1−x)N及び(TiAl1−y)N皮膜を組み合わせて多層皮膜を形成した上で、大きなクラックに進展し得る大きさ程度以下、すなわち15nm以下で各層を積層させることで、このような大きさの潜在クラックの発生を低減し、金型の大きな割れや欠けを阻止できる。また、総皮膜厚さを磨滅耐久性と密着性の両立を与える範囲、すなわち1μm以上20μm以下の総皮膜厚さとする。以上により、鍛造加工時における摩耗とともに、熱疲労亀裂を抑制し金型の大きな割れや欠けを防止でき、耐久性に優れた温熱間鍛造用金型を提供できるのである。 According to this invention, it is possible to provide a hot forging die having excellent durability, which can suppress thermal fatigue cracks as well as wear during forging and prevent large cracks and chipping of the die. Here, having a high hardness even in a wide temperature range such as 1000 ° C. or higher from 400 ° C. at the time of heat forging (Al x Cr 1-x) N gives especially high abrasion resistance during forging. Moreover, even in an oxidizing atmosphere within the same temperature range, stable (Al x Cr 1-x ) N and (Ti y Al 1-y ) N can reduce surface irregularities due to oxidation, which can cause thermal fatigue cracks. Prevents large cracks and chipping of the mold due to thermal fatigue cracks. That is, after forming a multilayer coating by combining these (Al x Cr 1-x ) N and (Ti y Al 1-y ) N coatings, each layer has a size of not more than about a size capable of developing into a large crack, that is, 15 nm or less. By laminating, it is possible to reduce the occurrence of latent cracks of such a size and prevent large cracks and chips of the mold. Further, the total film thickness is set to a range that provides both wear durability and adhesion, that is, a total film thickness of 1 μm to 20 μm. As described above, it is possible to provide a hot forging die having excellent durability, which can suppress thermal fatigue cracks as well as wear during forging and prevent large cracks and chips of the die.

上記した発明において、前記耐摩耗性皮膜の下地に窒素拡散層を含むことを特徴としてもよい。かかる発明によれば、耐摩耗性皮膜と下地との密着性を向上せしめるとともに、耐摩耗性皮膜の内部に生じる残留圧縮応力を低減できて、鍛造加工時における皮膜の割れや剥離、また皮膜及びその表面でのクラックの発生を防止できるのである。つまり耐久性に優れた温熱間鍛造用金型を提供できるのである。なお、窒素拡散層において、金型材料中の元素と窒素との化合物層が一部形成された場合には、研摩等によりその化合物層を除去することが好ましい。   In the above-described invention, a nitrogen diffusion layer may be included in the foundation of the wear-resistant film. According to this invention, the adhesiveness between the wear-resistant film and the base can be improved, and the residual compressive stress generated inside the wear-resistant film can be reduced. The generation of cracks on the surface can be prevented. That is, it is possible to provide a hot forging die having excellent durability. In the nitrogen diffusion layer, when a part of the compound layer of the element in the mold material and nitrogen is formed, it is preferable to remove the compound layer by polishing or the like.

本発明による温熱間鍛造用金型の製造方法は、金型意匠面にイオンプレーティング法による耐摩耗性皮膜を与えた温熱間鍛造用金型の製造方法であって、真空チャンバー内にNの反応性ガス雰囲気を形成するステップと、前記真空チャンバー内において、AlCr1−xからなる第1のターゲット材(但し、0<x<1)及びTiAl1−yからなる第2のターゲット材(但し、0<y<1)を対向させて配置し、それぞれの前部に前記ターゲット材の構成原子をイオン化させた第1の雰囲気ゾーン及び第2の雰囲気ゾーンをそれぞれ独立して形成させるステップと、前記第1の雰囲気ゾーン及び前記第2の雰囲気ゾーンを一定間隔毎に交互に通過するように前記金型意匠面を周回運動させる堆積ステップと、を含むことを特徴とする。 A method for producing a hot forging die according to the present invention is a method for producing a hot forging die in which a wear-resistant film by an ion plating method is provided on a die design surface, wherein N is placed in a vacuum chamber. A step of forming a reactive gas atmosphere, and a first target material made of Al x Cr 1-x (where 0 <x <1) and a second material made of Ti y Al 1-y in the vacuum chamber. A target material (provided that 0 <y <1) are arranged to face each other, and a first atmosphere zone and a second atmosphere zone in which the constituent atoms of the target material are ionized are formed independently on the front part of each. And a deposition step of rotating the mold design surface so as to alternately pass through the first atmosphere zone and the second atmosphere zone at regular intervals. .

かかる発明によれば、上記したような、鍛造加工時における摩耗とともに、熱疲労亀裂を抑制し金型の大きな割れや欠けを防止でき、耐久性に優れた温熱間鍛造用金型を安定して提供できるのである。   According to this invention, as described above, along with wear during forging, thermal fatigue cracks can be suppressed and large cracks and chipping of the mold can be prevented, and a hot forging mold having excellent durability can be stably produced. It can be provided.

更に、上記した発明において、イオンプレーティング法による耐摩耗性皮膜の付与に先立って、前記金型意匠面に窒素拡散層を与える窒化処理ステップを含むことを特徴としてもよい。かかる発明によれば、耐摩耗性皮膜と下地との密着性を向上せしめるとともに、耐摩耗性皮膜の内部に生じる残留圧縮応力を低減できて、鍛造加工時における皮膜の割れや剥離、また皮膜及びその表面でのクラックの発生を防止でき、耐久性に優れた温熱間鍛造用金型を安定して提供できるのである。   Furthermore, the above-described invention may include a nitriding treatment step of providing a nitrogen diffusion layer on the mold design surface prior to application of the abrasion-resistant film by an ion plating method. According to this invention, the adhesiveness between the wear-resistant film and the base can be improved, and the residual compressive stress generated inside the wear-resistant film can be reduced. Generation of cracks on the surface can be prevented, and a hot forging die having excellent durability can be stably provided.

本発明の実証試験に用いた試験片の斜視図である。It is a perspective view of the test piece used for the verification test of this invention. 本発明による製造方法で使用した装置の図である。It is a figure of the apparatus used with the manufacturing method by this invention. 本発明の実証試験に用いた装置の図である。It is a figure of the apparatus used for the verification test of this invention. 本発明の実証試験に用いた試験片の側面図である。It is a side view of the test piece used for the verification test of this invention. 本発明の実証試験での鍛造工程を示す図である。It is a figure which shows the forge process in the verification test of this invention. 本発明の実証試験に用いた試験片の測定部位の図である。It is a figure of the measurement part of the test piece used for the verification test of this invention. 本発明の実証試験の諸条件及び試験データを示す図である。It is a figure which shows various conditions and test data of the verification test of this invention. 本発明の実証試験の試験データを示す図である。It is a figure which shows the test data of the verification test of this invention. 本発明の実証試験の試験データのグラフである。It is a graph of the test data of the verification test of this invention. 本発明の実証試験における代表的な組織の透過電子顕微鏡写真である。It is a transmission electron micrograph of the typical structure | tissue in the verification test of this invention. 本発明の実証試験の試験データを示す図である。It is a figure which shows the test data of the verification test of this invention.

本発明による実施例としての温熱間鍛造用金型と同様の製造条件で皮膜を付与した試験片(実施例1〜7)及び比較例としての試験片(比較例1〜16)における試験について、図1乃至図11を用いて説明する。   About the test in the test piece (Examples 1-7) which provided the film | membrane on the manufacturing conditions similar to the metal mold | die for hot forging as an Example by this invention, and the test piece (Comparative Examples 1-16) as a comparative example, This will be described with reference to FIGS.

図1に示すように、実施例及び比較例とも、試験片1はJIS規格に定めるSKD61相当材を48HRCに調質した厚さ5mmの板材からなり、外径15mmの円板の中央に内径3.5mmの貫通孔1aを設けた環状体である。試験片1は複数個用意され、後述する実施例7の試験片1に対しては、NHガスを20vol%、Hガスを80vol%の混合雰囲気の中で500℃に加熱し、そのまま10時間保持するプラズマ窒化処理を施した。 As shown in FIG. 1, in both the example and the comparative example, the test piece 1 is made of a plate material having a thickness of 5 mm obtained by refining an SKD61 equivalent material defined in JIS standard to 48 HRC. An annular body provided with a 5 mm through hole 1a. A plurality of test pieces 1 are prepared. For the test piece 1 of Example 7 to be described later, NH 3 gas is heated to 500 ° C. in a mixed atmosphere of 20 vol% NH 3 gas and 80 vol% H 2 gas, and 10 Plasma nitriding treatment was carried out for a time.

次いで、図2に示すように、イオンプレーティング装置の反応チャンバ内5にある回転ステージ10の上に試験片1を載せて固定する。一方、ここでは回転ステージ10を挟んで対向するように図示しない反応チャンバの壁面に沿ってターゲット11及び12を配置する。なお、一部の試験片を除いて、窒化物を生成させるために反応チャンバ内に1〜5Paの分圧となるように窒素ガスを導入した。この各試験片1のイオンプレーティング処理には、日新電機(株)製マルチアークPVD装置M500C−600(製品名)を用いた。各試験片毎のターゲット11及び12、イオンプレーティングの諸条件については図7にまとめた。   Next, as shown in FIG. 2, the test piece 1 is placed and fixed on a rotating stage 10 in the reaction chamber 5 of the ion plating apparatus. On the other hand, here, the targets 11 and 12 are arranged along the wall surface of a reaction chamber (not shown) so as to face each other with the rotary stage 10 in between. Except for some test pieces, nitrogen gas was introduced into the reaction chamber so as to have a partial pressure of 1 to 5 Pa in order to generate nitride. A multi-arc PVD apparatus M500C-600 (product name) manufactured by Nissin Electric Co., Ltd. was used for the ion plating treatment of each test piece 1. The targets 11 and 12 for each test piece and various conditions for ion plating are summarized in FIG.

イオンプレーティングの詳細は省略するが、処理を開始すべく真空アーク放電を発生させると、ターゲット11及び12の構成原子が蒸発してイオン化し、それぞれの前方に雰囲気ゾーンを形成する。回転ステージ10を回転させると(図2のR1を参照)、試験片1は、この雰囲気ゾーンを交互に通過して行く。なお、本発明による実施例としての温熱間鍛造用金型においては、試験片1の処理面がその金型意匠面に対応し、金型意匠面が雰囲気ゾーンを通過していく。なお、図2のR2のように、回転ステージ10に対して試験片1の処理面を更に回転させてもよい。イオンプレーティング処理後の試験片1は、回転ステージ10から取り外され、イオンプレーティング装置の反応チャンバ5から取り出される。   Although details of the ion plating are omitted, when a vacuum arc discharge is generated to start the processing, the constituent atoms of the targets 11 and 12 are evaporated and ionized to form an atmosphere zone in front of each. When the rotary stage 10 is rotated (see R1 in FIG. 2), the test piece 1 passes through this atmosphere zone alternately. In the hot forging die as an example according to the present invention, the treated surface of the test piece 1 corresponds to the die design surface, and the die design surface passes through the atmosphere zone. Note that the processing surface of the test piece 1 may be further rotated with respect to the rotary stage 10 as indicated by R2 in FIG. The specimen 1 after the ion plating process is removed from the rotary stage 10 and taken out from the reaction chamber 5 of the ion plating apparatus.

図3に示すように、イオンプレーティング処理後の試験片1は、繰り返し加熱・冷却試験装置(ヒートチェック試験装置)20に移される。すなわち、試験片1の貫通孔1aに支持部22の細径部を挿入し、試験片1の上下からホルダ23に挟んで固定する。この状態において、試験片1の外周面に対し、高周波コイル21により700℃まで急速に加熱する。続いて、図示しない放水口から冷却水24を噴射して急速に室温まで冷却する。この加熱及び冷却のサイクルを合計1000回繰り返す。繰り返し加熱・冷却後の試験片1は、試験装置20から取り外し、中心軸に垂直な平面に沿って切断した。   As shown in FIG. 3, the test piece 1 after the ion plating treatment is repeatedly transferred to a heating / cooling test apparatus (heat check test apparatus) 20. That is, the small diameter portion of the support portion 22 is inserted into the through hole 1 a of the test piece 1, and fixed between the test piece 1 and the holder 23 from above and below. In this state, the outer peripheral surface of the test piece 1 is rapidly heated to 700 ° C. by the high frequency coil 21. Subsequently, cooling water 24 is jetted from a water outlet (not shown) to rapidly cool to room temperature. This heating and cooling cycle is repeated 1000 times in total. The test piece 1 after repeated heating and cooling was removed from the test apparatus 20 and cut along a plane perpendicular to the central axis.

上記した切断した試験片1の一方については、樹脂埋めして切断面を研磨し、切断面を光学顕微鏡(100倍)で観察した。全周に亘ってクラックの数と各クラックの長さとを測定し、これを図8に示した。また、図9には、実施例1乃至3と比較例13で観察されたクラックの数について示した。なお、長いクラックの数が多いほど耐ヒートチェック性が劣る、すなわち熱疲労特性が劣ると判断される。   One of the cut test pieces 1 was filled with resin, the cut surface was polished, and the cut surface was observed with an optical microscope (100 times). The number of cracks and the length of each crack were measured over the entire circumference, and this is shown in FIG. FIG. 9 shows the number of cracks observed in Examples 1 to 3 and Comparative Example 13. In addition, it is judged that heat check resistance is inferior, ie, a thermal fatigue characteristic is inferior, so that there are many long cracks.

更に、試験片1における多層被膜を横切る断面の透過電子顕微鏡観察を行った。特に、図10には、図7の実施例1で示される条件で得られた多層皮膜を横切る断面の透過電子顕微鏡写真を示した。ここでは、灰色と白の濃淡のコントラストの多層皮膜が観察されるが、元素組成分析の結果から、灰色に見える部分が(AlCr1−x)N(0<x<1、以下、「(Al−Cr)系の窒化物層」と称する)であり、白色に見える部分が(TiAl1−y)N(0<y<1、以下、「(Ti−Al)系の窒化物層」と称する)であった。 Furthermore, the transmission electron microscope observation of the cross section which crossed the multilayer film in the test piece 1 was performed. In particular, FIG. 10 shows a transmission electron micrograph of a cross section across the multilayer film obtained under the conditions shown in Example 1 of FIG. Here, a multi-layered film with gray and white contrast is observed. From the result of elemental composition analysis, the gray-colored portion is (Al x Cr 1-x ) N (0 <x <1, hereinafter “ (Al—Cr) -based nitride layer ”) and the portion that appears white is (Ti y Al 1-y ) N (0 <y <1, hereinafter,“ (Ti—Al) -based nitride ” Called “layer”).

また、別途イオンプレーティング処理した試験片について、その処理被膜についての元素組成分析及び硬さ測定を行った。元素組成分析は、株式会社堀場製作所製の高周波グロー放電分光分析装置(GD−OES)PROFILER2(製品名)を使用して行った。また、硬さ測定は、MTS Systems Corpration製のNano Indenter XP(製品名)を使用して、押し込み深さ300nmで測定し、この測定値[GPa]をHV硬さに換算した。これらの結果も図7に併せて示した。   Moreover, about the test piece separately ion-plated, the elemental composition analysis and hardness measurement were performed about the process coating. The elemental composition analysis was performed using a high frequency glow discharge spectroscopic analyzer (GD-OES) PROFILER 2 (product name) manufactured by Horiba, Ltd. The hardness was measured using Nano Indenter XP (product name) manufactured by MTS Systems Corporation at an indentation depth of 300 nm, and the measured value [GPa] was converted to HV hardness. These results are also shown in FIG.

ここで、図7において、「組成」、「組成1」及び「組成2」とあるのはいずれもターゲット11又は12の組成を表している。比較例1乃至6は、1つのターゲット11だけを用いた場合であって、同一組成の皮膜が複数層形成されている。なお、以下において、このような皮膜を「単一組成皮膜」と称する。一方、実施例1乃至7、及び、比較例7乃至15は、2種類のターゲット11及び12を用いた場合であって、異組成の皮膜が複数層形成されている。なお、以下において、このような皮膜を「異組成多層皮膜」と称する。また、比較例16はイオンプレーティング処理を行わず、被処理材ままで表面被膜を有さない。   In FIG. 7, “composition”, “composition 1”, and “composition 2” all represent the composition of the target 11 or 12. Comparative Examples 1 to 6 are cases where only one target 11 is used, and a plurality of coatings having the same composition are formed. Hereinafter, such a film is referred to as a “single composition film”. On the other hand, Examples 1 to 7 and Comparative Examples 7 to 15 are cases where two types of targets 11 and 12 are used, and a plurality of layers of films having different compositions are formed. Hereinafter, such a film is referred to as a “different composition multilayer film”. Moreover, the comparative example 16 does not perform an ion plating process, and does not have a surface film with a to-be-processed material.

ところで、イオンプレーティング処理において、試験片1が上記した反応チャンバ内5の雰囲気ゾーンを通過するたびに1つの層が形成されると予測される。ここでは、回転ステージ10が1周すると、2つのターゲット11及び12による雰囲気ゾーンを通過するから、2つの層が形成される。すなわち、[被膜の種類(ここではターゲット11及び12を由来とする2種類)]×[1分間あたりの回転回数]×[イオンプレーティング処理時間(分)]で多層皮膜を構成する膜数を求められる。これについては、図10のような透過電子顕微鏡像からも確認できた。   By the way, in the ion plating process, it is predicted that one layer is formed each time the test piece 1 passes through the atmosphere zone in the reaction chamber 5 described above. Here, when the rotary stage 10 makes one round, it passes through the atmosphere zone formed by the two targets 11 and 12, so that two layers are formed. That is, the number of films constituting the multi-layer coating is expressed by [type of coating (here, two types derived from targets 11 and 12)] × [number of rotations per minute] × [ion plating processing time (minutes)]. Desired. This could be confirmed from a transmission electron microscope image as shown in FIG.

そこで、図7における1層の厚さは次のように求めている。例えば、上記した試験片1の断面の光学顕微鏡観察や電子顕微鏡観察により、異組成多層皮膜全体の厚さが測定できる。例えば、実施例1の試験片1であれば、約4.4μm(4400nm、図10を参照)であった。イオンプレーティング処理において、回転ステージ10は5rpmで回転し、70分間処理を行っている。故に、異組成多層皮膜の膜数を上記したように計算すると、2×5×70=700層と求まる。つまり、異組成多層皮膜の厚さをこれで割ると、4400÷700=6.3nmとなる。   Therefore, the thickness of one layer in FIG. 7 is obtained as follows. For example, the thickness of the whole different composition multilayer film can be measured by optical microscope observation and electron microscope observation of the cross section of the test piece 1 described above. For example, in the case of the test piece 1 of Example 1, it was about 4.4 μm (4400 nm, see FIG. 10). In the ion plating process, the rotary stage 10 rotates at 5 rpm and is processed for 70 minutes. Therefore, when the number of films of different composition multilayer coating is calculated as described above, 2 × 5 × 70 = 700 layers are obtained. That is, dividing the thickness of the different composition multilayer film by this yields 4400 ÷ 700 = 6.3 nm.

これに対して、図10の透過電子顕微鏡写真から皮膜を構成する灰色及び白色の1組の層の厚さを測定すると12.4nmである。この灰色及び白色の各層の厚さが等しいなら、[((Al−Cr)系の窒化物層の厚さ+(Ti−Al)系の窒化物層の厚さ)/2]=6.2nmであって、上記した異組成多層皮膜全体の厚さとイオンプレーティング処理の条件とから求めた値とほぼ一致する。故に、図7における1層の厚さは、後者の異組成多層皮膜全体の厚さとイオンプレーティング処理の条件(試験片1の回転回数等)から求めている。   On the other hand, when the thickness of a pair of gray and white layers constituting the film is measured from the transmission electron micrograph of FIG. 10, it is 12.4 nm. If the thicknesses of the gray and white layers are equal, [((Al—Cr) -based nitride layer thickness + (Ti—Al) -based nitride layer thickness) / 2] = 6.2 nm In this case, the value almost coincides with the value obtained from the thickness of the whole multilayer film with different composition and the conditions of the ion plating treatment. Therefore, the thickness of one layer in FIG. 7 is obtained from the thickness of the latter multi-component multilayer film as a whole and the conditions of the ion plating treatment (such as the number of rotations of the test piece 1).

ところで、上記とは別に、図4に示すようなパンチ試験片30により、パンチ摩耗試験を行った。パンチ試験片30は、JIS SKD61を50HRCに調質した棒材からなり、これに上記したと同様に、特にパンチ先端部30aについて図7に示したと同様のプラズマ窒化処理及びイオンプレーティング処理を施し作成した。パンチ摩耗試験は、このパンチ試験片30のパンチ先端部30aを820℃に加熱したS53Cからなるワーク32に打ち付けて、孔33を加工する熱間加工を5000回繰り返した後に、パンチ先端部30aの摩耗量α(図6を参照)を計測して行った。加工は、横型高速鍛造機を用い、鍛造速度85spm、潤滑油量3L/minで行った。なお、図5に示すように、S53Cからなるからなる加工材32aはまず第一段の鍛造を行って、その後に、パンチ試験片30を打ち付けて孔33を加工する二工程加工(鍛造)とした。   By the way, apart from the above, a punch wear test was performed using a punch test piece 30 as shown in FIG. The punch test piece 30 is made of a bar material tempered with JIS SKD61 to 50 HRC, and similarly to the above, the punch tip 30a is subjected to the same plasma nitriding treatment and ion plating treatment as shown in FIG. Created. In the punch wear test, the punch tip 30a of the punch test piece 30 was struck against the workpiece 32 made of S53C heated to 820 ° C., and after hot working for processing the hole 33 was repeated 5000 times, The wear amount α (see FIG. 6) was measured. Processing was performed using a horizontal high-speed forging machine at a forging speed of 85 spm and a lubricating oil amount of 3 L / min. In addition, as shown in FIG. 5, the workpiece 32a made of S53C is first forged, followed by a two-step process (forging) in which the punch test piece 30 is hit and the hole 33 is processed. did.

図6に示すように、5000回の加工後のパンチ試験片30は、パンチ先端部30aの最先端から0.2mmの位置の摩耗量α(mm)を周方向に沿って90°間隔で4点測定した。図11に示す摩耗量αは、4点の平均値である。   As shown in FIG. 6, the punch test piece 30 after being processed 5000 times has a wear amount α (mm) at a position of 0.2 mm from the foremost end of the punch tip portion 30 a at 90 ° intervals along the circumferential direction. The point was measured. The wear amount α shown in FIG. 11 is an average value of four points.

次に、図7の皮膜の製造条件、構成及び硬さの測定、図8の耐ヒートチェック性に関するクラック長さの測定、図11の耐摩耗性に関する摩耗量αの測定の各結果について説明する。   Next, measurement results of the manufacturing conditions, configuration and hardness of the coating shown in FIG. 7, measurement of the crack length related to the heat check resistance shown in FIG. 8, and measurement of the wear amount α related to the wear resistance shown in FIG. .

Ti系又はCr系の窒化物又は炭窒化物を主とする1種類のターゲットのみを用いた単一組成皮膜を形成した比較例1、2及び6において、図7に示すように、硬さは実施例1乃至7に比べて相対的に低く、図11に示すように、摩耗量αも相対的に大きい傾向にある。   In Comparative Examples 1, 2 and 6 in which a single composition film using only one type of target mainly composed of Ti-based or Cr-based nitride or carbonitride is formed, as shown in FIG. Compared to Examples 1 to 7, the wear amount α tends to be relatively large as shown in FIG.

一方、(Ti−Al)系の窒化物又は(Al−Cr)系の窒化物を主とする1種類のターゲットのみを用いた単一組成皮膜を形成した比較例3乃至5において、図11に示すように、比較例1、2及び6に対して、摩耗量αを大幅に低減できる。特に、比較例3の皮膜は、図8に示すように、比較例3及び4の皮膜に比べて、クラック数が非常に少ない。すなわち、きわめて高い耐ヒートチェック性を与える。このように、(Ti−Al)系の窒化物を主とする1種類のターゲットのみを用いた単一組成皮膜は、(Al−Cr)系の窒化物を主とする1種類のターゲットのみを用いた単一組成皮膜に比べて、耐ヒートチェック性により優れている。これは、前者が高い耐酸化性と後者に比べて低い硬さによる高い靱性を有することにより、クラックがより発生しにくいからであると考える。また、比較例4及び5の皮膜は、図7に示すように、比較例3に比べて、硬さが高く、図11に示すように、より小さい摩耗量αを与える。   On the other hand, in Comparative Examples 3 to 5 in which a single composition film using only one type of target mainly composed of (Ti—Al) nitride or (Al—Cr) nitride is formed, FIG. As shown, the wear amount α can be significantly reduced compared to Comparative Examples 1, 2, and 6. In particular, the film of Comparative Example 3 has a very small number of cracks as compared to the films of Comparative Examples 3 and 4 as shown in FIG. That is, it provides extremely high heat check resistance. Thus, a single composition film using only one type of target mainly composed of (Ti—Al) -based nitrides has only one type of target mainly composed of (Al—Cr) -based nitrides. Compared to the single composition film used, the heat check resistance is superior. This is considered to be because cracks are less likely to occur because the former has higher oxidation resistance and higher toughness due to lower hardness than the latter. Moreover, the coating films of Comparative Examples 4 and 5 are higher in hardness than Comparative Example 3 as shown in FIG. 7, and give a smaller wear amount α as shown in FIG.

ところで、イオンプレーティング法による多層皮膜は緻密な皮膜故に高い耐摩耗性を与え得るものの、一方で、高い残留圧縮応力により、熱疲労や鍛造時の衝撃力などによってクラックが成長し、また皮膜が剥離しやすい。上記した比較例1乃至6のような単一組成皮膜では、残留圧縮応力が皮膜内で連続し一度に剥離してしまいやすい。そこで、上記したターゲットから2種類を選択して組み合わせて用い、異組成多層皮膜を形成することで、残留応力が層間で不連続となって剥離しづらく、仮に剥離をするにしても1層ずつが剥離を繰り返し、結果として摩耗量はより小さくなると考えられる。そこで、以下のように、異組成多層皮膜を形成した。   By the way, although the multilayer coating by the ion plating method can provide high wear resistance because of the dense coating, on the other hand, cracks grow due to high residual compressive stress due to thermal fatigue, impact force during forging, etc. Easy to peel. In the single composition coatings as in Comparative Examples 1 to 6, the residual compressive stress is continuous in the coating and easily peels at once. Therefore, by selecting and combining two types from the above targets and forming a different composition multilayer film, the residual stress becomes discontinuous between layers and is difficult to peel off. Even if peeling occurs, one layer at a time However, it is considered that the amount of wear becomes smaller as a result of repeated peeling. Therefore, a different composition multilayer film was formed as follows.

Cr系の窒化物と、Ti系の窒化物との2種類のターゲットを用いて異組成多層皮膜を形成した比較例7及び8において、図8に示すように、相対的にクラック数が多くその長さも長い傾向にある。また、図11に示すように、摩耗量αも相対的に大きい傾向にある。つまり、比較例7及び8の皮膜は、耐ヒートチャック性及び鍛造加工時における耐摩耗性の双方で不十分であることが予測される。   In Comparative Examples 7 and 8 in which different composition multilayer coatings were formed using two types of targets of Cr-based nitride and Ti-based nitride, the number of cracks was relatively large as shown in FIG. The length tends to be long. Further, as shown in FIG. 11, the wear amount α tends to be relatively large. That is, it is predicted that the films of Comparative Examples 7 and 8 are insufficient in both heat chuck resistance and wear resistance during forging.

Cr系の窒化物と、(Ti−Al)系の窒化物との2種類のターゲットを用いて異組成多層皮膜を形成した比較例9乃至11において、図8に示すように、相対的にクラック数が多くその長さも長い傾向にある。一方、図11に示すように、摩耗量αは比較例7及び8よりも相対的に小さい傾向にあり、比較例9において非常に小さい。   In Comparative Examples 9 to 11 where different composition multilayer films were formed using two types of targets of Cr-based nitride and (Ti-Al) -based nitride, as shown in FIG. There are many numbers and the length tends to be long. On the other hand, as shown in FIG. 11, the wear amount α tends to be relatively smaller than those of Comparative Examples 7 and 8, and is very small in Comparative Example 9.

また、Cr系の窒化物と、(Al−Cr)系の窒化物との2種類のターゲットを用いて異組成多層皮膜を形成した比較例12において、図8に示すように、相対的にクラック数が多くその長さも長い傾向にある。一方、図11に示すように、摩耗量αは比較例9と同様に非常に小さい。つまり、比較例9乃至12の皮膜は、鍛造加工時における耐摩耗性では良好であるが、耐ヒートチャック性で不十分であることが予測される。   Further, in Comparative Example 12 in which the different composition multilayer film was formed using two types of targets of Cr-based nitride and (Al—Cr) -based nitride, as shown in FIG. There are many numbers and the length tends to be long. On the other hand, as shown in FIG. 11, the wear amount α is very small as in Comparative Example 9. That is, it is predicted that the coating films of Comparative Examples 9 to 12 have good wear resistance during forging, but are insufficient in heat chuck resistance.

そこで、(Ti−Al)系の窒化物と、(Al−Cr)系の窒化物との2種類のターゲットを用いて異組成多層皮膜を形成した実施例1乃至7において、図8に示すように、相対的にクラック数が非常に小さく、図10に示すように、摩耗量αも相対的に小さい傾向に出来ることが判る。   Therefore, in Examples 1 to 7 in which different composition multilayer films are formed using two types of targets of (Ti—Al) -based nitride and (Al—Cr) -based nitride, as shown in FIG. Further, it can be seen that the number of cracks is relatively small, and the wear amount α tends to be relatively small as shown in FIG.

詳細には、実施例1乃至3と比較例13において、一層厚さを変化させると、図9に示すように、15nm程度を境に急激にクラック数が増加する。つまり、多層皮膜の各1層あたりの厚さが15nm以下であれば、耐ヒートチェック性が大幅に向上する。これは、(Ti−Al)系の窒化物や、(Al−Cr)系の窒化物のような硬質皮膜中においては、大きなクラックに進展し得るクラックの大きさ程度以下、すなわち15nm以下で各層を積層させることで、このような大きさの潜在クラックの発生が低減でき、観察されるような大きさのクラックの数を低減できて、結果として、金型の大きな割れや欠けを阻止できると考える。   Specifically, in Examples 1 to 3 and Comparative Example 13, when the thickness is further changed, as shown in FIG. 9, the number of cracks abruptly increases around 15 nm. That is, if the thickness of each multilayer film is 15 nm or less, the heat check resistance is greatly improved. In a hard film such as (Ti—Al) -based nitride or (Al—Cr) -based nitride, each layer has a crack size of not more than about 15 nm, that is, 15 nm or less. The number of cracks of such a size can be reduced, and as a result, large cracks and chips of the mold can be prevented. Think.

更に、実施例2と比較例14及び15において、総皮膜厚さを変化させると、図8及び11に示すように、10μm程度を中心に、薄すぎても厚すぎてもクラック数が大幅に増加し、摩耗量も増加する。これは、比較例14のように皮膜が薄いと、皮膜がすぐに磨滅し、例えば、比較例16と同様の皮膜を与えられていない状態となってしまう。また、厚すぎれば、内部に生じる残留圧縮応力が高く皮膜の剥離の確率が上昇し、皮膜が完全に剥離すれば、やはり比較例16と同様になってしまう。すなわち、総皮膜厚さは、磨滅耐久性と密着性の両立を与える範囲、すなわち1μm以上20μm、好ましくは、2μmから8μm未満にすることで、鍛造加工時における摩耗とともに、熱疲労亀裂を抑制し、金型の大きな割れや欠けを防止でき、耐久性に優れた温熱間鍛造用金型を提供できる。   Furthermore, in Example 2 and Comparative Examples 14 and 15, when the total film thickness is changed, as shown in FIGS. 8 and 11, the number of cracks is greatly increased, even if it is too thin or too thick, centering around 10 μm. The amount of wear increases. This is because when the film is thin as in Comparative Example 14, the film is worn out immediately, and for example, the same film as in Comparative Example 16 is not applied. On the other hand, if the thickness is too thick, the residual compressive stress generated inside is high, and the probability of peeling of the film is increased. If the film is completely peeled off, the same results as in Comparative Example 16 are obtained. That is, the total film thickness is within a range that provides both wear durability and adhesion, that is, 1 μm or more and 20 μm, preferably 2 μm to less than 8 μm, thereby suppressing thermal fatigue cracks along with wear during forging. In addition, it is possible to provide a hot forging die that can prevent large cracks and chipping of the die and has excellent durability.

また、1つの実施例として、Al0.7Cr0.3ターゲットを用いてAr雰囲気中で被処理材(金型)の上にAl0.7Cr0.3層を与えた上で、実施例3と同様の異組成多層皮膜を与えた、すなわち、異組成多層皮膜と被処理材との間にAl0.7Cr0.3層を与えた実施例6において、図8に示すように、特に長いクラックが減る傾向が見られる。 Further, as one example, an Al 0.7 Cr 0.3 layer was provided on a material to be treated (mold) in an Ar atmosphere using an Al 0.7 Cr 0.3 target, and then the test was performed. In Example 6 in which a different composition multilayer coating similar to Example 3 was provided, that is, an Al 0.7 Cr 0.3 layer was provided between the different composition multilayer coating and the material to be treated, as shown in FIG. In particular, there is a tendency to reduce long cracks.

また、異組成多層皮膜の下地の被処理材に窒素拡散層を与える窒化処理を施した実施例7において、図8に示すように、クラック数がより減少しその長さも短くなる傾向が見られる。これは、窒化されていない被処理材の内部から表面にかけて、硬さを増加させ且つ熱膨張係数を低下させた傾斜部を形成することで、加熱・冷却の繰り返しによる熱疲労に対する皮膜/下地界面でのクラック発生を防止できるからである。つまり、皮膜と下地との密着性を高め得るのである。また、未窒化の下地の被処理材に被膜を形成するよりも、被膜の内部に発生する圧縮残留応力を小さくできて、クラック発生及び進展を抑制できるのである。   Further, in Example 7 in which the nitriding treatment for providing the nitrogen diffusion layer on the material to be treated of the different composition multilayer coating was performed, as shown in FIG. . This is a film / underlying interface against thermal fatigue due to repeated heating and cooling by forming an inclined part with increased hardness and reduced thermal expansion coefficient from the inside to the surface of the non-nitrided material. This is because cracks can be prevented from occurring. That is, the adhesion between the film and the base can be improved. In addition, it is possible to reduce the compressive residual stress generated inside the coating rather than to form a coating on the unnitrided base material to be processed, and to suppress the occurrence and development of cracks.

以上、上記した実施例1乃至7による異組成多層皮膜を温熱間鍛造用金型の特に金型意匠面に適用することで、高い耐摩耗性及び耐酸化性を与え、耐ヒートチェック性などの熱疲労特性にも優れる金型を提供できる。すなわち、温熱間鍛造用金型での一般的な仕様用途において、従来よりも薄い皮膜でも十分な耐用性を与え得る。   As described above, by applying the different composition multilayer coatings according to Examples 1 to 7 described above to the mold design surface of the hot forging die, particularly, high wear resistance and oxidation resistance are provided, and heat check resistance, etc. A mold having excellent thermal fatigue characteristics can be provided. In other words, in a general specification application in a hot forging die, even a thin film can provide sufficient durability.

以上のことから、本実施例における金型意匠面に耐摩耗性皮膜を与えた温熱間鍛造用金型は、イオンプレーティング法により、(AlCr1−x)Nからなる第1層(0<x<1)と、(TiAl1−y)Nからなる第2層(0<y<1)と、を交互に積層させた多層皮膜を与えられ、隣り合う第1層及び第2層の各層の厚さが少なくとも15nm以下であるとともに、多層皮膜の総皮膜厚さは1μm以上20μm以下である。これにより、鍛造加工時における摩耗とともに、熱疲労亀裂を抑制し金型の大きな割れや欠けを防止でき、耐久性に優れた温熱間鍛造用金型を提供できるのである。 From the above, the hot forging die in which the wear-resistant coating is provided on the die design surface in the present example is the first layer (Al x Cr 1-x ) N formed by ion plating ( A multilayer film in which 0 <x <1) and a second layer (0 <y <1) made of (Ti y Al 1-y ) N are alternately laminated is given, and the adjacent first layer and the second layer The thickness of each of the two layers is at least 15 nm or less, and the total thickness of the multilayer coating is 1 μm or more and 20 μm or less. Thereby, it is possible to provide a hot forging die having excellent durability that can suppress thermal fatigue cracks as well as wear during forging and prevent large cracks and chips of the die.

また、1つの実施例として、耐摩耗性皮膜の下地に窒素拡散層を与えることで、耐摩耗性皮膜と下地との密着性を向上せしめるとともに、耐摩耗性皮膜の内部に生じる残留圧縮応力を低減できて、鍛造加工時における皮膜の割れや剥離、また皮膜及びその表面でのクラックの発生を防止できるのである。つまり耐久性に優れた温熱間鍛造用金型を提供できるのである。   In addition, as one example, by providing a nitrogen diffusion layer on the base of the wear-resistant coating, the adhesion between the wear-resistant coating and the base is improved, and the residual compressive stress generated inside the wear-resistant coating is reduced. This can reduce the occurrence of cracks and peeling of the film during forging, and the generation of cracks on the film and its surface. That is, it is possible to provide a hot forging die having excellent durability.

一方、本実施例における金型意匠面にイオンプレーティング法による耐摩耗性皮膜を与えた温熱間鍛造用金型の製造方法は、真空チャンバー内にNの反応性ガス雰囲気を形成するステップと、前記真空チャンバー内において、AlCr1−xからなる第1のターゲット材(0<x<1)及びTiAl1−yからなる第2のターゲット材(0<y<1)を対向させて配置し、それぞれの前部に前記ターゲット材の構成原子をイオン化させた第1の雰囲気ゾーン及び第2の雰囲気ゾーンをそれぞれ独立して形成させるステップと、前記第1の雰囲気ゾーン及び前記第2の雰囲気ゾーンを一定間隔毎に交互に通過するように前記金型意匠面を周回運動させる堆積ステップと、を含む。これにより、温熱間鍛造時の400℃から1000℃といった広い温度範囲において、鍛造加工時における摩耗とともに、熱疲労亀裂を抑制し金型の大きな割れや欠けを防止でき、耐久性に優れた温熱間鍛造用金型を安定して提供できるのである。 On the other hand, the method for producing a hot forging die in which a wear-resistant film by an ion plating method is provided on the die design surface in the present embodiment includes a step of forming a reactive gas atmosphere of N in a vacuum chamber, In the vacuum chamber, a first target material (0 <x <1) made of Al x Cr 1-x and a second target material (0 <y <1) made of Ti y Al 1-y are opposed to each other. And independently forming a first atmosphere zone and a second atmosphere zone in which constituent atoms of the target material are ionized at respective front portions, and the first atmosphere zone and the second atmosphere zone. A deposition step of rotating the mold design surface so as to alternately pass through the atmosphere zone at regular intervals. As a result, in a wide temperature range from 400 ° C to 1000 ° C during hot forging, it is possible to suppress thermal fatigue cracks as well as wear during forging and prevent large cracks and chipping of the mold, and it has excellent durability. Forging dies can be provided stably.

更に、1つの実施例として、イオンプレーティング法による耐摩耗性皮膜の付与に先立って、前記金型意匠面に窒素拡散層を与える窒化処理ステップを含む。これによれば、耐摩耗性皮膜と下地との密着性を向上せしめるとともに、耐摩耗性皮膜の内部に生じる残留圧縮応力を低減できて、鍛造加工時における皮膜の割れや剥離、また皮膜及びその表面でのクラックの発生を防止でき、耐久性に優れた温熱間鍛造用金型を安定して提供できるのである。   Furthermore, as one embodiment, a nitriding treatment step of providing a nitrogen diffusion layer on the mold design surface prior to the application of the wear resistant film by the ion plating method is included. According to this, it is possible to improve the adhesion between the wear-resistant film and the base, and to reduce the residual compressive stress generated inside the wear-resistant film, and to prevent cracking and peeling of the film during forging, and the film and its Generation of cracks on the surface can be prevented, and a hot forging die having excellent durability can be stably provided.

ここまで本発明による代表的実施例及びこれに基づく変形例について説明したが、本発明は必ずしもこれらに限定されるものではない。当業者であれば、添付した特許請求の範囲を逸脱することなく、種々の代替実施例及び改変例を見出すことができるだろう。   Up to this point, the representative embodiments according to the present invention and the modifications based thereon have been described, but the present invention is not necessarily limited thereto. Those skilled in the art will recognize a variety of alternative embodiments and modifications without departing from the scope of the appended claims.

1 試験片
10 回転ステージ
11、12 ターゲット
20 繰り返し加熱・冷却試験装置(ヒートチェック試験装置)
30 パンチ試験片
1 Test piece 10 Rotating stage 11, 12 Target 20 Repeated heating / cooling test device (heat check test device)
30 punch specimen

Claims (4)

金型意匠面に耐摩耗性皮膜を与えた温熱間鍛造用金型であって、
前記耐摩耗性皮膜は、イオンプレーティング法により、(AlCr1−x)Nからなる第1層(但し、0<x<1)と、(TiAl1−y)Nからなる第2層(但し、0<y<1)と、を交互に積層させた多層皮膜であり、隣り合う前記第1層及び前記第2層の各層の厚さが少なくとも15nm以下であるとともに、前記多層皮膜の総皮膜厚さは1μm以上20μm以下であることを特徴とする温熱間鍛造用金型。
A mold for hot forging with a wear-resistant coating on the mold design surface,
The wear-resistant film is formed by a first layer made of (Al x Cr 1-x ) N (where 0 <x <1) and (Ti y Al 1-y ) N by an ion plating method. Two layers (where 0 <y <1) are alternately laminated, and the thickness of each of the adjacent first and second layers is at least 15 nm or less, and the multilayer The hot forging die, wherein the total thickness of the coating is 1 μm or more and 20 μm or less.
前記耐摩耗性皮膜の下地に窒素拡散層を含むことを特徴とする請求項1記載の温熱間鍛造用金型。   The hot forging die according to claim 1, further comprising a nitrogen diffusion layer as a base of the wear-resistant film. 金型意匠面にイオンプレーティング法による耐摩耗性皮膜を与えた温熱間鍛造用金型の製造方法であって、
真空チャンバー内にNの反応性ガス雰囲気を形成するステップと、
前記真空チャンバー内において、AlCr1−xからなる第1のターゲット材(但し、0<x<1)及びTiAl1−yからなる第2のターゲット材(但し、0<y<1)を対向させて配置し、それぞれの前部に前記ターゲット材の構成原子をイオン化させた第1の雰囲気ゾーン及び第2の雰囲気ゾーンをそれぞれ独立して形成させるステップと、
前記第1の雰囲気ゾーン及び前記第2の雰囲気ゾーンを一定間隔毎に交互に通過するように前記金型意匠面を周回運動させる堆積ステップと、を含むことを特徴とする温熱間鍛造用金型の製造方法。
A method for producing a mold for hot forging in which a wear-resistant film by an ion plating method is provided on a mold design surface,
Forming a reactive gas atmosphere of N in the vacuum chamber;
In the vacuum chamber, a first target material made of Al x Cr 1-x (where 0 <x <1) and a second target material made of Ti y Al 1-y (where 0 <y <1 And the first atmosphere zone and the second atmosphere zone in which the constituent atoms of the target material are ionized are formed independently on the front portions, respectively,
A hot forging mold characterized by including a deposition step of rotating the mold design surface so as to alternately pass through the first atmosphere zone and the second atmosphere zone at regular intervals. Manufacturing method.
イオンプレーティング法による耐摩耗性皮膜の付与に先立って、前記金型意匠面に窒素拡散層を与える窒化処理ステップを含むことを特徴とする請求項3記載の温熱間鍛造用金型の製造方法。   The method for producing a hot forging die according to claim 3, further comprising a nitriding treatment step of providing a nitrogen diffusion layer on the die design surface prior to application of the wear-resistant film by an ion plating method. .
JP2010009281A 2010-01-19 2010-01-19 Warm/hot forging die and method of manufacturing the same Pending JP2011147946A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010009281A JP2011147946A (en) 2010-01-19 2010-01-19 Warm/hot forging die and method of manufacturing the same
CN2011100231159A CN102127733A (en) 2010-01-19 2011-01-19 Warm forging die and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010009281A JP2011147946A (en) 2010-01-19 2010-01-19 Warm/hot forging die and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2011147946A true JP2011147946A (en) 2011-08-04

Family

ID=44265999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010009281A Pending JP2011147946A (en) 2010-01-19 2010-01-19 Warm/hot forging die and method of manufacturing the same

Country Status (2)

Country Link
JP (1) JP2011147946A (en)
CN (1) CN102127733A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014087917A (en) * 2012-10-31 2014-05-15 Mitsubishi Materials Corp Surface-coated cutting tool

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220032357A1 (en) * 2018-12-03 2022-02-03 Hitachi Metals, Ltd. Coated die for use in hot stamping
CN110117773B (en) * 2019-04-09 2021-04-02 河南科技学院 High-temperature cyclic oxidation resistant thick Ti/TiAlYN multilayer coating and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01129958A (en) * 1987-11-13 1989-05-23 Babcock Hitachi Kk Formation of titanium nitride film having high adhesive strength
JPH11197762A (en) * 1998-01-12 1999-07-27 Sumitomo Electric Ind Ltd Die
JP2000271699A (en) * 1999-03-23 2000-10-03 Sumitomo Electric Ind Ltd Surface coated forming die and production thereof
WO2006070730A1 (en) * 2004-12-28 2006-07-06 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool and process for producing the same
JP2009039838A (en) * 2007-08-10 2009-02-26 Mitsubishi Materials Corp Surface-coated cutting tool

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1698714B1 (en) * 2000-12-28 2009-09-02 Kabushiki Kaisha Kobe Seiko Sho Target used to form a hard film
JP2003105565A (en) * 2001-09-27 2003-04-09 Toshiba Tungaloy Co Ltd Wear resistant lubricating film, and tool coated with the film
WO2006070509A1 (en) * 2004-12-28 2006-07-06 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool and process for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01129958A (en) * 1987-11-13 1989-05-23 Babcock Hitachi Kk Formation of titanium nitride film having high adhesive strength
JPH11197762A (en) * 1998-01-12 1999-07-27 Sumitomo Electric Ind Ltd Die
JP2000271699A (en) * 1999-03-23 2000-10-03 Sumitomo Electric Ind Ltd Surface coated forming die and production thereof
WO2006070730A1 (en) * 2004-12-28 2006-07-06 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool and process for producing the same
JP2009039838A (en) * 2007-08-10 2009-02-26 Mitsubishi Materials Corp Surface-coated cutting tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014087917A (en) * 2012-10-31 2014-05-15 Mitsubishi Materials Corp Surface-coated cutting tool

Also Published As

Publication number Publication date
CN102127733A (en) 2011-07-20

Similar Documents

Publication Publication Date Title
CN108368602B (en) Coating film, method for producing same, PVD apparatus, and piston ring
JP5920681B2 (en) Coated mold for plastic working excellent in sliding characteristics and manufacturing method thereof
US9133543B2 (en) Coating material for aluminum die casting mold and method for manufacturing the same
JP6325455B2 (en) piston ring
JP2018521862A (en) Tool with multilayer arc PVD coating
JP6525310B2 (en) Coated tools
JP5435326B2 (en) Die-casting coating mold and manufacturing method thereof
CN106893987B (en) Preparation method of physical vapor deposition Ta-C coating and Ta-C coating
CN103826773A (en) Covering member with excellent sliding properties
IL209811A (en) Hard coating layer and method for forming the same
CN108118301B (en) AlCrSiN coating with intermediate layer with gradient change of Si content and preparation method
JP2008001951A (en) Diamond-like carbon film and method for forming the same
JP4771223B2 (en) Durable hard material coated mold for plastic working
JP4405835B2 (en) Surface coated cutting tool
JP2008013852A (en) Hard film, and hard film-coated tool
JP6590213B2 (en) Manufacturing method of cold working mold
JP2005060810A (en) Coating material and its production method
JP2011147946A (en) Warm/hot forging die and method of manufacturing the same
CN114196912A (en) Periodic multilayer nano-structure nitride hard coating band saw blade and preparation method and application thereof
JP2017179580A (en) Hard film and hard film coated member
JP2008150650A (en) Compositely surface-treated steel-based product and its production method
JP2000038653A (en) Die or mold having surface film
JP2009293110A (en) Method for manufacturing coated member and coated member
JP2018039045A (en) Covering cold metal mold
JP2007046103A (en) Hard film

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Effective date: 20120501

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A621 Written request for application examination

Effective date: 20120918

Free format text: JAPANESE INTERMEDIATE CODE: A621

A711 Notification of change in applicant

Effective date: 20120918

Free format text: JAPANESE INTERMEDIATE CODE: A712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131018

A131 Notification of reasons for refusal

Effective date: 20131022

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140304