JP5920681B2 - Coated mold for plastic working excellent in sliding characteristics and manufacturing method thereof - Google Patents

Coated mold for plastic working excellent in sliding characteristics and manufacturing method thereof Download PDF

Info

Publication number
JP5920681B2
JP5920681B2 JP2015050717A JP2015050717A JP5920681B2 JP 5920681 B2 JP5920681 B2 JP 5920681B2 JP 2015050717 A JP2015050717 A JP 2015050717A JP 2015050717 A JP2015050717 A JP 2015050717A JP 5920681 B2 JP5920681 B2 JP 5920681B2
Authority
JP
Japan
Prior art keywords
nitride
film
alcrsi
coating
plastic working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015050717A
Other languages
Japanese (ja)
Other versions
JP2015142944A (en
Inventor
史明 本多
史明 本多
石川 剛史
剛史 石川
謙一 井上
謙一 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2015050717A priority Critical patent/JP5920681B2/en
Publication of JP2015142944A publication Critical patent/JP2015142944A/en
Application granted granted Critical
Publication of JP5920681B2 publication Critical patent/JP5920681B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、例えばプレス加工、鍛造用の金型といった、被加工材との摺動環境において耐摩耗性や耐カジリ性といった摺動特性が要求される塑性加工用被覆金型に関するものである。   The present invention relates to a coating die for plastic working that requires sliding characteristics such as wear resistance and galling resistance in a sliding environment with a workpiece such as a press working or forging die.

近年、金型やドリル等の工具は、その使用環境がより過酷になっており、更なる寿命改善が求められている。そのうち、摩耗やカジリ等の損耗は工具作業面と被加工材が摺動することで生じ、特に激しい摺動環境にあるプレス加工や鍛造用金型等の塑性加工用工具では顕著である。そこで、工具の作業面には様々な表面処理を施しておくことで、作業面の耐摩耗性や耐カジリ性を高める手法が広く実施されてきている。なかでもコーティング(被覆)による手法は、ビッカース硬度でHV1000を超える硬質皮膜を被覆できるものであり、基材表面との密着性にも優れることから、それを適用した被覆工具の寿命は大きく向上する。   In recent years, tools such as molds and drills have been used more severely, and further life improvement is required. Of these, wear such as wear and galling is caused by the sliding of the work surface of the tool and the workpiece, and is particularly noticeable in plastic working tools such as press working and forging dies in a severe sliding environment. In view of this, a technique for improving the wear resistance and galling resistance of the work surface by applying various surface treatments to the work surface of the tool has been widely implemented. In particular, the coating (coating) method can coat a hard film with a Vickers hardness exceeding HV1000 and has excellent adhesion to the substrate surface, so the life of the coated tool to which it is applied is greatly improved. .

上記の硬質皮膜には、例えば化学蒸着法(CVD法)で被覆したチタン炭化物(元素構成としてTiCで表記する。以下、同様)や、塩浴法で被覆したVCのほか、物理蒸着法(PVD法)で被覆したTiCN、TiC、VCN、VC、AlCrNなどの、いずれもHV2000以上の皮膜が実用化されている。各種の被覆手段のなかでは、被覆時の温度が焼戻し温度以下の低温とできるPVD法が、工具の被覆処理に有効である。
そして、被加工材の高強度化、加工製品の高精度化、成形サイクルの高速化が進む塑性加工用金型では、その作業面への負荷が特に増大していることから、硬質皮膜を形成した被覆金型が多用されており、特に冷間加工用は高硬度でかつ摩擦係数の低いTiCNやTiCが使用されている。
For example, titanium carbide coated by chemical vapor deposition (CVD) (represented by TiC as an elemental structure; hereinafter the same), VC coated by salt bath, physical vapor deposition (PVD) All coatings of HV2000 or more, such as TiCN, TiC, VCN, VC, and AlCrN coated by the above method, have been put into practical use. Among various types of coating means, the PVD method that enables the temperature during coating to be a low temperature equal to or lower than the tempering temperature is effective for coating the tool.
In the mold for plastic processing, where the work material has high strength, the processed product has high precision, and the molding cycle speed is increasing, the load on the work surface is particularly increased, so a hard coating is formed. In many cases, TiCN or TiC having a high hardness and a low friction coefficient is used for cold working.

最近の金型には、更なる被加工材の高強度化、金型の複雑形状化に加えて、温熱間加工にも対応できるように、優れた耐熱性も求められるようになってきた。これに対して金型へのPVD法を用いた硬質皮膜としては、耐摩耗性および耐酸化性に優れる上記のAlCr系の窒化物皮膜を基にして、これに第3元素を添加した、例えばAlCrSi系の窒化物皮膜(特許文献1、2)がある。また、切削工具の硬質皮膜にはAlCrV系の窒化物皮膜(非特許文献1)、そしてAlVCrSi系の窒化物皮膜がある。(特許文献3)
さらには、切削工具および摺動部材に適した硬質皮膜として、AlCr系の窒化物とVの窒化物の積層構造が開示されている。(特許文献4)
Recent molds are required to have excellent heat resistance so as to be able to cope with hot working in addition to further strengthening the work material and making the mold complex. On the other hand, as the hard film using the PVD method for the mold, the third element is added to the AlCr-based nitride film having excellent wear resistance and oxidation resistance, for example, There are AlCrSi-based nitride films (Patent Documents 1 and 2). Further, the hard film of the cutting tool includes an AlCrV-based nitride film (Non-Patent Document 1) and an AlVCrSi-based nitride film. (Patent Document 3)
Furthermore, a laminated structure of AlCr nitride and V nitride is disclosed as a hard coating suitable for a cutting tool and a sliding member. (Patent Document 4)

特開2005−042146号公報JP 2005-042146 A 特開2003−321764号公報Japanese Patent Laid-Open No. 2003-321764 特開2005−262388号公報JP 2005-262388 A 特開2005−256081号公報Japanese Patent Laid-Open No. 2005-256081

R.Franzら著「Influence of phase transition on the tribological performance of arc−evaporated AlCrVN hard coatings」,Surface & Coatings Technology 203,2009年,p.1101−1105R. Franz et al., “Influence of phase transition on the tribological performance of arc-evaporated AlCrVN hard coatings, Surface & Coatings Tech. 1101-1105

被覆工具の更なる寿命改善のためには、上述した硬質皮膜の耐摩耗性、耐熱性、摺動特性を優れたレベルで兼備させる必要がある。
この場合、特許文献1、2のAlCrSi系の窒化物皮膜は高硬度かつ耐熱性には優れているが、製品成形時の摩擦抵抗が大きく、摺動特性に改善の余地がある。また、非特許文献1に記載されているAlCrV系の窒化物皮膜は、耐熱性、摺動特性には優れるものの、皮膜硬度が低く、耐摩耗性に課題が残る。そして、特許文献3のAlVCrSi系の窒化物皮膜であっても、その多元系の成分調整は容易ではなく課題が残る。さらに、特許文献4のAlCr系の窒化物とVの窒化物の積層構造であったとしても、耐摩耗性の改善には余地があった。
In order to further improve the life of the coated tool, it is necessary to combine the above-mentioned hard coating with excellent wear resistance, heat resistance and sliding characteristics.
In this case, the AlCrSi-based nitride films of Patent Documents 1 and 2 have high hardness and excellent heat resistance, but have a large frictional resistance during product molding, and there is room for improvement in sliding characteristics. The AlCrV-based nitride film described in Non-Patent Document 1 is excellent in heat resistance and sliding characteristics, but has low film hardness and a problem in wear resistance. And even if it is the AlVCrSi type | system | group nitride film of patent document 3, the multicomponent system component adjustment is not easy but a subject remains. Furthermore, even if the laminated structure of AlCr nitride and V nitride of Patent Document 4 is used, there is room for improvement in wear resistance.

そこで本発明は、冷間から温熱間の使用環境でも作業面での摺動特性に優れる、塑性加工用被覆金型及びその製造方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a coating die for plastic working and a method for manufacturing the same, which is excellent in sliding characteristics on the work surface even in a cold to warm usage environment.

本発明者らは、被加工材との摺動環境にある塑性加工用被覆金型において、その硬質皮膜に生じる損耗機構に着目した。そして、硬質皮膜の損耗機構には、皮膜の硬度及び耐熱性自体が低いことによる摩耗、そして、被加工材が局部的に付着することで、その付着物を介して生じる損傷に起因するものがあることを知見した。そこで、これら両方の損耗を同時に抑制し得る手法について研究した結果、この抑制には有利な皮膜形態が存在し、それを発現するための元素構成と皮膜構造があることを見いだした。   The present inventors have paid attention to a wear mechanism generated in the hard coating in a plastic working coating mold in a sliding environment with a workpiece. The wear mechanism of hard coatings is caused by wear due to low hardness and heat resistance of the coating itself, and damage caused through the deposits due to local adhesion of the workpiece. I found out that there was. Therefore, as a result of research on a technique capable of simultaneously suppressing both of these wears, it was found that there is an advantageous film form for this suppression, and there is an element configuration and a film structure to express it.

すなわち、本発明は、工具基材の表面に、硬質皮膜を被覆した塑性加工用被覆金型であって、前記硬質皮膜は、AlCrSiの窒化物とVの窒化物が交互に積層されたものであり、前記質皮膜の膜厚が3μm以上、表面粗さがRa<0.2μm、Rz<2.0μm、Rsk<0である摺動特性に優れた塑性加工用被覆金型である。また、硬質皮膜の膜厚を8μm以上とすることで、工具寿命を大きく改善できるので好ましい。
交互に積層された前記AlCrSiの窒化物と前記Vの窒化物の個々の膜厚は、前記Vの窒化物が前記AlCrSiの窒化物より厚いことが好ましい。さらに、交互に積層された前記AlCrSiの窒化物と前記Vの窒化物の個々の膜厚は、前記Vの窒化物が前記AlCrSiの窒化物の1.5倍以上であることが好ましい。これらの硬質皮膜は、物理蒸着法で被覆されることがより好ましい。
また、本発明の製造方法は、工具基材の表面に、窒素雰囲気中でAlCrSiの合金ターゲットを使用した物理蒸着法によるAlCrSiの窒化物の被覆と、窒素雰囲気中でV金属ターゲットを使用した物理蒸着法によるVの窒化物の被覆を繰り返すことで、AlCrSiの窒化物とVの窒化物が交互に積層された膜厚が3μm以上の硬質皮膜を被覆し、前記硬質皮膜の表面をダイヤモンドペーストを用いてバフ研磨し、Ra<0.2μm、Rz<2.0μm、Rsk<0にする摺動特性に優れた塑性加工用被覆金型の製造方法である。
前記AlCrSiの窒化物と前記Vの窒化物が交互に積層された膜厚が8μm以上の硬質皮膜を被覆することが好ましい。
前記AlCrSiの合金ターゲットと前記V金属ターゲットへ投入する電流比は、AlCrSiの合金ターゲット/V金属ターゲットが2.0以下であることが好ましい。
That is, the present invention is a plastic working coating mold in which a hard coating is coated on the surface of a tool substrate, and the hard coating is formed by alternately laminating nitrides of AlCrSi and nitrides of V. In other words, the coating film mold for plastic working is excellent in sliding characteristics, in which the film thickness is 3 μm or more, the surface roughness is Ra <0.2 μm, Rz <2.0 μm, and Rsk <0. Moreover, since the tool life can be greatly improved by setting the film thickness of the hard coating to 8 μm or more, it is preferable.
As for the individual film thicknesses of the AlCrSi nitride and the V nitride stacked alternately, the V nitride is preferably thicker than the AlCrSi nitride. Further, the individual film thicknesses of the AlCrSi nitride and the V nitride stacked alternately are preferably 1.5 times or more the nitride of the AlCrSi. These hard coatings are more preferably coated by physical vapor deposition.
Further, the manufacturing method of the present invention is a method in which the surface of the tool base is coated with an AlCrSi nitride by physical vapor deposition using an AlCrSi alloy target in a nitrogen atmosphere, and a physics using a V metal target in a nitrogen atmosphere. By repeating the coating of V nitride by vapor deposition, a hard film having a thickness of 3 μm or more in which AlCrSi nitride and V nitride are alternately laminated is coated, and the surface of the hard film is coated with diamond paste. It is a method for producing a coating die for plastic working that is excellent in sliding properties such that Ra <0.2 μm, Rz <2.0 μm, and Rsk <0.
It is preferable to coat a hard film having a thickness of 8 μm or more in which the AlCrSi nitride and the V nitride are alternately laminated.
The current ratio of the AlCrSi alloy target and the V metal target is preferably 2.0 or less when the AlCrSi alloy target / V metal target is 2.0 or less.

本発明であれば、その表面に被覆されている硬質皮膜は、冷間から温熱間の使用領域に亘って耐摩耗性、耐熱性に優れ、そして摺動特性に優れることから、塑性加工用被覆金型の寿命を飛躍的に向上させることが可能である。   According to the present invention, the hard coating coated on the surface is excellent in wear resistance, heat resistance, and sliding properties over the cold to warm usage region, so that it is a coating for plastic working. It is possible to dramatically improve the life of the mold.

本発明例である試料No.1の硬質皮膜断面の、透過型電子顕微鏡観察写真であり、本発明の皮膜構造を示す一例である。Sample No. which is an example of the present invention. 1 is a transmission electron microscope observation photograph of a cross section of 1 hard film, and is an example showing the film structure of the present invention. 本発明例と比較例のボールオンディスク試験による皮膜の損傷形態を示す皮膜表面の拡大写真であり、本発明の効果を示す一例である。It is an enlarged photograph of the film | membrane surface which shows the damage form of the film | membrane by the ball-on-disk test of this invention example and a comparative example, and is an example which shows the effect of this invention.

本発明の重要な特徴の1つは、被覆工具における、上記2種の機構による損耗を同時に抑制できる最適な元素構成の組合せと皮膜構造を見出したことにある。つまり、これらの損耗を抑制するには、硬質皮膜自体が耐摩耗性、耐熱性に優れることも然ることながら、特には被加工材との摺動特性に優れることが、上記の損耗抑制に有効である。   One of the important features of the present invention is that an optimum combination of element configurations and a coating structure capable of simultaneously suppressing wear due to the two types of mechanisms in the coated tool have been found. In other words, in order to suppress these wears, the hard coating itself is not only excellent in wear resistance and heat resistance, but also particularly excellent in sliding properties with the work material is effective in suppressing the above wear. is there.

そして、耐摩耗性と耐熱性に優れるAlCrSiの窒化物と、摺動特性に優れるVの窒化物とを積層構造にすることを見出した。積層構造とすることで、塑性加工用被覆金型の使用環境下においてVの窒化物が、摺動特性に優れるVの酸化物を皮膜表面に成形し、AlCrSiの窒化物が持つ耐摩耗性と耐熱性を阻害することなく摺動特性を大きく改善することができる。さらに、これらの効果を発揮するためには、積層構造の最適な膜厚と表面状態があることを見出して本発明に到達した。以下、その詳細について説明する。   The inventors have also found that an AlCrSi nitride excellent in wear resistance and heat resistance and a V nitride excellent in sliding characteristics have a laminated structure. By adopting a laminated structure, the nitride of V is formed on the surface of the coating with a V oxide having excellent sliding characteristics under the usage environment of the plastic working coating mold, and the wear resistance of the nitride of AlCrSi The sliding characteristics can be greatly improved without impairing the heat resistance. Furthermore, in order to exert these effects, the inventors have found that there is an optimum film thickness and surface state of the laminated structure, and have reached the present invention. The details will be described below.

AlCrSiの窒化物はHV3000以上の高硬度であり耐摩耗性に優れ、さらには耐熱性も優れることから、摩耗形態の損傷を抑制することができる。しかし、本発明者の研究によれば、耐熱性と耐摩耗性に優れるAlCrSiの窒化物であっても、苛酷な摺動環境下では、その使用中における皮膜表面では、局所的に被加工材が付着し易く、皮膜表面上で摺動抵抗が不均一となり、カジリや焼付きが発生して皮膜の損傷が発生する場合があることを突き止めた。特に、被加工材がFe系の場合、被加工材から発生するFe酸化物が皮膜表面を損傷させる場合があった。   Since the nitride of AlCrSi has a high hardness of HV3000 or higher, has excellent wear resistance, and also has excellent heat resistance, it is possible to suppress damage in the form of wear. However, according to the study of the present inventor, even in the case of AlCrSi nitride having excellent heat resistance and wear resistance, under severe sliding environment, the surface of the film during use is locally processed material. It has been found that the film tends to adhere, the sliding resistance becomes uneven on the surface of the film, and galling and seizure may occur, resulting in damage to the film. In particular, when the work material is Fe-based, Fe oxide generated from the work material may damage the coating surface.

一方、Vの窒化物は25〜200℃の使用温度域においてVを主体とする化合物が該温度域では適度に酸化され、それが薄い酸化層として基材表面に形成されると、相手材(被加工材)との親和性を低下させため、摺動特性に優れることを確認した。
そして、被加工材がFe系の場合でも、Vの酸化物は、Fe酸化物と反応して、Fe酸化物を軟化させるので、皮膜への攻撃性が低減するため摺動抵抗を抑制し、更には、皮膜表面に形成されるVの酸化物の直上に、微結晶のFe酸化物が薄く均等に付着することで、Fe酸化物自体も摺動特性の向上に起因することを見出した。
上記のVの窒化物を被覆した工具では、その使用中における皮膜表面への被加工材の付着を低減できるので、該機構による工具損耗を抑制できる。しかし、概ね300℃以上の使用温度域になると、Vの窒化物の酸化は更に進行することから、酸化膜形成による損耗防止には引続き寄与するものの、一方では、この過剰な酸化自体が皮膜の摩耗を助長する。
On the other hand, when a compound mainly composed of V is suitably oxidized in the temperature range of 25 to 200 ° C. and formed as a thin oxide layer on the surface of the base material, the nitride of V becomes a counterpart material ( In order to reduce the affinity with the workpiece, it was confirmed that the sliding properties are excellent.
And even when the workpiece is Fe-based, the oxide of V reacts with the Fe oxide and softens the Fe oxide, so the aggression to the film is reduced and the sliding resistance is suppressed, Furthermore, it has been found that the microcrystalline Fe oxide adheres thinly and evenly immediately above the V oxide formed on the surface of the film, so that the Fe oxide itself is also caused by the improvement of the sliding characteristics.
In the above-mentioned tool coated with the nitride of V, adhesion of the workpiece to the surface of the coating during use can be reduced, so that tool wear due to the mechanism can be suppressed. However, since the oxidation of the nitride of V further proceeds in the operating temperature range of approximately 300 ° C. or higher, it continues to contribute to the prevention of wear due to the formation of the oxide film. Helps wear.

この課題に対しては、優れた耐摩耗性と耐熱性を有する硬質皮膜の特性を阻害することなく、Vの窒化物を含有させて優れた摺動特性を付与することができれば、上記の損耗抑制効果は導入しつつも、この硬質皮膜は温熱間の使用領域でも安定して継続使用することができる。
そしてこの場合、Ti系炭化物や窒化物はHV3000以上の高硬度が得られることから、耐摩耗性には優れるものの、自身の酸化温度が低いため、金型の作業面温度が上昇すると皮膜の摩耗が進行しやすい。一方、AlCrSiの窒化物においては、HV3000以上の高硬度が得られるので、耐摩耗性に優れ、そして上述した通り耐熱性にも優れることから、Ti系炭化物等に懸念される上記の問題もない。但し、Vの窒化物には見られるような酸化は生じないので、それ単独では摺動特性に乏しく、被加工材の付着に起因する局部的な摩耗には対応し難い。
In order to solve this problem, the above-described wear and tear can be achieved if V can be added to provide excellent sliding characteristics without impairing the characteristics of the hard film having excellent wear resistance and heat resistance. While introducing the suppression effect, this hard coating can be used continuously and stably even in the use region between warm temperatures.
In this case, Ti-based carbides and nitrides have a high hardness of HV3000 or higher, so they have excellent wear resistance, but their own oxidation temperature is low, so if the working surface temperature of the mold rises, the wear of the film Is easy to progress. On the other hand, since the AlCrSi nitride has a high hardness of HV3000 or higher, it has excellent wear resistance and excellent heat resistance as described above, so there is no problem of concern regarding Ti-based carbides and the like. . However, since the oxidation as seen in the nitride of V does not occur, it alone has poor sliding characteristics, and it is difficult to cope with local wear caused by adhesion of the workpiece.

そこで、本発明は、AlCrSiの窒化物と、Vの窒化物の積層構造からなる硬質皮膜とすることで、酸化保護皮膜を生成するVの窒化物の優れた摺動作用が、耐摩耗性と耐熱性に優れたAlCrSiの窒化物の特性を損なうことなく付与できることを見出した。これにより、優れた耐摩耗性および耐熱性、そして摺動特性が、冷間から温熱間の使用領域に亘って同時に達成される。上記の諸特性をバランスよく併せもった本発明の塑性加工用被覆金型は、その使用中の各温度環境でも皮膜摺動面の凹凸発生が抑えられ、かつ被加工材への攻撃性も低いことから、摺動時に発生するカジリ等の損傷を抑制し、塑性加工用被覆金型の寿命を改善できる。   Therefore, the present invention provides a hard coating composed of a laminated structure of AlCrSi nitride and V nitride, so that the excellent sliding action of V nitride that generates an oxidation protective coating is wear resistant. The present inventors have found that AlCrSi nitride excellent in heat resistance can be imparted without impairing the characteristics. As a result, excellent wear resistance, heat resistance, and sliding characteristics are simultaneously achieved over the use range between cold and hot. The coated mold for plastic working according to the present invention having the above-mentioned properties in a well-balanced manner can suppress the occurrence of unevenness on the sliding surface of the film even in each temperature environment during use, and has low attack on the workpiece. Therefore, damage such as galling that occurs during sliding can be suppressed, and the life of the metal mold for plastic working can be improved.

本発明の採用するAlCrSiの窒化物と、Vの窒化物の積層皮膜はその個々の窒化物層の両特性をより効果的に発現させるためには、ナノレベルの厚さであることが好ましい。そしてこの場合の好ましい膜厚は、AlCrSiの窒化物の膜厚が100nm以下であり、Vの窒化物の膜厚が100nm以下である。
金型の使用環境下で十分な摺動特性を得るためには、交互に積層されたAlCrSiの窒化物と、Vの窒化物の個々の膜厚は、Vの窒化物がAlCrSiの窒化物より厚いことが好ましい。そして、その個々のVの窒化物がAlCrSiの窒化物の1.5倍以上であれば、摺動特性を高めるVの酸化物が十分に生成されるのでより好ましい。Vの窒化物の膜厚が厚くなり過ぎると、使用環境によっては、耐摩耗性が低下する場合もあり、Vの窒化物の膜厚は、AlCrSiの窒化物の膜厚の4.0倍以下とすることが好ましい。
The laminated film of AlCrSi nitride and V nitride employed in the present invention preferably has a nano-level thickness in order to effectively exhibit both characteristics of the individual nitride layers. The preferable film thickness in this case is such that the AlCrSi nitride film thickness is 100 nm or less and the V nitride film thickness is 100 nm or less.
In order to obtain sufficient sliding characteristics under the usage environment of the mold, the individual film thicknesses of the alternately stacked AlCrSi nitride and V nitride are as follows: V nitride is more than AlCrSi nitride Thickness is preferred. If the individual V nitrides are 1.5 times or more the AlCrSi nitrides, it is more preferable because V oxides that enhance the sliding characteristics are sufficiently generated. If the thickness of the nitride of V becomes too thick, the wear resistance may deteriorate depending on the use environment. The thickness of the nitride of V is not more than 4.0 times the thickness of the nitride of AlCrSi. It is preferable that

そして、各構成元素の割合調整において本発明では、Vの窒化物の金属組成成分はVの一元素で固定されているので、もう一方のAlCrSiの窒化物の組成を所定のものに調整するのが最適である。そして、このときのAlCrSiの窒化物を構成する各元素種の割合は、AlCrSiN(但し、a、b、cは原子比を示し、a+b+c=1)の表記にて、a、b、c≠0かつa+b>0.5の組成であることが好ましい。更に好ましくはa+b>0.8である。耐熱性が優れるAlの含有量がCrより多い方がより好ましい。 In the present invention, in the ratio adjustment of each constituent element, the metal composition component of the nitride of V is fixed by one element of V, so that the composition of the other AlCrSi nitride is adjusted to a predetermined one. Is the best. At this time, the ratio of each element type constituting the nitride of AlCrSi is Al a Cr b Si c N (where a, b, and c indicate atomic ratios, and a + b + c = 1), , B, c ≠ 0 and a + b> 0.5. More preferably, a + b> 0.8. It is more preferable that the content of Al having excellent heat resistance is larger than that of Cr.

硬質皮膜の膜厚を3μm以上とする。
プレス成形では、皮膜表面から加えられる力が大きいため、皮膜がこれよりも薄いと皮膜強度が乏しくなり、皮膜が損傷し易くなる。特に、高負荷環境では、皮膜と基材の界面に大きな力が加わるため、皮膜と基材の弾性変形量の違いから、皮膜剥離や皮膜損傷が発生し易く、塑性加工用被覆金型の寿命に及ぼす膜厚の影響が大きくなる。そのため、高負荷環境下では、膜厚を8μm以上とすることが好ましい。
硬質皮膜の膜厚が厚くなり過ぎると、皮膜剥離が発生し易くなる場合があり、膜厚は20μm以下であることが好ましい。より好ましくは15μm以下である。
The film thickness of the hard film is 3 μm or more.
In press molding, since the force applied from the film surface is large, if the film is thinner than this, the film strength becomes poor and the film is easily damaged. In particular, in a high load environment, a large force is applied to the interface between the film and the base material, so the film is easily peeled off or damaged due to the difference in elastic deformation between the film and the base material. The influence of the film thickness on the thickness increases. Therefore, the film thickness is preferably 8 μm or more under a high load environment.
When the film thickness of the hard film becomes too thick, film peeling may easily occur, and the film thickness is preferably 20 μm or less. More preferably, it is 15 μm or less.

表面粗さをRa<0.2μm、Rz<2.0μm、Rsk<0とする。
硬質皮膜の表面には、ドロップレットや皮膜欠陥、不純物等が含まれ、塑性加工用被覆金型として使用するのに適切で無いため、平滑にする必要がある。特に、厚膜になると、ドロップレットや皮膜欠陥が蓄積することで表面粗さが低下するので、皮膜表面を平滑にする必要がある。
そして、摺動環境下では、皮膜表面の凸部が起点となり、被加工材の付着が発生して皮膜剥離や摩耗が発生する。そのため、凸部を低減させることが最も重要となる。
そのため、一般的な表面粗さであるRa、Rzのみでは(ISO4287−1997)、凸部の頻度を把握するには不十分であり、Ra、Rzに加えては、Rskの制御が重要となる。
表面粗さRsk値(ISO4287−1997)は、振幅分布曲線の中心線に対する対象性を示すパラメーターである。例えば、表面に凹部が多い皮膜表面の場合は、Rsk<0を示し、凸部が多い場合にはRsk>0を示し、凸部と凹部の頻度を管理することが可能である。
そして、表面粗さを上記の範囲に制御することで、Vの窒化物層を含む被覆工具では、工具の使用環境下で基材表面に形成されるVの酸化物が極めて均等に薄く成形されるため、摺動特性が向上する。そして、被加工材がFe系である場合には、Vの酸化物上にFe酸化物が皮膜全体に薄く均一に付着することで、摺動特性を向上させることができる。
The surface roughness is Ra <0.2 μm, Rz <2.0 μm, and Rsk <0.
The surface of the hard film contains droplets, film defects, impurities, and the like, and is not suitable for use as a coating die for plastic working, so it needs to be smooth. In particular, when the film is thick, the surface roughness decreases due to accumulation of droplets and film defects, so the surface of the film needs to be smooth.
Under the sliding environment, the convex portion on the surface of the film is the starting point, and adhesion of the work material occurs, resulting in film peeling or wear. Therefore, it is most important to reduce the convex portions.
Therefore, only Ra and Rz, which are general surface roughnesses (ISO4287-1997), are insufficient to grasp the frequency of the convex portions, and in addition to Ra and Rz, control of Rsk is important. .
The surface roughness Rsk value (ISO4287-1997) is a parameter indicating the objectivity with respect to the center line of the amplitude distribution curve. For example, when the surface of the film has many concave portions, Rsk <0 is indicated, and when there are many convex portions, Rsk> 0 is indicated, and the frequency of the convex portions and the concave portions can be managed.
By controlling the surface roughness within the above range, in the coated tool including the V nitride layer, the V oxide formed on the surface of the base material under the use environment of the tool is very thinly formed. Therefore, the sliding characteristics are improved. When the workpiece is Fe-based, the sliding property can be improved by allowing the Fe oxide to be thinly and uniformly deposited on the entire V oxide on the V oxide.

本発明が採用する上記の硬質皮膜は、その被覆方法について特に限定されるものではない。しかし、塑性加工用被覆金型の基材への熱影響、製品の疲労強度、そして皮膜の密着性等を考慮すると、基材がダイス鋼もしくは高速度鋼であれば、その焼戻し温度以下の低温で成膜でき、皮膜に圧縮応力が残留するアークイオンプレーティング法もしくはスパッタリング法等の物理蒸着法(PVD法)が好ましい。   The above-mentioned hard coating employed by the present invention is not particularly limited with respect to the coating method. However, considering the heat effect on the base material of the coating mold for plastic working, the fatigue strength of the product, and the adhesion of the film, if the base material is die steel or high-speed steel, the temperature is lower than the tempering temperature. It is preferable to use a physical vapor deposition method (PVD method) such as an arc ion plating method or a sputtering method in which the film can be formed by a method and compressive stress remains in the film.

本発明において、PVD法を採用して積層皮膜を形成する場合、その成膜にV(バナジウム)金属ターゲットを用いることができる。V金属ターゲットは加工性が良く製造が容易であるという利点がある。したがって、塑性加工用被覆金型の基材の表面に、窒素雰囲気中でAlCrSiの合金ターゲットを使用した物理蒸着法によるAlCrSiの窒化物の被覆と、窒素雰囲気中でV金属ターゲットを使用した物理蒸着法によるVの窒化物の被覆を繰り返すことで、本発明の塑性加工用被覆金型を容易に得ることができる。
より具体的には、製造が容易なV金属の単体と、成分の調整されたAlCrSi合金との個々でなる2種類以上のターゲットを準備する。そして、複数のターゲットが取り囲む中心で基材が回転する構造の、ターゲット成分が交互に被覆されるPVD装置を使用することができる。この時、その成膜雰囲気を窒素に調節することで、回転する基材表面がAlCrSi合金ターゲット前面を通過する際にはAlCrSiの窒化物が被覆され、V金属ターゲット前面を通過する際にはVの窒化物を被覆することができる。
In the present invention, when a laminated film is formed by employing the PVD method, a V (vanadium) metal target can be used for the film formation. The V metal target has an advantage that it has good workability and is easy to manufacture. Therefore, AlCrSi nitride coating by physical vapor deposition method using an AlCrSi alloy target in a nitrogen atmosphere on the surface of a base material for a plastic mold, and physical vapor deposition using a V metal target in a nitrogen atmosphere. By repeating the coating of V nitride by the method, the coating die for plastic working of the present invention can be easily obtained.
More specifically, two or more types of targets each consisting of a simple V metal that is easy to manufacture and an AlCrSi alloy with adjusted components are prepared. And the PVD apparatus by which a target component is coat | covered alternately with the structure where a base material rotates in the center which a some target surrounds can be used. At this time, by adjusting the film forming atmosphere to nitrogen, when the surface of the rotating substrate passes the front surface of the AlCrSi alloy target, the nitride of AlCrSi is coated, and when passing the front surface of the V metal target, V The nitride can be coated.

本発明の表面粗さを達成するためには、コーティング後の磨き方法が重要となる。従来のコーティング磨き方法である、研磨紙による磨きや、樹脂とダイヤモンド粒子からなるメディアを照射する磨きでは、RaやRzの表面粗さは平滑化するも、凸部こそを確実に低減させることは容易ではない。そこで、ダイヤモンドペーストを用いたバフ研磨を実施することにより凸部が減少し、RaやRzだけでなくRskの値を効率的に小さくすることができて好ましい。   In order to achieve the surface roughness of the present invention, a polishing method after coating is important. With the conventional coating polishing methods such as polishing with abrasive paper and polishing with media made of resin and diamond particles, the surface roughness of Ra and Rz is smoothed, but the protrusions can be reliably reduced. It's not easy. Therefore, it is preferable to perform buffing using a diamond paste to reduce the number of protrusions and efficiently reduce the value of Rsk as well as Ra and Rz.

ターゲットを使用する物理蒸着法では、ターゲットの各成分により被覆レートが異なるため、ターゲットへ投入する電流を制御することで、個々の膜厚を制御することができる。本発明で使用するAlCrSiの合金ターゲットとV金属ターゲットでは、Vの金属ターゲットの方がAlCrSiの合金ターゲットよりも成膜レートが高いため、AlCrSiの窒化物の膜厚よりも、Vの窒化物の膜厚の方が厚膜となり易い。
そこで、工具使用環境下で十分な潤滑特性を得るために、AlCrSiの窒化物の膜厚よりも、Vの窒化物の膜厚の方を厚膜とするには、AlCrSiの合金ターゲットとV金属ターゲットへ投入する電流比を、AlCrSiの合金ターゲット/V金属ターゲットが2.0以下とすることが好ましい。この場合、AlCrSiの合金ターゲットへ投入する電流を小さくしても良いし、V金属ターゲットへ投入する電流を大きくしても良い。より好ましくは、1.5以下である。
一定の成膜レートを確保するためには、ターゲットへ投入する電流は、80A以上であることが好ましい。ターゲットへ投入する電流が大きくなり過ぎると、成膜が安定し難いので、160A以下とすることが好ましい。
In the physical vapor deposition method using a target, since the coating rate differs depending on each component of the target, the individual film thickness can be controlled by controlling the current applied to the target. In the AlCrSi alloy target and the V metal target used in the present invention, the deposition rate of the V metal target is higher than that of the AlCrSi alloy target. The film thickness tends to be a thick film.
Therefore, in order to obtain sufficient lubrication characteristics under the tool use environment, in order to make the V nitride film thicker than the AlCrSi nitride film, the AlCrSi alloy target and the V metal are used. The ratio of the current supplied to the target is preferably 2.0 or less for the alloy target of AlCrSi / V metal target. In this case, the current supplied to the AlCrSi alloy target may be reduced, or the current supplied to the V metal target may be increased. More preferably, it is 1.5 or less.
In order to ensure a constant film formation rate, the current input to the target is preferably 80 A or more. If the current applied to the target becomes too large, the film formation is difficult to stabilize, so it is preferable to set the current to 160 A or less.

本発明の採用する硬質皮膜は、その各々がAlCrSiの窒化物と、Vの窒化物の化合物構造を有し、最適な膜厚と表面状態とすることでその特性を発揮できる。よって、AlCrSiの窒化物と、Vの窒化物の一部又は全部が炭窒化物、酸炭窒化物の形態をとったとしても本発明の作用効果は発揮される。   Each of the hard coatings employed by the present invention has a compound structure of an AlCrSi nitride and a V nitride, and can exhibit its characteristics by setting an optimum film thickness and surface state. Therefore, even if AlCrSi nitride and part or all of V nitride take the form of carbonitride and oxycarbonitride, the effects of the present invention are exhibited.

実施例1では、ボールオンディスク試験機にて、皮膜組成の有する特性を評価した。
表面処理を行う基材は、JISに規定される高速度鋼SKH51の円盤状試験片(直径20mm×厚さ5mm)を準備した。これは、真空中1180℃の加熱保持より窒素ガス冷却により焼入れ後、540〜580℃での焼戻しにより64HRCに調質したものである。そしてこれらの平面を、表面粗さRa0.016μm、Rz0.016μm、Rsk−0.116に鏡面機械研磨した後、アルカリ超音波洗浄を行った。
In Example 1, the characteristics of the coating composition were evaluated with a ball-on-disk tester.
As the base material to be surface-treated, a disk-shaped test piece (diameter 20 mm × thickness 5 mm) of high-speed steel SKH51 specified by JIS was prepared. This was tempered to 64 HRC by tempering at 540 to 580 ° C. after quenching by cooling with nitrogen gas from heating and holding at 1180 ° C. in vacuum. These flat surfaces were mirror-polished to a surface roughness Ra of 0.016 μm, Rz of 0.016 μm, and Rsk−0.116, and then subjected to alkali ultrasonic cleaning.

成膜手段には、アークイオンプレーティング法を用いた。その成膜は複数のターゲットが取り囲む中心で基材が回転する構造のPVD装置を用いて行うものであり、そのアーク蒸発源には表1に示す第1、第2のターゲットを設置した。そして基材をチャンバー内の、遊星機構を有する冶具テーブル上の、回転機構を有したプレートに設置した。なお、テーブルと、テーブル上のプレートは夫々独立して回転する。   An arc ion plating method was used as the film forming means. The film formation is performed using a PVD apparatus having a structure in which the substrate rotates around the center surrounded by a plurality of targets, and the first and second targets shown in Table 1 are installed in the arc evaporation source. Then, the substrate was placed on a plate having a rotation mechanism on a jig table having a planetary mechanism in the chamber. The table and the plate on the table rotate independently of each other.

次に、チャンバー容積が1.4m(処理品の挿入空間は0.3m)のアークイオンプレーティング装置内において、温度773K、1×10−3Paの真空中で加熱脱ガスを行った後、723Kの温度においてArプラズマによるクリーニングを行った。そして装置内に反応ガスの窒素を導入し、各種ターゲット上にアーク放電を発生させて、723Kのもとで、反応ガス圧力は3Pa、テーブル回転数は5rpm、コーティング時の基材には−100Vのバイアス電圧を印加して被覆した。また、V金属ターゲットへ投入する電流を変えることで、各膜厚比を調整した。
試料No.1〜5では、硬質皮膜のトータルの膜厚が約3.5μm、試料No.6、7ではトータルの膜厚が約8μmなるよう成膜時間を調整した。表1に成膜条件を示す。
Next, heat degassing was performed in a vacuum at a temperature of 773 K and 1 × 10 −3 Pa in an arc ion plating apparatus having a chamber volume of 1.4 m 3 (the insertion space for the processed product is 0.3 m 3 ). Thereafter, cleaning with Ar plasma was performed at a temperature of 723K. Then, nitrogen in the reaction gas was introduced into the apparatus, and arc discharge was generated on various targets. Under 723 K, the reaction gas pressure was 3 Pa, the table rotation speed was 5 rpm, and the base material during coating was -100 V. A bias voltage of Moreover, each film thickness ratio was adjusted by changing the electric current supplied to the V metal target.
Sample No. 1 to 5, the total film thickness of the hard coating is about 3.5 μm. 6 and 7, the film formation time was adjusted so that the total film thickness was about 8 μm. Table 1 shows the film forming conditions.

被覆後の試料は、所定の表面粗さになるよう粒径3μmのダイヤモンドペーストを用いたバフ研磨にて皮膜表面を平滑化した。そして、各試料の皮膜表面の表面粗さRa、Rz、Rsk値は、触針式粗さ計(株式会社東京精密製 SURFCOM480A)を使用し、評価長さ4mm、測定速度0.3mm/s、カットオフ値0.8mmの条件にて測定した。
皮膜表面の硬度は、ビッカース硬さ試験機(株式会社ミツトヨ製 HM100)を使用し、150kgfの荷重にて測定した。
積層皮膜の平均膜厚は、透過電子顕微鏡観察で測定した。トータルの膜厚は電子顕微鏡観察で測定した。表2に各測定結果を示す。
The coated surface was smoothed by buffing using a diamond paste having a particle diameter of 3 μm so that the sample had a predetermined surface roughness. And the surface roughness Ra, Rz, Rsk value of the film surface of each sample uses a stylus type roughness meter (SURFCOM 480A manufactured by Tokyo Seimitsu Co., Ltd.), an evaluation length of 4 mm, a measurement speed of 0.3 mm / s, The measurement was performed under the condition of a cut-off value of 0.8 mm.
The hardness of the coating surface was measured with a load of 150 kgf using a Vickers hardness tester (HM100 manufactured by Mitutoyo Corporation).
The average film thickness of the laminated film was measured by transmission electron microscope observation. The total film thickness was measured with an electron microscope. Table 2 shows each measurement result.

AlCrSiの窒化物層とVの窒化物層が交互に積層した試料No.1〜3は、硬度がHV3000以上であった。Vの窒化物層の膜厚が厚くなると、硬度が低下する傾向であった。試料No.5のVの窒化物は、硬度がHV2100であり、AlCrSiの窒化物を含有する皮膜に比べて低硬度となった。
交互に積層された個々の膜厚は、測定領域の隣り合う各10層の膜厚の平均から求めた。
試料No.1の積層皮膜の個々の膜厚は、AlCrSiの窒化物層が約3nm、Vの窒化物層が約6nmの厚さであった。図1に試料No.1の、透過型電子顕微鏡による皮膜の断面観察写真を示す。
試料No.2は、AlCrSiの窒化物層が約3nm、Vの窒化物層が約4.5nmの厚さであった。試料No.3は、AlCrSiの窒化物層が約3nm、Vの窒化物層が約3nmの厚さであった。試料No.6は、AlCrSiの窒化物層が約3nm、Vの窒化物層が約6nmであった。
各試料の表面粗さは、Ra<0.2μm、Rz<2.0μm、Rsk<0であった。
Sample No. 1 in which AlCrSi nitride layers and V nitride layers were alternately laminated. 1 to 3 had a hardness of HV3000 or higher. As the thickness of the V nitride layer increased, the hardness tended to decrease. Sample No. The V nitride of 5 had a hardness of HV2100, which was lower than that of the film containing the AlCrSi nitride.
The individual film thicknesses that were alternately stacked were obtained from the average of the film thicknesses of 10 adjacent layers in the measurement region.
Sample No. The individual film thicknesses of the laminated film 1 were about 3 nm for the AlCrSi nitride layer and about 6 nm for the V nitride layer. In FIG. 1 is a cross-sectional observation photograph of a film by a transmission electron microscope.
Sample No. No. 2 had a thickness of about 3 nm for the AlCrSi nitride layer and about 4.5 nm for the V nitride layer. Sample No. No. 3 had a thickness of about 3 nm for the AlCrSi nitride layer and about 3 nm for the V nitride layer. Sample No. No. 6 had an AlCrSi nitride layer of about 3 nm and a V nitride layer of about 6 nm.
The surface roughness of each sample was Ra <0.2 μm, Rz <2.0 μm, and Rsk <0.

試料No.1〜7について、相手材をJIS軸受鋼SUJ2としたときの摺動特性を評価した。試験条件は、ボールオンディスク試験機(CSM Instruments社製Tribometer)を使用した。25℃(常温)〜400℃の大気中にて、コーティング皮膜にSUJ2球(直径6mm)を2Nの荷重で押し付けながら、円盤状試験片を150mm/秒の速度で回転させた。試験距離は、100mとし、摩擦係数は10m、20m、30m、40m、50m、60m、70m、80m、90m、100mでの値の平均値をとった。表3に各温度における各種皮膜の摩耗係数を示す。   Sample No. About 1-7, the sliding characteristic when an other party material was set to JIS bearing steel SUJ2 was evaluated. As a test condition, a ball-on-disk tester (Tribometer manufactured by CSM Instruments) was used. The disk-shaped test piece was rotated at a speed of 150 mm / sec while pressing SUJ2 balls (diameter 6 mm) against the coating film with a load of 2 N in the atmosphere of 25 ° C. (normal temperature) to 400 ° C. The test distance was 100 m, and the friction coefficient was an average value of 10 m, 20 m, 30 m, 40 m, 50 m, 60 m, 70 m, 80 m, 90 m, and 100 m. Table 3 shows the wear coefficients of various films at various temperatures.

AlCrSiの窒化物とVの窒化物の積層構造である試料No.1〜3、6は、Vの窒化物である試料No.5と同等に摩擦係数が低くなった。試料No.1〜3の積層周期の比較から、Vの窒化物層の比率が少なくなるに伴い、摩擦係数が高くなった。Vの窒化物を含有していないAlCrSiの窒化物である試料No.4、7は、本発明例に比べて摩耗係数が高くなった。   Sample No. 2 having a laminated structure of AlCrSi nitride and V nitride. 1 to 3 and 6 are sample Nos. 1 and 2 which are nitrides of V. The coefficient of friction was as low as 5. Sample No. From the comparison of the stacking periods of 1 to 3, the friction coefficient increased as the ratio of the nitride layer of V decreased. Sample No. 1, which is a nitride of AlCrSi not containing nitride of V. Nos. 4 and 7 had higher wear coefficients than the examples of the present invention.

さらに、上記試験後の皮膜表面については、表面粗さ計(東京精密株式会社製 サーフコム480A)にて、1.5mm/sの条件で皮膜摺動部の凹凸を測定し、相手材の付着や皮膜の摩耗状態を評価した。つまり、表面凹凸値がプラス(+)の場合は付着形態であり、マイナス(−)の場合は皮膜が摩耗していることを意味している。表4に皮膜の摩耗状態の測定結果を示す。(図2には皮膜表面の拡大概観写真を示す。)表5には、相手材φ6SUJ2ボールの摩耗の測定結果を示す。   Furthermore, about the film surface after the said test, the unevenness | corrugation of a film | membrane sliding part was measured on the conditions of 1.5 mm / s with a surface roughness meter (Surfcom 480A by Tokyo Seimitsu Co., Ltd.), The wear state of the film was evaluated. That is, when the surface unevenness value is plus (+), it is an attached form, and when it is minus (−), it means that the film is worn. Table 4 shows the measurement results of the wear state of the film. (FIG. 2 shows an enlarged overview photograph of the coating surface.) Table 5 shows the measurement results of the wear of the mating member φ6 SUJ2 ball.

試料No.1〜3、6は、耐摩耗性と耐熱性に優れるAlCrSiの窒化物を含有しているため、各温度環境において摺動部の凹凸が少なくなった。そして、摺動特性の優れるVの窒化物層も含有しているため、相手材の摩耗径も各温度環境でほぼ同等であり、相手材への攻撃性も少なくなった。
一方、試料No.4、7は、摺動性能の優れるVの窒化物層を含有しておらず、表4に示すように、25℃の試験環境から皮膜表面に相手材が局部的に付着した。そして、試験温度が高くなるに伴い、その付着量が増加した。また、付着量の増加に伴い、相手材への攻撃性も大きくなり、表5に示すようにボールの摩耗径が極めて大きくなった。
試料No.5は、局部的な付着が発生せず、表5に示すように相手攻撃性も低くなった。しかし、200℃以上の試験環境では皮膜の耐熱性が低く、皮膜の酸化が進行し、表4に示すように皮膜の摩耗量が増加した。
AlCrSiN膜とVN膜はいずれも、各試験温度においても、摺動面における相手材の付着量、または、皮膜の摩耗量にバラツキが大きく、本発明組成のAlCrSiの窒化物とVの窒化物の積層皮膜と比べて摺動特性が劣る結果となった。
Sample No. Since 1-3, 6 contains the nitride of AlCrSi which is excellent in abrasion resistance and heat resistance, the unevenness | corrugation of the sliding part decreased in each temperature environment. And since it contains the nitride layer of V which is excellent in sliding characteristics, the wear diameter of the counterpart material is almost the same in each temperature environment, and the aggressiveness to the counterpart material is reduced.
On the other hand, sample No. Nos. 4 and 7 did not contain a V nitride layer having excellent sliding performance, and as shown in Table 4, the counterpart material locally adhered to the surface of the film from a 25 ° C. test environment. As the test temperature increased, the amount of adhesion increased. Further, as the adhesion amount increased, the attacking property against the counterpart material also increased, and the wear diameter of the ball became extremely large as shown in Table 5.
Sample No. In No. 5, local adhesion did not occur, and the opponent aggression was also low as shown in Table 5. However, in the test environment of 200 ° C. or higher, the heat resistance of the film was low, the film was oxidized, and the amount of wear of the film increased as shown in Table 4.
Both the AlCrSiN film and the VN film have large variations in the amount of adhesion of the mating material on the sliding surface or the wear amount of the film at each test temperature, and the AlCrSi nitride and the V nitride of the composition of the present invention The sliding property was inferior compared to the laminated film.

次に、実金型の使用環境を想定した、硬質皮膜への負荷加重がより大きい、往復動摩擦摩耗試験で実際の耐久性を評価した。
表面処理を行う基材には、真空中1050℃の加熱保持より窒素ガス冷却により焼入れ後、540〜580℃での焼戻しにより45HRCに調質した、JISに規定されるダイス鋼SKD61の角状試験片(180×20×20)を準備した。そしてこれらの平面を表面粗さRa0.016μm、Rz0.016μm、Rsk−0.116に鏡面機械研磨した後、アルカリ超音波洗浄を行った。
Next, the actual durability was evaluated by a reciprocating frictional wear test in which the load applied to the hard coating was larger, assuming the usage environment of the actual mold.
For the substrate to be surface-treated, a square test of die steel SKD61 as defined in JIS, which was tempered to 45 HRC by tempering at 540 to 580 ° C. after quenching by cooling with nitrogen gas from heating at 1050 ° C. in vacuum. A piece (180 × 20 × 20) was prepared. These planes were mirror-polished to a surface roughness Ra of 0.016 μm, Rz of 0.016 μm, and Rsk−0.116, and then subjected to alkali ultrasonic cleaning.

成膜手段には、実施例1と同様の、アークイオンプレーティング法を用いた。実施例1と同様の条件でArプラズマによるクリーニングを行った。そして装置内に反応ガスの窒素を導入し、各種ターゲット上にアーク放電を発生させて、723Kのもとで、反応ガス圧力は3Pa、テーブル回転数は5rpm、コーティング時の基材には−100Vのバイアス電圧を印加して、試料No.8〜No.19を被覆した。被覆時間を調整することで膜厚を変化させた。
そして、粒径3μmのダイヤモンドペーストを用いたバフ研磨で、試料No.8〜17の皮膜表を平滑化した。
試料No.18、19は#600番と、#1000番の研磨紙にて皮膜表面を平滑化した。成膜条件を表6に示す。
As the film forming means, the same arc ion plating method as in Example 1 was used. Cleaning with Ar plasma was performed under the same conditions as in Example 1. Then, nitrogen in the reaction gas was introduced into the apparatus, and arc discharge was generated on various targets. Under 723 K, the reaction gas pressure was 3 Pa, the table rotation speed was 5 rpm, and the base material during coating was -100 V. No. 5 was applied to the sample No. 8-No. 19 was coated. The film thickness was changed by adjusting the coating time.
Then, sample b. The film surface of 8-17 was smoothed.
Sample No. Nos. 18 and 19 were smoothed with # 600 and # 1000 abrasive papers. The film forming conditions are shown in Table 6.

表面を平滑化した試料No.8〜23について、実施例1と同様の方法で、表面粗さ、膜厚を測定した。そして、往復動摩擦摩耗試験機(株式会社共和技研)を用いて、損傷回数と摩擦係数を測定した。摺動する相手材には、φ10×16のSKD61(45HRC)を用いた。測定荷重は200kgf、測定速度は150mm/s、摺動距離は300mm往復、試験条件は常温、無潤滑にて試験を実施した。
往復摩擦摩耗試験の回数を300往復までとし、皮膜が損傷して基材が露出した時点の回数で評価を行った。摩擦係数は、摺動時の摩擦応力を測定荷重で除算して求めた。
各種特性評価の結果を表7に示す。
Sample No. whose surface was smoothed About 8-23, the surface roughness and the film thickness were measured by the same method as Example 1. And the frequency | count of damage and the friction coefficient were measured using the reciprocating friction wear test machine (Kyowa Giken Co., Ltd.). SKD61 (45HRC) of φ10 × 16 was used as the mating material to slide. The test was carried out at a measurement load of 200 kgf, a measurement speed of 150 mm / s, a sliding distance of 300 mm reciprocation, test conditions of room temperature and no lubrication.
The number of reciprocating friction and wear tests was up to 300 reciprocations, and the evaluation was performed by the number of times when the film was damaged and the substrate was exposed. The coefficient of friction was obtained by dividing the friction stress during sliding by the measured load.
Table 7 shows the results of various characteristic evaluations.

本発明例の中でも、膜厚が8μm以上である試料No.8〜14は、高負荷がかかる往復動摩擦摩耗試験でも、皮膜損傷が発生しなかった。
本発明の試料No.15〜17は、試料No.8〜14と比べて膜厚が薄く、高負荷の使用環境下では、皮膜損傷が発生した。
試料No.18は、本発明例の試料No.9とRa、Rzは同程度であるが、Rsk>0で、皮膜表面に凸部が多く存在した。そのため、膜厚が厚いにもかかわらず、摺動抵抗が高く、凸部を起点とした摩耗粉の発生が原因で、皮膜損傷が発生した。
試料No.19は、表面粗さが本発明の規定する範囲を満たさず、膜厚も好ましい範囲内にないため、皮膜損傷が直ぐに発生した。
Among the examples of the present invention, Sample No. with a film thickness of 8 μm or more. In Nos. 8 to 14, no film damage occurred even in a reciprocating frictional wear test in which a high load was applied.
Sample No. of the present invention. 15 to 17 are sample Nos. Compared with 8-14, the film thickness was thin, and film damage occurred under a high load use environment.
Sample No. 18 shows the sample No. of the example of the present invention. 9 and Ra and Rz were similar, but Rsk> 0, and there were many convex portions on the coating surface. Therefore, although the film thickness was large, the sliding resistance was high, and the film damage occurred due to the generation of abrasion powder starting from the convex portion.
Sample No. In No. 19, since the surface roughness did not satisfy the range defined by the present invention and the film thickness was not within the preferred range, film damage occurred immediately.

本発明の塑性加工用被覆金型は、その皮膜表面が優れた耐摩耗性、耐熱性、摺動特性を有することから、各種機械を構成する摺動部品にも適用できる。   Since the coating surface for plastic working of the present invention has excellent wear resistance, heat resistance, and sliding properties on the surface of the coating, it can be applied to sliding parts constituting various machines.

Claims (8)

工具基材の表面に、硬質皮膜を被覆した塑性加工用被覆金型であって、前記硬質皮膜は、AlCrSiの窒化物とVの窒化物が交互に積層されたものであり、前記硬質皮膜の膜厚が3μm以上、表面粗さがRa<0.2μm、Rz<2.0μm、Rsk<0であることを特徴とする摺動特性に優れた塑性加工用被覆金型。   A tool mold for plastic working in which a hard film is coated on the surface of a tool substrate, wherein the hard film is formed by alternately laminating AlCrSi nitride and V nitride, A coating die for plastic working excellent in sliding characteristics, characterized in that the film thickness is 3 μm or more, the surface roughness is Ra <0.2 μm, Rz <2.0 μm, and Rsk <0. 前記硬質皮膜の膜厚が8μm以上であることを特徴とする請求項1に記載の摺動特性に優れた塑性加工用被覆金型。   The coating die for plastic working excellent in sliding characteristics according to claim 1, wherein the film thickness of the hard coating is 8 µm or more. 交互に積層された前記AlCrSiの窒化物と前記Vの窒化物の個々の膜厚は、前記Vの窒化物が前記AlCrSiの窒化物より厚いことを特徴とする請求項1ないし2に記載の摺動特性に優れた塑性加工用被覆金型。   3. The slide according to claim 1, wherein the thicknesses of the AlCrSi nitride and the V nitride stacked alternately are such that the V nitride is thicker than the AlCrSi nitride. Coated mold for plastic working with excellent dynamic characteristics. 交互に積層された前記AlCrSiの窒化物と前記Vの窒化物の個々の膜厚は、前記Vの窒化物が前記AlCrSiの窒化物の1.5倍以上であることを特徴とする請求項3に記載の摺動特性に優れた塑性加工用被覆金型。   4. The individual film thicknesses of the AlCrSi nitride and the V nitride stacked alternately are such that the V nitride is 1.5 times or more the AlCrSi nitride. Coating mold for plastic working with excellent sliding characteristics as described in 1. 前記硬質皮膜は物理蒸着法により被覆したことを特徴とする請求項1ないし4のいずれかに記載の摺動特性に優れた塑性加工用被覆金型。   5. The coating die for plastic working excellent in sliding characteristics according to claim 1, wherein the hard coating is coated by a physical vapor deposition method. 工具基材の表面に、窒素雰囲気中でAlCrSiの合金ターゲットを使用した物理蒸着法によるAlCrSiの窒化物の被覆と、窒素雰囲気中でV金属ターゲットを使用した物理蒸着法によるVの窒化物の被覆を繰り返すことで、
AlCrSiの窒化物と、Vの窒化物が交互に積層された膜厚が3μm以上の硬質皮膜を被覆し、
前記硬質皮膜の表面をダイヤモンドペーストを用いてバフ研磨し、Ra<0.2μm、Rz<2.0μm、Rsk<0にすることを特徴とする摺動特性に優れた塑性加工用被覆金型の製造方法。
The surface of the tool base is coated with AlCrSi nitride by physical vapor deposition using an AlCrSi alloy target in a nitrogen atmosphere, and V nitride is coated by physical vapor deposition using a V metal target in a nitrogen atmosphere. By repeating
Covering a hard film having a thickness of 3 μm or more in which AlCrSi nitride and V nitride are alternately laminated,
The surface of the hard coating is buffed with a diamond paste so that Ra <0.2 μm, Rz <2.0 μm, and Rsk <0. Production method.
前記AlCrSiの窒化物と前記Vの窒化物が交互に積層された膜厚が8μm以上の硬質皮膜を被覆することを特徴とする請求項6に記載の摺動特性に優れた塑性加工用被覆金型の製造方法。   7. The coating metal for plastic working having excellent sliding characteristics according to claim 6, wherein a hard film having a film thickness of 8 μm or more in which the AlCrSi nitride and the V nitride are alternately laminated is coated. Mold manufacturing method. 前記AlCrSiの合金ターゲットと前記V金属ターゲットへ投入する電流比は、AlCrSiの合金ターゲット/V金属ターゲットが2.0以下であることを特徴とする請求項6ないし7に記載の摺動特性に優れた塑性加工用被覆金型の製造方法。   8. The sliding ratio according to claim 6, wherein the current ratio of the AlCrSi alloy target and the V metal target is 2.0 or less when the AlCrSi alloy target / V metal target is 2.0 or less. A manufacturing method of a coated mold for plastic working.
JP2015050717A 2010-02-10 2015-03-13 Coated mold for plastic working excellent in sliding characteristics and manufacturing method thereof Active JP5920681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015050717A JP5920681B2 (en) 2010-02-10 2015-03-13 Coated mold for plastic working excellent in sliding characteristics and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010028098 2010-02-10
JP2010028098 2010-02-10
JP2015050717A JP5920681B2 (en) 2010-02-10 2015-03-13 Coated mold for plastic working excellent in sliding characteristics and manufacturing method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011023656A Division JP5804589B2 (en) 2010-02-10 2011-02-07 Coated mold or casting member having excellent sliding characteristics and method for producing the same

Publications (2)

Publication Number Publication Date
JP2015142944A JP2015142944A (en) 2015-08-06
JP5920681B2 true JP5920681B2 (en) 2016-05-18

Family

ID=44790429

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2011023656A Active JP5804589B2 (en) 2010-02-10 2011-02-07 Coated mold or casting member having excellent sliding characteristics and method for producing the same
JP2015050717A Active JP5920681B2 (en) 2010-02-10 2015-03-13 Coated mold for plastic working excellent in sliding characteristics and manufacturing method thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2011023656A Active JP5804589B2 (en) 2010-02-10 2011-02-07 Coated mold or casting member having excellent sliding characteristics and method for producing the same

Country Status (1)

Country Link
JP (2) JP5804589B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2762248B1 (en) 2011-09-28 2018-06-13 Hitachi Metals, Ltd. Covered member with excellent sliding properties
JP6043192B2 (en) * 2013-01-25 2016-12-14 株式会社神戸製鋼所 Laminated coating with excellent wear resistance
JP5974940B2 (en) 2013-03-14 2016-08-23 三菱マテリアル株式会社 Replaceable cutting head
US9670575B2 (en) 2013-03-25 2017-06-06 Kobe Steel, Ltd. Laminated coating film having superior wear resistance
JP6250470B2 (en) * 2014-04-25 2017-12-20 株式会社神戸製鋼所 Cutting tools
EP3287544B1 (en) * 2015-04-23 2021-06-16 Hitachi Metals, Ltd. Coated metal mold and method for manufacturing same
JP6421733B2 (en) * 2015-09-30 2018-11-14 三菱日立ツール株式会社 Hard coating, hard coating covering member, and manufacturing method thereof
WO2019054289A1 (en) * 2017-09-14 2019-03-21 三菱日立ツール株式会社 Small-diameter drill and small-diameter drill manufacturing method
KR102460884B1 (en) 2018-12-03 2022-10-31 히다찌긴조꾸가부시끼가이사 Cover mold for hot stamping
US20220154323A1 (en) 2019-03-20 2022-05-19 Hitachi Metals, Ltd. Coated mold, method for manufacturing coated mold, and hard coat-forming target
JP6778408B1 (en) * 2019-03-26 2020-11-04 日立金属株式会社 V alloy target
JP6778409B1 (en) * 2019-03-26 2020-11-04 日立金属株式会社 V alloy target
US11819900B2 (en) * 2020-05-14 2023-11-21 Nissan Motor Co., Ltd. Sequential molding tool
EP4180156A4 (en) * 2020-07-09 2023-08-16 Sumitomo Electric Hardmetal Corp. Diamond coated tool and method for producing same
CN114959571B (en) * 2022-05-09 2023-07-14 岭南师范学院 Nano composite corrosion-resistant coating and preparation method and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS646514A (en) * 1987-06-30 1989-01-11 Riken Kk Sliding member
JP3697221B2 (en) * 2002-05-01 2005-09-21 三菱重工業株式会社 High wear and hardness coating with excellent high temperature oxidation resistance
JP4812255B2 (en) * 2004-01-21 2011-11-09 ユニタック株式会社 Cutting tool manufacturing method
JP2007313636A (en) * 2006-04-27 2007-12-06 Kyocera Corp Cutting tool and cutting method for work using the cutting tool
JP4883480B2 (en) * 2006-07-14 2012-02-22 三菱マテリアル株式会社 Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent fracture resistance in high-speed continuous cutting of hard difficult-to-cut materials

Also Published As

Publication number Publication date
JP5804589B2 (en) 2015-11-04
JP2015142944A (en) 2015-08-06
JP2011183545A (en) 2011-09-22

Similar Documents

Publication Publication Date Title
JP5920681B2 (en) Coated mold for plastic working excellent in sliding characteristics and manufacturing method thereof
Tyagi et al. A critical review of diamond like carbon coating for wear resistance applications
JP6015663B2 (en) Covering material with excellent sliding characteristics
US11779989B2 (en) Coated metal mold and method for manufacturing same
JP5424103B2 (en) Covering mold for plastic working
Kiryukhantsev-Korneev et al. Comparative study of sliding, scratching, and impact-loading behavior of hard CrB 2 and Cr–B–N films
JP4771223B2 (en) Durable hard material coated mold for plastic working
JP5584849B2 (en) Mold surface protection film
Huang et al. Influence of titanium concentration on mechanical properties and wear resistance to Ti6Al4V of Ti-C: H on cemented carbide
JP2017179580A (en) Hard film and hard film coated member
Birol et al. AlTiN and AlTiON-coated hot work tool steels for tooling in steel thixoforming
WO2020189717A1 (en) Coated mold, method for manufacturing coated mold, and hard coat-forming target
JP5502677B2 (en) Metal plastic working tool with excellent lubrication characteristics and method for producing the same
JP6756641B2 (en) piston ring
Li et al. Optimization of interlayer/CrWN bilayer films fabricated and monitored under Shewhart control
JP5321360B2 (en) Surface coated cutting tool
JP5353310B2 (en) Vanadium-containing coating and mold or cutting tool coated with vanadium-containing coating
KR20160130507A (en) Cutting tool
JP2006207691A (en) Hard film coated sliding member
JP2015218335A (en) Nitride membrane, and manufacturing method thereof
JP2017043813A (en) Hard film and hard film-coated member
JP2006206960A (en) Sliding member coated with hard film
JP2010229527A (en) Abrasion-resistant composite hard film having solid lubricity and non-affinity, and steel material provided with the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160331

R150 Certificate of patent or registration of utility model

Ref document number: 5920681

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350