JP4883480B2 - Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent fracture resistance in high-speed continuous cutting of hard difficult-to-cut materials - Google Patents

Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent fracture resistance in high-speed continuous cutting of hard difficult-to-cut materials Download PDF

Info

Publication number
JP4883480B2
JP4883480B2 JP2006193499A JP2006193499A JP4883480B2 JP 4883480 B2 JP4883480 B2 JP 4883480B2 JP 2006193499 A JP2006193499 A JP 2006193499A JP 2006193499 A JP2006193499 A JP 2006193499A JP 4883480 B2 JP4883480 B2 JP 4883480B2
Authority
JP
Japan
Prior art keywords
layer
cutting
hard coating
boron nitride
thin layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006193499A
Other languages
Japanese (ja)
Other versions
JP2008018509A (en
Inventor
秀充 高岡
逸郎 田嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2006193499A priority Critical patent/JP4883480B2/en
Publication of JP2008018509A publication Critical patent/JP2008018509A/en
Application granted granted Critical
Publication of JP4883480B2 publication Critical patent/JP4883480B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

この発明は、ダイス鋼、軸受鋼、マンガン鋼などのような、工具表面に溶着し易い高硬度の硬質難削材を高速連続切削加工した場合でも、硬質被覆層がすぐれた耐欠損性を有し、長期にわたって安定した切削性能を発揮することができる、立方晶窒化ほう素基超高圧焼結材料で構成された切削工具基体の表面に硬質被覆層を形成した表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具(以下、被覆cBN基焼結工具という)に関するものである。   This invention has excellent fracture resistance even when a hard hard material with high hardness that easily welds to the tool surface, such as die steel, bearing steel, and manganese steel, is subjected to high-speed continuous cutting. In addition, a surface-coated cubic boron nitride group in which a hard coating layer is formed on the surface of a cutting tool base made of a cubic boron nitride group ultra-high pressure sintered material that can exhibit stable cutting performance over a long period of time. The present invention relates to a cutting tool made of an ultra-high pressure sintered material (hereinafter referred to as a coated cBN-based sintered tool).

一般に、被覆cBN基焼結工具には、各種の鋼や鋳鉄などの被削材の旋削加工にバイトの先端部に着脱自在に取り付けて用いられるインサートや、前記インサートを着脱自在に取り付けて、面削加工や溝加工、さらに肩加工などに用いられるソリッドタイプのエンドミルと同様に切削加工を行うインサート式エンドミルなどが知られている。   In general, a coated cBN-based sintered tool has an insert that can be attached to the tip of a cutting tool for turning of a work material such as various types of steel and cast iron, An insert-type end mill that performs cutting work in the same manner as a solid type end mill used for machining, grooving, and shoulder machining is known.

また、被覆cBN基焼結工具としては、各種の立方晶窒化ほう素基超高圧焼結材料(以下、cBN基焼結材料という)で構成された工具本体の表面に硬質被覆層を形成しているが、硬質被覆層の一つとして、CrとAlとSiの複合窒化物((Cr,Al,Si)N)層を蒸着形成することが知られている。   In addition, as a coated cBN-based sintered tool, a hard coating layer is formed on the surface of a tool body made of various cubic boron nitride-based ultrahigh pressure sintered materials (hereinafter referred to as cBN-based sintered materials). However, it is known that a composite nitride ((Cr, Al, Si) N) layer of Cr, Al, and Si is deposited as one of the hard coating layers.

そして、上記(Cr,Al,Si)N層からなる硬質被覆層を被覆した被覆cBN基焼結工具は、例えば図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に上記の工具基体を装入し、ヒータで装置内を、例えば500℃に加熱した状態で、Cr−Al−Si合金からなるカソード電極(蒸発源)と、アノード電極との間に、例えば90Aの電流を印加してアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば2Paの反応雰囲気とし、一方前記工具基体には、たとえば−100Vのバイアス電圧を印加した条件で、前記工具基体の表面に、(Cr,Al,Si)N層を蒸着形成することにより製造されることも知られている。
特開2003−321764号公報 特開2004−106183号公報
The coated cBN-based sintered tool coated with the hard coating layer made of the (Cr, Al, Si) N layer is, for example, arc ion plating which is a kind of physical vapor deposition apparatus shown in a schematic explanatory view in FIG. The above tool base is inserted into the apparatus, and the inside of the apparatus is heated to, for example, 500 ° C. with a heater, for example, between a cathode electrode (evaporation source) made of a Cr—Al—Si alloy and an anode electrode, for example A 90 A current was applied to generate an arc discharge, and at the same time, nitrogen gas was introduced into the apparatus as a reaction gas to form a reaction atmosphere of 2 Pa, for example, while a bias voltage of, for example, −100 V was applied to the tool base. It is also known that a (Cr, Al, Si) N layer is deposited on the surface of the tool base under conditions.
Japanese Patent Laid-Open No. 2003-321764 JP 2004-106183 A

近年の切削加工装置のFA化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は、通常の切削条件に加えて、より高速条件下での切削加工が要求される傾向にあるが、上記の従来被覆工具においては、各種の鋼や鋳鉄を通常条件下で切削加工した場合に特段の問題は生じない。しかし、これを、工具表面に溶着し易いダイス鋼、軸受鋼、マンガン鋼などのような高硬度かつ高溶着性の硬質難削材の高速連続切削に用いた場合には、切刃部に発生する高熱により被削材および切粉は高温に加熱され、これに伴って硬質被覆層表面に対する溶着性および反応性が一段と増すようになり、この結果、切刃の刃先の境界部分に異常損傷(以下、境界異常損傷という)を生じ、これが原因で耐欠損性が低下し比較的短時間で使用寿命に至るのが現状である。   In recent years, FA has been remarkable for cutting devices, but on the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for cutting, and accordingly, cutting is performed at higher speed conditions in addition to normal cutting conditions. Although there is a tendency to require lower cutting, the above-described conventional coated tool does not cause any particular problem when various types of steel and cast iron are cut under normal conditions. However, when this is used for high-speed continuous cutting of hard hard materials with high hardness and high weldability such as die steel, bearing steel, manganese steel, etc. Due to the high heat generated, the work material and the chips are heated to a high temperature, and as a result, the weldability and reactivity to the surface of the hard coating layer further increase, resulting in abnormal damage to the boundary portion of the cutting edge ( Hereinafter, the boundary damage is caused), and this causes the defect resistance to deteriorate and the service life is reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、工具表面に溶着し易いダイス鋼、軸受鋼、マンガン鋼などのような高硬度かつ高溶着性の硬質難削材の高速連続切削加工で、硬質被覆層がすぐれた耐欠損性を発揮する被覆cBN基焼結工具を開発すべく研究を行った結果、
(a) 硬質被覆層を構成するCrとAlとSiの複合窒化物(以下、(Cr1−X−YAlSi)Nで示す)層は、Alの含有割合X(原子比)の値が0.4〜0.7、また、Siの含有割合Y(原子比)の値が0.02〜0.10の範囲内において、すぐれた高温硬さ、耐熱性、耐高温酸化性、耐熱塑性変形性、高温強度を有し、通常の切削加工条件下において必要とされる耐摩耗性は具備しているが、高硬度かつ高溶着性の硬質難削材の高速連続切削加工においては、切刃部に発生する高熱により被削材および切粉は高温に加熱され、硬質被覆層表面に対する溶着性および反応性が一段と増すようになり、一方、(Cr1−X−YAlSi)N層からなる硬質被覆層は潤滑性、耐溶着性が不十分であるために、切刃の境界部分には境界異常損傷が生じ、そして、これが欠損の原因となること。
In view of the above, the present inventors have performed high-speed continuous cutting of hard, highly weldable hard difficult-to-cut materials such as die steel, bearing steel, and manganese steel that are easily welded to the tool surface. As a result of conducting research to develop a coated cBN-based sintered tool that exhibits excellent fracture resistance with a hard coating layer,
(a) The composite nitride of Cr, Al, and Si (hereinafter referred to as (Cr 1-XY Al X Si Y ) N) constituting the hard coating layer has an Al content ratio X (atomic ratio). When the value is 0.4 to 0.7 and the Si content ratio Y (atomic ratio) is within the range of 0.02 to 0.10, excellent high temperature hardness, heat resistance, high temperature oxidation resistance, Although it has heat-resistant plastic deformation and high-temperature strength, it has the wear resistance required under normal cutting conditions, but in high-speed continuous cutting of hard difficult-to-cut materials with high hardness and high weldability. The work material and the chips are heated to a high temperature by the high heat generated at the cutting edge, and the weldability and reactivity to the surface of the hard coating layer are further increased, while (Cr 1-XY Al X Si Y) hard coating layer consisting of N layers lubricity, for adhesion resistance is insufficient, the boundary portion of the cutting edge Edge notching occurs in, and this may cause a defect.

(b)一方、Cr窒化物(以下、CrNで示す)層は、高温硬さ、耐熱性、耐高温酸化性、耐熱塑性変形性と高温強度は十分ではないが、すぐれた潤滑性、耐溶着性を有しているために、大きな発熱を伴う高硬度、高溶着性の硬質難削材の高速連続切削加工においては、被削材、切粉が硬質被覆層に溶着するのを防止し得ること。 (B) On the other hand, Cr nitride (hereinafter referred to as CrN) layer is not sufficient in high temperature hardness, heat resistance, high temperature oxidation resistance, heat plastic deformation and high temperature strength, but has excellent lubricity and welding resistance. Therefore, it is possible to prevent the work material and chips from welding to the hard coating layer in high-speed continuous cutting of hard, highly weldable hard difficult-to-cut materials with large heat generation. thing.

(c)上記(a)のAlの含有割合Xが40〜70原子%、また、Siの含有割合Yが2〜10原子%の高温硬さ、耐熱性、耐高温酸化性、耐熱塑性変形性、高温強度を有する(Cr1−X−YAlSi)N(ただし、原子比で、Xは0.4〜0.7、Yは0.02〜0.10)層(以下、薄層Aという)と、前記薄層Aに比べて高温硬さ、耐熱性、耐高温酸化性、耐熱塑性変形性、高温強度は劣るものの、その一方で、すぐれた潤滑性、耐溶着性を有するCr窒化物(CrN)層(以下、薄層Bという)を、それぞれの一層平均層厚を0.05〜0.3μmの薄層とした状態で交互積層して硬質被覆層の上部層を構成すると、この交互積層構造の硬質被覆層は、薄層Aのもつすぐれた高温硬さ、耐熱性、耐高温酸化性、耐熱塑性変形性、高温強度とともに、薄層Bのもつすぐれた潤滑性、耐溶着性を相兼ね備えるようになり、その結果、被削材および切粉の硬質被覆層に対する溶着性、反応性が低下し、境界異常損傷の発生が防止され、耐欠損性が向上すること。
以上(a)〜(c)に示される研究結果を得たのである。
(C) High-temperature hardness, heat resistance, high-temperature oxidation resistance, and heat-resistant plastic deformability in which the Al content ratio X in (a) is 40 to 70 atomic% and the Si content ratio Y is 2 to 10 atomic%. (Cr 1-XY Al X Si Y ) N (however, in atomic ratio, X is 0.4 to 0.7, Y is 0.02 to 0.10) having a high temperature strength (hereinafter referred to as thin Layer A) and the high-temperature hardness, heat resistance, high-temperature oxidation resistance, heat-resistant plastic deformation and high-temperature strength are inferior to those of the thin layer A, but on the other hand, it has excellent lubricity and welding resistance. Cr nitride (CrN) layers (hereinafter referred to as “thin layer B”) are alternately laminated in a state where each layer has an average layer thickness of 0.05 to 0.3 μm to form an upper layer of the hard coating layer. Then, the hard coating layer of this alternately laminated structure has the excellent high temperature hardness, heat resistance, high temperature oxidation resistance, and heat plastic deformation of the thin layer A. As a result, the thin layer B has excellent lubricity and welding resistance, and as a result, the weldability and reactivity of the work material and chips to the hard coating layer are reduced. Occurrence of abnormal damage is prevented and fracture resistance is improved.
The research results shown in (a) to (c) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、
窒化チタン13〜30%、アルミニウムおよび/または酸化アルミニウム6〜18%、残部窒化ほう素(以上、%は、いずれも質量%を示す)からなる配合組成を有する圧粉体の超高圧焼結材料で構成され、かつ、走査型電子顕微鏡による組織観察で、分散相を形成する立方晶窒化ほう素相と連続相を形成する窒化チタン相との界面に超高圧焼結反応生成物が介在した組織を有するインサート本体の表面に硬質被覆層を蒸着形成した表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具において、
(a)硬質被覆層は、1〜3μmの平均層厚を有する下部層と0.3〜3μmの平均層厚を有する上部層とからなり、
(b)硬質被覆層の下部層は、蒸着形成された、
組成式:(Cr1−X−YAlSi)N(ただし、原子比で、Xは0.4〜0.7、Yは0.02〜0.10を示す)を満足するCrとAlとSiの複合窒化物層、
(c)硬質被覆層の上部層は、下部層の表面に蒸着形成された、いずれも一層平均層厚がそれぞれ0.05〜0.3μmの薄層Aと薄層Bとを交互に各2〜6層積層した交互積層構造を有し、
上記薄層Aは、
組成式:(Cr1−X−YAlSi)N(ただし、原子比で、Xは0.4〜0.7、Yは0.02〜0.10を示す)を満足するCrとAlとSiの複合窒化物層、
上記薄層Bは、Cr窒化物(CrN)層、
からなる硬質被覆層を蒸着形成した、ダイス鋼、軸受鋼、マンガン鋼などのような、工具表面に溶着し易い高硬度、高溶着性の硬質難削材の高速連続切削加工ですぐれた耐欠損性を発揮する表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具(被覆cBN基焼結工具)に特徴を有するものである。
This invention was made based on the above research results,
Ultra-high pressure sintered material of green compact having a compounding composition comprising titanium nitride 13 to 30%, aluminum and / or aluminum oxide 6 to 18%, and remaining boron nitride (wherein,% indicates mass%) And a structure in which an ultrahigh pressure sintered reaction product is interposed at the interface between a cubic boron nitride phase forming a dispersed phase and a titanium nitride phase forming a continuous phase, as observed by a scanning electron microscope. In a cutting tool made of a surface-coated cubic boron nitride-based ultra-high pressure sintered material in which a hard coating layer is vapor-deposited on the surface of the insert body having
(A) The hard coating layer is composed of a lower layer having an average layer thickness of 1 to 3 μm and an upper layer having an average layer thickness of 0.3 to 3 μm,
(B) The lower layer of the hard coating layer was formed by vapor deposition.
Cr satisfying the composition formula: (Cr 1-XY Al X Si Y ) N (wherein X is 0.4 to 0.7 and Y is 0.02 to 0.10 in atomic ratio) A composite nitride layer of Al and Si;
(C) The upper layer of the hard coating layer is formed by vapor deposition on the surface of the lower layer, and each of the thin layer A and the thin layer B each having an average layer thickness of 0.05 to 0.3 μm alternately. Have an alternating layered structure of ~ 6 layers ,
The thin layer A is
Cr satisfying the composition formula: (Cr 1-XY Al X Si Y ) N (wherein X is 0.4 to 0.7 and Y is 0.02 to 0.10 in atomic ratio) A composite nitride layer of Al and Si;
The thin layer B is a Cr nitride (CrN) layer,
Excellent fracture resistance due to high-speed continuous cutting of hard, highly weldable hard-to-cut materials such as die steel, bearing steel, manganese steel, etc. It is characterized by a cutting tool (coated cBN-based sintered tool) made of a surface-coated cubic boron nitride-based ultrahigh-pressure sintered material that exhibits its properties.

つぎに、この発明の被覆cBN基焼結工具において、これを構成するインサート本体のcBN基焼結材料の配合組成および硬質被覆層の組成、層厚を限定した理由を説明する。
(a)インサート本体のcBN基焼結材料の配合組成
(イ)TiN
焼結材料中のTiN成分は、焼結性を向上させるとともに焼結体中で連続相を形成して強度を向上させる作用があるが、その配合割合が13質量%未満では所望の強度を確保することができず、一方その配合割合が30質量%を超えると相対的にcBNの含有量が少なくなり、すくい面摩耗などが生じやすくなることから、その配合割合を13〜30質量%と定めた。
Next, in the coated cBN-based sintered tool of the present invention, the reason why the composition of the cBN-based sintered material of the insert main body, the composition of the hard coating layer, and the layer thickness are limited will be described.
(A) Composition of the cBN-based sintered material of the insert body (A) TiN
The TiN component in the sintered material has the effect of improving the sinterability and improving the strength by forming a continuous phase in the sintered body, but if the blending ratio is less than 13% by mass, the desired strength is ensured. On the other hand, if the blending ratio exceeds 30% by mass, the content of cBN is relatively reduced, and rake face wear is likely to occur. Therefore, the blending ratio is set to 13 to 30% by mass. It was.

(ロ)アルミニウムおよび/または酸化アルミニウム
これらの成分は焼結時に優先的にcBN粉末の表面に凝集し、反応して反応生成物を形成し、焼結後のcBN基材料中で、連続相を形成するTiN相と硬質分散相を形成するcBN相の間に介在するようになり、この反応生成物は前記連続相を形成するTiN相と硬質分散相を形成するcBN相のいずれとも強固に密着接合する性質をもつことから、前記cBN相の連続結合相であるTiN相に対する密着性が著しく向上し、この結果切刃の耐チッピング性が向上するようになるが、アルミニウムおよび/または酸化アルミニウムの配合割合が6〜18質量%の範囲からはずれると、中間密着層として前記硬質分散相と連続相の間に強固な密着性を確保することができないので、アルミニウムおよび/または酸化アルミニウムの配合割合を6〜18質量%と定めた。
(B) Aluminum and / or aluminum oxide These components aggregate preferentially on the surface of the cBN powder during the sintering and react to form a reaction product. In the sintered cBN-based material, a continuous phase is formed. The reaction product is tightly adhered to both the TiN phase forming the continuous phase and the cBN phase forming the hard dispersed phase, and is interposed between the TiN phase forming and the cBN phase forming the hard dispersed phase. Since it has the property of bonding, the adhesion of the cBN phase to the TiN phase, which is a continuous bonding phase, is remarkably improved. As a result, the chipping resistance of the cutting blade is improved. When the blending ratio is out of the range of 6 to 18% by mass, it is not possible to ensure strong adhesion between the hard dispersed phase and the continuous phase as an intermediate adhesion layer. The mixing ratio of um and / or aluminum oxide was determined to be 6 to 18% by mass.

(ハ)窒化ほう素(cBN)
超高圧焼結材料製工具基体中の窒化ほう素(cBN)は、きわめて硬質で、焼結材料中で分散相を形成し、そしてこの分散相によって耐摩耗性の向上が図れるが、その配合割合が少なすぎると所望のすぐれた耐摩耗性を確保することができず、一方その配合割合が多くなりすぎると、窒化ほう素(cBN)基材料自体の焼結性が低下し、この結果切刃に欠損が生じやすくなる。窒化ほう素(cBN)の配合割合は、焼結材料の構成成分であるTiN、アルミニウムおよび酸化アルミニウムの残部、即ち、52〜81質量%となる。
(C) Boron nitride (cBN)
Boron nitride (cBN) in the tool base made of ultra high pressure sintered material is extremely hard and forms a dispersed phase in the sintered material, and this dispersed phase can improve wear resistance. If the amount is too small, the desired excellent wear resistance cannot be ensured. On the other hand, if the blending ratio is too large, the sinterability of the boron nitride (cBN) base material itself decreases, resulting in a cutting edge. Deficiency is likely to occur. The mixing ratio of boron nitride (cBN) is the balance of TiN, aluminum, and aluminum oxide, which are constituents of the sintered material, that is, 52 to 81 mass%.

(b)硬質被覆層の下部層
硬質被覆層の下部層を構成する(Cr1−X−YAlSi)N層におけるCr成分は高温強度の維持、Al成分は高温硬さ、耐熱性、耐高温酸化性の向上、Si成分は耐熱塑性変形性の向上に寄与することから、硬質被覆層の下部層を構成する(Cr1−X−YAlSi)N層は、所定の高温強度、高温硬さ、耐熱性、耐高温酸化性、耐熱塑性変形性を具備する層であって、ダイス鋼、軸受鋼、高マンガン鋼などのような、切粉が工具表面に溶着し易い硬質難削材の高速連続切削加工時における切刃部の耐摩耗性を確保する役割を基本的に担う。ただ、Alの含有割合Xが70原子%を超えると下部層の耐高温酸化性は向上するものの、Cr含有割合の相対的な減少によって、B1結晶構造を保つことが困難となり、耐摩耗性が著しく低下し、一方、Alの含有割合Xが40原子%未満になると、高温硬さ、耐熱性が低下し、その結果、耐摩耗性の低下がみられるようになり、さらに、Siの含有割合Yが10原子%を超えると、相対的なCr含有割合、Al含有割合の減少によって、高温強度、高温硬さ、耐熱性、耐高温酸化性が低下し、また、Siの含有割合Yが2原子%未満になると、Siを含有させたことによる耐熱塑性変形性の向上が期待できなくなることから、Alの含有割合Xの値を0.4〜0.7、Siの含有割合Yの値を0.02〜0.10と定めた。
また、下部層の平均層厚が1μm未満では、自身のもつ高温硬さ、耐熱性、耐高温酸化性、耐熱塑性変形性および高温強度を硬質被覆層に長期に亘って付与できず、工具寿命短命の原因となり、一方その平均層厚が3μmを越えると、欠損が生じ易くなることから、その平均層厚を1〜3μmと定めた。
(B) constituting the lower layer of the lower layer hard coating layer of the hard coating layer (Cr 1-X-Y Al X Si Y) Cr component in the N layer maintains the high-temperature strength, Al component high-temperature hardness, heat resistance , improvement of high-temperature oxidation resistance, Si component because it contributes to the improvement of the heat plastic deformation resistance, constituting the lower layer of the hard coating layer (Cr 1-X-Y Al X Si Y) N layer, predetermined A layer with high-temperature strength, high-temperature hardness, heat resistance, high-temperature oxidation resistance, and heat-resistant plastic deformation. Chips such as die steel, bearing steel, and high-manganese steel easily adhere to the tool surface. It basically plays the role of ensuring the wear resistance of the cutting edge during high-speed continuous cutting of hard difficult-to-cut materials. However, if the Al content ratio X exceeds 70 atomic%, the high-temperature oxidation resistance of the lower layer is improved, but the relative decrease in the Cr content ratio makes it difficult to maintain the B1 crystal structure, resulting in wear resistance. On the other hand, when the Al content ratio X is less than 40 atomic%, the high-temperature hardness and heat resistance are decreased, and as a result, the wear resistance is decreased, and the Si content ratio is further decreased. When Y exceeds 10 atomic%, the relative Cr content ratio and Al content ratio decrease, resulting in a decrease in high temperature strength, high temperature hardness, heat resistance, and high temperature oxidation resistance, and a Si content ratio Y of 2 If it is less than atomic%, improvement in heat-resistant plastic deformability due to inclusion of Si cannot be expected, so the value of Al content ratio X is 0.4 to 0.7, and the value of Si content ratio Y is It was determined to be 0.02 to 0.10.
If the average layer thickness of the lower layer is less than 1 μm, the high temperature hardness, heat resistance, high temperature oxidation resistance, high temperature plastic deformation and high temperature strength possessed by itself cannot be imparted to the hard coating layer over a long period of time, and the tool life On the other hand, if the average layer thickness exceeds 3 μm, defects are likely to occur. Therefore, the average layer thickness was set to 1 to 3 μm.

なお、超高圧焼結材料製切削工具基体と下部層との十分な密着性を確保するために、基体と下部層との間にクロムまたはチタンの窒化物(CrNまたはTiN)の薄層を介在させることができる。該CrNまたはTiNの薄層は、その層厚が0.01μm未満では密着性改善の効果が少なく、一方、0.5μmを超えた層厚としても密着性の更なる向上が期待できるわけではないことから、基体と下部層との間に介在させるCrNまたはTiN層の層厚は0.01μm以上0.5μm以下とすることが望ましい。   A thin layer of chromium or titanium nitride (CrN or TiN) is interposed between the base and the lower layer in order to ensure sufficient adhesion between the cutting tool base made of the ultra-high pressure sintered material and the lower layer. Can be made. The CrN or TiN thin layer is less effective in improving the adhesion when the layer thickness is less than 0.01 μm, while the layer thickness exceeding 0.5 μm cannot be expected to further improve the adhesion. Therefore, the thickness of the CrN or TiN layer interposed between the substrate and the lower layer is preferably 0.01 μm or more and 0.5 μm or less.

(c)硬質被覆層の上部層
(イ)上部層の薄層A
上部層の薄層Aを構成する(Cr1−X−YAlSi)N層(ただし、原子比で、Xは0.4〜0.7、Yは0.02〜0.10を示す)は、下部層と実質同様の層であって、所定の高温硬さ、耐熱性、耐高温酸化性、耐熱塑性変形性および高温強度を具備し、工具表面に溶着し易い硬質難削材の高速連続切削加工時における切刃部の耐摩耗性を確保する作用を有する。
(C) Upper layer of hard coating layer (b) Thin layer A of upper layer
(Cr 1-XY Al X Si Y ) N layer (however, in atomic ratio, X is 0.4 to 0.7, Y is 0.02 to 0.10) constituting the thin layer A of the upper layer Is a layer that is substantially the same as the lower layer, and has a predetermined high-temperature hardness, heat resistance, high-temperature oxidation resistance, heat-resistant plastic deformability, and high-temperature strength, and is hard to cut easily on the tool surface. It has the effect | action which ensures the abrasion resistance of the cutting-blade part at the time of high-speed continuous cutting.

(ロ)上部層の薄層B
CrN層からなる薄層Bは、薄層Aと薄層Bとを交互に各2〜6層積層した交互積層構造からなる上部層において、云わば、薄層Aに不足する特性(潤滑性、耐溶着性)を補うことを主たる目的とするものである。
すでに述べたように、上部層の薄層Aは、所定の高温硬さ、耐熱性、耐高温酸化性、耐熱塑性変形性と高温強度を有する層であるが、高い熱発生を伴うダイス鋼、軸受鋼、マンガン鋼などの硬質難削材の高速連続切削加工では、潤滑性、耐溶着性が不十分となり、そのためこれらが原因となり境界異常損傷、欠損を生じることになる。
そこで、すぐれた潤滑性と耐溶着性を有するCrN層からなる薄層Bを、薄層Aと交互に配し交互積層構造を構成することで、隣接する薄層Aの潤滑性不足、耐溶着性不足を補い、上部層全体として、前記薄層Aのもつすぐれた高温硬さ、耐熱性、耐高温酸化性、耐熱塑性変形性、高温強度を何ら損なうことなく、前記薄層Bのもつすぐれた潤滑性、耐溶着性を兼ね備えた上部層を形成する。
CrN層は、すぐれた潤滑性と耐溶着性を備え、高熱発生を伴う硬質難削材の高速連続切削加工における切刃部への切粉の溶着を防止し、その結果として、切刃の刃先の境界部分に生じる境界異常損傷、欠損の発生を防止する作用を有する。
(B) Thin layer B of the upper layer
The thin layer B made of a CrN layer is an upper layer having an alternately laminated structure in which the thin layer A and the thin layer B are alternately laminated in two to six layers . The main purpose is to supplement the welding resistance.
As already described, the upper layer thin layer A is a layer having a predetermined high-temperature hardness, heat resistance, high-temperature oxidation resistance, heat-resistant plastic deformation and high-temperature strength, but die steel with high heat generation, In high-speed continuous cutting of hard hard-to-cut materials such as bearing steel and manganese steel, the lubricity and welding resistance are insufficient, which causes abnormal boundary damage and defects.
Therefore, the thin layer B composed of the CrN layer having excellent lubricity and welding resistance is arranged alternately with the thin layer A to form an alternate laminated structure, so that the adjacent thin layer A has insufficient lubricity and is resistant to welding. The upper layer as a whole is made up of the thin layer B, and the thin layer A is tangled without any loss of high temperature hardness, heat resistance, high temperature oxidation resistance, heat plastic deformation and high temperature strength. An upper layer having excellent lubricity and welding resistance is formed.
The CrN layer has excellent lubricity and welding resistance, and prevents chip adhesion to the cutting edge in high-speed continuous cutting of hard difficult-to-cut materials with high heat generation. As a result, the cutting edge of the cutting edge It has the effect of preventing the occurrence of abnormal boundary damage and loss occurring at the boundary portion of the.

(ハ)上部層の薄層Aと薄層Bの一層平均層厚、上部層の平均層厚
上部層の薄層Aと薄層B、それぞれの一層平均層厚が0.05μm未満ではそれぞれの薄層の備えるすぐれた特性を発揮することができず、この結果、上部層にすぐれた高温硬さ、耐熱性、耐高温酸化性、耐熱塑性変形性および高温強度と、耐溶着性、潤滑性を確保することができなくなり、またそれぞれの一層平均層厚が0.3μmを越えるとそれぞれの薄層がもつ欠点、すなわち薄層Aであれば耐溶着性、潤滑性の不足、薄層Bであれば高温硬さ、耐熱性、耐高温酸化性、耐熱塑性変形性、高温強度の不足が層内に局部的に現れるようになり、これが原因で、切刃刃先の境界異常損傷が発生したり、摩耗が急速に進行するようになることから、それぞれの一層平均層厚は0.05〜0.3μmと定めた。
すなわち、薄層Bは、上部層に耐溶着性、潤滑性を付与するために設けたものであるが、薄層A、薄層Bそれぞれの一層平均層厚が0.05〜0.3μmの範囲内であれば、薄層Aと薄層Bとを交互に各2〜6層積層した交互積層構造からなる上部層は、すぐれた高温硬さ、耐熱性、耐高温酸化性、耐熱塑性変形性、高温強度と、すぐれた耐溶着性、潤滑性を具備したあたかも一つの層であるかのように作用するが、薄層A、薄層Bそれぞれの一層平均層厚が0.3μmを越えると、薄層Aの耐溶着性、潤滑性の不足、あるいは、薄層Bの高温硬さ、高温強度、耐熱性、耐高温酸化性、耐熱塑性変形性の不足が層内に局部的に現れるようになり、上部層が全体として一つの層としての良好な特性を呈することができなくなるため、薄層A、薄層Bそれぞれの一層平均層厚を0.05〜0.3μmと定めた。
薄層Aと薄層Bの一層平均層厚を0.05〜0.3μmの範囲内とした各2〜6層積層の交互積層構造からなる上部層を下部層表面に形成することにより、優れた高温硬さ、高温強度、耐熱性、耐高温酸化性、耐熱塑性変形性とともに、すぐれた耐溶着性、潤滑性を兼ね備えた硬質被覆層が得られ、その結果、ダイス鋼、軸受鋼、マンガン鋼などのような硬質難削材の高速連続切削加工において、切刃の刃先の境界部分に生じる異常損傷の発生を防止することができる。
また、上部層の合計平均層厚(即ち、交互積層構造を構成する薄層Aと薄層Bの各層の平均層厚を合計した層厚)は、0.3μm未満では、硬質難削材の高速連続切削加工で必要とされる十分な高温硬さ、高温強度、耐熱性、耐高温酸化性、耐熱塑性変形性および耐溶着性、潤滑性を上部層に付与することができず、工具寿命短命の原因となり、一方その平均層厚が3μmを越えると、欠損が発生し易くなることから、その平均層厚は0.3〜3μmと定めた。
(C) The average layer thickness of the upper layer, the thin layer A and the thin layer B, the average layer thickness of the upper layer. The superior properties of the thin layer cannot be demonstrated. As a result, the upper layer has excellent high-temperature hardness, heat resistance, high-temperature oxidation resistance, heat-resistant plastic deformation and high-temperature strength, welding resistance, and lubricity. In addition, if the average layer thickness of each layer exceeds 0.3 μm, the disadvantages of each thin layer, that is, if it is thin layer A, welding resistance, lack of lubricity, thin layer B If so, high temperature hardness, heat resistance, high temperature oxidation resistance, heat plastic deformation, and lack of high temperature strength will appear locally in the layer, which may cause abnormal damage to the edge of the cutting edge. Since the wear progresses rapidly, the average layer thickness of each layer is It was defined as .05~0.3μm.
That is, the thin layer B is provided to provide welding resistance and lubricity to the upper layer, but the average layer thickness of each of the thin layer A and the thin layer B is 0.05 to 0.3 μm. If it is within the range, the upper layer composed of an alternate laminated structure in which the thin layer A and the thin layer B are alternately laminated to each other has an excellent high temperature hardness, heat resistance, high temperature oxidation resistance, and heat plastic deformation. It acts as if it had a single layer with high properties, high-temperature strength, excellent welding resistance, and lubricity, but the average layer thickness of each of thin layer A and thin layer B exceeds 0.3 μm. Insufficient adhesion and lubricity of the thin layer A, or lack of high-temperature hardness, high-temperature strength, heat resistance, high-temperature oxidation resistance, and heat-resistant plastic deformability of the thin layer B appears locally in the layer. As a result, the upper layer cannot exhibit good characteristics as a single layer as a whole. The average layer thickness of each layer B was set to 0.05 to 0.3 μm.
By forming an upper layer having an alternate laminated structure of 2 to 6 layers each having an average layer thickness of the thin layer A and the thin layer B in the range of 0.05 to 0.3 μm on the surface of the lower layer, excellent High hardness, high temperature strength, heat resistance, high temperature oxidation resistance, and heat plastic deformation resistance, as well as a hard coating layer with excellent welding resistance and lubricity, resulting in die steel, bearing steel, manganese In high-speed continuous cutting of hard difficult-to-cut materials such as steel, it is possible to prevent the occurrence of abnormal damage occurring at the boundary portion of the cutting edge of the cutting blade.
Further, if the total average layer thickness of the upper layer (that is, the total layer thickness of the thin layers A and B constituting the alternating laminated structure) is less than 0.3 μm, the hard difficult-to-cut material Sufficient high-temperature hardness, high-temperature strength, heat resistance, high-temperature oxidation resistance, heat-resistant plastic deformation and welding resistance, and lubricity required for high-speed continuous cutting cannot be imparted to the upper layer, resulting in tool life On the other hand, if the average layer thickness exceeds 3 μm, defects tend to occur. Therefore, the average layer thickness is determined to be 0.3 to 3 μm.

なお、この発明の被覆cBN基焼結工具では、最外表面の被覆層の層厚のちがいによって、それぞれ微妙に異なる干渉色を生じ、工具外観が不揃いとなることがある。このような場合には、最外表面に、CrN層あるいは(Cr,Al,Si)N層を厚く蒸着形成することによって、工具外観の不揃いを防止することができる。その際、CrN層あるいは(Cr,Al,Si)N層の平均層厚が0.2μm未満では外観の不揃いを防止することはできず、また、2μmまでの平均層厚があれば外観の不揃いを十分防止できることから、CrN層あるいは(Cr,Al,Si)N層の平均層厚は0.2〜2μmとすればよい。
また、この発明の被覆cBN基焼結工具基体の表面粗度は、Raで0.05以上1.0以下であることが望ましい。表面粗度Raが0.05以上であれば、アンカー効果による基体と硬質被覆層との付着強度の向上が期待でき、一方、Raが1.0を超えるようになると、被削材の仕上げ面精度に悪影響を及ぼすようになるためである。
In the coated cBN-based sintered tool of the present invention, a slightly different interference color may be generated depending on the thickness of the coating layer on the outermost surface, and the tool appearance may be uneven. In such a case, unevenness of the tool appearance can be prevented by thickly depositing a CrN layer or a (Cr, Al, Si) N layer on the outermost surface. At that time, when the average layer thickness of the CrN layer or the (Cr, Al, Si) N layer is less than 0.2 μm, it is not possible to prevent the appearance irregularity, and when the average layer thickness is up to 2 μm, the appearance is uneven. Therefore, the average layer thickness of the CrN layer or the (Cr, Al, Si) N layer may be 0.2 to 2 μm.
In addition, the surface roughness of the coated cBN-based sintered tool base of the present invention is desirably 0.05 to 1.0 in terms of Ra. If the surface roughness Ra is 0.05 or more, an improvement in adhesion strength between the substrate and the hard coating layer due to the anchor effect can be expected. On the other hand, if Ra exceeds 1.0, the finished surface of the work material This is because the accuracy is adversely affected.

この発明の被覆cBN基焼結工具は、硬質被覆層が上部層と下部層からなり、硬質被覆層の上部層を薄層Aと薄層Bとを交互に各2〜6層積層した交互積層構造とすることによってすぐれた高温硬さ、高温強度、耐熱性、耐高温酸化性、耐熱塑性変形性および耐溶着性、潤滑性を兼ね備えることから、ダイス鋼、軸受鋼、マンガン鋼などのような、工具表面に溶着し易い高硬度の硬質難削材の、高熱発生を伴う高速連続切削という厳しい条件下の切削加工であっても、前記硬質被覆層に境界異常損傷、欠損の発生はなく、長期に亘って、すぐれた耐摩耗性を発揮することができる。 In the coated cBN-based sintered tool of the present invention, the hard coating layer is composed of an upper layer and a lower layer, and the upper layer of the hard coating layer is formed by alternately laminating thin layers A and thin layers B. It has excellent high-temperature hardness, high-temperature strength, heat resistance, high-temperature oxidation resistance, heat-resistant plastic deformation and welding resistance, and lubricity due to its structure, such as die steel, bearing steel, manganese steel, etc. Even hard cutting materials with high hardness that are easy to weld to the tool surface, even under severe conditions such as high-speed continuous cutting with high heat generation, there is no boundary abnormal damage or chipping in the hard coating layer, Excellent wear resistance can be exhibited over a long period of time.

つぎに、この発明の被覆cBN基焼結工具を実施例により具体的に説明する。   Next, the coated cBN-based sintered tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも0.5〜4μmの範囲内の平均粒径を有する立方晶窒化硼素(cBN)粉末、窒化チタン(TiN)粉末、Al粉末、酸化アルミニウム(Al)粉末を用意し、これら原料粉末を表1に示される配合組成に配合し、ボールミルで80時間湿式混合し、乾燥した後、120MPaの圧力で直径:50mm×厚さ:1.5mmの寸法をもった圧粉体にプレス成形し、ついでこの圧粉体を、圧力:1Paの真空雰囲気中、900〜1300℃の範囲内の所定温度に60分間保持の条件で焼結して切刃片用予備焼結体とし、この予備焼結体を、別途用意した、Co:8質量%、WC:残りの組成、並びに直径:50mm×厚さ:2mmの寸法をもったWC基超硬合金製支持片と重ね合わせた状態で、通常の超高圧焼結装置に装入し、通常の条件である圧力:5GPa、温度:1200〜1400℃の範囲内の所定温度に保持時間:0.8時間の条件で超高圧焼結し、焼結後上下面をダイヤモンド砥石を用いて研磨し、ワイヤー放電加工装置にて一辺3mmの正三角形状に分割し、さらにCo:5質量%、TaC:5質量%、WC:残りの組成およびCIS規格SNGA120412の形状(厚さ:4.76mm×一辺長さ:12.7mmの正方形)をもったWC基超硬合金製インサート本体のろう付け部(コーナー部)に、質量%で、Cu:26%、Ti:5%、Ni:2.5%、Ag:残りからなる組成を有するAg合金のろう材を用いてろう付けし、所定寸法に外周加工した後、切刃部に幅:0.13mm、角度:25°のホーニング加工を施し、さらに仕上げ研摩を施すことによりISO規格SNGA120412のインサート形状をもった工具基体A〜Iをそれぞれ製造した。 As raw material powders, cubic boron nitride (cBN) powder, titanium nitride (TiN) powder, Al powder, and aluminum oxide (Al 2 O 3 ) powder each having an average particle size in the range of 0.5 to 4 μm are prepared. These raw material powders were blended in the composition shown in Table 1, wet mixed with a ball mill for 80 hours, dried, and then compacted with a diameter of 50 mm × thickness: 1.5 mm at a pressure of 120 MPa. The green compact is then press-molded, and then the green compact is sintered in a vacuum atmosphere at a pressure of 1 Pa at a predetermined temperature within a range of 900 to 1300 ° C. for 60 minutes and pre-sintered for a cutting edge piece. This pre-sintered body was superposed on a separately prepared support piece made of WC-based cemented carbide having Co: 8 mass%, WC: remaining composition, and diameter: 50 mm × thickness: 2 mm. Normal ultra high pressure sintering It is charged into the apparatus, and is sintered under ultra high pressure at a predetermined temperature within the range of pressure: 5 GPa, temperature: 1200 to 1400 ° C., which is a normal condition, and holding time: 0.8 hours. Polishing with a diamond grindstone, dividing into 3 mm regular triangles with a wire electric discharge machine, Co: 5% by mass, TaC: 5% by mass, WC: remaining composition and shape of CIS standard SNGA12041 (thickness) The brazing part (corner part) of the insert body made of a WC-based cemented carbide having a length of 4.76 mm and a side length of 12.7 mm is 26% by mass and Ti is 5%. , Ni: 2.5%, Ag: Brazing using a brazing material of an Ag alloy having the composition consisting of the rest, and after outer periphery processing to a predetermined dimension, the width of the cutting edge is 0.13 mm, angle: 25 ° Finished with honing The tool substrate A~I having the insert shape of ISO standard SNGA120412 by applying an abrasive was prepared, respectively.

(a)ついで、上記の工具基体A〜Iのそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、一方側のカソード電極(蒸発源)として、上部層の薄層B形成用金属Crを、また、他方側のカソード電極(蒸発源)として、それぞれ表2に示される目標組成に対応した成分組成をもった上部層の薄層Aおよび下部層形成用Cr−Al−Si合金を前記回転テーブルを挟んで対向配置し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、Arガスを導入して、0.7Paの雰囲気とすると共に、前記テーブル上で自転しながら回転する工具基体に−200Vの直流バイアス電圧を印加し、もって工具基体表面をアルゴンイオンによってボンバード洗浄し、
(c)装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−100Vの直流バイアス電圧を印加し、かつ前記薄層Aおよび下部層形成用Cr−Al−Si合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって前記工具基体の表面に、表2に示される目標組成および目標層厚の(Cr,Al,Si)N層を硬質被覆層の下部層として蒸着形成し、
(d)ついで装置内に導入する反応ガスとしての窒素ガスの流量を調整して2Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−10〜−100Vの範囲内の所定の直流バイアス電圧を印加した状態で、前記薄層B形成用金属Crのカソード電極とアノード電極との間に50〜200Aの範囲内の所定の電流を流してアーク放電を発生させて、前記工具基体の表面に所定層厚の薄層Bを形成し、前記薄層B形成後、アーク放電を停止し、代って前記薄層Aおよび下部層形成用Cr−Al−Si合金のカソード電極とアノード電極間に同じく50〜200Aの範囲内の所定の電流を流してアーク放電を発生させて、所定層厚の薄層Aを形成した後、アーク放電を停止し、再び前記薄層B形成用金属Crのカソード電極とアノード電極間のアーク放電による薄層Bの形成と、前記薄層Aおよび下部層形成用Cr−Al−Si合金のカソード電極とアノード電極間のアーク放電による薄層Aの形成を交互に繰り返し行い、もって前記工具基体の表面に、層厚方向に沿って表2に示される目標組成および一層目標層厚の薄層Aと薄層Bの交互積層からなる上部層を同じく表2に示される合計層厚(平均層厚)で蒸着形成することにより、本発明被覆cBN基焼結工具1〜9をそれぞれ製造した。
(A) Next, each of the tool bases A to I is ultrasonically cleaned in acetone and dried, and then in the radial direction from the central axis on the rotary table in the arc ion plating apparatus shown in FIG. Are mounted along the outer periphery at a predetermined distance, and the upper layer thin layer B forming metal Cr is used as the cathode electrode (evaporation source) on one side, and the cathode electrode (evaporation source) on the other side. The upper layer thin layer A and the lower layer forming Cr—Al—Si alloy, each having a component composition corresponding to the target composition shown in Table 2, are placed opposite to each other across the rotary table,
(B) First, while the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, the inside of the apparatus is heated to 500 ° C. with a heater, and then Ar gas is introduced to create an atmosphere of 0.7 Pa. A DC bias voltage of −200 V is applied to the tool base that rotates while rotating on the table, and the tool base surface is bombarded with argon ions.
(C) Nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 3 Pa, a DC bias voltage of −100 V is applied to the tool base rotating while rotating on the rotary table, and the thin layer A current of 100 A is passed between A and the lower layer forming Cr—Al—Si alloy and the anode electrode to generate an arc discharge, and the target composition and target layer thickness shown in Table 2 are formed on the surface of the tool base. (Cr, Al, Si) N layer is deposited as a lower layer of the hard coating layer,
(D) Next, the flow rate of nitrogen gas as a reaction gas introduced into the apparatus is adjusted to obtain a reaction atmosphere of 2 Pa, and within a range of −10 to −100 V on the tool base that rotates while rotating on the rotary table. In a state where a predetermined DC bias voltage is applied, a predetermined current in a range of 50 to 200 A is passed between the cathode electrode and the anode electrode of the thin layer B forming metal Cr to generate an arc discharge, A thin layer B having a predetermined layer thickness is formed on the surface of the tool base, and after the thin layer B is formed, arc discharge is stopped. Instead, a cathode of Cr-Al-Si alloy for forming the thin layer A and the lower layer Similarly, a predetermined current in the range of 50 to 200 A is passed between the electrode and the anode electrode to generate arc discharge to form a thin layer A having a predetermined layer thickness. Then, the arc discharge is stopped and the thin layer B is again formed. Of forming metal Cr The formation of the thin layer B by arc discharge between the sword electrode and the anode electrode and the formation of the thin layer A by arc discharge between the cathode electrode and the anode electrode of the Cr-Al-Si alloy for forming the thin layer A and the lower layer are alternately performed. Table 2 shows the upper layer composed of the alternate lamination of the thin layer A and the thin layer B having the target composition and the single target layer thickness along the layer thickness direction on the surface of the tool base. The present invention-coated cBN-based sintered tools 1 to 9 were produced by vapor deposition with the total layer thickness (average layer thickness) shown.

また、比較の目的で、上記の工具基体A〜Iのそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図2に示される通常のアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として、それぞれ表3に示される目標組成に対応した成分組成をもったCr−Al−Si合金を装着し、まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、Arガスを導入して、0.7Paの雰囲気とすると共に、前記テーブル上で自転しながら回転する工具基体に−200Vの直流バイアス電圧を印加し、もって工具基体表面をアルゴンイオンによってボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記工具基体に印加するバイアス電圧を−100Vに下げて、前記Cr−Al−Si合金のカソード電極とアノード電極との間にアーク放電を発生させ、もって前記工具基体A〜Iのそれぞれの表面に、表3に示される目標組成および目標層厚の(Cr,Al,Si)N層からなる硬質被覆層を蒸着形成することにより、従来被覆cBN基焼結工具1〜9をそれぞれ製造した。 For comparison purposes, each of the above tool bases A to I is ultrasonically cleaned in acetone and dried, and then charged into the ordinary arc ion plating apparatus shown in FIG. As the (evaporation source), a Cr—Al—Si alloy having a component composition corresponding to the target composition shown in Table 3 is mounted, and first, the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less. After heating the interior of the apparatus to 500 ° C. with a heater, Ar gas was introduced to create an atmosphere of 0.7 Pa, and a DC bias voltage of −200 V was applied to the tool base rotating while rotating on the table. Then, the surface of the tool base is bombarded with argon ions, and then nitrogen gas is introduced into the apparatus as a reaction gas to make a reaction atmosphere of 3 Pa and applied to the tool base. Lower the bias voltage to -100 V, the Cr-Al-Si to generate arc discharge between the cathode electrode and the anode electrode of the alloy, with each of the surface of the tool substrate A to I, shown in Table 3 Conventionally coated cBN-based sintered tools 1 to 9 were respectively produced by vapor-depositing a hard coating layer composed of a (Cr, Al, Si) N layer having a target composition and a target layer thickness.

この結果得られた各種の被覆cBN基焼結工具のインサート本体を構成するcBN基焼結材料について、その組織を走査型電子顕微鏡を用いて観察したところ、いずれのインサート本体も、実質的に分散相を形成するcBN相と連続相を形成するTiN相との界面に超高圧焼結反応生成物が介在した組織を示した。   Regarding the cBN-based sintered material constituting the insert body of various coated cBN-based sintered tools obtained as a result, the structure was observed using a scanning electron microscope, and all the insert bodies were substantially dispersed. A structure in which an ultrahigh-pressure sintered reaction product is present at the interface between the cBN phase forming the phase and the TiN phase forming the continuous phase is shown.

さらに、同表面被覆層について、その組成を透過型電子顕微鏡を用いてのエネルギー分散型X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示し、また、その平均層厚を透過型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。   Further, when the composition of the surface coating layer was measured by energy dispersive X-ray analysis using a transmission electron microscope, the composition showed substantially the same composition as the target composition, and the average layer thickness was When the cross section was measured using a transmission electron microscope, all showed the average value (average value of five places) substantially the same as the target layer thickness.

つぎに、上記の各種の被覆cBN基焼結工具を、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆cBN基焼結工具1〜9および従来被覆cBN基焼結工具1〜9について、以下に示す切削条件a〜cで高速連続切削試験を実施した。
[切削条件a]
被削材:JIS・SKD61(硬さ:HRC61)の丸棒、
切削速度: 260m/min.、
切り込み: 0.10mm、
送り: 0.05mm/rev.、
切削時間: 6分、
の条件でのダイス鋼の乾式高速連続切削加工試験(通常の切削速度は160m/min.)、
[切削条件b]
被削材:JIS・SUJ2(硬さ:HRC61)の丸棒、
切削速度: 260m/min.、
切り込み: 0.12mm、
送り: 0.11mm/rev.、
切削時間: 8分、
の条件での軸受鋼の乾式高速連続切削加工試験(通常の切削速度は160m/min.)、
[切削条件c]
被削材:JIS・SMnC443(硬さ:HRC60)の丸棒、
切削速度: 255m/min.、
切り込み: 0.12mm、
送り: 0.07mm/rev.、
切削時間: 8分、
の条件でのマンガンクロム鋼の乾式高速連続切削加工試験(通常の切削速度は160m/min.)、
を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅(mm)と被削材の仕上げ面精度(JISB0601−2001による算術平均高さ(Ra(μm))を測定した。この測定結果を表4に示した。
Next, according to the present invention, the coated cBN-based sintered tools 1 to 9 and the conventional coated cBN-based sintered tools, in a state where all of the above-mentioned coated cBN-based sintered tools are screwed to the tip of the tool steel tool with a fixing jig. About the cBN base sintered tools 1-9 , the high-speed continuous cutting test was implemented on the cutting conditions ac shown below.
[Cutting conditions a]
Work material: JIS · SKD61 (hardness: HRC61) round bar,
Cutting speed: 260 m / min. ,
Cutting depth: 0.10mm,
Feed: 0.05 mm / rev. ,
Cutting time: 6 minutes,
Die steel dry high-speed continuous cutting test under normal conditions (normal cutting speed is 160 m / min.),
[Cutting conditions b]
Work material: JIS / SUJ2 (Hardness: HRC61) round bar,
Cutting speed: 260 m / min. ,
Cutting depth: 0.12mm,
Feed: 0.11 mm / rev. ,
Cutting time: 8 minutes,
Dry high-speed continuous cutting test of bearing steel under the conditions of (normal cutting speed is 160 m / min.),
[Cutting conditions c]
Work material: JIS · SMnC443 (hardness: HRC60) round bar,
Cutting speed: 255 m / min. ,
Cutting depth: 0.12mm,
Feed: 0.07 mm / rev. ,
Cutting time: 8 minutes,
Dry high-speed continuous cutting test of manganese chromium steel under the conditions (normal cutting speed is 160 m / min.),
In each cutting test, the flank wear width (mm) of the cutting edge and the finished surface accuracy of the work material (arithmetic average height (Ra (μm)) according to JIS B0601-2001) were measured. It is shown in Table 4.




表2〜4に示される結果から、本発明被覆cBN基焼結工具は、いずれも硬質被覆層が、一層平均層厚がそれぞれ0.05〜0.3μmの薄層Aと薄層Bとを交互に各2〜6層積層した交互積層構造を有する平均層厚(合計層厚)0.3〜3μmの上部層と、1〜3μmの平均層厚を有する下部層とからなり、前記下部層がすぐれた高温強度とすぐれた高温硬さ、耐熱性、耐高温酸化性、耐熱塑性変形性を備え、さらに、前記上部層がすぐれた高温強度、高温硬さ、耐熱性、耐高温酸化性、耐熱塑性変形性に加えてすぐれた潤滑性と耐溶着性を備えているので、ダイス鋼、軸受鋼、マンガン鋼などのような、工具表面に溶着し易い高硬度の硬質難削材の高速連続切削であっても、前記硬質被覆層に境界異常損傷、欠損の発生はなく、長期に亘って、すぐれた耐摩耗性を発揮するとともに、被削材のすぐれた仕上げ面精度を確保することができるのに対して、硬質被覆層が単一の(Cr,Al,Si)N層からなる従来被覆cBN基焼結工具は、特に硬質被覆層の潤滑性、耐溶着性不足が原因で、刃先に境界異常損傷や欠損が発生し、被削材の仕上げ面精度を維持することができないばかりか、比較的短時間で使用寿命に至ることが明らかである。
From the results shown in Table 2-4, the present invention coated cBN-based sintered tool are both hard coating layer, and a further thin layer A of 0.05~0.3μm average layer thickness is respectively thin layer B the average layer thickness (total layer thickness) 0.3 to 3 m upper layer with alternating multilayer structure obtained by stacking the 2-6 layers alternately, consists of a lower layer having an average layer thickness of 1 to 3 [mu] m, the lower layer It has excellent high-temperature strength and excellent high-temperature hardness, heat resistance, high-temperature oxidation resistance, and heat-resistant plastic deformation, and the upper layer has excellent high-temperature strength, high-temperature hardness, heat resistance, high-temperature oxidation resistance, In addition to heat-resistant plastic deformation, it has excellent lubricity and welding resistance, so high-speed continuous hard hard-to-cut materials that are easy to weld to the tool surface, such as die steel, bearing steel, manganese steel, etc. Even during cutting, the hard coating layer has no abnormal boundary damage or chipping, Conventionally, the hard coating layer consists of a single (Cr, Al, Si) N layer, while exhibiting excellent wear resistance and ensuring the finished surface accuracy of the work material. The coated cBN-based sintered tool not only cannot maintain the finished surface accuracy of the work material due to abnormal boundary damage and chipping at the cutting edge, especially due to the lack of lubricity and welding resistance of the hard coating layer. It is clear that the service life is reached in a relatively short time.

上述のように、この発明の被覆cBN基焼結工具は、各種の鋼や鋳鉄などの通常の切削条件での切削加工は勿論のこと、特にダイス鋼、軸受鋼、マンガン鋼などのような、工具表面に溶着し易い高硬度の硬質難削材の高速連続切削であっても、前記硬質被覆層がすぐれた耐境界異常損傷性、耐欠損性を発揮し、すぐれた被削材仕上げ面精度を長期に亘って維持するとともにすぐれた耐摩耗性をも示すものであるから、切削加工装置の高性能化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated cBN-based sintered tool of the present invention can be used not only for cutting under normal cutting conditions such as various steels and cast iron, but particularly for die steel, bearing steel, manganese steel, Even in high-speed continuous cutting of hard, hard, difficult-to-cut materials that are easily welded to the tool surface, the hard coating layer exhibits excellent boundary abnormal damage resistance and fracture resistance, and excellent work surface finish accuracy. That can maintain a high degree of wear resistance and also exhibits excellent wear resistance, so that it can sufficiently satisfy cutting equipment performance, labor saving and energy saving, and cost reduction. It is.

本発明の被覆cBN基焼結工具を構成する硬質被覆層を形成するのに用いたアークイオンプレーティング装置を示し、(a)は概略平面図、(b)は概略正面図である。The arc ion plating apparatus used for forming the hard coating layer which comprises the coated cBN group sintered tool of this invention is shown, (a) is a schematic plan view, (b) is a schematic front view. 通常のアークイオンプレーティング装置の概略説明図である。It is a schematic explanatory drawing of a normal arc ion plating apparatus.

Claims (1)

窒化チタン13〜30%、アルミニウムおよび/または酸化アルミニウム6〜18%、残部窒化ほう素(以上、%は、いずれも質量%を示す)からなる配合組成を有する圧粉体の超高圧焼結材料で構成され、かつ、走査型電子顕微鏡による組織観察で、分散相を形成する立方晶窒化ほう素相と連続相を形成する窒化チタン相との界面に超高圧焼結反応生成物が介在した組織を有するインサート本体の表面に硬質被覆層を蒸着形成した表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具において、
(a)硬質被覆層は、1〜3μmの平均層厚を有する下部層と0.3〜3μmの平均層厚を有する上部層とからなり、
(b)硬質被覆層の下部層は、蒸着形成された、
組成式:(Cr1−X−YAlSi)N(ただし、原子比で、Xは0.4〜0.7、Yは0.02〜0.10を示す)を満足するCrとAlとSiの複合窒化物層、
(c)硬質被覆層の上部層は、下部層の表面に蒸着形成された、いずれも一層平均層厚がそれぞれ0.05〜0.3μmの薄層Aと薄層Bとを交互に各2〜6層積層した交互積層構造を有し、
上記薄層Aは、
組成式:(Cr1−X−YAlSi)N(ただし、原子比で、Xは0.4〜0.7、Yは0.02〜0.10を示す)を満足するCrとAlとSiの複合窒化物層、
上記薄層Bは、Cr窒化物(CrN)層、
からなる硬質被覆層を蒸着形成した、硬質難削材の高速連続切削加工ですぐれた耐欠損性を発揮する表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具。
Ultra-high pressure sintered material of green compact having a compounding composition comprising titanium nitride 13 to 30%, aluminum and / or aluminum oxide 6 to 18%, and remaining boron nitride (wherein,% indicates mass%) And a structure in which an ultrahigh pressure sintered reaction product is interposed at the interface between a cubic boron nitride phase forming a dispersed phase and a titanium nitride phase forming a continuous phase, as observed by a scanning electron microscope. In a cutting tool made of a surface-coated cubic boron nitride-based ultra-high pressure sintered material in which a hard coating layer is vapor-deposited on the surface of the insert body having
(A) The hard coating layer is composed of a lower layer having an average layer thickness of 1 to 3 μm and an upper layer having an average layer thickness of 0.3 to 3 μm,
(B) The lower layer of the hard coating layer was formed by vapor deposition.
Cr satisfying the composition formula: (Cr 1-XY Al X Si Y ) N (wherein X is 0.4 to 0.7 and Y is 0.02 to 0.10 in atomic ratio) A composite nitride layer of Al and Si;
(C) The upper layer of the hard coating layer is formed by vapor deposition on the surface of the lower layer, and each of the thin layer A and the thin layer B each having an average layer thickness of 0.05 to 0.3 μm alternately. Have an alternating layered structure of ~ 6 layers ,
The thin layer A is
Cr satisfying the composition formula: (Cr 1-XY Al X Si Y ) N (wherein X is 0.4 to 0.7 and Y is 0.02 to 0.10 in atomic ratio) A composite nitride layer of Al and Si;
The thin layer B is a Cr nitride (CrN) layer,
A cutting tool made of a surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent fracture resistance in high-speed continuous cutting of hard difficult-to-cut materials.
JP2006193499A 2006-07-14 2006-07-14 Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent fracture resistance in high-speed continuous cutting of hard difficult-to-cut materials Expired - Fee Related JP4883480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006193499A JP4883480B2 (en) 2006-07-14 2006-07-14 Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent fracture resistance in high-speed continuous cutting of hard difficult-to-cut materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006193499A JP4883480B2 (en) 2006-07-14 2006-07-14 Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent fracture resistance in high-speed continuous cutting of hard difficult-to-cut materials

Publications (2)

Publication Number Publication Date
JP2008018509A JP2008018509A (en) 2008-01-31
JP4883480B2 true JP4883480B2 (en) 2012-02-22

Family

ID=39074867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006193499A Expired - Fee Related JP4883480B2 (en) 2006-07-14 2006-07-14 Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent fracture resistance in high-speed continuous cutting of hard difficult-to-cut materials

Country Status (1)

Country Link
JP (1) JP4883480B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5201936B2 (en) * 2007-10-12 2013-06-05 京セラ株式会社 Surface coating tool
JP5804589B2 (en) * 2010-02-10 2015-11-04 日立金属株式会社 Coated mold or casting member having excellent sliding characteristics and method for producing the same
JP5975214B2 (en) * 2012-10-09 2016-08-23 三菱マテリアル株式会社 Surface coated cutting tool
CN107931617B (en) * 2017-11-21 2019-06-07 江苏雨燕模业科技有限公司 A kind of compound material cutter and preparation method thereof based on automobile die production
JP7216914B2 (en) * 2019-03-12 2023-02-02 三菱マテリアル株式会社 A surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance in high-load cutting.

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2638406B2 (en) * 1992-10-26 1997-08-06 神鋼コベルコツール株式会社 Wear resistant multilayer hard film structure
JP3743984B2 (en) * 1994-08-01 2006-02-08 住友電気工業株式会社 Composite high hardness material for tools
JP2000144376A (en) * 1998-11-18 2000-05-26 Sumitomo Electric Ind Ltd Film excellent in sliding characteristic
JP4375691B2 (en) * 1999-12-17 2009-12-02 住友電工ハードメタル株式会社 Composite high hardness material
JP3910373B2 (en) * 2001-03-13 2007-04-25 オーエスジー株式会社 Hard multilayer coating for rotary cutting tool and hard multilayer coating coated rotary cutting tool
JP3598074B2 (en) * 2001-05-11 2004-12-08 日立ツール株式会社 Hard coating tool

Also Published As

Publication number Publication date
JP2008018509A (en) 2008-01-31

Similar Documents

Publication Publication Date Title
JP5005262B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent surface finish accuracy over a long period of time in high-speed cutting of hardened steel
JP4985919B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that provides excellent long-term surface accuracy in high-speed cutting of hardened steel
JP5574277B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material with excellent peeling resistance
JP5418833B2 (en) Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material
JP5686253B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material with excellent peeling resistance
JP4883480B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent fracture resistance in high-speed continuous cutting of hard difficult-to-cut materials
JP4883475B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent wear resistance in high-speed cutting of hardened steel
JP2008254159A (en) Surface-coated cutting tool made of cubic boron nitride group ultrahigh-pressure sintered material
JP4883473B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent chipping resistance in hard cutting of hardened steel
JP4807575B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent wear resistance in high-speed cutting of hardened steel
JP4985914B2 (en) Cutting tool made of super-high pressure sintered material with surface-coated cubic boron nitride based on excellent finish surface accuracy
JP4883478B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent finished surface accuracy over a long period of time in high-speed continuous cutting of hard difficult-to-cut materials
JP2008018505A (en) Cutting tool made of surface coated cubic boron nitride-base very high pressure sintered material exhibiting excellent chipping resistance in high-speed cutting hard material hard to cut
JP4883479B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent fracture resistance in high-speed intermittent cutting of high-hardness steel
JP4883472B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent chipping resistance in hard cutting of hardened steel
JP4883477B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent fracture resistance in high-speed intermittent cutting of high-hardness steel
JP4284509B2 (en) Cutting tool made of surface-coated cubic boron nitride based sintered material that exhibits excellent chipping resistance due to hard coating layer in heavy cutting
JP2008302439A (en) Cutting tool made of surface coated cubic boron nitride-base very high pressure sintered material
JP4883471B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent chipping resistance in hard cutting of hardened steel
JP4748446B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent chipping resistance when cutting hard difficult-to-cut materials
JP2008018504A (en) Cutting tool made of surface coated cubic boron nitride-base very high pressure sintered material exhibiting excellent chipping resistance in high-speed cutting hard material hard to cut
JP2007313582A (en) Surface-coated cutting tool having hard coating layer with excellent chipping resistance in heavy cutting difficult-to-cut material
JP4748447B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent chipping resistance in high-speed cutting of hard difficult-to-cut materials
JP4883474B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent wear resistance in high-speed cutting of hardened steel
JP2008302438A (en) Cutting tool made of surface coated cubic boron nitride-base very high pressure sintered material

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111114

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4883480

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111127

LAPS Cancellation because of no payment of annual fees