JP5975214B2 - Surface coated cutting tool - Google Patents

Surface coated cutting tool Download PDF

Info

Publication number
JP5975214B2
JP5975214B2 JP2012224227A JP2012224227A JP5975214B2 JP 5975214 B2 JP5975214 B2 JP 5975214B2 JP 2012224227 A JP2012224227 A JP 2012224227A JP 2012224227 A JP2012224227 A JP 2012224227A JP 5975214 B2 JP5975214 B2 JP 5975214B2
Authority
JP
Japan
Prior art keywords
layer
cutting
resistance
coated
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012224227A
Other languages
Japanese (ja)
Other versions
JP2014076500A (en
Inventor
英利 淺沼
英利 淺沼
智行 益野
智行 益野
大介 風見
大介 風見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2012224227A priority Critical patent/JP5975214B2/en
Publication of JP2014076500A publication Critical patent/JP2014076500A/en
Application granted granted Critical
Publication of JP5975214B2 publication Critical patent/JP5975214B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)
  • Drilling Tools (AREA)

Description

本発明は、表面被覆切削工具(以下、被覆工具という)に関し、さらに詳しくは、例えば、チタン合金、耐熱合金鋼、ステンレス鋼などの加工時に刃先への溶着が激しい難削材を、高熱発生を伴うとともに切刃部への衝撃性および溶着性が著しい高速切削条件で切削加工した場合に、硬質被覆層がすぐれた耐チッピング性と耐摩耗性を発揮する被覆工具に関するものである。   The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool). More specifically, for example, a difficult-to-cut material that is severely welded to the cutting edge when machining titanium alloy, heat-resistant alloy steel, stainless steel, etc. In addition, the present invention relates to a coated tool that exhibits excellent chipping resistance and wear resistance when the hard coating layer is machined under high-speed cutting conditions with remarkable impact and weldability to the cutting edge.

一般に、被覆工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるインサート、被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、またインサートを着脱自在に取り付けてソリッドタイプのエンドミルと同様に切削加工を行うインサート式エンドミル工具などが知られている。   In general, coated tools are used for turning and planing of work materials such as various types of steel and cast iron, inserts that can be used detachably attached to the tip of a cutting tool, drilling processing of work materials, etc. There are drills, miniature drills, solid type end mills used for chamfering, grooving, shoulder processing, etc. of the work material, etc. Also, inserts are detachably attached and cutting is performed in the same way as solid type end mills Insert type end mill tools are known.

また、従来被覆工具としては、例えば、分散相を形成する立方晶窒化ほう素相と連続相を形成する窒化チタン相との界面に超高圧焼結反応生成物が介在した組織を有するインサート本体の表面に硬質被覆層を蒸着形成した表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具であって、(a)硬質被覆層が、1〜3μmの平均層厚を有する下部層と0.3〜3μmの平均層厚を有する上部層とからなり、(b)下部層が、特定の組成式を満足するCrとAlの複合窒化物層からなり、(c)上部層が、一層平均層厚がそれぞれ0.05〜0.3μmの薄層Aと薄層Bの交互積層構造を有し、薄層Aが、特定の組成式を満足するCrとAlの複合窒化物層、薄層Bが、Cr窒化物(CrN)層という構成をとることによって、硬質難削材の高速連続切削加工ですぐれた仕上げ面精度を長期に亘って発揮する表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具が知られている(例えば、特許文献1参照)。   In addition, as a conventional coated tool, for example, an insert body having a structure in which an ultrahigh pressure sintering reaction product is interposed at an interface between a cubic boron nitride phase forming a dispersed phase and a titanium nitride phase forming a continuous phase. A surface-coated cubic boron nitride-based ultra-high pressure sintered material cutting tool having a hard coating layer deposited on the surface, wherein (a) the hard coating layer has a lower layer having an average layer thickness of 1 to 3 μm and 0 An upper layer having an average layer thickness of 3 to 3 μm, (b) the lower layer is composed of a composite nitride layer of Cr and Al satisfying a specific composition formula, and (c) the upper layer is a single layer average A composite nitride layer of Cr and Al, which has a laminated structure of thin layers A and B each having a thickness of 0.05 to 0.3 μm, and the thin layer A satisfies a specific composition formula, a thin layer B has a structure of Cr nitride (CrN) layer, which makes it difficult to cut hard difficult-to-cut materials. Surface-coated cubic boron nitride containing group ultrahigh pressure sintered material cutting tool made to exert over the surface finish was excellent in continued cutting a long has been known (e.g., see Patent Document 1).

さらに、別の従来被覆工具として、工具基体表面に(Al,Ti,M)N層からなる硬質被覆層を蒸着したことによって、耐摩耗性、耐欠損性を改善させたものも知られているが、このような硬質被覆層は、例えば、図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置(AIP装置)に工具基体を装入し、装置内を、例えば、500℃の温度に加熱した状態で、硬質被覆層の組成に対応した合金がセットされたカソード電極、例えば、Al−Ti−M合金と、アノード電極との間に、例えば、電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、2Paの反応雰囲気とし、一方、工具基体には、例えば、−100Vのバイアス電圧を印加した条件で、工具基体表面に(Al,Ti,M)N層からなる硬質被覆層を蒸着することにより製造されることも知られている(例えば、特許文献2参照)。   Furthermore, another conventional coated tool is known which has improved wear resistance and fracture resistance by vapor-depositing a hard coating layer comprising an (Al, Ti, M) N layer on the surface of the tool base. However, such a hard coating layer is prepared by, for example, inserting a tool base into an arc ion plating apparatus (AIP apparatus) which is one type of physical vapor deposition apparatus shown schematically in FIG. For example, between a cathode electrode in which an alloy corresponding to the composition of the hard coating layer is set, for example, an Al—Ti—M alloy, and the anode electrode while being heated to a temperature of 500 ° C., for example, current: 90 A Arc discharge is generated under the conditions of the above, and simultaneously, nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 2 Pa. On the other hand, a tool base is applied with a bias voltage of, for example, −100 V Base (Al, Ti, M) it is also known to be produced by depositing a hard coating layer consisting of N layers on the surface (e.g., see Patent Document 2).

特開2008−18507号公報JP 2008-18507 A 特許第2793773号公報Japanese Patent No. 2793773

ところが、近年の切削加工装置の自動化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削工具には被削材の材種にできるだけ影響を受けない汎用性、すなわち、できるだけ多くの材種の切削加工が可能な切削工具が求められる傾向にあるが、従来被覆工具においては、これを、鋼や鋳鉄などの被削材の通常切削速度での切削加工に用いた場合には問題ないが、チタン合金、耐熱合金鋼、ステンレス鋼などの難削材を、高い発熱をともなうとともに、切刃部への衝撃性および溶着性が著しい高速切削条件で切削した場合には、切削時の発熱によって被削材および切粉は高温に加熱されて粘性が増大し、これに伴って硬質被覆層表面に対する溶着性が一段と増すようになり、この結果、切刃部におけるチッピング(微少欠け)の発生が急激に増加し、これが原因で比較的短時間で使用寿命に至るのが現状である。   However, the automation of cutting machines in recent years has been remarkable. On the other hand, there is a strong demand for labor saving, energy saving, and cost reduction for cutting, and as a result, cutting tools have as much influence as possible on the type of work material. There is a tendency to demand cutting tools that can cut as many grades as possible, but in conventional coated tools, this is at the normal cutting speed of work materials such as steel and cast iron. No problem when used for cutting, but high-speed cutting conditions with difficult to cut materials such as titanium alloy, heat-resistant alloy steel, and stainless steel with high heat generation and remarkable impact and weldability to the cutting edge When cutting with, the work material and chips are heated to a high temperature due to the heat generated during cutting, and the viscosity increases, and as a result, the weldability to the surface of the hard coating layer further increases. Fruit, increased chipping (fine chipping) rapidly at the cutting edge. This is the current situation is reached in a relatively short time service life due.

そこで、本発明が解決しようとする技術的課題、すなわち、本発明の目的は、チタン合金、耐熱合金鋼、ステンレス鋼などの難削材を、高熱発生を伴う高速切削条件で切削した場合においてもすぐれた耐衝撃性、耐溶着性、耐チッピングおよび耐摩耗性を発揮する被覆工具を提供することである。   Therefore, the technical problem to be solved by the present invention, that is, the object of the present invention is that even when difficult-to-cut materials such as titanium alloy, heat-resistant alloy steel, and stainless steel are cut under high-speed cutting conditions with high heat generation. It is to provide a coated tool that exhibits excellent impact resistance, welding resistance, chipping resistance and wear resistance.

そこで、本発明者らは、前述のような観点から、特にチタン合金、耐熱合金鋼、ステンレス鋼などの難削材の切削加工を、高速切削条件で切削加工した場合に、硬質被覆層がすぐれた耐衝撃性、耐溶着性、耐チッピング性および耐摩耗性を併せ持つ被覆工具を開発すべく、鋭意研究を行った結果、工具基体の表面に、従来被覆工具の硬質被覆層であるAlとTiとの合量に占めるTiの含有割合が25〜55原子%となるようにTi成分を含有させたAlとTiの複合窒化物層(以下、(Al,Ti)N層と示す)を下部層として0.5〜5μmの平均層厚で形成し、これの上に、AlとCrとの合量に占めるCrの含有割合が25〜50原子%となるようにCr成分を含有させたAlとCrの複合窒化物層(以下、(Al,Cr)N層と示す)を0.1〜1.0μmの一層平均層厚で形成し、さらにその上に、Crの窒化物層(以下、CrN層と示す)を0.1〜1.0μmの一層平均層厚で形成し、(Al,Cr)N層とCrN層との2周期以上の交互積層を形成することにより、下部層の(Al,Ti)N層が、すぐれた耐摩耗性、耐熱性、耐欠損性を示し、また、上部層の交互積層を構成する(Al,Cr)N層が、すぐれた耐酸化性、耐熱性を示し、CrN層が、すぐれた潤滑性、耐溶着性を示すと共に、(Al,Cr)N層とCrN層との接合により、すぐれた耐衝撃性、耐チッピング性、耐クラック進展性が奏され、さらに、工具基体と上部層との間に下部層として形成した(Al,Ti)N層と、(Al,Cr)N層とCrN層との交互積層からなる上部層との相乗効果により、すぐれた耐欠損性(靱性向上)と耐摩耗性を発揮するようになる。したがって、特に、加工時に刃先への溶着が激しい難削材の高速切削加工において、切刃部が高温になったとしても耐熱性にすぐれ、その結果、切刃部におけるチッピング(微少欠け)の発生が抑制され、長期に亘ってすぐれた耐摩耗性が発揮されるという新規な知見を得た。   In view of the above, the inventors of the present invention have an excellent hard coating layer particularly when cutting difficult-to-cut materials such as titanium alloy, heat-resistant alloy steel, and stainless steel under high-speed cutting conditions. As a result of earnest research to develop a coated tool having both high impact resistance, welding resistance, chipping resistance and wear resistance, Al and Ti, which are hard coating layers of conventional coated tools, are formed on the surface of the tool base. The lower nitride layer is a composite nitride layer of Al and Ti (hereinafter referred to as an (Al, Ti) N layer) containing a Ti component so that the Ti content in the total amount of 25 to 55 atomic%. Al having an average layer thickness of 0.5 to 5 μm, and an Al layer containing a Cr component such that the Cr content in the total amount of Al and Cr is 25 to 50 atomic%. Cr composite nitride layer (hereinafter referred to as (Al, Cr) N layer) ) With a one-layer average layer thickness of 0.1 to 1.0 μm, and a Cr nitride layer (hereinafter referred to as a CrN layer) is further formed thereon with a one-layer average layer thickness of 0.1 to 1.0 μm. By forming an alternating layer of two or more periods of (Al, Cr) N layers and CrN layers, the lower (Al, Ti) N layer has excellent wear resistance, heat resistance, and fracture resistance. In addition, the (Al, Cr) N layer constituting the alternate lamination of the upper layer exhibits excellent oxidation resistance and heat resistance, and the CrN layer exhibits excellent lubricity and welding resistance. By joining the (Al, Cr) N layer and the CrN layer, excellent impact resistance, chipping resistance, and crack resistance are exhibited, and further, a lower layer is formed between the tool base and the upper layer ( Synergy between the Al, Ti) N layer and the upper layer composed of alternating layers of the (Al, Cr) N layer and the CrN layer. The result becomes excellent chipping resistance (the toughness increased) so as to exert the wear resistance. Therefore, especially in high-speed cutting of difficult-to-cut materials that are heavily welded to the cutting edge during machining, even if the cutting edge becomes hot, it has excellent heat resistance, and as a result, chipping (small chipping) occurs at the cutting edge. New knowledge that the wear resistance is suppressed and excellent wear resistance is exhibited over a long period of time.

さらに、工具基体の表面に、AlとTiの合量に占めるTiの含有割合が25〜55原子%となるようにTi成分を含有させた平均層厚0.5〜5.0μmの(Al,Cr)N層を蒸着形成し、その上に、AlとCrとの合量に占めるCrの含有割合が25〜50原子%となるようにCr成分を含有させた一層平均層厚0.1〜1.0μmの(Al,Cr)N層と一層平均層厚0.1〜1.0μmのCrN層とを交互に形成した交互積層構造からなる上部層を構成すると、CrN層はすぐれた潤滑性、耐溶着性を示し、また、これと交互に積層形成される(Al,Cr)N層はすぐれた耐酸化性および耐熱性を示すことから、高熱発生を伴う切削加工においても、CrN層のすぐれた耐溶着性は維持されることを見出した。
すなわち、チタン合金、ステンレス鋼等の難削材の高速切削加工において、切刃部が高温になったとしても、(Al,Cr)N層に不足する耐溶着性を、これと交互に積層されるCrN層が補完し、硬質被覆層全体として被削材との耐摩耗性も改善され、その結果、切刃部におけるチッピング(微少欠け)の発生が防止され、長期に亘ってすぐれた耐摩耗性が発揮されるという新規な知見を得た。
さらに、本発明者らは、下部層の(Al,Ti)N層および上部層の交互積層を構成する(Al,Cr)N層のヤング率に着目して詳細に研究を行ったところ、下部層の(Al,Ti)N層については、下部層に期待される耐摩耗性、耐熱性、耐欠損性を十分に発揮させるためには、被削材や切削条件に限らず、ヤング率が400〜550GPaの高ヤング率であるとき(Al,Ti)N層の有する耐摩耗性、耐熱性、耐欠損性がより有効に発揮される。一方、上部層の(Al,Cr)N層については、ヤング率が150〜300GPaの低ヤング率であるとき、(Al,Cr)N層の耐欠損性が強化されるため、チタン合金、ステンレス鋼等の損傷形態が溶着チッピング等の異常損傷で寿命となりやすい、すなわち、加工時に刃先への溶着が激しい難削材の高速切削加工において、特にすぐれた切削性能を発揮することを見出した。
前述したようないくつもの新規な知見を組み合わせることにより、各構成要素が相乗的な効果を奏し、各構成要素単独からは予測し難い、きわめてすぐれた切削性能を発揮することを見出し、本発明を完成するに至った。
Furthermore, an average layer thickness of 0.5 to 5.0 μm (Al, 0.5 μm) containing a Ti component so that the Ti content in the total amount of Al and Ti is 25 to 55 atomic% on the surface of the tool base. An average layer thickness of 0.1 to 0.1 in which a Cr component is formed by vapor deposition and a Cr component is contained so that the Cr content in the total amount of Al and Cr is 25 to 50 atomic%. When the upper layer is composed of an alternating layered structure in which a 1.0 μm (Al, Cr) N layer and a CrN layer having an average layer thickness of 0.1 to 1.0 μm are alternately formed, the CrN layer has excellent lubricity. The (Al, Cr) N layer, which is formed by alternately laminating with this, exhibits excellent oxidation resistance and heat resistance. Therefore, even in cutting work with high heat generation, the CrN layer It has been found that excellent welding resistance is maintained.
That is, in high-speed cutting of difficult-to-cut materials such as titanium alloy and stainless steel, even if the cutting edge becomes hot, the (Al, Cr) N layer has insufficient welding resistance and is alternately laminated. As a result, the wear resistance with the work material is improved as a whole hard coating layer. As a result, chipping (slight chipping) is prevented from occurring at the cutting edge and excellent wear resistance over a long period of time. We obtained new knowledge that the sexuality is exhibited.
Furthermore, the present inventors have conducted detailed research focusing on the Young's modulus of the (Al, Ti) N layer and the (Al, Cr) N layer constituting the alternate lamination of the upper layer. For the (Al, Ti) N layer, the Young's modulus is not limited to the work material and cutting conditions in order to fully exhibit the wear resistance, heat resistance, and fracture resistance expected of the lower layer. When the Young's modulus is 400 to 550 GPa, the wear resistance, heat resistance, and fracture resistance of the (Al, Ti) N layer are more effectively exhibited. On the other hand, for the (Al, Cr) N layer as the upper layer, when the Young's modulus is a low Young's modulus of 150 to 300 GPa, the fracture resistance of the (Al, Cr) N layer is enhanced. It has been found that the damage form of steel or the like tends to have a life due to abnormal damage such as welding chipping, that is, it exhibits particularly excellent cutting performance in high-speed cutting of difficult-to-cut materials that are severely welded to the cutting edge during processing.
By combining several new findings as described above, each component has a synergistic effect, and it is difficult to predict from each component alone, and exhibits excellent cutting performance. It came to be completed.

本発明は、前記研究結果に基づいてなされたものであって、
「(1) 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に硬質被覆層を形成してなる表面被覆切削工具において、
前記硬質被覆層が、
(a)0.5〜5.0μmの平均層厚を有し、かつ、
組成式:(Al1−xTi)N(ここで、xはAlとTiの合量に占めるTiの含有割合を示し、原子比で、0.25≦x≦0.55である)を満足し、ヤング率Eが400GPa≦E≦550GPaであるAlとTiとの複合窒化物層からなる下部層と、
(b)0.1〜1.0μmの一層平均層厚を有し、かつ、
組成式:(Al1−yCr)N(ここで、yはAlとCrの合量に占めるCrの含有割合を示し、原子比で、0.25≦y≦0.50である)を満足し、ヤング率Eが150GPa≦E≦300GPaであるAlとCrとの複合窒化物層からなる(Al,Cr)N層、
(c)0.1〜1.0μmの一層平均層厚を有するCrN層、
前記(b)、(c)の積層周期が2周期以上の交互積層からなり、合計平均層厚が前記下部層の平均層厚の1.2倍以上であって、かつ、0.6〜6.0μmである上部層と、
を有することを特徴とする表面被覆切削工具。」
を特徴とするものである。
なお、本発明において積層周期とは、(Al,Cr)N層とCrN層の積層を1周期と呼んでいる。
The present invention has been made based on the research results,
“(1) In a surface-coated cutting tool in which a hard coating layer is formed on the surface of a tool base composed of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
The hard coating layer is
(A) having an average layer thickness of 0.5 to 5.0 μm, and
Composition formula: (Al 1-x Ti x ) N (where x represents the content ratio of Ti in the total amount of Al and Ti, and the atomic ratio is 0.25 ≦ x ≦ 0.55) A lower layer comprising a composite nitride layer of Al and Ti satisfying and having a Young's modulus E of 400 GPa ≦ E ≦ 550 GPa;
(B) has an average layer thickness of 0.1 to 1.0 μm, and
Composition formula: (Al 1-y Cr y ) N (where y represents the content ratio of Cr in the total amount of Al and Cr, and the atomic ratio is 0.25 ≦ y ≦ 0.50) A (Al, Cr) N layer consisting of a composite nitride layer of Al and Cr satisfying and having a Young's modulus E of 150 GPa ≦ E ≦ 300 GPa;
(C) a CrN layer having a single layer average layer thickness of 0.1 to 1.0 μm;
(B), (c) is composed of alternating laminations of two or more layers, the total average layer thickness is 1.2 times or more the average layer thickness of the lower layer, and 0.6-6 An upper layer that is 0.0 μm;
A surface-coated cutting tool characterized by comprising: "
It is characterized by.
In the present invention, the stacking cycle refers to the stacking of the (Al, Cr) N layer and the CrN layer as one cycle.

つぎに、本発明の被覆工具の硬質被覆層の構成層に関し、前記の通りに数値限定した理由を説明する。   Next, the reason why the numerical values of the constituent layers of the hard coating layer of the coated tool of the present invention are limited as described above will be described.

(a)下部層を構成する(Al,Ti)N層の組成および平均層厚:
下部層を構成する(Al,Ti)N層の構成成分であるAl成分には硬質被覆層における高温硬さを向上させ、同Ti成分には高温強度を向上させる作用があるが、Tiの含有割合を示すx値がAlとの合量に占める割合(原子比、以下同じ)で0.25未満になると、所定の高温強度を確保することができず、これが耐摩耗性低下の原因となり、一方、Tiの含有割合を示すx値が同0.55を越えると、相対的にAlの含有割合が減少し、高速切削加工で必要とされる高温硬さを確保することができず、チッピングの発生を防止することが困難になることからx値を0.25〜0.55と定めた。
また、下部層を構成する(Al,Ti)N層の平均層厚が0.5μm未満では、自身の持つすぐれた耐摩耗性を長期に亘って発揮するには不十分であり、一方、その平均層厚が5μmを越えると、前記の高速切削では切刃部にチッピングが発生し易くなることから、その平均層厚を0.5〜5.0μmと定めた。
(A) Composition and average layer thickness of the (Al, Ti) N layer constituting the lower layer:
The Al component, which is a component of the (Al, Ti) N layer constituting the lower layer, improves the high-temperature hardness of the hard coating layer, and the Ti component has the effect of improving the high-temperature strength. When the x value indicating the ratio is less than 0.25 in the ratio to the total amount with Al (atomic ratio, the same applies hereinafter), the predetermined high-temperature strength cannot be ensured, which causes a decrease in wear resistance, On the other hand, if the x value indicating the Ti content exceeds 0.55, the Al content decreases relatively, and the high-temperature hardness required for high-speed cutting cannot be ensured. The x value was determined to be 0.25 to 0.55 because it would be difficult to prevent the occurrence of.
Further, if the average layer thickness of the (Al, Ti) N layer constituting the lower layer is less than 0.5 μm, it is insufficient to exhibit the excellent wear resistance of itself for a long time, When the average layer thickness exceeds 5 μm, chipping is likely to occur at the cutting edge portion in the high-speed cutting, so the average layer thickness was set to 0.5 to 5.0 μm.

(b)上部層における交互積層の一方の層を構成する(Al,Cr)N層の組成:
上部層における交互積層の一方の層を構成するAlとCrの複合窒化物からなる(Al,Cr)N層は、すぐれた耐酸化性、耐熱性を有するとともに、その構成成分であるCr成分によって、すぐれた潤滑性を備えるようになり、また、Al成分によって、高温硬さを補完する。そのため、高温切削条件下でも低摩擦係数が維持され、すぐれた耐熱性を発揮するようになるが、Crの含有割合を示すy値がAlとの合量に占める割合(原子比、以下同じ)で0.25未満になると、潤滑性を確保することができないために耐溶着性を期待することはできず、一方、Crの含有割合を示すy値が同0.50を越えると、相対的にAlの含有割合が減少し、難削材の高速切削加工で必要とされる高温硬さ確保することができないばかりか、耐摩耗性も低下し、チッピング発生を防止することが困難になることから、y値を0.25〜0.50(原子比、以下同じ)と定めた。
(B) Composition of (Al, Cr) N layer constituting one of the alternately stacked layers in the upper layer:
The (Al, Cr) N layer made of a composite nitride of Al and Cr that constitutes one of the alternately stacked layers in the upper layer has excellent oxidation resistance and heat resistance, and also depends on its constituent Cr component. It comes to have excellent lubricity, and supplements high temperature hardness with Al component. Therefore, a low coefficient of friction is maintained even under high temperature cutting conditions, and excellent heat resistance is exhibited. However, the ratio of the y value indicating the Cr content to the total amount with Al (atomic ratio, the same applies hereinafter) If it is less than 0.25, it is not possible to expect welding resistance since lubricity cannot be ensured. On the other hand, if the y value indicating the Cr content exceeds 0.50, In addition, the Al content decreases, and not only the high-temperature hardness required for high-speed cutting of difficult-to-cut materials cannot be secured, but also the wear resistance is lowered, making it difficult to prevent chipping. Therefore, the y value was determined to be 0.25 to 0.50 (atomic ratio, the same applies hereinafter).

(c)上部層における交互積層を構成する(Al,Cr)N層とCrN層の一層平均層厚:
上部層における交互積層を構成する(Al,Cr)N層は、すぐれた耐酸化性、耐熱性を有するため、すぐれた耐熱性を発揮するようになるが、一層平均層厚が0.1μm未満では、自身のもつすぐれた耐酸化性、耐熱性を長期に亘って発揮するには不十分であり、一方、その一層平均層厚が1.0μmを越えると、高速切削では、耐熱性の不足が顕在化し、切刃部にチッピングが発生し易くなることから、その一層平均層厚を0.1〜1.0μmと定めた。また、CrN層は、すぐれた耐溶着性を有するとともに、その構成成分であるCr成分によって、すぐれた潤滑性を備えるようになるが、一層平均層厚が0.1μm未満では、自身のもつすぐれた耐溶着性を長期に亘って発揮するには不十分であり、一方、その一層平均層厚が1.0μmを越えると、高速切削では、耐溶着性の不足が顕在化し、切刃部にチッピングが発生し易くなることから、その一層平均層厚を0.1〜1.0μmと定めた。
すなわち、(Al,Cr)N層は、上部層に耐酸化性、耐熱性を付与し、CrN層は、耐溶着性、潤滑性を付与するために設けたものであるが、それぞれの一層平均層厚が0.1〜1.0μmの範囲内であれば、それぞれの層の交互積層構造からなる上部層は、すぐれた耐酸化性、耐熱性、耐溶着性、潤滑性を具備したあたかも一つの層であるかのように作用するが、それぞれの一層平均層厚が1.0μmを超えると、(Al,Cr)N層の耐酸化性、耐熱性不足、あるいは、CrN層の耐溶着性、潤滑性不足が層内に局所的に現れるようになり、上部層が全体として一つの層としての良好な特性を呈することができなくなるため、それぞれの層の一層平均層厚を0.1〜1.0μmと定めた。
(C) Single layer average layer thickness of (Al, Cr) N layer and CrN layer constituting the alternate lamination in the upper layer:
The (Al, Cr) N layers constituting the alternating layers in the upper layer have excellent oxidation resistance and heat resistance, so that they exhibit excellent heat resistance, but the average layer thickness is less than 0.1 μm. However, it is insufficient to exhibit its excellent oxidation resistance and heat resistance over a long period of time. On the other hand, if the average layer thickness exceeds 1.0 μm, heat resistance is insufficient in high-speed cutting. Becomes apparent and chipping is likely to occur at the cutting edge, so the average layer thickness is set to 0.1 to 1.0 μm. In addition, the CrN layer has excellent welding resistance and has excellent lubricity due to its constituent Cr component. However, when the average layer thickness is less than 0.1 μm, the CrN layer has its own tangle. On the other hand, when the average layer thickness exceeds 1.0 μm, the lack of welding resistance becomes obvious in high-speed cutting, and the cutting edge portion becomes unclear. Since chipping easily occurs, the average layer thickness is determined to be 0.1 to 1.0 μm.
That is, the (Al, Cr) N layer provides oxidation resistance and heat resistance to the upper layer, and the CrN layer is provided to provide welding resistance and lubricity. If the layer thickness is in the range of 0.1 to 1.0 μm, the upper layer composed of the alternately laminated structure of each layer is as if it had excellent oxidation resistance, heat resistance, welding resistance, and lubricity. If each layer has an average layer thickness exceeding 1.0 μm, the (Al, Cr) N layer has insufficient oxidation resistance or heat resistance, or the CrN layer has welding resistance. Insufficient lubricity appears locally in the layer, and the upper layer as a whole cannot exhibit good characteristics as a single layer. It was determined to be 1.0 μm.

(d)下部層の(Al,Ti)N層および上部層の(Al,Cr)N層のヤング率:
上部層の(Al,Cr)N層は、ヤング率が150〜300GPaの範囲に含まれるような比較的低ヤング率であるとき、外部応力が加わった際の皮膜の変形量が増加し、クラック等の発生を阻止するため、耐欠損性を向上させることができる。そのため、チタン合金、ステンレス鋼等の損傷形態が溶着チッピング等の異常損傷で寿命となりやすい難削材の高速切削加工において、特にすぐれた切削性能を発揮する。一方、上部層の(Al,Cr)N層のヤング率が150GPaよりも低下すると、耐摩耗性の低下が著しいため好ましくなく、一方、300GPaよりも大きくなると、皮膜靭性の低下による耐欠損性が低下してしまうため、皮膜の崩壊や剥離が起こりやすくなる。そのため、チタン合金鋼、ステンレス鋼等の難削材の高速切削加工においては好ましくない。したがって、本発明においては、上部層の(Al,Cr)N層のヤング率は150〜300GPaと定めた。一方、下部層の(Al,Ti)N層については、下部層に期待される耐摩耗性、耐熱性、耐欠損性を十分に発揮させるためには、被削材や切削条件に限らず、ヤング率が400〜550GPaの比較的高ヤング率であるとき(Al,Ti)N層の有する耐摩耗性、耐熱性、耐欠損性がより有効に発揮される。そのため、本発明においては、下部層の(Al,Ti)N層のヤング率は400〜550GPaと定めた。
(D) Young's modulus of the lower (Al, Ti) N layer and the upper (Al, Cr) N layer:
When the (Al, Cr) N layer of the upper layer has a relatively low Young's modulus such that the Young's modulus is included in the range of 150 to 300 GPa, the amount of deformation of the film when external stress is applied increases and cracks occur. Therefore, the chipping resistance can be improved. Therefore, particularly excellent cutting performance is exhibited in high-speed cutting of difficult-to-cut materials that tend to have a life due to abnormal damage such as welding chipping, such as titanium alloy and stainless steel. On the other hand, if the Young's modulus of the upper (Al, Cr) N layer is lower than 150 GPa, it is not preferable because the wear resistance is remarkably lowered. Since it falls, the film is likely to collapse or peel off. Therefore, it is not preferable in high-speed cutting of difficult-to-cut materials such as titanium alloy steel and stainless steel. Therefore, in the present invention, the Young's modulus of the upper (Al, Cr) N layer is set to 150 to 300 GPa. On the other hand, the (Al, Ti) N layer of the lower layer is not limited to the work material and cutting conditions in order to sufficiently exhibit the wear resistance, heat resistance, and fracture resistance expected of the lower layer, When the Young's modulus is a relatively high Young's modulus of 400 to 550 GPa, the wear resistance, heat resistance, and fracture resistance of the (Al, Ti) N layer are more effectively exhibited. Therefore, in the present invention, the Young's modulus of the lower (Al, Ti) N layer is set to 400 to 550 GPa.

(e)上部層の合計平均層厚と下部層と上部層の層厚比:
(Al,Cr)N層とCrN層の交互積層構造を有する上部層は、前述したようにそれぞれの層の相乗効果により、すぐれた耐酸化性、耐熱性、耐溶着性、潤滑性を発揮するが、上部層の合計平均層厚が下部層の平均層厚の1.2倍未満であると、切削時に負荷が上部層に集中し、期待する耐酸化性、耐熱性、耐溶着性、潤滑性が奏されない。一方、上部層の合計平均層厚が6.0μmを超えるとチッピングが起きやすくなり、かえって耐摩耗性が低下する。したがって、上部層の合計平均層厚は、0.6〜6.0μm、かつ、下部層の平均層厚の1.2倍以上と定めた。
(E) The total average layer thickness of the upper layer and the layer thickness ratio of the lower layer and the upper layer:
The upper layer having an alternately laminated structure of (Al, Cr) N layers and CrN layers exhibits excellent oxidation resistance, heat resistance, welding resistance, and lubricity due to the synergistic effect of each layer as described above. However, if the total average layer thickness of the upper layer is less than 1.2 times the average layer thickness of the lower layer, the load concentrates on the upper layer during cutting, and the expected oxidation resistance, heat resistance, welding resistance, lubrication Sex is not played. On the other hand, if the total average layer thickness of the upper layer exceeds 6.0 μm, chipping is likely to occur, and the wear resistance is reduced. Therefore, the total average layer thickness of the upper layer was determined to be 0.6 to 6.0 μm and 1.2 times or more the average layer thickness of the lower layer.

なお、本発明の硬質被覆層を構成する(Al,Ti)N層、(Al,Cr)N層、CrN層は、例えば、図1に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に工具基体を装入し、ヒーターで装置内を、例えば、500℃の温度に加熱した状態で、装置内に所定組成のAl−Ti合金、Al−Cr合金または金属Crからなるカソード電極(蒸発源)を配置し、アノード電極とカソード電極(蒸発源)としてのAl−Ti合金との間に、例えば、電流:110Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば、3Paの反応雰囲気とし、一方、工具基体には、例えば、−100Vのバイアス電圧を印加した条件で所定時間蒸着することにより、所定の目標層厚の下部層である(Al,Ti)N層が形成される。そして、アノード電極とカソード電極としてのAl−Cr合金の間に、例えば、電流:110Aの条件で交互にアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば、0.8Paの反応雰囲気とし、一方、基体には、例えば、−25Vのバイアス電圧を印加した条件で所定時間蒸着することにより、所定の目標層厚である(Al,Cr)N層が形成される。さらに、アノード電極とカソード電極としての金属Crの間に、例えば、電流:110Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば、3Paの反応雰囲気とし、一方、工具基体には、例えば、−55Vのバイアス電圧を印加した条件で所定時間蒸着することにより、所定の目標層厚であるCrN層が形成される。これらを繰り返し蒸着することで、所定の一層目標層厚の(Al,Cr)N層とCrN層との交互積層からなる所定の合計目標層厚の上部層を蒸着することにより、本発明の硬質被覆層を蒸着形成することができる。 The (Al, Ti) N layer, (Al, Cr) N layer, and CrN layer constituting the hard coating layer of the present invention are, for example, one type of physical vapor deposition apparatus schematically shown in FIG. A tool base is inserted into an arc ion plating apparatus, and the inside of the apparatus is heated to a temperature of, for example, 500 ° C. with a heater, and then the Al—Ti alloy, Al—Cr alloy or metal Cr having a predetermined composition is put into the apparatus. The cathode electrode (evaporation source) is arranged, and an arc discharge is generated between the anode electrode and the Al—Ti alloy as the cathode electrode (evaporation source), for example, under the condition of current: 110 A, and simultaneously reacts in the apparatus. Nitrogen gas is introduced as a gas to obtain a reaction atmosphere of, for example, 3 Pa. On the other hand, a predetermined target layer thickness is obtained by evaporating on the tool base for a predetermined time under the condition that a bias voltage of, for example, −100 V is applied. A lower layer (Al, Ti) N layer is formed. Then, arc discharge is alternately generated between the Al—Cr alloy as the anode electrode and the cathode electrode, for example, under the condition of current: 110 A, and simultaneously nitrogen gas is introduced into the apparatus as a reaction gas. On the other hand, a (Al, Cr) N layer having a predetermined target layer thickness is formed on the substrate by, for example, vapor deposition for a predetermined time under the condition that a bias voltage of −25 V is applied. . Furthermore, an arc discharge is generated between the metal Cr as the anode electrode and the cathode electrode, for example, under the condition of current: 110 A, and at the same time, nitrogen gas is introduced into the apparatus as a reaction gas to obtain a reaction atmosphere of, for example, 3 Pa. On the other hand, a CrN layer having a predetermined target layer thickness is formed on the tool base by, for example, vapor deposition for a predetermined time under the condition that a bias voltage of −55 V is applied. By repeatedly depositing these, the upper layer having a predetermined total target layer thickness consisting of an alternating layer of (Al, Cr) N layers and CrN layers having a predetermined target layer thickness is evaporated. A coating layer can be deposited.

本発明の被覆工具の一態様によれば、硬質被覆層が(Al,Ti)N層からなる下部層と(Al,Cr)N層とCrN層との交互積層からなる上部層とを有し、下部層に比べ上部層の交互積層を構成する(Al,Cr)N層のヤング率を低ヤング率とした場合、硬質被覆層は、すぐれた高温硬さ、耐熱性、高温強度、耐摩耗性、潤滑性、耐衝撃性を有することから、全体として、すぐれた高温硬さ、耐熱性、高温強度等に加え、すぐれた耐欠損性、耐溶着性を備えたものとなり、その結果、特に、チタン合金、ステンレス鋼等の難削材の大きな発熱を伴い、かつ、高負荷のかかる高速切削加工であっても、すぐれた耐溶着性、耐欠損性を示し、長期に亘ってすぐれた耐チッピング性、耐摩耗性を発揮するものである。   According to one aspect of the coated tool of the present invention, the hard coating layer has a lower layer made of an (Al, Ti) N layer and an upper layer made of an alternating laminate of an (Al, Cr) N layer and a CrN layer. When the Young's modulus of the (Al, Cr) N layer that constitutes the alternate lamination of the upper layer compared to the lower layer is a low Young's modulus, the hard coating layer has excellent high temperature hardness, heat resistance, high temperature strength, wear resistance As a whole, in addition to excellent high-temperature hardness, heat resistance, high-temperature strength, etc., it has excellent fracture resistance and welding resistance. , Titanium alloy, stainless steel, and other difficult-to-cut materials, with high heat generation, and high-speed cutting with high load, excellent weld resistance and fracture resistance, and excellent long-term resistance It exhibits chipping and wear resistance.

本発明被覆工具を構成する硬質被覆層を形成するのに用いたアークイオンプレーティング装置を示し、(a)は概略平面図、(b)は概略正面図である。The arc ion plating apparatus used for forming the hard coating layer which comprises this invention coated tool is shown, (a) is a schematic plan view, (b) is a schematic front view. 従来の被覆工具を構成する硬質被覆層を形成するのに用いた従来のアークイオンプレーティング装置の概略説明図である。It is a schematic explanatory drawing of the conventional arc ion plating apparatus used in forming the hard coating layer which comprises the conventional coating tool. 本発明の硬質被覆層の層構成の模式図を示す。The schematic diagram of the layer structure of the hard coating layer of this invention is shown.

つぎに、本発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、ISO規格・CNMG120408のインサート形状をもったWC基超硬合金製の工具基体A−1〜A−10を形成した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders are blended into the composition shown in Table 1, wet mixed by a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. Medium, sintered at 1400 ° C. for 1 hour, and after sintering, tool bases A-1 to A-10 made of WC-base cemented carbide having an ISO standard / CNMG120408 insert shape were formed. .

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比で、TiC/TiN=50/50)粉末、MoC粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、ISO規格・CNMG120408のインサート形状をもったTiCN基サーメット製の工具基体B−1〜B−6を形成した。 In addition, as raw material powders, TiCN (mass ratio, TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC, all having an average particle diameter of 0.5 to 2 μm. Prepare powder, Co powder, and Ni powder, mix these raw material powders into the composition shown in Table 2, wet mix for 24 hours with a ball mill, dry, and press-mold into green compact at 100 MPa pressure Then, this green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, a tool substrate B made of TiCN base cermet having an ISO standard / CNMG120408 insert shape was used. -1 to B-6 were formed.

(a)ついで、前記工具基体A−1〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部に沿って装着し、前記回転テーブルを挟んで相対向する三方向にカソード電極(蒸発源)を配置し、その1つ目には、カソード電極(蒸発源)として所定組成の下部層形成用のAl−Ti合金を配置し、2つ目には、カソード電極(蒸発源)として所定組成の上部層形成用のAl−Cr合金を配置し、3つ目には、カソード電極(蒸発源)として上部層形成用の金属Crを配置し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、回転テーブル上で自転しながら回転する工具基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面をボンバード洗浄し、
(c)次に、装置内に反応ガスとして窒素ガスを導入して表3に示される反応雰囲気とすると共に、回転テーブル上で自転しながら回転する工具基体に表3に示される直流バイアス電圧を印加し、かつ、カソード電極の前記Al−Ti合金とアノード電極との間に120Aの電流を流してアーク放電を発生させ、工具基体の表面に、表3に示される目標組成、目標層厚、ヤング率の下部層としての(Al,Ti)N層を蒸着形成した後、カソード電極(蒸発源)とアノード電極との間のアーク放電を停止し、
(d)引き続いて装置内雰囲気を表3に示される窒素雰囲気に保持したままで、回転テーブル上で自転しながら回転する工具基体に表3に示される直流バイアス電圧を印加し、カソード電極(蒸発源)であるAl−Cr合金電極または金属Cr電極と、アノード電極との間に120Aの電流を交互に流してアーク放電を発生させて、表3に示される目標組成、一層目標層厚、ヤング率の(Al,Cr)N層と表3に示される一層目標層厚のCrN層とからなる表3に示される積層周期と合計目標層厚を有する交互積層構造の上部層を蒸着形成し、
前記(a)〜(d)により工具基体上に図3に模式的に示すような硬質被覆層を蒸着形成し、本発明被覆工具としての表面被覆インサート(以下、本発明被覆インサートと云う)1〜16をそれぞれ製造した。
各層のヤング率の制御は、前述のようにバイアス電圧と窒素分圧を制御することにより行った。すなわち、上部層の交互積層を構成する(Al,Cr)N層の形成は、低バイアス電圧、低窒素分圧とすることで、ヤング率を低ヤング率に制御することができる。また、下地層(Al,Ti)N層のヤング率の制御は、前述のようにバイアス電圧と窒素分圧を制御することにより行った。すなわち、−20〜150V、かつ0.5〜9.0Paの範囲で成膜することで400〜550GPaに制御することができる。
また、ヤング率の測定は、ナノインデンター(MTSシステムズ社の商標)を用いてナノインデンテーション法による測定を行った。その結果を表3に示した。
(A) Next, each of the tool bases A-1 to A-10 and B-1 to B-6 is ultrasonically cleaned in acetone and dried, and then the arc ion plating apparatus shown in FIG. It is mounted along the outer peripheral portion at a predetermined distance in the radial direction from the central axis on the inner rotary table, and cathode electrodes (evaporation sources) are arranged in three opposite directions across the rotary table. First, an Al—Ti alloy for forming a lower layer having a predetermined composition is disposed as a cathode electrode (evaporation source), and the second is an Al layer for forming an upper layer having a predetermined composition as a cathode electrode (evaporation source). -Cr alloy is arranged, and third, metal Cr for forming the upper layer is arranged as a cathode electrode (evaporation source),
(B) First, the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, the inside of the apparatus is heated to 500 ° C. with a heater, and then the direct current of −1000 V is applied to the tool base that rotates while rotating on the rotary table. A bias voltage is applied and a current of 100 A is passed between the cathode electrode and the anode electrode to generate an arc discharge, thereby bombarding the tool substrate surface,
(C) Next, nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere shown in Table 3, and a DC bias voltage shown in Table 3 is applied to the tool base that rotates while rotating on the rotary table. And applying an electric current of 120 A between the Al—Ti alloy of the cathode electrode and the anode electrode to generate an arc discharge, and on the surface of the tool base, the target composition, target layer thickness shown in Table 3, After vapor-depositing the (Al, Ti) N layer as the lower layer of Young's modulus, the arc discharge between the cathode electrode (evaporation source) and the anode electrode is stopped,
(D) Subsequently, a DC bias voltage shown in Table 3 is applied to the tool base that rotates while rotating on the rotary table while maintaining the atmosphere in the apparatus in the nitrogen atmosphere shown in Table 3, and the cathode electrode (evaporation) Source) Al—Cr alloy electrode or metal Cr electrode and an anode electrode are alternately supplied with a current of 120 A to generate an arc discharge, and the target composition, layer thickness, Young An upper layer of an alternate stacked structure having a stacking cycle and a total target layer thickness shown in Table 3 consisting of a (Al, Cr) N layer of a ratio and a CrN layer having a target layer thickness shown in Table 3;
A hard coating layer as schematically shown in FIG. 3 is formed on the tool substrate by vapor deposition according to (a) to (d), and a surface-coated insert (hereinafter referred to as the present invention-coated insert) 1 as the present invention-coated tool. ~ 16 were produced respectively.
The Young's modulus of each layer was controlled by controlling the bias voltage and the nitrogen partial pressure as described above. That is, the Young's modulus can be controlled to a low Young's modulus by forming the (Al, Cr) N layer constituting the alternately stacked upper layers by using a low bias voltage and a low nitrogen partial pressure. The Young's modulus of the underlayer (Al, Ti) N layer was controlled by controlling the bias voltage and the nitrogen partial pressure as described above. That is, it can control to 400-550 GPa by forming into a film in the range of -20-150V and 0.5-9.0Pa.
The Young's modulus was measured by a nanoindentation method using a nanoindenter (trademark of MTS Systems). The results are shown in Table 3.

また、比較の目的で、前記実施例と同様の方法で、表4に示される比較被覆工具としての表面被覆インサート(以下、比較被覆インサートと云う)1〜8をそれぞれ製造した。ここで、比較被覆インサート1は、(Al,Ti)N層の単層からなる硬質被覆層を有するものであり、比較被覆インサート2は、(Al,Ti)N層からなる下部層と(Al,Cr)N層の単層からなる上部層とからなる硬質被覆層を有するものであり、比較被覆インサート3〜8は、(Al,Ti)N層からなる下部層と(Al,Cr)N層とCrN層の交互積層からなる上部層とからなる硬質被覆層を有するが、上部層のヤング率、一層目標層厚、合計目標層厚のいずれかが、本発明で規定する数値範囲を逸脱するものである。   For comparison purposes, surface coated inserts (hereinafter referred to as comparative coated inserts) 1 to 8 as comparative coated tools shown in Table 4 were produced in the same manner as in the above examples. Here, the comparative coating insert 1 has a hard coating layer made of a single layer of (Al, Ti) N layer, and the comparative coating insert 2 has a lower layer made of (Al, Ti) N layer and (Al , Cr) N has a hard coating layer composed of an upper layer composed of a single layer, and comparative coating inserts 3 to 8 are composed of a lower layer composed of an (Al, Ti) N layer and an (Al, Cr) N layer. A hard coating layer consisting of alternating layers of CrN layers and CrN layers, but the upper layer Young's modulus, single layer target thickness, or total target layer thickness deviates from the numerical range defined in the present invention. To do.

つぎに、前記各種の被覆インサートを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆インサート1〜16および比較被覆インサート1〜8について、
被削材:JIS・SUS304(HB220)の丸棒、
切削速度: 145m/min.、
切り込み: 2.5mm、
送り: 0.2mm/rev.、
切削時間: 5分、
の条件(切削条件A)でのステンレス鋼の湿式連続高速切削加工試験(通常の切削速度および送りは、それぞれ、120m/min.、0.2 mm/rev.)、
被削材:Ti−6Al−4V合金(HB260)の丸棒、
切削速度: 60m/min.、
切り込み: 2 mm、
送り: 0.2mm/rev.、
切削時間: 5分、
の条件(切削条件B)でのTi合金の湿式連続高速切削加工試験(通常の切削速度および送りは、それぞれ、40m/min.、0.2mm/rev.)、
被削材:JIS・G4901(HB190)の丸棒、
切削速度: 75m/min.、
切り込み: 2mm、
送り: 0.2mm/rev.、
切削時間: 5分、
の条件(切削条件C)でのニッケル合金の湿式連続高速切削加工試験(通常の切削速度および送りは、それぞれ、50m/min.、0.2 mm/rev.)、
を行い、いずれの高速切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表5、表6に示した。
Next, with the various coated inserts, all of the present invention coated inserts 1 to 16 and comparative coated inserts 1 to 8 in a state where all the tool inserts are screwed to the tip of the tool steel tool with a fixing jig.
Work material: JIS / SUS304 (HB220) round bar,
Cutting speed: 145 m / min. ,
Cutting depth: 2.5mm,
Feed: 0.2 mm / rev. ,
Cutting time: 5 minutes
(Continuous cutting speed and feed are 120 m / min. And 0.2 mm / rev., Respectively)
Work material: Ti-6Al-4V alloy (HB260) round bar,
Cutting speed: 60 m / min. ,
Incision: 2 mm,
Feed: 0.2 mm / rev. ,
Cutting time: 5 minutes
Wet continuous high-speed cutting test of Ti alloy under the following conditions (cutting condition B) (normal cutting speed and feed are 40 m / min. And 0.2 mm / rev., Respectively),
Work material: JIS G4901 (HB190) round bar,
Cutting speed: 75 m / min. ,
Cutting depth: 2mm,
Feed: 0.2 mm / rev. ,
Cutting time: 5 minutes
Wet continuous high-speed cutting test of nickel alloy under the following conditions (cutting condition C) (normal cutting speed and feed are 50 m / min. And 0.2 mm / rev., Respectively),
The flank wear width of the cutting edge was measured in any high-speed cutting test. The measurement results are shown in Tables 5 and 6.

実施例1と同様、いずれも1〜3 μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr粉末、TiN粉末、TaN粉末、およびCo粉末からなる原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、直径が13mmの工具基体形成用丸棒焼結体を形成し、さらに前記の丸棒焼結体から、研削加工にて、切刃部の直径×長さが10mm×22mmの寸法、並びにねじれ角30度の4枚刃スクエア形状をもったWC基超硬合金製の工具基体(エンドミル)A−1〜A−10をそれぞれ製造した。 As in Example 1, all of WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co having an average particle diameter of 1 to 3 μm. A raw material powder composed of powder is blended in the composition shown in Table 1, wet mixed by a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. Medium, sintered at 1400 ° C. for 1 hour to form a round tool sintered body for forming a tool base having a diameter of 13 mm. Further, the round bar sintered body is cut by grinding. Manufacture of WC-base cemented carbide tool bases (end mills) A-1 to A-10 having a blade part diameter x length of 10 mm x 22 mm and a 4-blade square shape with a twist angle of 30 degrees did.

ついで、これらの工具基体(エンドミル)A−1〜A−10の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、実施例1と同様にして、表7に示されるバイアス電圧、窒素分圧で、表7に示される目標組成、目標層厚、ヤング率の(Al,Ti)N層からなる下部層と、表7に示されるバイアス電圧、窒素分圧で表7に示される目標組成、一層目標層厚、ヤング率の(Al,Cr)N層と表7に示される一層目標層厚のCrN層とからなる表7に示される積層周期と合計目標層厚の交互積層構造を有する上部層とから構成される硬質被覆層を蒸着形成することにより、本発明被覆工具としての本発明表面被覆超硬製エンドミル(以下、本発明被覆エンドミルと云う)1〜10をそれぞれ製造した。   Then, the surfaces of these tool bases (end mills) A-1 to A-10 were ultrasonically cleaned in acetone and dried, and then charged into the arc ion plating apparatus shown in FIG. 1, the lower layer composed of the (Al, Ti) N layer having the target composition, target layer thickness, and Young's modulus shown in Table 7 with the bias voltage and nitrogen partial pressure shown in Table 7; Table 7 consisting of (Al, Cr) N layer with target composition, single layer thickness, Young's modulus shown in Table 7 and CrN layer with single layer thickness shown in Table 7 with the indicated bias voltage and nitrogen partial pressure The surface coating cemented carbide end mill of the present invention as the coating tool of the present invention (hereinafter referred to as the following) is formed by vapor-depositing and forming a hard coating layer composed of the lamination cycle shown in FIG. This is called the coated end mill of the present invention. 0 was prepared, respectively.

また、比較の目的で、前記実施例と同様の方法で、表8に示される比較被覆工具としての表面被覆エンドミル(以下、比較被覆エンドミルと云う)1〜5をそれぞれ製造した。ここで、比較被覆エンドミル1は、(Al,Ti)N層の単層からなる硬質被覆層を有するものであり、比較被覆エンドミル2は、(Al,Ti)N層からなる下部層と(Al,Cr)N層の単層からなる上部層とからなる硬質被覆層を有するものであり、比較被覆エンドミル3〜5は、(Al,Ti)N層からなる下部層と(Al,Cr)N層とCrN層の交互積層からなる上部層とからなる硬質被覆層を有するが、上部層のヤング率、一層目標層厚、合計目標層厚のいずれかが、本発明で規定する数値範囲を逸脱するものである。
つぎに、本発明被覆エンドミル1〜10および比較被覆エンドミル1〜5について、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SUS304(HB200)の板材、
切削速度: 130m/min.、
溝深さ(切り込み):15mm、
テーブル送り: 310mm/min.、
の条件(切削条件D)でのステンレス鋼の湿式高速溝切削加工試験(通常の切削速度およびテーブル送りは、それぞれ、90m/min.、280mm/min.)、
被削材−平面寸法:100mm×250 mm、厚さ:50mmのTi−6Al−4V合金(HB230)の板材、
切削速度: 90m/min.、
溝深さ(切り込み):15mm、
テーブル送り: 120mm/min.、
の条件(切削条件E)でのTi合金の湿式高速溝切削加工試験(通常の切削速度およびテーブル送りは、それぞれ、35m/min.、95mm/min.)、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・G4902(HRB87)の板材、
切削速度: 60m/min.、
溝深さ(切り込み):15mm、
テーブル送り: 100mm/min.、
の条件(切削条件F)でのニッケル合金の湿式高速溝切削加工試験(通常の切削速度およびテーブル送りは、それぞれ、35m/min.、85mm/min.)、
をそれぞれ行い、いずれの高速溝切削加工試験でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。この測定結果を同じく表7、表8にそれぞれ示した。
For comparison purposes, surface-coated end mills (hereinafter referred to as comparative coated end mills) 1 to 5 as comparative coated tools shown in Table 8 were produced in the same manner as in the above examples. Here, the comparative coated end mill 1 has a hard coating layer made of a single layer of (Al, Ti) N layer, and the comparative coated end mill 2 has a lower layer made of (Al, Ti) N layer and (Al , Cr) N has a hard coating layer composed of a single upper layer, and comparative coated end mills 3 to 5 have a lower layer composed of an (Al, Ti) N layer and an (Al, Cr) N layer. A hard coating layer consisting of alternating layers of CrN layers and CrN layers, but the upper layer Young's modulus, single layer target thickness, or total target layer thickness deviates from the numerical range defined in the present invention. To do.
Next, for the present invention coated end mills 1-10 and comparative coated end mills 1-5,
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SUS304 (HB200) plate material,
Cutting speed: 130 m / min. ,
Groove depth (cut): 15 mm,
Table feed: 310 mm / min. ,
(High cutting speed and table feed are 90 m / min. And 280 mm / min., Respectively)
Work material—planar dimensions: 100 mm × 250 mm, thickness: 50 mm Ti-6Al-4V alloy (HB230) plate,
Cutting speed: 90 m / min. ,
Groove depth (cut): 15 mm,
Table feed: 120 mm / min. ,
Wet high-speed grooving test of Ti alloy under the following conditions (cutting condition E) (normal cutting speed and table feed are 35 m / min. And 95 mm / min., Respectively),
Work material-Plane dimensions: 100 mm x 250 mm, thickness: 50 mm JIS G4902 (HRB87) plate material,
Cutting speed: 60 m / min. ,
Groove depth (cut): 15 mm,
Table feed: 100 mm / min. ,
Wet high-speed grooving test of nickel alloy under the following conditions (cutting condition F) (normal cutting speed and table feed are 35 m / min. And 85 mm / min., Respectively),
In each high-speed groove cutting test, the cutting groove length was measured until the flank wear width of the outer peripheral edge of the cutting edge reached 0.1 mm, which is a guide for the service life. The measurement results are also shown in Tables 7 and 8, respectively.

実施例2で製造した直径が13mmの丸棒焼結体を用い、この丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ8mm×22mmの寸法、並びにねじれ角30度の2枚刃形状をもったWC基超硬合金製の工具基体(ドリル)A−1〜A−10をそれぞれ製造した。   The round bar sintered body with a diameter of 13 mm manufactured in Example 2 was used, and from this round bar sintered body, the dimensions of the groove forming part diameter × length were 8 mm × 22 mm and the twist angle by grinding. WC-base cemented carbide tool bases (drills) A-1 to A-10 having a 30-degree two-blade shape were produced, respectively.

ついで、これらの工具基体(ドリル)A−1〜A−10の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、実施例1と同様にして、表9に示されるバイアス電圧、窒素分圧を用いて、表9に示される目標組成および目標層厚の(Al,Ti)N層からなる下部層と、表9に示されるバイアス電圧、窒素分圧を用いて、表9に示される目標組成および一層目標層厚の(Al,Cr)N層と表9に示される一層目標層厚のCrN層とからなる表9に示される積層周期および合計目標層厚の交互積層構造を有する上部層とからなる硬質被覆層を蒸着形成することにより、本発明被覆工具としての本発明表面被覆超硬製ドリル(以下、本発明被覆ドリルと云う)1〜10をそれぞれ製造した。   Next, the cutting edges of these tool bases (drills) A-1 to A-10 are subjected to honing, ultrasonically cleaned in acetone, and dried to the arc ion plating apparatus shown in FIG. In the same manner as in Example 1, using the bias voltage and nitrogen partial pressure shown in Table 9, the lower layer composed of the (Al, Ti) N layer having the target composition and target layer thickness shown in Table 9 Then, using the bias voltage and nitrogen partial pressure shown in Table 9, the (Al, Cr) N layer having the target composition and the target layer thickness shown in Table 9 and the CrN layer having the target layer thickness shown in Table 9 are used. The surface coated carbide drill of the present invention as the coated tool of the present invention is formed by vapor-depositing a hard coating layer composed of an upper layer having an alternate laminated structure of the lamination period and total target layer thickness shown in Table 9 (Hereinafter referred to as the coated drill of the present invention) ) 1 to 10 were prepared, respectively.

また、比較の目的で、前記実施例と同様の方法で、表10に示される比較被覆工具としての表面被覆ドリル(以下、比較被覆ドリルと云う)1〜5をそれぞれ製造した。ここで、比較被覆ドリル1は、(Al,Ti)N層の単層からなる硬質被覆層を有するものであり、比較被覆ドリル2は、(Al,Ti)N層からなる下部層と(Al,Cr)N層の単層からなる上部層とからなる硬質被覆層を有するものであり、比較被覆ドリル3〜5は、(Al,Ti)N層からなる下部層と(Al,Cr)N層とCrN層の交互積層からなる上部層とからなる硬質被覆層を有するが、上部層のヤング率、一層目標層厚、合計目標層厚のいずれかが、本発明で規定する数値範囲を逸脱するものである。   For comparison purposes, surface-coated drills (hereinafter referred to as comparative coated drills) 1 to 5 as comparative coated tools shown in Table 10 were produced by the same method as in the above-described examples. Here, the comparative coated drill 1 has a hard coating layer made of a single layer of (Al, Ti) N layer, and the comparative coated drill 2 has a lower layer made of (Al, Ti) N layer and (Al , Cr) N has a hard coating layer composed of a single upper layer, and comparative coated drills 3 to 5 have (Al, Ti) N lower layer and (Al, Cr) N A hard coating layer consisting of alternating layers of CrN layers and CrN layers, but the upper layer Young's modulus, single layer target thickness, or total target layer thickness deviates from the numerical range defined in the present invention. To do.

つぎに、本発明被覆ドリル1〜10および比較被覆ドリル1〜5について、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SUS304(HB200)の板材、
切削速度: 110m/min.、
送り: 0.3mm/rev.、
穴深さ: 5mm、
の条件(切削条件G)でのステンレス鋼の湿式高速穴あけ加工試験(通常の切削速度および送りは、それぞれ、70m/min.、0.2mm/rev.)、
被削材−平面寸法:100mm×250mm、厚さ:50mmのTi−6Al−4V合金(HB280)の板材、
切削速度: 70m/min.、
送り: 0.2mm/rev.、
穴深さ: 5mm、
の条件(切削条件H)でのTi合金の湿式高速穴あけ加工試験((通常の切削速度および送りは、それぞれ、40m/min.、0.15mm/rev.)、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・G4902(HRB87)の板材、
切削速度: 60m/min.、
送り: 0.2mm/rev.、
穴深さ: 5mm、
の条件(切削条件I)でのニッケル合金の湿式高速穴あけ加工試験(通常の切削速度および送りは、それぞれ、45m/min.、0.1mm/rev.)、
をそれぞれ行い、いずれの湿式高速穴あけ加工試験(水溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を同じく表9、表10にそれぞれ示した。
Next, for the present invention coated drills 1-10 and comparative coated drills 1-5,
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SUS304 (HB200) plate material,
Cutting speed: 110 m / min. ,
Feed: 0.3 mm / rev. ,
Hole depth: 5mm,
Wet high-speed drilling test of stainless steel under the following conditions (cutting condition G) (normal cutting speed and feed are 70 m / min. And 0.2 mm / rev., Respectively),
Work material-planar dimensions: 100 mm x 250 mm, thickness: 50 mm Ti-6Al-4V alloy (HB280) plate,
Cutting speed: 70 m / min. ,
Feed: 0.2 mm / rev. ,
Hole depth: 5mm,
Wet high-speed drilling test of Ti alloy under the following conditions (cutting condition H) ((normal cutting speed and feed are 40 m / min. And 0.15 mm / rev., Respectively),
Work material-Plane dimensions: 100 mm x 250 mm, thickness: 50 mm JIS G4902 (HRB87) plate material,
Cutting speed: 60 m / min. ,
Feed: 0.2 mm / rev. ,
Hole depth: 5mm,
Wet high speed drilling test of nickel alloy under the following conditions (cutting condition I) (normal cutting speed and feed are 45 m / min. And 0.1 mm / rev., Respectively),
In each wet high-speed drilling test (using water-soluble cutting oil), the number of drilling processes until the flank wear width of the tip cutting edge surface reached 0.3 mm was measured. The measurement results are also shown in Table 9 and Table 10, respectively.

この結果、得られた本発明被覆工具としての本発明被覆インサート1〜16、本発明被覆エンドミル1〜10、および本発明被覆ドリル1〜10の硬質被覆層を構成する下部層を構成する(Al,Ti)N層と上部層の交互積層を構成する(Al,Cr)N層とCrN層の組成、並びに、比較被覆工具としての比較被覆インサート1〜8、比較被覆エンドミル1〜5、および比較被覆ドリル1〜5の下部層を構成する(Al,Ti)N層と上部層の交互積層を構成する(Al,Cr)N層とCrN層の組成を、透過型電子顕微鏡を用いてエネルギー分散X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。   As a result, this invention coated insert 1-16 as this invention coated tool, this invention coated end mill 1-10, and the lower layer which comprises the hard coating layer of this invention coated drill 1-10 are comprised (Al , Ti) N layer and upper layer constituting an alternate stack of (Al, Cr) N layer and CrN layer composition, comparative coated inserts 1-8 as comparative coated tools, comparative coated end mills 1-5, and comparison Dispersion of the composition of the (Al, Ti) N layer and the upper layer constituting the lower layer of the coated drills 1 to 5 using the transmission electron microscope. When measured by X-ray analysis, each showed substantially the same composition as the target composition.

また、前記硬質被覆層を構成する各層の平均層厚を走査型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均層厚(5ヶ所の平均値)を示した。   Moreover, when the average layer thickness of each layer which comprises the said hard coating layer was cross-sectional measured using the scanning electron microscope, all showed the average layer thickness (average value of five places) substantially the same as target layer thickness. .

表3〜10に示される結果から、本発明被覆工具は、下部層である高ヤング率の(Al,Ti)N層が工具基体表面に強固に密着接合した状態で、すぐれた高温硬さ、耐熱性、高温強度を有するとともに、上部層を構成する低ヤング率の(Al,Cr)N層とCrN層との交互積層が耐衝撃性、耐チッピング性、耐クラック進展性を備えていることによって、チタン合金、ステンレス鋼等の難削材の高速切削加工でも、すぐれた耐欠損性が確保されていることによって、チッピングの発生なく、長期に亘ってすぐれた耐摩耗性を発揮するのに対して、硬質被覆層が(Al,Ti)N層のみで構成されているか、上部層に(Al,Cr)N層とCrN層との交互積層を有していても、(Al,Cr)N層のヤング率、(Al,Cr)N層とCrN層の一層平均層厚が本発明で規定する数値範囲を逸脱する比較被覆工具においては、いずれも難削材の高速切削加工では、被削材(難削材)および切粉と硬質被覆層との粘着性および反応性が一段と高くなるために、切刃部にチッピングが発生するようになり、比較的短時間で使用寿命に至ることが明らかである。   From the results shown in Tables 3 to 10, the coated tool of the present invention has excellent high-temperature hardness in a state in which the lower layer (Al, Ti) N layer having a high Young's modulus is firmly adhered to the surface of the tool substrate. It has heat resistance and high temperature strength, and the alternate lamination of the low Young's modulus (Al, Cr) N layer and CrN layer that constitute the upper layer has impact resistance, chipping resistance, and crack resistance. This ensures excellent wear resistance over a long period of time without chipping even when high-speed cutting of difficult-to-cut materials such as titanium alloy and stainless steel is ensured. On the other hand, even if the hard coating layer is composed of only the (Al, Ti) N layer or the upper layer has an alternate lamination of (Al, Cr) N layers and CrN layers, (Al, Cr) Young's modulus of N layer, (Al, Cr) N layer and Cr In the comparative coated tool in which the average layer thickness of the layers deviates from the numerical range defined in the present invention, in all high-speed cutting of difficult-to-cut materials, the work material (difficult-to-cut material) and the chips and the hard coating layer It is clear that since the adhesiveness and reactivity of this material are further increased, chipping occurs at the cutting edge and the service life is reached in a relatively short time.

前述のように、本発明の被覆工具は、一般的な被削材の切削加工は勿論のこと、特に、チタン合金、ステンレス鋼等の難削材の高速切削加工でもすぐれた耐摩耗性と耐欠損性を発揮し、長期に亘ってすぐれた切削性能を示すものであるから、切削加工装置の自動化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention has excellent wear resistance and resistance not only to cutting of general work materials, but also to high-speed cutting of difficult-to-cut materials such as titanium alloy and stainless steel. Demonstrates flawlessness and exhibits excellent cutting performance over a long period of time, so it can sufficiently satisfy automation of cutting equipment, labor saving and energy saving of cutting, and cost reduction. .

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に硬質被覆層を形成してなる表面被覆切削工具において、
前記硬質被覆層が、
(a)0.5〜5.0μmの平均層厚を有し、かつ、
組成式:(Al1−xTi)N(ここで、xはAlとTiの合量に占めるTiの含有割合を示し、原子比で、0.25≦x≦0.55である)を満足し、ヤング率Eが400GPa≦E≦550GPaであるAlとTiとの複合窒化物層からなる下部層と、
(b)0.1〜1.0μmの一層平均層厚を有し、かつ、
組成式:(Al1−yCr)N(ここで、yはAlとCrの合量に占めるCrの含有割合を示し、原子比で、0.25≦y≦0.50である)を満足し、ヤング率Eが150GPa≦E≦300GPaであるAlとCrとの複合窒化物層からなる(Al,Cr)N層、
(c)0.1〜1.0μmの一層平均層厚を有するCrN層、
前記(b)、(c)の2周期以上の交互積層からなり、合計平均層厚が前記下部層の1.2倍以上であって、かつ、0.6〜6.0μmである上部層を有することを特徴とする表面被覆切削工具。
In a surface-coated cutting tool formed by forming a hard coating layer on the surface of a tool base composed of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
The hard coating layer is
(A) having an average layer thickness of 0.5 to 5.0 μm, and
Composition formula: (Al 1-x Ti x ) N (where x represents the content ratio of Ti in the total amount of Al and Ti, and the atomic ratio is 0.25 ≦ x ≦ 0.55) A lower layer composed of a composite nitride layer of Al and Ti satisfying and having a Young's modulus E of 400 GPa ≦ E ≦ 550 GPa;
(B) has an average layer thickness of 0.1 to 1.0 μm, and
Composition formula: (Al 1-y Cr y ) N (where y represents the content ratio of Cr in the total amount of Al and Cr, and the atomic ratio is 0.25 ≦ y ≦ 0.50) A (Al, Cr) N layer comprising a composite nitride layer of Al and Cr satisfying and having a Young's modulus E of 150 GPa ≦ E ≦ 300 GPa;
(C) a CrN layer having a single layer average layer thickness of 0.1 to 1.0 μm;
An upper layer comprising (b) and (c) two or more alternating layers, the total average layer thickness being 1.2 times or more of the lower layer, and 0.6 to 6.0 μm A surface-coated cutting tool comprising:
JP2012224227A 2012-10-09 2012-10-09 Surface coated cutting tool Active JP5975214B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012224227A JP5975214B2 (en) 2012-10-09 2012-10-09 Surface coated cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012224227A JP5975214B2 (en) 2012-10-09 2012-10-09 Surface coated cutting tool

Publications (2)

Publication Number Publication Date
JP2014076500A JP2014076500A (en) 2014-05-01
JP5975214B2 true JP5975214B2 (en) 2016-08-23

Family

ID=50782268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012224227A Active JP5975214B2 (en) 2012-10-09 2012-10-09 Surface coated cutting tool

Country Status (1)

Country Link
JP (1) JP5975214B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7031791B2 (en) * 2019-05-09 2022-03-08 株式会社Moldino Cover cutting tool
JP7108966B2 (en) * 2020-06-24 2022-07-29 株式会社タンガロイ coated cutting tools

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4578382B2 (en) * 2005-10-25 2010-11-10 日立ツール株式会社 Hard coating and hard coating tool
JP4883480B2 (en) * 2006-07-14 2012-02-22 三菱マテリアル株式会社 Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent fracture resistance in high-speed continuous cutting of hard difficult-to-cut materials
JP4883478B2 (en) * 2006-07-14 2012-02-22 三菱マテリアル株式会社 Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent finished surface accuracy over a long period of time in high-speed continuous cutting of hard difficult-to-cut materials
JP5180221B2 (en) * 2007-09-20 2013-04-10 オーエスジー株式会社 Hard laminate coating, hard laminate coating tool, and method for forming coating
JP5088480B2 (en) * 2007-11-21 2012-12-05 三菱マテリアル株式会社 Surface coated cutting tool
JP5623800B2 (en) * 2010-06-14 2014-11-12 Ntn株式会社 TiAlN film forming body

Also Published As

Publication number Publication date
JP2014076500A (en) 2014-05-01

Similar Documents

Publication Publication Date Title
JP2009101491A (en) Surface-coated cutting tool having hard coating layer exerting excellent lubricity and wear resistance in high-speed cutting
JP6015922B2 (en) Surface coated cutting tool
JP5783462B2 (en) Surface coated cutting tool
JP5975214B2 (en) Surface coated cutting tool
JP5234499B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed, high-feed cutting.
JP2011240438A (en) Surface coated cutting tool excellent in heat resistance and fusion resistance
JP5234332B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed, high-feed cutting.
JP5975338B2 (en) Surface coated cutting tool
JP5975339B2 (en) Surface coated cutting tool
JP2014188637A (en) Surface-coated cutting tool
JP6102653B2 (en) Surface coated cutting tool
JP6206289B2 (en) Surface coated cutting tool
JP2012143851A (en) Surface-coated cutting tool
JP5692636B2 (en) Surface coated cutting tool
JP2008260098A (en) Surface-coated cutting tool
JP2007313582A (en) Surface-coated cutting tool having hard coating layer with excellent chipping resistance in heavy cutting difficult-to-cut material
JP5796354B2 (en) Surface coated cutting tool with excellent heat resistance and welding resistance
JP2011240437A (en) Surface coated cutting tool excellent in heat resistance and fusion resistance
JP6206288B2 (en) Surface coated cutting tool
JP6221872B2 (en) Surface coated cutting tool
JP4789068B2 (en) Surface coated cutting tool with excellent chipping resistance with hard coating layer in heavy cutting of difficult-to-cut materials
JP5975343B2 (en) Surface coated cutting tool
JP4682825B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer in heavy cutting of difficult-to-cut materials
JP2011240435A (en) Surface coated cutting tool excellent in heat resistance and fusion resistance
JP2011177800A (en) Surface coated cutting tool having excellent heat resistance and welding resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160705

R150 Certificate of patent or registration of utility model

Ref document number: 5975214

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250