JP5088480B2 - Surface coated cutting tool - Google Patents

Surface coated cutting tool Download PDF

Info

Publication number
JP5088480B2
JP5088480B2 JP2007301197A JP2007301197A JP5088480B2 JP 5088480 B2 JP5088480 B2 JP 5088480B2 JP 2007301197 A JP2007301197 A JP 2007301197A JP 2007301197 A JP2007301197 A JP 2007301197A JP 5088480 B2 JP5088480 B2 JP 5088480B2
Authority
JP
Japan
Prior art keywords
layer
value
average
composition
upper layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007301197A
Other languages
Japanese (ja)
Other versions
JP2009125833A (en
Inventor
和則 佐藤
智行 益野
強 大上
信一 鹿田
大介 風見
裕介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2007301197A priority Critical patent/JP5088480B2/en
Publication of JP2009125833A publication Critical patent/JP2009125833A/en
Application granted granted Critical
Publication of JP5088480B2 publication Critical patent/JP5088480B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、軟鋼、ステンレス鋼などのように溶着性が高い被削材の切削加工を、高い発熱を伴い、かつ、切刃に対して高負荷が作用する高送り、高切り込みなど高速重切削条件で行った場合にも、硬質被覆層がすぐれた耐欠損性と耐摩耗性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   This invention cuts work material with high weldability, such as mild steel and stainless steel, with high heat generation and high-speed heavy cutting such as high feed and high cutting with high load acting on the cutting edge. The present invention also relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent chipping resistance and wear resistance even when performed under conditions.

一般に、被覆工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに前記被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。   In general, for coated tools, throwaway inserts that are detachably attached to the tip of the cutting tool for turning and planing of various steel and cast iron materials, drilling of the work material, etc. Drills and miniature drills, and solid type end mills used for chamfering, grooving and shouldering of the work material, etc. A slow-away end mill tool that performs cutting work in the same manner as an end mill is known.

従来、被覆工具の一つとして、例えば、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、工具基体という)の表面に、
(a)組成式:(Al1-XTi)N(ただし、原子比で、0.3≦X≦0.7)、
を満足するAlとTiの複合窒化物[以下、(Al,Ti)Nで示す]層からなる下部層、
(b)組成式:(Al1−αCrα)Nまたは(Al1−β−γCrβγ)N(ここで、Mは、Crを除く周期律表4a,5a,6a族の元素、Si、B、Yのうちから選ばれた1種又は2種以上の添加成分であり、原子比で、0.2≦α≦0.6、0.10≦β≦0.54、0.01≦γ≦0.25、0.2≦β+γ≦0.6)を満足するAlとCrの複合窒化物[以下、(Al,Cr)Nで示す]層あるいはAlとCrとMの複合窒化物[以下、(Al,Cr,M)Nで示す]層からなる上部層、
上記(a)、(b)からなる硬質被覆層を蒸着形成した被覆工具が知られており、そして、これを各種の鋼や鋳鉄などの連続切削や断続切削加工に用いた場合にすぐれた耐欠損性を発揮することも知られている。
Conventionally, as one of the coated tools, for example, a substrate (hereinafter referred to as a tool substrate) composed of a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet. On the surface,
(A) Composition formula: (Al 1-X Ti X ) N (however, in atomic ratio, 0.3 ≦ X ≦ 0.7),
A lower layer composed of a composite nitride of Al and Ti [hereinafter referred to as (Al, Ti) N] layer satisfying
(B) Composition formula: (Al1- [ alpha] Cr [ alpha] ) N or (Al1- [ beta]-[gamma] Cr [ beta] M [ gamma] ) N (where M is an element of groups 4a, 5a, and 6a of the periodic table excluding Cr) , Si, B, Y are one or more additive components selected from the group consisting of 0.2 ≦ α ≦ 0.6, 0.10 ≦ β ≦ 0.54,. Al / Cr composite nitride [hereinafter referred to as (Al, Cr) N] layer or Al / Cr / M composite nitridation satisfying 01 ≦ γ ≦ 0.25 and 0.2 ≦ β + γ ≦ 0.6) An upper layer composed of layers [hereinafter referred to as (Al, Cr, M) N],
A coated tool in which a hard coating layer comprising the above (a) and (b) is formed by vapor deposition is known, and when this is used for continuous cutting and intermittent cutting processing of various steels and cast irons, it has excellent resistance. It is also known to exhibit deficiency.

さらに、上記の被覆工具が、例えば図1に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に上記の工具基体を装入し、ヒータで装置内を、例えば500℃の温度に加熱した状態で、アノード電極と所定組成のAl−Ti合金がセットされたカソード電極(蒸発源)との間に、例えば電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば2Paの反応雰囲気とし、一方上記工具基体には、例えば−100Vのバイアス電圧を印加した条件で、前記工具基体の表面に、上記(Al,Ti)N層を下部層として蒸着形成した後、Al−Cr合金あるいはAl−Cr−M合金がセットされたカソード電極(蒸発源)とアノード電極との間にアーク放電を発生させ、上記下部層の表面に、(Al,Cr)N層あるいは(Al,Cr,M)N層を上部層として蒸着形成することにより製造されることも知られている。
特開2005−262388号公報 特開2005−305576号公報
Further, the above-mentioned coated tool is loaded with the above-mentioned tool base in an arc ion plating apparatus which is one type of physical vapor deposition apparatus shown schematically in FIG. 1, for example, and the inside of the apparatus is heated at, for example, 500 ° C. An arc discharge is generated between the anode electrode and the cathode electrode (evaporation source) on which an Al—Ti alloy having a predetermined composition is set, for example, at a current of 90 A, and at the same time in the apparatus. Nitrogen gas is introduced as a reaction gas to obtain a reaction atmosphere of, for example, 2 Pa. On the other hand, the above-described (Al, Ti) N is applied to the surface of the tool base under the condition that a bias voltage of, for example, −100 V is applied to the tool base. After forming the layer as a lower layer, an arc discharge is generated between the cathode electrode (evaporation source) on which the Al—Cr alloy or Al—Cr—M alloy is set and the anode electrode. On the surface of the lower layer, is also known to be produced by depositing form (Al, Cr) N layer or (Al, Cr, M) N layer as the upper layer.
JP 2005-262388 A JP 2005-305576 A

近年の切削加工装置のFA化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴って切削加工は一段と高速化する傾向にあるが、上記の従来被覆工具においては、これを各種鋼、鋳鉄などの通常の切削条件下での切削加工に用いた場合には問題はないが、特に、軟鋼、ステンレス鋼などのように溶着性が高い被削材の、高熱発生を伴い、かつ、切刃に対して高負荷が作用する高速重切削加工に用いた場合には、硬質被覆層の熱伝導性・熱放散性が不十分であるため、硬質被覆層は切削時に発生する高熱によって過熱され、かなりの温度上昇が避けられず、その結果、硬質被覆層が熱塑性変形をおこしたり、あるいは、偏摩耗を生じたりして、摩耗進行が促進され、比較的短時間で使用寿命に至るのが現状である。   In recent years, the use of FA for cutting devices has been remarkable. On the other hand, there has been a strong demand for labor saving and energy saving and further cost reduction for cutting processing, and along with this, cutting processing tends to be further accelerated. For coated tools, there is no problem when this is used for cutting under normal cutting conditions such as various steels and cast irons. In particular, work materials with high weldability such as mild steel and stainless steel. However, when it is used for high-speed heavy cutting with high heat generation and high load acting on the cutting edge, the hard coating layer has insufficient heat conductivity and heat dissipation. The layer is overheated by the high heat generated during cutting, and a considerable temperature rise is unavoidable. As a result, the hard coating layer undergoes thermoplastic deformation or uneven wear, which promotes the progress of wear. Service life in a short time The leads to is the status quo.

そこで、本発明者等は、上述のような観点から、特に軟鋼、ステンレス鋼等の溶着性が高い被削材の切削加工を、高い発熱を伴うとともに、切刃に対して高負荷が作用する高送り、高切込みなどの高速重切削条件で行った場合にも、硬質被覆層がすぐれた耐欠損性と耐摩耗性を発揮する被覆工具を開発すべく、上記の従来被覆工具に着目し研究を行った結果、以下の知見を得た。   In view of the above, the present inventors, in particular, cut a work material with high weldability, such as mild steel and stainless steel, with high heat generation and a high load acting on the cutting edge. In order to develop a coated tool that exhibits excellent fracture resistance and wear resistance even when performed under high-speed heavy cutting conditions such as high feed and high depth of cut, we focus on the above-mentioned conventional coated tools for research. As a result, the following knowledge was obtained.

(a)硬質被覆層の下部層が(Al,Ti)N層、また、上部層が(Al,Cr)N層あるいは(Al,Cr,M)N層で構成されている上記従来被覆工具において、上記(Al,Cr)N層あるいは(Al,Cr,M)N層を中間層とし、この上に、さらに上部層として、中間層側から上部層表面に向かって(層厚方向に沿って)、該層の構成成分であるNの含有割合が減少する組成傾斜型の濃度分布構造を有する(Al,Cr)N層あるいは(Al,Cr,M)N層を形成すると、上記組成傾斜型の上部層が、特に、すぐれた熱伝導性、熱放散性、潤滑性を有することにより、高速重切削加工時に硬質被覆層が高温に加熱されても熱が直ちに放散され、硬質被覆層が過熱されることがなく、さらに、被削材および切粉の切刃部表面に対する溶着も著しく低減されること。
なお、上記のMは、Crを除く周期律表4a,5a,6a族の元素、Si、B、Yのうちから選ばれた1種又は2種以上の添加成分を示す。
(A) In the above conventional coated tool in which the lower layer of the hard coating layer is an (Al, Ti) N layer and the upper layer is an (Al, Cr) N layer or (Al, Cr, M) N layer The (Al, Cr) N layer or the (Al, Cr, M) N layer is used as an intermediate layer, and further, as an upper layer, from the intermediate layer side toward the upper layer surface (along the layer thickness direction) When the (Al, Cr) N layer or (Al, Cr, M) N layer having a composition gradient type concentration distribution structure in which the content ratio of N as a constituent component of the layer is reduced is formed, the composition gradient type is formed. In particular, the upper layer has excellent thermal conductivity, heat dissipation, and lubricity, so even if the hard coating layer is heated to a high temperature during high-speed heavy cutting, the heat is immediately dissipated and the hard coating layer is overheated. In addition, against the surface of the cutting edge of the work material and chips The welding is also significantly reduced.
In addition, said M shows the 1 type, or 2 or more types of additional component chosen from the elements of the periodic table 4a, 5a, 6a group except Si, Si, B, and Y.

(b)そして、上記上部層である組成傾斜型の(Al,Cr)N層(以下、組成傾斜AlCrN層で示す)あるいは組成傾斜型の(Al,Cr,M)N層(以下、組成傾斜AlCrMN層で示す)は、中間層である上記(Al,Cr)N層あるいは(Al,Cr,M)N層を、例えば、所定組成のAl−Cr合金あるいはAl−Cr−M合金をカソード電極として、窒素雰囲気中でアークイオンプレーティングにより蒸着形成した後、上記Al−Cr合金あるいはAl−Cr−M合金のカソード電極とアノード電極との間のアーク放電を継続させたまま、装置内雰囲気の窒素含有割合を徐々に低減することにより、0.3〜1μmの平均層厚を有し、上部層表面の窒素含有割合が少ない組成傾斜AlCrN層あるいは組成傾斜AlCrMN層を容易に蒸着形成できること。 (B) The compositional gradient type (Al, Cr) N layer (hereinafter referred to as composition gradient AlCrN layer) or the compositional gradient type (Al, Cr, M) N layer (hereinafter referred to as composition gradient) as the upper layer. The AlCrMN layer is an intermediate layer of the (Al, Cr) N layer or (Al, Cr, M) N layer, for example, an Al-Cr alloy or Al-Cr-M alloy having a predetermined composition is used as a cathode electrode. After vapor deposition by arc ion plating in a nitrogen atmosphere, the arc atmosphere between the cathode electrode and the anode electrode of the Al-Cr alloy or Al-Cr-M alloy is continued, By gradually reducing the nitrogen content ratio, a composition gradient AlCrN layer or a composition gradient AlCrMN layer having an average layer thickness of 0.3 to 1 μm and a small nitrogen content ratio on the upper layer surface It can be easily deposited form.

(c)さらに、(Al,Ti)N層からなる下部層、(Al,Cr)N層あるいは(Al,Cr,M)N層からなる中間層、組成傾斜AlCrN層あるいは組成傾斜AlCrMN層からなる上部層を蒸着形成した本発明の被覆工具においては、硬質被覆層の下部層の構成成分であるAlが高温硬さと耐熱性を向上させ、Tiが高温強度を向上させ、その結果、(Al,Ti)N層からなる下部層は、すぐれた高温硬さと高温強度を備えるため耐欠損性にすぐれ、また、硬質被覆層の中間層はすぐれた高温硬さ、高温強度とともにすぐれた高温耐酸化性を備え、しかも、上部層である組成傾斜AlCrN層あるいは組成傾斜AlCrMN層がすぐれた熱伝導性、熱放散性、潤滑性を有するため、硬質被覆層が過熱されることはなく、被削材および切粉の切刃部表面に対する溶着が著しく低減されるとともに、熱塑性変形、偏摩耗の発生も抑制される。
したがって、本発明の被覆工具は、軟鋼、ステンレス鋼などのように溶着性が高い被削材を、高熱発生を伴い、かつ、切刃に高負荷が作用する高送り、高切り込みなどの高速重切削条件で切削加工した場合であっても、すぐれた耐欠損性とすぐれた耐摩耗性を長期の使用に亘って発揮すること。
(C) Further, it comprises a lower layer made of an (Al, Ti) N layer, an intermediate layer made of an (Al, Cr) N layer or (Al, Cr, M) N layer, a composition gradient AlCrN layer or a composition gradient AlCrMN layer. In the coated tool of the present invention in which the upper layer is formed by vapor deposition, Al, which is a constituent component of the lower layer of the hard coating layer, improves high-temperature hardness and heat resistance, and Ti improves high-temperature strength. As a result, (Al, The lower layer made of Ti) N layer has excellent high-temperature hardness and high-temperature strength, so it has excellent fracture resistance, and the intermediate layer of the hard coating layer has excellent high-temperature hardness and high-temperature strength. In addition, the composition gradient AlCrN layer or the composition gradient AlCrMN layer, which is the upper layer, has excellent thermal conductivity, heat dissipation, and lubricity, so that the hard coating layer is not overheated and the work material Yo With welded against the cutting edge surface of the chips is significantly reduced, thermal plastic deformation, the occurrence of uneven wear is suppressed.
Therefore, the coated tool of the present invention is made of a work material having a high weldability such as mild steel and stainless steel, which has high heat generation and high-speed heavy load such as high feed and high cut that cause a high load on the cutting edge. Demonstrate excellent fracture resistance and excellent wear resistance over a long period of use even when cutting under cutting conditions.

この発明は、上記知見に基づいてなされたものであって、
「(1)炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a)下部層として、0.5〜5μmの平均層厚を有し、
組成式:(Al1−XTi)N
で表した場合、0.3≦X≦0.7(但し、X値は原子比)を満足する平均組成のAlとTiの複合窒化物層、
(b)中間層として、0.5〜5μmの平均層厚を有し、
組成式:(Al1−PCr)N
で表した場合、0.2≦P≦0.6、0.9≦Q<1(但し、P値、Q値はいずれも原子比)を満足する平均組成のAlとCrの複合窒化物層、
(c)上部層として、0.3〜1μmの平均層厚を有し、
組成式:(Al1−αCrα)Nβ
で表した場合、0.2≦α≦0.6(但し、α値は原子比)を満足するAlとCrの平均組成割合を有し、かつ、上部層における窒素含有割合(β値。但し、原子比)が、中間層側から上部層表面に向かって減少する濃度分布構造を有し、しかも、上部層表面における窒素含有割合(β値)が、0≦β≦0.35を満足する組成傾斜型のAlとCrの複合窒化物層、
上記(a)〜(c)で構成された硬質被覆層を備えた表面被覆切削工具。
(2) 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a)下部層として、0.5〜5μmの平均層厚を有し、
組成式:(Al1−XTi)N
で表した場合、0.3≦X≦0.7(但し、X値は原子比)を満足する平均組成のAlとTiの複合窒化物層、
(b)中間層として、0.5〜5μmの平均層厚を有し、
組成式:(Al1−R−SCr)N(ここで、Mは、Crを除く周期律表4a,5a,6a族の元素、Si、B、Yのうちから選ばれた1種又は2種以上の添加成分)
で表した場合、0.10≦R≦0.54、0.01≦S≦0.25、0.2≦R+S≦0.6、0.9≦T<1(但し、R値、S値、T値はいずれも原子比)を満足する平均組成のAlとCrとMの複合窒化物層、
(c)上部層として、0.3〜1μmの平均層厚を有し、
組成式:(Al1−γ−δCrγδ)Nε(ここで、Mは、Crを除く周期律表4a,5a,6a族の元素、Si、B、Yのうちから選ばれた1種又は2種以上の添加成分)
で表した場合、0.10≦γ≦0.54、0.01≦δ≦0.25、0.2≦γ+δ≦0.6(但し、γ値、δ値はいずれも原子比)を満足するAlとCrとMの平均組成割合を有し、かつ、上部層における窒素含有割合(ε値。但し、原子比)が、中間層側から上部層表面に向かって減少する濃度分布構造を有し、しかも、上部層表面における窒素含有割合(ε値)が、0≦ε≦0.35を満足する組成傾斜型のAlとCrの複合窒化物層、
上記(a)〜(c)で構成された硬質被覆層を備えた表面被覆切削工具。
(3) 前記(1)または(2)に記載の表面被覆切削工具において、
最表面層として、0.2〜0.6μmの平均層厚を有し、
組成式:(Al1−XTi)N
で表した場合、0.3≦X≦0.7(但し、X値は原子比)を満足する平均組成のAlとTiの複合窒化物層を、上部層の表面にさらに蒸着形成したことを特徴とする前記(1)または(2)に記載の表面被覆切削工具。」
に特徴を有するものである。
This invention has been made based on the above findings,
“(1) On the surface of a tool base made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
(A) As a lower layer, it has an average layer thickness of 0.5 to 5 μm,
Composition formula: (Al 1-X Ti X ) N
The composite nitride layer of Al and Ti having an average composition satisfying 0.3 ≦ X ≦ 0.7 (where X value is an atomic ratio),
(B) As an intermediate layer, it has an average layer thickness of 0.5 to 5 μm,
Composition formula: (Al 1-P Cr P ) N Q
The composite nitride layer of Al and Cr having an average composition satisfying 0.2 ≦ P ≦ 0.6 and 0.9 ≦ Q <1 (where both P value and Q value are atomic ratios) ,
(C) As an upper layer, it has an average layer thickness of 0.3-1 μm,
Composition formula: (Al 1-α Cr α ) N β
, The average composition ratio of Al and Cr satisfying 0.2 ≦ α ≦ 0.6 (where the α value is an atomic ratio), and the nitrogen content ratio (β value in the upper layer. , Atomic ratio) decreases from the intermediate layer side toward the upper layer surface, and the nitrogen content (β value) on the upper layer surface satisfies 0 ≦ β ≦ 0.35 Composition-graded Al and Cr composite nitride layer,
The surface coating cutting tool provided with the hard coating layer comprised by said (a)-(c).
(2) On the surface of the tool base made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
(A) As a lower layer, it has an average layer thickness of 0.5 to 5 μm,
Composition formula: (Al 1-X Ti X ) N
The composite nitride layer of Al and Ti having an average composition satisfying 0.3 ≦ X ≦ 0.7 (where X value is an atomic ratio),
(B) As an intermediate layer, it has an average layer thickness of 0.5 to 5 μm,
Composition formula: (Al 1-R-S Cr R M S) N T ( where, M is chosen Periodic Table 4a except Cr, 5a, elements of Group 6a, Si, B, from among Y 1 or 2 or more additional components)
0.10 ≦ R ≦ 0.54, 0.01 ≦ S ≦ 0.25, 0.2 ≦ R + S ≦ 0.6, 0.9 ≦ T <1 (however, R value, S value) , T values are all atomic ratios) and an average composition Al, Cr, and M composite nitride layer,
(C) As an upper layer, it has an average layer thickness of 0.3-1 μm,
Composition formula: (Al 1-γ-δ Cr γ M δ ) N ε (where M is selected from the elements of groups 4a, 5a, and 6a of the periodic table excluding Cr, Si, B, and Y) 1 or 2 or more additional components)
0.10 ≦ γ ≦ 0.54, 0.01 ≦ δ ≦ 0.25, 0.2 ≦ γ + δ ≦ 0.6 (however, both γ and δ values are atomic ratios) And an average composition ratio of Al, Cr, and M, and a concentration distribution structure in which the nitrogen content ratio (ε value, but the atomic ratio) in the upper layer decreases from the intermediate layer side toward the upper layer surface. In addition, a composition-graded Al and Cr composite nitride layer in which the nitrogen content (ε value) on the upper layer surface satisfies 0 ≦ ε ≦ 0.35,
The surface coating cutting tool provided with the hard coating layer comprised by said (a)-(c).
(3) In the surface-coated cutting tool according to (1) or (2),
As the outermost surface layer, it has an average layer thickness of 0.2 to 0.6 μm,
Composition formula: (Al 1-X Ti X ) N
In other words, a composite nitride layer of Al and Ti having an average composition satisfying 0.3 ≦ X ≦ 0.7 (where X value is an atomic ratio) is further deposited on the surface of the upper layer. The surface-coated cutting tool according to (1) or (2), which is characterized in that "
It has the characteristics.

つぎに、この発明の被覆工具の各層について、詳細に説明する。   Next, each layer of the coated tool of the present invention will be described in detail.

(a)下部層
AlとTiの複合窒化物層((Al,Ti)N層)からなる硬質被覆層の下部層におけるAl成分には高温硬さ、耐熱性を向上させ、一方、同Ti成分には高温強度を向上させる作用があり、下部層ではAl成分の含有割合を多くして、高い高温硬さを具備せしめるが、下部層の平均組成を、
組成式:(Al1−XTi)N
で表した場合、Alとの合量に占めるTiの含有割合を示すX値が割合(原子比、以下同じ)で0.3未満では、相対的にAlの割合が多くなって、すぐれた高温硬さは得られるものの十分な高温強度を確保することができないため、耐欠損性が低下するようになり、一方、Tiの割合を示す同X値が同0.7を越えると、相対的にAlの割合が少なくなり過ぎて、高温硬さが急激に低下し、この結果、摩耗進行が急激に促進するようになることから、X値を0.3〜0.7と定めた。
また、その平均層厚が0.5μm未満では、自身のもつすぐれた高温硬さ、高温強度を硬質被覆層に長期に亘って付与できず、工具寿命短命の原因となり、一方、その平均層厚が5μmを越えると、チッピングが発生し易くなることから、下部層の平均層厚を0.5〜5μmと定めた。
(A) Lower layer The Al component in the lower layer of the hard coating layer composed of a composite nitride layer of Al and Ti ((Al, Ti) N layer) improves the high-temperature hardness and heat resistance, while the Ti component Has the effect of improving the high-temperature strength, the lower layer increases the content ratio of the Al component and has a high high-temperature hardness, but the average composition of the lower layer,
Composition formula: (Al 1-X Ti X ) N
When the X value indicating the Ti content in the total amount with Al is less than 0.3 (atomic ratio, the same shall apply hereinafter), the proportion of Al is relatively high and excellent high temperature. Although hardness is obtained, sufficient high-temperature strength cannot be ensured, so that the fracture resistance is lowered. On the other hand, when the X value indicating the ratio of Ti exceeds 0.7, Since the ratio of Al becomes too small, the high-temperature hardness rapidly decreases, and as a result, the progress of wear is rapidly accelerated. Therefore, the X value is set to 0.3 to 0.7.
Further, if the average layer thickness is less than 0.5 μm, the excellent high-temperature hardness and high-temperature strength cannot be imparted to the hard coating layer over a long period of time, resulting in a short tool life. When the thickness exceeds 5 μm, chipping is likely to occur. Therefore, the average thickness of the lower layer is set to 0.5 to 5 μm.

(b)中間層
中間層は、AlとCrの複合窒化物層((Al,Cr)N層)あるいはAlとCrとMの複合窒化物層((Al,Cr,M)N層。ここで、Mは、Crを除く周期律表4a,5a,6a族の元素、Si、B、Yのうちから選ばれた1種又は2種以上の添加成分。)で構成されており、その構成成分であるAl成分には高温硬さと耐熱性を向上させ、同Cr成分には高温強度を向上させ、また、CrとAlの共存含有によって高温耐酸化性を向上させる作用があり、さらに、M成分のうちの、Crを除く周期律表4a,5a,6a族の元素、Si、B、には硬質被覆層の耐摩耗性を向上させる作用があり、さらに、Yには硬質被覆層の高温耐酸化性を向上させる作用がある。
(B) Intermediate layer The intermediate layer is a composite nitride layer of Al and Cr ((Al, Cr) N layer) or a composite nitride layer of Al, Cr and M ((Al, Cr, M) N layer, where , M is an element of the periodic table 4a, 5a, 6a excluding Cr, or one or more additive components selected from Si, B, and Y.) The Al component has the effect of improving the high temperature hardness and heat resistance, the Cr component has the effect of improving the high temperature strength, and the coexistence of Cr and Al improves the high temperature oxidation resistance. Of these, the elements of the periodic tables 4a, 5a and 6a excluding Cr, Si and B, have the effect of improving the wear resistance of the hard coating layer, and Y represents the high temperature acid resistance of the hard coating layer. There is an effect of improving the chemical properties.

(b−1)中間層がM成分を含有しない(Al,Cr)N層で形成される場合、
中間層の平均組成を、
組成式:(Al1−PCr)N
で表したとき、Alとの合量に占めるCrの含有割合を示すP値(原子比)が、0.2未満であると、溶着性の高い被削材の高速重切削加工において最小限必要とされる高温強度を確保することができないため欠損を発生しやすくなり、一方、P値(原子比)が0.6を超えると、相対的なAl含有割合の減少により、高温硬さの低下、耐熱性の低下が生じ、偏摩耗の発生、熱塑性変形の発生等により耐摩耗性の向上が期待できなくなるので、Alとの合量に占めるCrの含有割合(P値)(但し、原子比)を、0.2≦P≦0.6と定めた。
また、中間層における金属成分Al、Crの合計量を1とした場合、これら金属成分に対するN成分の含有割合(但し、原子比)を示すQ値が0.9≦Q<1の範囲を外れると、溶着性の高い被削材の高速切削加工において必要とされる高温硬さと高温強度を保持することができなくなるため、N成分の含有割合(Q値)(但し、原子比)を0.9≦Q<1と定めた。
(B-1) When the intermediate layer is formed of an (Al, Cr) N layer not containing an M component,
The average composition of the intermediate layer is
Composition formula: (Al 1-P Cr P ) N Q
When the P value (atomic ratio) indicating the content ratio of Cr in the total amount with Al is less than 0.2, it is the minimum necessary for high-speed heavy cutting of work material with high weldability It is not possible to ensure the high-temperature strength that is assumed, and defects are likely to occur. On the other hand, if the P value (atomic ratio) exceeds 0.6, the high Al hardness decreases due to a decrease in the relative Al content. Since the heat resistance is lowered and the improvement of the wear resistance cannot be expected due to the occurrence of uneven wear, the occurrence of thermoplastic deformation, etc., the Cr content in the total amount with Al (P value) (however, the atomic ratio ) Was defined as 0.2 ≦ P ≦ 0.6.
When the total amount of the metal components Al and Cr in the intermediate layer is 1, the Q value indicating the content ratio (however, atomic ratio) of the N component to these metal components is out of the range of 0.9 ≦ Q <1. Therefore, the high temperature hardness and high temperature strength required in high-speed cutting of a work material having high weldability cannot be maintained, so the content ratio (Q value) (however, the atomic ratio) of the N component is set to 0. It was determined that 9 ≦ Q <1.

(b−2)次に、中間層がM成分を含有する(Al,Cr,M)N層である場合、
中間層の平均組成を、
組成式:(Al1−R−SCr)N(ここで、Mは、Crを除く周期律表4a,5a,6a族の元素、Si、B、Yのうちから選ばれた1種又は2種以上の添加成分)
で表したとき、AlとMとの合量に占めるCrの含有割合を示すR値(原子比)が、0.10未満であると、溶着性の高い被削材の高速重切削加工において最小限必要とされる高温強度を確保することができないため耐欠損性が低下し、一方、R値(原子比)が0.54を超えると、相対的なAl含有割合の減少により、高温硬さの低下、耐熱性の低下が生じ、偏摩耗の発生、熱塑性変形の発生等により耐摩耗性の向上が期待できなくなる。さらに、AlとCrとの合量に占めるM成分の含有割合を示すS値(原子比)が0.01未満では、M成分を含有させたことによる耐摩耗性、高温耐酸化性等の特性向上が期待できず、一方、同S値が0.25を超えると、高温強度に低下傾向が現れ、欠損が発生しやすくなることから、R値を0.10〜0.54、S値を0.01〜0.25と定めた。なお、R値、S値のそれぞれがこの範囲内の値であっても、(R+S)の値が0.2未満では耐摩耗性、高温耐酸化性向上効果を期待できず、一方、(R+S)の値が0.6を超えると摩耗進行が急速に促進されるため、(R+S)の値を、0.2≦R+S≦0.6と定めた。また、中間層における金属成分Al、Cr、Mの合計量を1とした場合、これら金属成分に対するN成分の含有割合(但し、原子比)を示すT値が0.9≦T<1の範囲を外れると、溶着性の高い被削材の高速切削加工において必要とされる高温硬さと高温強度を保持することができなくなるため、N成分の含有割合(T値)(但し、原子比)を0.9≦T<1と定めた。
(B-2) Next, when the intermediate layer is an (Al, Cr, M) N layer containing an M component,
The average composition of the intermediate layer is
Composition formula: (Al 1-R-S Cr R M S) N T ( where, M is chosen Periodic Table 4a except Cr, 5a, elements of Group 6a, Si, B, from among Y 1 or 2 or more additional components)
When the R value (atomic ratio) indicating the content ratio of Cr in the total amount of Al and M is less than 0.10, the minimum in high-speed heavy cutting of a work material with high weldability Since the required high-temperature strength cannot be ensured, the chipping resistance is lowered. On the other hand, when the R value (atomic ratio) exceeds 0.54, the high-temperature hardness is reduced due to a decrease in the relative Al content. Decrease in heat resistance and heat resistance, and the improvement in wear resistance cannot be expected due to the occurrence of uneven wear and the occurrence of thermoplastic deformation. Further, when the S value (atomic ratio) indicating the content ratio of the M component in the total amount of Al and Cr is less than 0.01, characteristics such as wear resistance and high-temperature oxidation resistance due to the inclusion of the M component. On the other hand, when the S value exceeds 0.25, the high temperature strength tends to decrease and defects are likely to occur. Therefore, the R value is set to 0.10 to 0.54, and the S value is set. It was determined to be 0.01 to 0.25. Even if each of the R value and the S value is within this range, if the value of (R + S) is less than 0.2, the effect of improving wear resistance and high temperature oxidation resistance cannot be expected, while (R + S) When the value of) exceeds 0.6, the progress of wear is rapidly promoted, so the value of (R + S) is set to 0.2 ≦ R + S ≦ 0.6. When the total amount of the metal components Al, Cr, and M in the intermediate layer is 1, the T value indicating the content ratio (however, atomic ratio) of the N component to these metal components is in the range of 0.9 ≦ T <1. Since the high temperature hardness and high temperature strength required in high-speed cutting of a work material having high weldability cannot be maintained, the N component content ratio (T value) (however, the atomic ratio) is It was determined that 0.9 ≦ T <1.

(b−3)さらに、中間層の平均層厚が0.5μm未満では、自身のもつすぐれた耐摩耗性を長期に亘って発揮するには不十分であり、一方その平均層厚が5μmを越えると、高速重切削加工で切刃部に欠損が発生し易くなることから、その平均層厚は0.5〜5μmと定めた。 (B-3) Furthermore, if the average layer thickness of the intermediate layer is less than 0.5 μm, it is insufficient to exhibit its excellent wear resistance over a long period, while the average layer thickness is 5 μm. If it exceeds the upper limit, the cutting edge portion is likely to be damaged by high-speed heavy cutting, so the average layer thickness is determined to be 0.5 to 5 μm.

(c)上部層
上部層を構成する組成傾斜AlCrN層あるいは組成傾斜AlCrMN層は、中間層側から上部層表面に向かってN含有割合(β値、ε値)が減少する濃度分布構造を有している。そのため、中間層近傍の上部層は、中間層の平均組成に近い組成を有し、中間層と上部層は組成的に連続性をもった層として形成されることから、中間層と上部層という2層構造で形成されていたとしても、層間の接合強度が高く、かつ、すぐれた高温硬さ、高温強度、耐熱性を備えた上部層が形成される。一方、上部層の表面側へ向かうにしたがって、(Al,Cr)N層あるいは(Al,Cr,M)N層中のN含有割合が減少するため、上部層の表面には、熱伝導性、熱放散性にすぐれしかも表面平滑性のすぐれた層が形成され、被削材との潤滑性が改善される。
(C) Upper layer The composition gradient AlCrN layer or composition gradient AlCrMN layer constituting the upper layer has a concentration distribution structure in which the N content ratio (β value, ε value) decreases from the intermediate layer side toward the upper layer surface. ing. Therefore, the upper layer in the vicinity of the intermediate layer has a composition close to the average composition of the intermediate layer, and the intermediate layer and the upper layer are formed as layers having compositional continuity. Even if it is formed in a two-layer structure, an upper layer having high bonding strength between layers and having excellent high-temperature hardness, high-temperature strength, and heat resistance is formed. On the other hand, since the N content ratio in the (Al, Cr) N layer or (Al, Cr, M) N layer decreases toward the surface side of the upper layer, the surface of the upper layer has thermal conductivity, A layer having excellent heat dissipation and excellent surface smoothness is formed, and lubricity with the work material is improved.

(c−1)上部層がM成分を含有しない組成傾斜AlCrN層で形成される場合、
上部層の組成を、
組成式:(Al1−αCrα)Nβ
で表した場合、AlとCrの合量に占めるCrの含有割合(α値)は、中間層の場合と同様な理由から、0.2≦α≦0.6(但し、α値は原子比)と定めた。
また、上部層の表面において、AlとCrの合計量を1とした場合、これに対するN成分の含有割合(β値)が0.35を超えると、上部層表面における熱伝導性、熱放散性、表面平滑性の向上効果が少なく、その結果、被削材との潤滑性、耐摩耗性が十分でなくなることから、上部層の表面におけるN成分の、AlとCrの合計量に対する含有割合(β値)を0≦β≦0.35(但し、β値は原子比)と定めた。なお、ここで、βの値が0(ゼロ)とは、上部層表面が、AlとCrの複合窒化物ではなく、AlとCrの合金で形成されていることに他ならないが、この発明では、上部層表面がAlとCrの複合窒化物であるばかりでなく、Al−Cr合金で形成される場合をも含め、便宜上、組成傾斜AlCrN層という。
(C-1) When the upper layer is formed of a composition gradient AlCrN layer not containing an M component,
The composition of the upper layer,
Composition formula: (Al 1-α Cr α ) N β
The content ratio (α value) of Cr in the total amount of Al and Cr is 0.2 ≦ α ≦ 0.6 (provided that the α value is an atomic ratio) for the same reason as in the intermediate layer. ).
In addition, when the total amount of Al and Cr is 1 on the surface of the upper layer, if the N component content ratio (β value) exceeds 0.35, the thermal conductivity and heat dissipation on the surface of the upper layer Since the effect of improving the surface smoothness is small and, as a result, the lubricity and wear resistance with the work material are insufficient, the content ratio of the N component on the surface of the upper layer to the total amount of Al and Cr ( β value) was defined as 0 ≦ β ≦ 0.35 (where β value is an atomic ratio). Here, the value of β being 0 (zero) is nothing but the fact that the surface of the upper layer is formed of an alloy of Al and Cr rather than a composite nitride of Al and Cr. The upper layer surface is referred to as a composition gradient AlCrN layer for the sake of convenience, including not only the composite nitride of Al and Cr but also the case where it is formed of an Al—Cr alloy.

(c−2)上部層がM成分を含有する組成傾斜AlCrMN層で形成される場合、
上部層の組成を、
組成式:(Al1−γ−δCrγδ)Nε(ここで、Mは、Crを除く周期律表4a,5a,6a族の元素、Si、B、Yのうちから選ばれた1種又は2種以上の添加成分)
で表した場合、AlとCrとMの含有割合γ値、δ値は、中間層の場合と同様な理由から、0.10≦γ≦0.54、0.01≦δ≦0.25、0.2≦γ+δ≦0.6(但し、γ値、δ値はいずれも原子比)と定めた。
また、上部層の表面において、AlとCrとMの合計量を1とした場合、これに対するN成分の含有割合(ε値)が0.35を超えると、上部層表面における熱伝導性、熱放散性、表面平滑性の向上効果が少なく、その結果、被削材との潤滑性、耐摩耗性が十分でなくなることから、上部層の表面におけるN成分の、AlとCrの合計量に対する含有割合(ε値)を0≦ε≦0.35(但し、ε値は原子比)と定めた。なお、ε値が0(ゼロ)とは、上部層表面が、AlとCrとMの複合窒化物ではなく、AlとCrとMの合金で形成されていることに他ならないが、この発明では、上部層表面がAlとCrとMの複合窒化物であるばかりでなく、Al−Cr−M合金で形成される場合をも含め、便宜上、組成傾斜AlCrMN層という。
(C-2) When the upper layer is formed of a composition gradient AlCrMN layer containing an M component,
The composition of the upper layer,
Composition formula: (Al 1-γ-δ Cr γ M δ ) N ε (where M is selected from the elements of groups 4a, 5a, and 6a of the periodic table excluding Cr, Si, B, and Y) 1 or 2 or more additional components)
The content ratio γ value and δ value of Al, Cr, and M are 0.10 ≦ γ ≦ 0.54, 0.01 ≦ δ ≦ 0.25, for the same reason as in the intermediate layer, 0.2 ≦ γ + δ ≦ 0.6 (however, both γ value and δ value are atomic ratios).
Further, assuming that the total amount of Al, Cr and M is 1 on the surface of the upper layer, if the N component content ratio (ε value) exceeds 0.35, the thermal conductivity, The effect of improving the dissipative property and surface smoothness is small, and as a result, the lubricity and wear resistance with the work material become insufficient, so the content of N component on the surface of the upper layer with respect to the total amount of Al and Cr The ratio (ε value) was defined as 0 ≦ ε ≦ 0.35 (where ε value is an atomic ratio). The ε value of 0 (zero) is nothing but that the upper layer surface is not made of a composite nitride of Al, Cr and M, but an alloy of Al, Cr and M. The upper layer surface is not only a composite nitride of Al, Cr, and M but also referred to as a composition-graded AlCrMN layer for convenience, including the case where it is formed of an Al—Cr—M alloy.

(c−3)上記組成傾斜AlCrN層あるいは組成傾斜AlCrMN層の平均層厚は、0.3μm未満であると、すぐれた熱伝導性、熱放散性、潤滑性という特性を十分発揮することができず、また、その平均層厚が1μmを超えると、被削材との間で溶着を生じやすくなることから、上部層の平均層厚は0.3〜1μmと定めた。 (C-3) When the average layer thickness of the composition gradient AlCrN layer or the composition gradient AlCrMN layer is less than 0.3 μm, it is possible to sufficiently exhibit excellent thermal conductivity, heat dissipation, and lubricity. In addition, if the average layer thickness exceeds 1 μm, welding with the work material is likely to occur, so the average layer thickness of the upper layer is determined to be 0.3 to 1 μm.

(c−4)上記組成傾斜型の上部層は、例えば、中間層を蒸着形成する際に使用したAl−Cr合金、Al−Cr−M合金からなるカソード電極を用い、装置内雰囲気の窒素含有割合を徐々に低減させつつ、上記Al−Cr合金あるいはAl−Cr−M合金をカソード電極としてアークイオンプレーティングを行うことにより、中間層側から上部層表面に向かってN含有割合が減少する濃度分布構造を有する組成傾斜AlCrN層あるいは組成傾斜AlCrMN層を形成することができるが、中間層を形成するのに使用したのと同じカソード電極を用いなければならないというものではなく、新たに別のカソード電極を用いて上部層を形成することもできる。 (C-4) The composition gradient type upper layer uses, for example, a cathode electrode made of an Al—Cr alloy or an Al—Cr—M alloy used for vapor deposition of the intermediate layer, and contains nitrogen in the apparatus atmosphere. Concentration at which the N content ratio decreases from the intermediate layer side toward the upper layer surface by performing arc ion plating using the Al—Cr alloy or Al—Cr—M alloy as a cathode electrode while gradually reducing the ratio. A compositionally graded AlCrN layer or a compositionally graded AlCrMN layer having a distributed structure can be formed, but it is not necessary to use the same cathode electrode used to form the intermediate layer. The upper layer can also be formed using electrodes.

(d)最表面層
下部層、中間層および上部層からなる硬質被覆層の最表面に、下部層と同様な平均組成(即ち、組成式:(Al1−XTi)Nで表した場合、0.3≦X≦0.7(但し、X値は原子比)を満足する平均組成)の層厚の薄い(Al,Ti)N層を最表面層として蒸着形成すると、この最表面層は、中間層および上部層の特性を何ら損なうことなく、硬質被覆層全体としての耐摩耗性、耐欠損性をより一層向上させることができる。最表面層の層厚は、0.2〜0.6μmとすることが必要であり、その層厚が0.2μm未満では、耐摩耗性、耐欠損性の向上を期待することはできず、一方、その層厚が0.6μmを超えると、溶着性の高い被削材に対する耐溶着性が低下し、欠損の原因となるからである。
(D) Outermost surface layer When the hard coating layer composed of the lower layer, the intermediate layer, and the upper layer has the same average composition as the lower layer (ie, composition formula: (Al 1-X Ti X ) N) , 0.3 ≦ X ≦ 0.7 (where the X value is an atomic ratio satisfying the atomic ratio), and forming a thin (Al, Ti) N layer as the outermost surface layer, this outermost surface layer Can further improve the wear resistance and fracture resistance of the entire hard coating layer without impairing the properties of the intermediate layer and the upper layer. The layer thickness of the outermost surface layer needs to be 0.2 to 0.6 μm, and if the layer thickness is less than 0.2 μm, improvement in wear resistance and fracture resistance cannot be expected, On the other hand, if the layer thickness exceeds 0.6 μm, the welding resistance to the work material having high weldability is lowered, which causes a defect.

この発明の被覆工具は、硬質被覆層の下部層を構成する(Al,Ti)N層が、すぐれた高温硬さ、耐熱性、高温強度を有し、中間層を構成する(Al,Cr)N層あるいは(Al,Cr,M)N層がすぐれた高温硬さ、高温強度、高温耐酸化性を具備し、また、上部層の組成傾斜AlCrN層あるいは組成傾斜AlCrMN層が、すぐれた熱伝導性、熱放散性、表面平滑性を備えていることから、硬質被覆層は全体として、すぐれた高温硬さ、高温強度、耐熱性、高温耐酸化性、熱伝導性、熱放散性、潤滑性を備え、その結果、軟鋼、ステンレス鋼のような溶着性の高い被削材を、高い発熱を伴い、かつ、切刃に対して高負荷が作用する高速重切削条件下で切削加工した場合にも、硬質被覆層に熱塑性変形、偏摩耗、欠損が生じることなく、長期に亘ってすぐれた耐欠損性、耐摩耗性を発揮するものである。   In the coated tool of the present invention, the (Al, Ti) N layer constituting the lower layer of the hard coating layer has excellent high-temperature hardness, heat resistance, and high-temperature strength, and constitutes an intermediate layer (Al, Cr). N layer or (Al, Cr, M) N layer has excellent high temperature hardness, high temperature strength, high temperature oxidation resistance, and upper layer composition gradient AlCrN layer or composition gradient AlCrMN layer has excellent heat conduction As a whole, the hard coating layer has excellent high-temperature hardness, high-temperature strength, heat resistance, high-temperature oxidation resistance, thermal conductivity, heat dissipation, and lubricity. As a result, when work materials with high weldability such as mild steel and stainless steel are machined under high-speed heavy cutting conditions with high heat generation and high load acting on the cutting blade However, there is no thermoplastic deformation, uneven wear, or chipping in the hard coating layer. Excellent chipping resistance for a long time, is to exhibit wear resistance.

つぎに、この発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の工具基体A−1〜A−10を形成した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders are blended in the composition shown in Table 1, wet mixed by a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. Medium, sintered at 1400 ° C for 1 hour, after sintering, WC-based carbide with honing of R: 0.03 on the cutting edge and chip shape of ISO standard CNMG120408 Alloy tool bases A-1 to A-10 were formed.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比で、TiC/TiN=50/50)粉末、MoC粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったTiCN基サーメット製の工具基体B−1〜B−6を形成した。 In addition, as raw material powders, TiCN (mass ratio, TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC, all having an average particle diameter of 0.5 to 2 μm. Prepare powder, Co powder, and Ni powder, mix these raw material powders into the composition shown in Table 2, wet mix for 24 hours with a ball mill, dry, and press-mold into green compact at 100 MPa pressure The green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour. After sintering, the cutting edge portion was subjected to a honing process of R: 0.03 to meet ISO standards / Tool bases B-1 to B-6 made of TiCN base cermet having a chip shape of CNMG120408 were formed.

(a)ついで、上記の工具基体A−1〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、また、カソード電極(蒸発源)として、所定組成のAl−Ti合金、および、Al−Cr合金あるいはAl−Cr−M合金を配置し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する工具基体に−1000Vの直流バイアス電圧を印加し、かつAl−Ti合金からなるカソード電極とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面をボンバード洗浄し、
(c)次に、装置内に反応ガスとして窒素ガスを導入して4Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−100Vの直流バイアス電圧を印加し、かつ、上記Al−Ti合金からなるカソード電極(蒸発源)とアノード電極との間に120Aの電流を流してアーク放電を発生させ、前記工具基体の表面に、表3、表5に示される目標平均組成、目標平均層厚の(Al,Ti)N層からなる下部層を蒸着形成し、
(d)次に、同じく4Paの窒素ガス雰囲気中で、前記回転テーブル上で自転しながら回転する工具基体に−100Vの直流バイアス電圧を印加し、かつ、上記Al−Cr合金あるいはAl−Cr−M合金からなるカソード電極(蒸発源)とアノード電極との間に120Aの電流を流してアーク放電を発生させ、前記下部層の表面に、同じく表3、表5に示される目標平均組成、目標平均層厚の(Al,Cr)N層あるいは(Al,Cr,M)N層からなる中間層を蒸着形成し、
(e)次に、前記Al−Cr合金あるいはAl−Cr−M合金からなるカソード電極(蒸発源)とアノード電極との間のアーク放電を継続させつつ、同時に、装置内雰囲気を窒素ガス雰囲気からアルゴンガス雰囲気へと徐々に切り替え、最終的には0.5Paの窒素−アルゴン混合ガス雰囲気中あるいはアルゴンガス雰囲気中で、上記Al−Cr合金あるいはAl−Cr−M合金からなるカソード電極(蒸発源)とアノード電極との間に120Aの電流を流してアーク放電を発生させて、表4、表6に示される目標組成、目標平均層厚の組成傾斜AlCrN層あるいは組成傾斜AlCrMN層からなる上部層を蒸着形成し、
(f)次に、装置内雰囲気をアルゴンガス雰囲気から窒素ガス雰囲気へと切り替え、4Paの窒素ガス雰囲気中で、上記Al−Ti合金からなるカソード電極(蒸発源)とアノード電極との間に120Aの電流を流してアーク放電を発生させて、表4、表6に示される目標平均組成、目標平均層厚の(Al,Ti)N層からなる最表面層を蒸着形成し、
本発明被覆工具としての本発明表面被覆スローアウエイチップ(以下、本発明被覆チップと云う)1〜16をそれぞれ製造した。
(A) Next, each of the tool bases A-1 to A-10 and B-1 to B-6 is ultrasonically cleaned in acetone and dried, and then the arc ion plating shown in FIG. It is mounted along the outer periphery at a position that is a predetermined distance in the radial direction from the center axis on the rotary table in the apparatus. An alloy or an Al-Cr-M alloy,
(B) First, the inside of the apparatus is heated to 500 ° C. with a heater while the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, and then the tool base that rotates while rotating on the rotary table is −1000 V. A DC bias voltage is applied, and an arc discharge is generated by flowing a current of 100 A between the cathode electrode and the anode electrode made of an Al—Ti alloy, and the tool base surface is bombard washed.
(C) Next, nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 4 Pa, a DC bias voltage of −100 V is applied to the tool base that rotates while rotating on the rotary table, and A current of 120 A is passed between the cathode electrode (evaporation source) made of the Al—Ti alloy and the anode electrode to generate an arc discharge, and the target average shown in Tables 3 and 5 is formed on the surface of the tool base. A lower layer composed of an (Al, Ti) N layer having a composition and a target average layer thickness is formed by vapor deposition.
(D) Next, a DC bias voltage of −100 V is applied to the tool base that rotates while rotating on the rotary table in a nitrogen gas atmosphere of 4 Pa, and the Al—Cr alloy or Al—Cr— An arc discharge is generated by flowing a current of 120 A between the cathode electrode (evaporation source) made of M alloy and the anode electrode, and the target average composition and target shown in Tables 3 and 5 are also formed on the surface of the lower layer. An intermediate layer composed of an (Al, Cr) N layer or (Al, Cr, M) N layer having an average layer thickness is formed by vapor deposition.
(E) Next, while continuing the arc discharge between the cathode electrode (evaporation source) made of the Al—Cr alloy or the Al—Cr—M alloy and the anode electrode, the atmosphere in the apparatus is changed from the nitrogen gas atmosphere at the same time. The cathode electrode (evaporation source) made of the above Al-Cr alloy or Al-Cr-M alloy is gradually switched to an argon gas atmosphere and finally in a nitrogen-argon mixed gas atmosphere of 0.5 Pa or an argon gas atmosphere. ) And an anode electrode to cause an arc discharge by causing a current of 120 A to flow, and an upper layer composed of a composition gradient AlCrN layer or a composition gradient AlCrMN layer having a target composition and a target average layer thickness shown in Tables 4 and 6 Vapor-deposited,
(F) Next, the atmosphere in the apparatus is switched from an argon gas atmosphere to a nitrogen gas atmosphere, and 120 A is provided between the cathode electrode (evaporation source) made of the Al—Ti alloy and the anode electrode in a 4 Pa nitrogen gas atmosphere. To generate an arc discharge, the outermost surface layer consisting of (Al, Ti) N layers of the target average composition and target average layer thickness shown in Tables 4 and 6 is formed by vapor deposition.
The surface-coated throwaway tips (hereinafter referred to as the present invention-coated tips) 1 to 16 as the present invention-coated tools were produced, respectively.

比較例1Comparative Example 1

比較の目的で、
(a)上記工具基体A−1〜A−10およびB−1〜B−6を、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、また、カソード電極(蒸発源)として、所定組成のAl−Ti合金およびAl−Cr合金あるいはAl−Cr−M合金を配置し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する工具基体に−1000Vの直流バイアス電圧を印加し、かつAl−Ti合金からなるカソード電極とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面をボンバード洗浄し、
(c)次に、装置内に反応ガスとして窒素ガスを導入して4Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−100Vの直流バイアス電圧を印加し、かつ、上記Al−Ti合金からなるカソード電極(蒸発源)とアノード電極との間に120Aの電流を流してアーク放電を発生させ、前記工具基体の表面に、表3、表5に示される目標平均組成、目標平均層厚の(Al,Ti)N層からなる下部層を蒸着形成し、
(d)次に、同じく4Paの窒素ガス雰囲気中で、前記回転テーブル上で自転しながら回転する工具基体に−100Vの直流バイアス電圧を印加し、かつ、上記Al−Cr合金あるいはAl−Cr−M合金からなるカソード電極(蒸発源)とアノード電極との間に120Aの電流を流してアーク放電を発生させ、前記下部層の表面に、同じく表3、表5に示される目標平均組成、目標平均層厚の(Al,Cr)N層あるいは(Al,Cr,M)N層からなる上部層(表3、表5中で、(注)を付した中間層がこれに相当)を蒸着形成し、
比較被覆工具としての比較表面被覆スローアウエイチップ(以下、比較被覆チップと云う)1〜16をそれぞれ製造した。
For comparison purposes,
(A) The tool bases A-1 to A-10 and B-1 to B-6 are ultrasonically cleaned in acetone and dried, and then the rotary table in the arc ion plating apparatus shown in FIG. Attached along the outer periphery at a position spaced apart from the upper central axis in the radial direction, and used as a cathode electrode (evaporation source) with an Al—Ti alloy and Al—Cr alloy or Al—Cr—M having a predetermined composition. Place the alloy,
(B) First, the inside of the apparatus is heated to 500 ° C. with a heater while the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, and then the tool base that rotates while rotating on the rotary table is −1000 V. A DC bias voltage is applied, and an arc discharge is generated by flowing a current of 100 A between the cathode electrode and the anode electrode made of an Al—Ti alloy, and the tool base surface is bombard washed.
(C) Next, nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 4 Pa, a DC bias voltage of −100 V is applied to the tool base that rotates while rotating on the rotary table, and A current of 120 A is passed between the cathode electrode (evaporation source) made of the Al—Ti alloy and the anode electrode to generate an arc discharge, and the target average shown in Tables 3 and 5 is formed on the surface of the tool base. A lower layer composed of an (Al, Ti) N layer having a composition and a target average layer thickness is formed by vapor deposition.
(D) Next, a DC bias voltage of −100 V is applied to the tool base that rotates while rotating on the rotary table in a nitrogen gas atmosphere of 4 Pa, and the Al—Cr alloy or Al—Cr— An arc discharge is generated by flowing a current of 120 A between the cathode electrode (evaporation source) made of M alloy and the anode electrode, and the target average composition and target shown in Tables 3 and 5 are also formed on the surface of the lower layer. Upper layer consisting of (Al, Cr) N layer or (Al, Cr, M) N layer of average layer thickness (the intermediate layer marked with (Note) in Tables 3 and 5 corresponds to this) And
Comparative surface-coated throwaway tips (hereinafter referred to as comparative coated tips) 1 to 16 as comparative coated tools were produced, respectively.

つぎに、上記の各種の被覆チップを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆チップ1〜16および比較被覆チップ1〜16について、
被削材:JIS・S10Cの丸棒、
切削速度: 240 m/min.、
切り込み: 2.4 mm、
送り: 0.35 mm/rev.、
切削時間: 10 分、
の条件(切削条件A)での軟鋼の乾式高速連続高切込み切削加工試験(通常の切削速度、切込みは、それぞれ、150m/min.、1.5mm)、
被削材:JIS・SUS304の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 280 m/min.、
切り込み: 1.5 mm、
送り: 0.50 mm/rev.、
切削時間: 5 分、
の条件(切削条件B)でのステンレス鋼の乾式高速断続高送り切削加工試験(通常の切削速度、送りは、それぞれ、180m/min.、0.3mm/rev.)、
被削材:JIS・S55Cの丸棒、
切削速度: 280 m/min.、
切り込み: 2.5 mm、
送り: 0.25 mm/rev.、
切削時間: 10 分、
の条件(切削条件C)での炭素鋼の乾式高速連続高切込み切削加工試験(通常の切削速度、切込みは、それぞれ、180m/min.、1.5mm)、
を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表7に示した。
Next, in the state where each of the above various coated chips is screwed to the tip of the tool steel tool with a fixing jig, the present coated chips 1-16 and the comparative coated chips 1-16,
Work material: JIS / S10C round bar,
Cutting speed: 240 m / min. ,
Incision: 2.4 mm,
Feed: 0.35 mm / rev. ,
Cutting time: 10 minutes,
Dry high-speed continuous high-cutting cutting test of mild steel under the following conditions (cutting condition A) (normal cutting speed and cutting are 150 m / min. And 1.5 mm, respectively),
Work material: JIS / SUS304 lengthwise equidistant four round grooved round bars,
Cutting speed: 280 m / min. ,
Cutting depth: 1.5 mm,
Feed: 0.50 mm / rev. ,
Cutting time: 5 minutes,
Stainless steel dry high-speed intermittent high-feed cutting test under normal conditions (cutting condition B) (normal cutting speed and feed are 180 m / min. And 0.3 mm / rev., Respectively),
Work material: JIS / S55C round bar,
Cutting speed: 280 m / min. ,
Cutting depth: 2.5 mm,
Feed: 0.25 mm / rev. ,
Cutting time: 10 minutes,
Carbon steel dry high-speed continuous high-cut cutting test under normal conditions (cutting condition C) (normal cutting speed and cutting are 180 m / min. And 1.5 mm, respectively),
In each cutting test, the flank wear width of the cutting edge was measured. The measurement results are shown in Table 7.

Figure 0005088480
Figure 0005088480

Figure 0005088480
Figure 0005088480

Figure 0005088480
Figure 0005088480

Figure 0005088480
Figure 0005088480

Figure 0005088480
Figure 0005088480

Figure 0005088480
Figure 0005088480

Figure 0005088480
Figure 0005088480

原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C[質量比で、TiC/WC=50/50]粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表8に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mm、13mm、および26mmの3種の工具基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表8に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角30度の4枚刃スクエア形状をもったWC基超硬合金製の工具基体(エンドミル)C−1〜C−8をそれぞれ製造した。 As raw material powders, medium coarse WC powder having an average particle diameter of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, ZrC of 1.2 μm Powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C [by mass ratio, TiC / WC = 50/50] powder, and 1 Prepare 8 μm Co powder, mix these raw material powders with the composition shown in Table 8, add wax, ball mill in acetone for 24 hours, dry under reduced pressure, and press at a pressure of 100 MPa. The green compacts were press-molded, and these green compacts were heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a rate of temperature increase of 7 ° C./min in a 6 Pa vacuum atmosphere. After holding at temperature for 1 hour, sintering under furnace cooling conditions Then, three types of tool base forming round bar sintered bodies having diameters of 8 mm, 13 mm, and 26 mm are formed, and further, the three kinds of round bar sintered bodies are shown in Table 8 by grinding. In combination, the diameter x length of the cutting edge is 6 mm x 13 mm, 10 mm x 22 mm, and 20 mm x 45 mm, respectively, and each is made of a WC-based cemented carbide with a 4-flute square shape with a twist angle of 30 degrees Tool bases (end mills) C-1 to C-8 were produced.

ついで、これらの工具基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、表9に示される目標平均組成および目標平均層厚の(Al,Ti)N層を下部層として、同じく表9に示される目標平均組成および目標平均層厚の(Al,Cr)N層あるいは(Al,Cr,M)N層を中間層として、同じく表10に示される目標組成、目標平均層厚の組成傾斜AlCrN層あるいは組成傾斜AlCrMN層を上部層として蒸着形成し、さらに、同じく表10に示される目標平均組成、目標平均層厚の(Al,Ti)N層を最表面層として蒸着形成することにより、
本発明被覆工具としての本発明表面被覆超硬製エンドミル(以下、本発明被覆エンドミルと云う)1〜8をそれぞれ製造した。
Subsequently, the surfaces of these tool bases (end mills) C-1 to C-8 were ultrasonically cleaned in acetone and dried, and then charged into the arc ion plating apparatus shown in FIG. Under the same conditions as in Example 1, the target average composition and target average layer thickness (Al, Ti) N layer shown in Table 9 is used as the lower layer, and the target average composition and target average layer thickness (shown in Table 9) ( The Al, Cr) N layer or the (Al, Cr, M) N layer is used as an intermediate layer, and the target composition and the target average layer thickness shown in Table 10 are also used as the upper layer of the composition gradient AlCrN layer or composition gradient AlCrMN layer. Furthermore, by vapor deposition forming the (Al, Ti) N layer having the target average composition and target average layer thickness shown in Table 10 as the outermost surface layer,
The surface-coated carbide end mills (hereinafter referred to as the present invention-coated end mills) 1 to 8 as the present invention-coated tools were produced, respectively.

比較例2Comparative Example 2

比較の目的で、上記の工具基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示される一つのカソード電極(蒸発源)を備えたアークイオンプレーティング装置に装入し、上記比較例1と同一の条件で、表11に示される目標平均組成および目標平均層厚の(Al,Ti)N層からなる下部層、(Al,Cr)N層あるいは(Al,Cr,M)N層からなる上部層(本発明でいう中間層に相当)を蒸着することにより、
比較被覆工具としての比較表面被覆超硬製エンドミル(以下、比較被覆エンドミルと云う)1〜8をそれぞれ製造した。
For the purpose of comparison, the surface of the tool base (end mill) C-1 to C-8 was ultrasonically cleaned in acetone and dried, and one cathode electrode (evaporation source) shown in FIG. A lower layer composed of an (Al, Ti) N layer having a target average composition and a target average layer thickness shown in Table 11 under the same conditions as in Comparative Example 1 above. , Cr) N layer or (Al, Cr, M) by depositing an upper layer (corresponding to the intermediate layer in the present invention) consisting of N layer,
Comparative surface coated carbide end mills (hereinafter referred to as comparative coated end mills) 1 to 8 as comparative coated tools were produced, respectively.

つぎに、上記本発明被覆エンドミル1〜8および比較被覆エンドミル1〜8のうち、
本発明被覆エンドミル1〜3および比較被覆エンドミル1〜3については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SUS304の板材、
切削速度: 90 m/min.、
溝深さ(切り込み): 4.2 mm、
テーブル送り: 130 mm/分、
の条件でのステンレス鋼の湿式高速高切込み溝切削加工試験(通常の切削速度および切り込みは、それぞれ、50m/min.、3mm)、
本発明被覆エンドミル4〜6および比較被覆エンドミル4〜6については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・S55Cの板材、
切削速度: 180 m/min.、
溝深さ(切り込み): 5 mm、
テーブル送り: 420 mm/分、
の条件での炭素鋼の乾式高速高送り溝切削加工試験(通常の切削速度および送りは、それぞれ、100m/min.、240mm/分)、
本発明被覆エンドミル7、8および比較被覆エンドミル7、8については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・S10Cの板材、
切削速度: 160 m/min.、
溝深さ(切り込み): 18 mm、
テーブル送り: 250 mm/分、
の条件での軟鋼の乾式高速高切込み溝切削加工試験(通常の切削速度および切り込みは、それぞれ、100m/min.、12mm)、
をそれぞれ行い、いずれの高速溝切削加工試験でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。この測定結果を表10、11にそれぞれ示した。
Next, of the present invention coated end mills 1-8 and comparative coated end mills 1-8,
About this invention coated end mills 1-3 and comparative coated end mills 1-3,
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SUS304 plate,
Cutting speed: 90 m / min. ,
Groove depth (cut): 4.2 mm,
Table feed: 130 mm / min,
Wet high-speed high-cut groove cutting test of stainless steel under the following conditions (normal cutting speed and cutting are 50 m / min, 3 mm, respectively),
About this invention coated end mills 4-6 and comparative coated end mills 4-6,
Work material-Plane size: 100 mm x 250 mm, thickness: 50 mm JIS / S55C plate material,
Cutting speed: 180 m / min. ,
Groove depth (cut): 5 mm,
Table feed: 420 mm / min,
Carbon steel dry high-speed high-feed groove cutting test under normal conditions (normal cutting speed and feed are 100 m / min. And 240 mm / min, respectively)
About this invention coated end mills 7 and 8 and comparative coated end mills 7 and 8,
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / S10C plate,
Cutting speed: 160 m / min. ,
Groove depth (cut): 18 mm,
Table feed: 250 mm / min,
Dry high-speed, high-cut groove cutting test of mild steel under the conditions (normal cutting speed and cutting are 100 m / min, 12 mm, respectively)
In each high-speed groove cutting test, the cutting groove length was measured until the flank wear width of the outer peripheral edge of the cutting edge reached 0.1 mm, which is a guide for the service life. The measurement results are shown in Tables 10 and 11, respectively.

Figure 0005088480
Figure 0005088480

Figure 0005088480
Figure 0005088480

Figure 0005088480
Figure 0005088480

Figure 0005088480
Figure 0005088480

上記の実施例2で製造した直径が8mm(工具基体C−1〜C−3形成用)、13mm(工具基体C−4〜C−6形成用)、および26mm(工具基体C−7、C−8形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ4mm×13mm(工具基体D−1〜D−3)、8mm×22mm(工具基体D−4〜D−6)、および16mm×45mm(工具基体D−7、D−8)の寸法、並びにいずれもねじれ角30度の2枚刃形状をもったWC基超硬合金製の工具基体(ドリル)D−1〜D−8をそれぞれ製造した。   The diameters produced in Example 2 above were 8 mm (for forming the tool bases C-1 to C-3), 13 mm (for forming the tool bases C-4 to C-6), and 26 mm (tool bases C-7 and C). -8 for forming), and from these three types of round bar sintered bodies, the diameter x length of the groove forming part is 4 mm x 13 mm (tool base D) by grinding. −1 to D-3), 8 mm × 22 mm (tool base D-4 to D-6), and 16 mm × 45 mm (tool bases D-7 and D-8), and all having a twist angle of 30 degrees 2 WC-base cemented carbide tool bases (drills) D-1 to D-8 having a single-blade shape were produced, respectively.

ついで、これらの工具基体(ドリル)D−1〜D−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、表12に示される目標平均組成および目標平均層厚の(Al,Ti)N層を下部層として、同じく表12に示される目標平均組成および目標平均層厚の(Al,Cr)N層あるいは(Al,Cr,M)N層を中間層として、同じく表13に示される目標組成および目標平均層厚の組成傾斜AlCrN層あるいは組成傾斜AlCrMN層を上部層として蒸着形成し、さらに、同じく表13に示される目標平均組成、目標平均層厚の(Al,Ti)N層を最表面層として蒸着形成することにより、
本発明被覆工具としての本発明表面被覆超硬製ドリル(以下、本発明被覆ドリルと云う)1〜8をそれぞれ製造した。
Next, the cutting edges of these tool bases (drills) D-1 to D-8 are subjected to honing, ultrasonically cleaned in acetone, and dried to the arc ion plating apparatus shown in FIG. The target average composition shown in Table 12 and the target average composition shown in Table 12 and the target average layer thickness (Al, Ti) N layer as the lower layer under the same conditions as in Example 1 above. Using the (Al, Cr) N layer or (Al, Cr, M) N layer having the target average layer thickness as an intermediate layer, the composition gradient AlCrN layer or the composition gradient AlCrMN layer having the target composition and the target average layer thickness shown in Table 13 are also shown. Is vapor-deposited as the upper layer, and further, (Al, Ti) N layer having the target average composition and target average layer thickness shown in Table 13 is formed as the outermost surface layer,
The surface-coated carbide drills (hereinafter referred to as the present invention-coated drills) 1 to 8 as the present invention-coated tools were produced, respectively.

比較例3Comparative Example 3

比較の目的で、上記の工具基体(ドリル)D−1〜D−8の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記比較例1と同一の条件で、表14に示される目標平均組成および目標平均層厚の(Al,Ti)N層を下部層として、同じく表14に示される目標平均組成および目標平均層厚の(Al,Cr)N層あるいは(Al,Cr,M)N層からなる上部層(本発明でいう中間層に相当)を蒸着形成することにより、
比較被覆工具としての比較表面被覆超硬製ドリル(以下、比較被覆ドリルと云う)1〜8をそれぞれ製造した。
For the purpose of comparison, the surfaces of the above-mentioned tool bases (drills) D-1 to D-8 are subjected to honing, ultrasonically cleaned in acetone and dried, and the arc ion plating shown in FIG. In the same conditions as in Comparative Example 1 above, the target average composition shown in Table 14 and the target average layer thickness (Al, Ti) N layer as the lower layer were used, and the target average shown in Table 14 was also used. By vapor-depositing an upper layer (corresponding to the intermediate layer in the present invention) composed of an (Al, Cr) N layer or an (Al, Cr, M) N layer having a composition and a target average layer thickness,
Comparative surface coated carbide drills (hereinafter referred to as comparative coated drills) 1 to 8 as comparative coated tools were produced, respectively.

つぎに、上記本発明被覆ドリル1〜8および比較被覆ドリル1〜8のうち、本発明被覆ドリル1〜3および比較被覆ドリル1〜3については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・S55Cの板材、
切削速度: 150 m/min.、
送り: 0.28 mm/rev、
穴深さ: 8 mm、
の条件での炭素鋼の湿式高速高送り穴あけ切削加工試験(通常の切削速度および送りは、それぞれ、80m/min.、0.15mm/rev)、
本発明被覆ドリル4〜6および比較被覆ドリル4〜6については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・S10Cの板材、
切削速度: 140 m/min.、
送り: 0.40 mm/rev、
穴深さ: 15 mm、
の条件での軟鋼の湿式高速高送り穴あけ切削加工試験(通常の切削速度および送りは、それぞれ、80m/min.、0.25mm/rev)、
本発明被覆ドリル7、8および比較被覆ドリル7、8については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SUS304の板材、
切削速度: 150 m/min.、
送り: 0.36 mm/rev、
穴深さ: 28 mm、
の条件でのステンレス鋼の湿式高速高送り穴あけ切削加工試験(通常の切削速度および送りは、それぞれ、80m/min.、0.20mm/rev)、
をそれぞれ行い、いずれの湿式高速穴あけ切削加工試験(水溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表13、14にそれぞれ示した。
Next, of the present invention coated drills 1-8 and comparative coated drills 1-8, for the present invention coated drills 1-3 and comparative coated drills 1-3,
Work material-Plane size: 100 mm x 250 mm, thickness: 50 mm JIS / S55C plate material,
Cutting speed: 150 m / min. ,
Feed: 0.28 mm / rev,
Hole depth: 8 mm,
Wet high-speed high-feed drilling test of carbon steel under the following conditions (normal cutting speed and feed are 80 m / min, 0.15 mm / rev, respectively)
About this invention coated drill 4-6 and comparative coated drill 4-6,
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / S10C plate,
Cutting speed: 140 m / min. ,
Feed: 0.40 mm / rev,
Hole depth: 15 mm,
Wet high-speed high-feed drilling test of mild steel under the conditions (normal cutting speed and feed are 80 m / min. And 0.25 mm / rev, respectively)
About this invention covering drills 7 and 8 and comparative covering drills 7 and 8,
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SUS304 plate,
Cutting speed: 150 m / min. ,
Feed: 0.36 mm / rev,
Hole depth: 28 mm,
Wet high-speed high-feed drilling test of stainless steel under the conditions of (normal cutting speed and feed are 80 m / min, 0.20 mm / rev, respectively),
In each wet high-speed drilling test (using water-soluble cutting oil), the number of drilling processes until the flank wear width of the tip cutting edge surface reached 0.3 mm was measured. The measurement results are shown in Tables 13 and 14, respectively.

Figure 0005088480
Figure 0005088480

Figure 0005088480
Figure 0005088480

Figure 0005088480
Figure 0005088480

この結果得られた本発明被覆工具としての本発明被覆チップ1〜16、本発明被覆エンドミル1〜8および本発明被覆ドリル1〜8の硬質被覆層の下部層を構成する(Al,Ti)N層、中間層を構成する(Al,Cr)N層あるいは(Al,Cr,M)N層、最表面層を構成する(Al,Ti)N層の組成、並びに、比較被覆工具としての比較被覆チップ1〜16、比較被覆エンドミル1〜8および比較被覆ドリル1〜8の下部層を構成する(Al,Ti)N層、上部層(本発明の中間層に相当)を構成する(Al,Cr)N層あるいは(Al,Cr,M)N層の組成を、透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、それぞれの目標組成と実質的に同じ組成を示した。
また、上記本発明被覆工具の上部層を構成する組成傾斜AlCrN層あるいは組成傾斜AlCrMN層の表面の組成を、同じく透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、表面のN含有割合は、目標β値、目標ε値と、実質的に同じ値を示した。
(Al, Ti) N constituting the lower layer of the hard coating layer of the present coated chips 1-16, the present coated end mills 1-8, and the present coated drills 1-8 as the present coated tool obtained as a result Composition of (Al, Cr) N layer or (Al, Cr, M) N layer constituting the layer, intermediate layer, (Al, Ti) N layer constituting the outermost surface layer, and comparative coating as a comparative coating tool (Al, Ti) N layer constituting the lower layer of the chips 1 to 16, the comparative coated end mills 1 to 8 and the comparative coated drills 1 to 8, and the upper layer (corresponding to the intermediate layer of the present invention) (Al, Cr) The composition of the N layer or the (Al, Cr, M) N layer was measured by energy dispersive X-ray analysis using a transmission electron microscope, and showed substantially the same composition as each target composition.
Further, the composition of the surface of the composition gradient AlCrN layer or the composition gradient AlCrMN layer constituting the upper layer of the coated tool of the present invention was measured by the energy dispersive X-ray analysis method using the transmission electron microscope, The N content ratio showed substantially the same value as the target β value and the target ε value.

また、上記本発明被覆工具および比較被覆工具の硬質被覆層を構成する前記各層の平均層厚を、走査型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。   Further, when the average layer thickness of each of the layers constituting the hard coating layer of the present invention coated tool and the comparative coated tool was measured using a scanning electron microscope, the average value was substantially the same as the target layer thickness. (Average value of 5 locations) is shown.

表7、表10、11、13、14に示される結果から、本発明被覆工具は、軟鋼やステンレス鋼のような溶着性の高い被削材を、高い発熱を伴い、かつ、切刃に対して高負荷が作用する高速重切削条件で切削加工した場合でも、所定組成の(Al,Ti)N層からなる下部層が、すぐれた高温硬さ、耐熱性および高温強度を有し、所定組成の(Al,Cr)N層あるいは(Al,Cr,M)N層からなる中間層が、すぐれた高温硬さ、高温強度および高温耐酸化性を有し、かつ、組成傾斜AlCrN層あるいは組成傾斜AlCrMN層からなる上部層が、特にすぐれた熱伝導性、熱放散性を発揮し、硬質被覆層が過熱されることを防止し、偏摩耗、熱塑性変形の発生を抑え、さらに、すぐれた潤滑性を発揮することによって、欠損の発生もなく、長期に亘ってすぐれた耐摩耗性を発揮するのに対して、硬質被覆層が(Al,Ti)N層からなる下部層、(Al,Cr)N層あるいは(Al,Cr,M)N層からなる上部層(本発明の中間層に相当)で構成された比較被覆工具においては、熱伝導性、熱放散性、潤滑性が不十分であるために、高速重切削時に発生する高熱によって熱塑性変形、偏摩耗等を生じ、また、被削材と切刃部との溶着を原因とする欠損が発生し、その結果、比較的短時間で使用寿命に至ることが明らかである。   From the results shown in Table 7, Tables 10, 11, 13, and 14, the coated tool of the present invention is a work material with high weldability such as mild steel and stainless steel, with high heat generation and against the cutting edge. Even when machined under high-speed heavy cutting conditions in which a high load acts, the lower layer composed of the (Al, Ti) N layer having a predetermined composition has excellent high-temperature hardness, heat resistance and high-temperature strength, and has a predetermined composition The intermediate layer made of (Al, Cr) N layer or (Al, Cr, M) N layer has excellent high temperature hardness, high temperature strength and high temperature oxidation resistance, and has a composition gradient AlCrN layer or composition gradient The upper layer consisting of an AlCrMN layer exhibits particularly excellent heat conductivity and heat dissipation, prevents the hard coating layer from being overheated, suppresses the occurrence of uneven wear and thermoplastic deformation, and has excellent lubricity Defects can be generated by The hard coating layer is a lower layer composed of an (Al, Ti) N layer, an (Al, Cr) N layer, or an (Al, Cr, M) N, while exhibiting excellent wear resistance over a long period of time. In the comparative coated tool composed of the upper layer consisting of layers (corresponding to the intermediate layer of the present invention), the thermal conductivity, heat dissipation, and lubricity are insufficient. It is obvious that thermoplastic deformation, uneven wear, and the like occur, and that a defect occurs due to welding between the work material and the cutting edge, and as a result, the service life is reached in a relatively short time.

上述のように、この発明の被覆工具は、一般鋼や普通鋳鉄など通常条件での切削加工は勿論のこと、軟鋼、ステンレス鋼などのように溶着性が高い被削材の切削加工を、高い発熱を伴い、かつ、切刃に対して高負荷が作用する高送り、高切り込みなど高速重切削条件で行った場合においても、長期に亘ってすぐれた切削性能を示すものであるから、切削加工装置のFA化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention is not only capable of cutting under normal conditions such as general steel and normal cast iron, but also high cutting of work materials with high weldability such as mild steel and stainless steel. Even when performed under high-speed heavy cutting conditions such as high feed and high cutting that generate heat and a high load acts on the cutting edge, it shows excellent cutting performance over a long period of time. It is possible to satisfactorily respond to the FA of the equipment, labor saving and energy saving of cutting, and cost reduction.

硬質被覆層を形成するのに用いたアークイオンプレーティング装置の概略平面図である。It is a schematic plan view of the arc ion plating apparatus used for forming a hard coating layer.

Claims (3)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a)下部層として、0.5〜5μmの平均層厚を有し、
組成式:(Al1−XTi)N
で表した場合、0.3≦X≦0.7(但し、X値は原子比)を満足する平均組成のAlとTiの複合窒化物層、
(b)中間層として、0.5〜5μmの平均層厚を有し、
組成式:(Al1−PCr)N
で表した場合、0.2≦P≦0.6、0.9≦Q<1(但し、P値、Q値はいずれも原子比)を満足する平均組成のAlとCrの複合窒化物層、
(c)上部層として、0.3〜1μmの平均層厚を有し、
組成式:(Al1−αCrα)Nβ
で表した場合、0.2≦α≦0.6(但し、α値は原子比)を満足するAlとCrの平均組成割合を有し、かつ、上部層における窒素含有割合(β値。但し、原子比)が、中間層側から上部層表面に向かって減少する濃度分布構造を有し、しかも、上部層表面における窒素含有割合(β値)が、0≦β≦0.35を満足する組成傾斜型のAlとCrの複合窒化物層、
上記(a)〜(c)で構成された硬質被覆層を備えた表面被覆切削工具。
On the surface of the tool base composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(A) As a lower layer, it has an average layer thickness of 0.5 to 5 μm,
Composition formula: (Al 1-X Ti X ) N
The composite nitride layer of Al and Ti having an average composition satisfying 0.3 ≦ X ≦ 0.7 (where X value is an atomic ratio),
(B) As an intermediate layer, it has an average layer thickness of 0.5 to 5 μm,
Composition formula: (Al 1-P Cr P ) N Q
The composite nitride layer of Al and Cr having an average composition satisfying 0.2 ≦ P ≦ 0.6 and 0.9 ≦ Q <1 (where both P value and Q value are atomic ratios) ,
(C) As an upper layer, it has an average layer thickness of 0.3-1 μm,
Composition formula: (Al 1-α Cr α ) N β
, The average composition ratio of Al and Cr satisfying 0.2 ≦ α ≦ 0.6 (where the α value is an atomic ratio), and the nitrogen content ratio (β value in the upper layer. , Atomic ratio) decreases from the intermediate layer side toward the upper layer surface, and the nitrogen content (β value) on the upper layer surface satisfies 0 ≦ β ≦ 0.35 Composition-graded Al and Cr composite nitride layer,
The surface coating cutting tool provided with the hard coating layer comprised by said (a)-(c).
炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a)下部層として、0.5〜5μmの平均層厚を有し、
組成式:(Al1−XTi)N
で表した場合、0.3≦X≦0.7(但し、X値は原子比)を満足する平均組成のAlとTiの複合窒化物層、
(b)中間層として、0.5〜5μmの平均層厚を有し、
組成式:(Al1−R−SCr)N(ここで、Mは、Crを除く周期律表4a,5a,6a族の元素、Si、B、Yのうちから選ばれた1種又は2種以上の添加成分)
で表した場合、0.10≦R≦0.54、0.01≦S≦0.25、0.2≦R+S≦0.6、0.9≦T<1(但し、R値、S値、T値はいずれも原子比)を満足する平均組成のAlとCrとMの複合窒化物層、
(c)上部層として、0.3〜1μmの平均層厚を有し、
組成式:(Al1−γ−δCrγδ)Nε(ここで、Mは、Crを除く周期律表4a,5a,6a族の元素、Si、B、Yのうちから選ばれた1種又は2種以上の添加成分)
で表した場合、0.10≦γ≦0.54、0.01≦δ≦0.25、0.2≦γ+δ≦0.6(但し、γ値、δ値はいずれも原子比)を満足するAlとCrとMの平均組成割合を有し、かつ、上部層における窒素含有割合(ε値。但し、原子比)が、中間層側から上部層表面に向かって減少する濃度分布構造を有し、しかも、上部層表面における窒素含有割合(ε値)が、0≦ε≦0.35を満足する組成傾斜型のAlとCrの複合窒化物層、
上記(a)〜(c)で構成された硬質被覆層を備えた表面被覆切削工具。
On the surface of the tool base composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(A) As a lower layer, it has an average layer thickness of 0.5 to 5 μm,
Composition formula: (Al 1-X Ti X ) N
The composite nitride layer of Al and Ti having an average composition satisfying 0.3 ≦ X ≦ 0.7 (where X value is an atomic ratio),
(B) As an intermediate layer, it has an average layer thickness of 0.5 to 5 μm,
Composition formula: (Al 1-R-S Cr R M S) N T ( where, M is chosen Periodic Table 4a except Cr, 5a, elements of Group 6a, Si, B, from among Y 1 or 2 or more additional components)
0.10 ≦ R ≦ 0.54, 0.01 ≦ S ≦ 0.25, 0.2 ≦ R + S ≦ 0.6, 0.9 ≦ T <1 (however, R value, S value) , T values are all atomic ratios) and an average composition Al, Cr, and M composite nitride layer,
(C) As an upper layer, it has an average layer thickness of 0.3-1 μm,
Composition formula: (Al 1-γ-δ Cr γ M δ ) N ε (where M is selected from the elements of groups 4a, 5a, and 6a of the periodic table excluding Cr, Si, B, and Y) 1 or 2 or more additional components)
0.10 ≦ γ ≦ 0.54, 0.01 ≦ δ ≦ 0.25, 0.2 ≦ γ + δ ≦ 0.6 (however, both γ and δ values are atomic ratios) And an average composition ratio of Al, Cr, and M, and a concentration distribution structure in which the nitrogen content ratio (ε value, but the atomic ratio) in the upper layer decreases from the intermediate layer side toward the upper layer surface. In addition, a composition-graded Al and Cr composite nitride layer in which the nitrogen content (ε value) on the upper layer surface satisfies 0 ≦ ε ≦ 0.35,
The surface coating cutting tool provided with the hard coating layer comprised by said (a)-(c).
請求項1または請求項2に記載の表面被覆切削工具において、
最表面層として、0.2〜0.6μmの平均層厚を有し、
組成式:(Al1−XTi)N
で表した場合、0.3≦X≦0.7(但し、X値は原子比)を満足する平均組成のAlとTiの複合窒化物層を、上部層の表面にさらに蒸着形成したことを特徴とする請求項1または請求項2に記載の表面被覆切削工具。
The surface-coated cutting tool according to claim 1 or 2,
As the outermost surface layer, it has an average layer thickness of 0.2 to 0.6 μm,
Composition formula: (Al 1-X Ti X ) N
In other words, a composite nitride layer of Al and Ti having an average composition satisfying 0.3 ≦ X ≦ 0.7 (where X value is an atomic ratio) is further deposited on the surface of the upper layer. The surface-coated cutting tool according to claim 1 or 2, characterized in that
JP2007301197A 2007-11-21 2007-11-21 Surface coated cutting tool Expired - Fee Related JP5088480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007301197A JP5088480B2 (en) 2007-11-21 2007-11-21 Surface coated cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007301197A JP5088480B2 (en) 2007-11-21 2007-11-21 Surface coated cutting tool

Publications (2)

Publication Number Publication Date
JP2009125833A JP2009125833A (en) 2009-06-11
JP5088480B2 true JP5088480B2 (en) 2012-12-05

Family

ID=40817265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007301197A Expired - Fee Related JP5088480B2 (en) 2007-11-21 2007-11-21 Surface coated cutting tool

Country Status (1)

Country Link
JP (1) JP5088480B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5402515B2 (en) * 2009-10-19 2014-01-29 三菱マテリアル株式会社 Surface coated cutting tool
JP5975214B2 (en) * 2012-10-09 2016-08-23 三菱マテリアル株式会社 Surface coated cutting tool
JP5975338B2 (en) * 2012-10-16 2016-08-23 三菱マテリアル株式会社 Surface coated cutting tool
JP5975339B2 (en) * 2012-10-16 2016-08-23 三菱マテリアル株式会社 Surface coated cutting tool

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4062583B2 (en) * 2001-07-23 2008-03-19 株式会社神戸製鋼所 Hard coating for cutting tool, method for producing the same, and target for forming hard coating
JP4405835B2 (en) * 2004-03-18 2010-01-27 住友電工ハードメタル株式会社 Surface coated cutting tool
JP4268558B2 (en) * 2004-04-20 2009-05-27 住友電工ハードメタル株式会社 Coated cutting tool
JP2006082210A (en) * 2004-09-17 2006-03-30 Sumitomo Electric Hardmetal Corp Surface coated cutting tool
JP2006082209A (en) * 2004-09-17 2006-03-30 Sumitomo Electric Hardmetal Corp Surface coated cutting tool
JP2007038383A (en) * 2005-08-05 2007-02-15 Mitsubishi Materials Corp Surface-coated cemented-carbide cutting tool with hard coating layer exerting excellent chipping resistance in heavy cutting of difficult-to-cut material

Also Published As

Publication number Publication date
JP2009125833A (en) 2009-06-11

Similar Documents

Publication Publication Date Title
JP2009061520A (en) Surface-coated cutting tool with hard coating layer exhibiting excellent abrasion resistance in high-speed cutting
JP5041222B2 (en) Surface coated cutting tool
JP5088480B2 (en) Surface coated cutting tool
JP5196122B2 (en) Surface coated cutting tool
JP2009125832A (en) Surface-coated cutting tool
JP5445847B2 (en) A surface-coated cutting tool that exhibits excellent chipping and wear resistance with a high-speed heavy-cutting hard coating layer
JP2009119551A (en) Surface-coated cutting tool with hard coating layer exhibiting superior chipping resistance in high-speed feed cutting work
JP4687965B2 (en) Surface coated cutting tool with excellent wear resistance due to high hard coating layer in high speed cutting of high hardness steel
JP4702538B2 (en) Surface coated cutting tool with excellent wear resistance due to high hard coating layer in high speed cutting of high hardness steel
JP5035527B2 (en) Surface coated cutting tool
JP4697662B2 (en) Surface coated cutting tool with excellent wear resistance due to high hard coating layer in high speed cutting of high hardness steel
JP4678582B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP5099495B2 (en) Surface coated cutting tool
JP5077743B2 (en) Surface coated cutting tool with excellent chipping resistance and wear resistance due to hard coating layer
JP5476842B2 (en) A surface-coated cutting tool that exhibits excellent chipping and wear resistance with a high-speed heavy-cutting hard coating layer
JP2009095916A (en) Surface-coated cutting tool
JP5239950B2 (en) Surface coated cutting tool with excellent chipping resistance and wear resistance due to excellent hard coating layer in heavy cutting of highly welded work
JP4706921B2 (en) Surface-coated cutting tool with excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP4720996B2 (en) Surface-coated cutting tool with excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP2009119550A (en) Surface-coated cutting tool with hard coating layer exhibiting superior chipping resistance
JP2008188739A (en) Surface-coated cutting tool in which hard coating layer shows excellent chipping resistance in heavy cutting of difficult-to-cut material
JP2008188738A (en) Surface-coated cutting tool provided with hard coated layer achieving excellent chipping resistance in heavy cutting of hard-to-cut material
JP2007307690A (en) Surface-coated cutting tool having hard coating layer exhibiting superior wear resistance during high speed cutting operation
JP5239953B2 (en) Surface coated cutting tool with excellent chipping resistance and wear resistance with excellent hard coating layer in heavy cutting of highly weldable work material
JP5287383B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance with a hard coating layer in high-speed cutting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120815

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120828

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5088480

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees