JP5445847B2 - A surface-coated cutting tool that exhibits excellent chipping and wear resistance with a high-speed heavy-cutting hard coating layer - Google Patents

A surface-coated cutting tool that exhibits excellent chipping and wear resistance with a high-speed heavy-cutting hard coating layer Download PDF

Info

Publication number
JP5445847B2
JP5445847B2 JP2010016772A JP2010016772A JP5445847B2 JP 5445847 B2 JP5445847 B2 JP 5445847B2 JP 2010016772 A JP2010016772 A JP 2010016772A JP 2010016772 A JP2010016772 A JP 2010016772A JP 5445847 B2 JP5445847 B2 JP 5445847B2
Authority
JP
Japan
Prior art keywords
layer
cutting
composition
coated
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010016772A
Other languages
Japanese (ja)
Other versions
JP2011152627A (en
Inventor
和則 佐藤
貴仁 田渕
信一 鹿田
大介 風見
裕介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2010016772A priority Critical patent/JP5445847B2/en
Publication of JP2011152627A publication Critical patent/JP2011152627A/en
Application granted granted Critical
Publication of JP5445847B2 publication Critical patent/JP5445847B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Description

この発明は、軟鋼、ステンレス鋼、合金鋼、ダイス鋼などの被削材の切削加工を、高熱発生を伴うとともに、切刃に対して高負荷が作用する高送り、高切り込みの高速重切削条件で行った場合にも、硬質被覆層がすぐれた耐チッピング性、耐摩耗性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   The present invention relates to cutting of work materials such as mild steel, stainless steel, alloy steel, die steel, etc., with high heat generation and high feed, high cutting, high cutting speed conditions with high load acting on the cutting blade The present invention also relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent chipping resistance and wear resistance when a hard coating layer is used.

一般に、表面被覆切削工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに前記被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。   In general, surface-coated cutting tools include a throw-away tip that is detachably attached to the tip of a cutting tool for turning and planing of various steels and cast irons, and drilling of the work material. There are drills and miniature drills used for processing, etc., and solid type end mills used for chamfering, grooving, shoulder processing, etc. of the work material. A slow-away end mill tool that performs cutting work in the same manner as a type end mill is known.

また、表面被覆切削工具の一つとして、例えば、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、工具基体という)の表面に、
組成式:(Al1−αCrα)Nあるいは(Al1−α−βCrαSiβ)N(ただし、α、βは原子比を示す)、
を満足するAlとCrの複合窒化物[以下、(Al,Cr)Nで示す]層あるいはAlとCrとSiの複合窒化物[以下、(Al,Cr,Si)Nで示す]層からなる硬質被覆層を蒸着形成してなる被覆工具(以下、従来被覆工具という)が知られており、かかる従来被覆工具においては、硬質被覆層を構成する前記(Al,Cr)N層あるいは(Al,Cr,Si)N層が、構成成分であるAlによって高温硬さと耐熱性、同Crによって高温強度、さらにCrとAlの共存含有によって高温耐酸化性を有し、また、Siによって高温硬さを備えるようになることから、これを各種の一般鋼や普通鋳鉄などの連続切削や断続切削加工に用いた場合にすぐれた切削性能を発揮することも知られている。
Further, as one of the surface-coated cutting tools, for example, a base body (hereinafter referred to as a tool base body) composed of tungsten carbide (hereinafter referred to as WC) base cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) base cermet. On the surface)
Composition formula: (Al 1-α Cr α ) N or (Al 1-α-β Cr α Si β ) N (where α and β represent atomic ratios),
Or a composite nitride of Al and Cr [hereinafter referred to as (Al, Cr) N] layer or a composite nitride of Al, Cr and Si [hereinafter referred to as (Al, Cr, Si) N] layer. A coating tool formed by vapor-depositing a hard coating layer (hereinafter referred to as a conventional coating tool) is known, and in such a conventional coating tool, the (Al, Cr) N layer or (Al, The Cr, Si) N layer has high-temperature hardness and heat resistance due to the constituent Al, high-temperature strength due to the Cr, and high-temperature oxidation resistance due to the coexistence of Cr and Al, and high-temperature hardness due to the Si. Since it comes to be provided, it is also known that when this is used for continuous cutting and intermittent cutting of various general steels and ordinary cast iron, it exhibits excellent cutting performance.

そして、上記の被覆工具は、例えば、物理蒸着装置の1種であるアークイオンプレーティング装置に上記の工具基体を装入し、ヒータで装置内を、例えば500℃の温度に加熱した状態で、アノード電極と所定組成のAl−Cr(−Si)合金がセットされたカソード電極(蒸発源)との間に、例えば電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば2Paの反応雰囲気とし、一方上記工具基体には、例えば−100Vのバイアス電圧を印加した条件で、前記工具基体の表面に、上記(Al,Cr)N層あるいは(Al,Cr,Si)N層からなる硬質被覆層を蒸着することにより製造されることも知られている。   The above-mentioned coated tool is, for example, charged with the above-mentioned tool base in an arc ion plating apparatus which is a kind of physical vapor deposition apparatus, and heated in the apparatus to a temperature of, for example, 500 ° C. with a heater. An arc discharge is generated between the anode electrode and a cathode electrode (evaporation source) on which an Al—Cr (—Si) alloy having a predetermined composition is set, for example, at a current of 90 A, and at the same time nitrogen as a reaction gas in the apparatus. A gas is introduced to form a reaction atmosphere of, for example, 2 Pa. On the other hand, the above-described (Al, Cr) N layer or (Al It is also known to be produced by vapor-depositing a hard coating layer consisting of a (, Cr, Si) N layer.

特許第3027502号明細書Japanese Patent No. 3027502 特許第3781374号明細書Japanese Patent No. 3781374

近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は一段と厳しい切削条件下で行われるようになってきているが、上記従来被覆工具においては、これを炭素鋼、鋳鉄などの通常条件での切削加に用いた場合には、特段の問題はないが、特に、軟鋼、ステンレス鋼、合金鋼、ダイス鋼などの被削材を、高熱発生を伴うとともに、切刃に高負荷が作用する高送り、高切り込みの高速重切削条件下での切削加工に用いた場合には、高熱に加え、高負荷が作用する切刃部で切粉との溶着が生じやすく、また、その結果として、チッピング(微少欠け)を発生しやすく、また、耐熱塑性変形性も十分でないため、偏摩耗の発生により耐摩耗性が低下しやすく、比較的短時間で使用寿命に至るのが現状である。   In recent years, the performance of cutting devices has been dramatically improved, while on the other hand, there has been a strong demand for labor saving, energy saving, and cost reduction for cutting, and as a result, cutting has been performed under more severe cutting conditions. However, in the above-mentioned conventional coated tool, when this is used for cutting under normal conditions such as carbon steel and cast iron, there is no particular problem, but in particular, mild steel, stainless steel, alloy steel, When a work material such as die steel is used for cutting under high feed, high cutting and high speed heavy cutting conditions that cause high heat generation and high load on the cutting edge, in addition to high heat, As a result, chipping is likely to occur at the cutting edge where the load acts, and as a result, chipping (small chipping) is likely to occur, and the heat-resistant plastic deformation is not sufficient. Abrasion decreases Combing, at present, leading to a relatively short time service life.

そこで、本発明者等は、上述のような観点から、特に、軟鋼、ステンレス鋼、合金鋼、ダイス鋼などの被削材の高速重切削加工で、硬質被覆層がすぐれた耐溶着性、熱伝導性、熱放散性、耐熱塑性変形性、潤滑性を発揮する表面被覆切削工具を開発すべく、上記の従来被覆工具の硬質被覆層に着目し、研究を行った結果、以下の知見を得た。   In view of the above, the inventors of the present invention, in particular, have high welding resistance and heat resistance with excellent hard coating layers in high-speed heavy cutting of work materials such as mild steel, stainless steel, alloy steel, and die steel. In order to develop a surface-coated cutting tool that exhibits conductivity, heat dissipation, heat-resistant plastic deformation, and lubricity, the following findings were obtained as a result of research focusing on the hard coating layer of the above-mentioned conventional coated tools. It was.

(a)前記の従来被覆工具の(Al,Cr)N層は、Al成分によって高温硬さと耐熱性、同Cr成分によって高温強度、さらにCrとAlの共存含有によって高温耐酸化性を具備するようになることから、従来被覆工具の硬質被覆層はすぐれた高温硬さ、高温強度、耐熱性、高温耐酸化性を備えているが、軟鋼、ステンレス鋼等の溶着性の高い被削材の切削加工、また、合金鋼、ダイス鋼等の高硬度難削材の切削加工、特に、高熱発生を伴い、かつ、切刃部に高負荷が作用する高送り、高切り込みの高速重切削加工では、切粉が溶着しやすくなり、また、熱伝導性、熱放散性、潤滑性も十分でないため熱塑性変形も発生しやすくなり、その結果、チッピングの発生、偏摩耗の発生を抑えることが難しい。 (A) The (Al, Cr) N layer of the conventional coated tool has high temperature hardness and heat resistance due to the Al component, high temperature strength due to the Cr component, and high temperature oxidation resistance due to the coexistence of Cr and Al. Therefore, the hard coating layer of conventional coated tools has excellent high-temperature hardness, high-temperature strength, heat resistance, and high-temperature oxidation resistance, but it cuts work materials with high weldability such as mild steel and stainless steel. In machining, high-hardness difficult-to-cut materials such as alloy steel and die steel, especially in high-feed, high-cut high-speed heavy cutting with high heat generation and high load acting on the cutting edge, Chips are easily welded, and thermal conductivity, heat dissipation, and lubricity are not sufficient, and thermoplastic deformation is likely to occur. As a result, it is difficult to suppress chipping and uneven wear.

(b)そこで、本発明者等は、上記(Al,Cr)N層を薄層Aとし、AlとCrの複合酸化物層(以下、(Al,Cr)層で示す)を薄層Bとするとともに、薄層Aと薄層Bの交互積層構造からなる硬質被覆層を蒸着形成したところ、上記(Al,Cr)層からなる薄層Bは、薄層Aとの密着性にすぐれるばかりか、すぐれた高温硬さと靭性を有するようになることがわかった。
さらに、薄層A、薄層Bのそれぞれの成分として、Si成分を含有させ、(Al,Cr,Si)N層を薄層Aとし、AlとCrとSiの複合酸化物層(以下、(Al,Cr,Si)層で示す)を薄層Bとするとともに、薄層Aと薄層Bの交互積層構造からなる硬質被覆層を蒸着形成したところ、上記(Al,Cr,Si)層からなる薄層Bは、薄層Aとの密着性にすぐれるとともに、すぐれた高温硬さ、靭性に加え、すぐれた耐熱塑性変形性をも有するようになることがわかった。
(B) Therefore, the present inventors set the (Al, Cr) N layer as a thin layer A and thin a composite oxide layer of Al and Cr (hereinafter referred to as (Al, Cr) 2 O 3 layer). When the hard coating layer composed of the alternately laminated structure of the thin layer A and the thin layer B was formed by vapor deposition, the thin layer B composed of the (Al, Cr) 2 O 3 layer was formed with the thin layer A. It has been found that it not only has excellent adhesion but also has excellent high temperature hardness and toughness.
Further, as each component of the thin layer A and the thin layer B, a Si component is contained, the (Al, Cr, Si) N layer is a thin layer A, and a composite oxide layer of Al, Cr, and Si (hereinafter referred to as ( (Al, Cr, Si) 2 O 3 )) is used as the thin layer B, and a hard coating layer composed of an alternating laminated structure of the thin layer A and the thin layer B is formed by vapor deposition. ) It was found that the thin layer B composed of 2 O 3 layers has excellent adhesion to the thin layer A, and also has excellent heat-resistant plastic deformation in addition to excellent high-temperature hardness and toughness. .

(c)しかし、切削条件をより厳しいもの(例えば、高熱発生を伴う高送り、高切り込みの高速重切削条件)としたような場合には、高熱下で切刃に高負荷が作用するようになり、(Al,Cr)層、あるいは、(Al,Cr,Si)層からなる薄層Bの耐熱性が不十分であるために、チッピング発生、熱塑性変形の抑制効果は未だ満足できるものでないことが判明した。 (C) However, when the cutting conditions are more severe (for example, high feed rate with high heat generation, high cutting speed, high cutting speed), the cutting blade is subjected to a high load under high heat. Since the heat resistance of the thin layer B composed of the (Al, Cr) 2 O 3 layer or the (Al, Cr, Si) 2 O 3 layer is insufficient, the effect of suppressing the occurrence of chipping and thermoplastic deformation is It turns out that it is still not satisfactory.

(d)そこで、本発明者等は更に検討を進め、(Al,Cr)N層を薄層A、また、(Al,Cr)層を薄層Bとし、薄層Aと薄層Bとの交互積層構造からなる下部層を蒸着形成した後、この上に更に、層中のO(酸素)含有割合が、上部層の層表面に向かうに従って小さくなる傾斜組成構造のAlとCrの複合酸化物層を上部層として蒸着形成したところ、表層近傍が低O(酸素)含有割合となる組成傾斜型の(Al,Cr)層は、すぐれた熱伝導性、熱放散性を備え、かつ、溶着性の高い被削材との潤滑性に優れることから、溶着を生じやすい被削材の切削であって、かつ、高熱発生を伴い、切刃に高負荷が作用する高送り、高切り込みの高速重切削加工において、すぐれた耐チッピング性を発揮し、また、下部層は、すぐれた高温硬さ、高温強度、耐熱性、高温耐酸化性、靭性を備えるとともに、薄層Bが薄層Aとのすぐれた密着性を有するため、交互積層構造の下部層及び組成傾斜型の(Al,Cr)層からなる上部層を硬質被覆層として備えた被覆工具は、軟鋼、ステンレス鋼等の溶着を生じやすい被削材の高速重切削加工において、長期に使用に亘ってすぐれた耐チッピング性を発揮することがわかった。 (D) Therefore, the present inventors have further studied, and the (Al, Cr) N layer is the thin layer A, the (Al, Cr) 2 O 3 layer is the thin layer B, and the thin layer A and the thin layer are After forming a lower layer having an alternate laminated structure with B by vapor deposition, an O (oxygen) content ratio in the layer further decreases with increasing gradient of Al and Cr toward the layer surface of the upper layer. When a composite oxide layer is deposited as an upper layer, a compositionally graded (Al, Cr) 2 O 3 layer with a low O (oxygen) content in the vicinity of the surface layer has excellent thermal conductivity and heat dissipation. Because it has excellent lubricity with the work material with high weldability, it is a cutting of work material that is likely to be welded, and it generates high heat and high feed force that acts on the cutting edge In high-speed heavy cutting with high depth of cut, it exhibits excellent chipping resistance, and the lower layer is Since it has excellent high-temperature hardness, high-temperature strength, heat resistance, high-temperature oxidation resistance, and toughness, and the thin layer B has excellent adhesion to the thin layer A, the lower layers of the alternately laminated structure and the composition gradient type A coated tool provided with an upper layer made of (Al, Cr) 2 O 3 as a hard coating layer is used for a long period of time in high-speed heavy cutting of work materials that tend to cause welding such as mild steel and stainless steel. It was found that the chipping resistance was excellent.

また、薄層A、薄層Bのそれぞれの成分として、Si成分を含有させるとともに、上部層の成分としてもSi成分を含有させ、(Al,Cr,Si)N層を薄層A、また、(Al,Cr,Si)層を薄層Bとし、薄層Aと薄層Bとの交互積層構造からなる下部層の上に、層中のO(酸素)含有割合が、上部層の層表面に向かうに従って小さくなる傾斜組成構造のAlとCrとSiの複合酸化物層を上部層として蒸着形成したところ、熱伝導性、熱放散性、潤滑性に加え、より一段と優れた耐熱塑性変形性を示すようになるため、このような被覆層構造の被覆工具は、合金鋼、ダイス鋼等の高硬度難削材の高速重切削加工において、長期に使用に亘ってすぐれた耐チッピング性と耐摩耗性を発揮することがわかった。 In addition, the Si component is included as the component of each of the thin layer A and the thin layer B, and the Si component is also included as the component of the upper layer, and the (Al, Cr, Si) N layer is the thin layer A, The (Al, Cr, Si) 2 O 3 layer is the thin layer B, and the O (oxygen) content ratio in the layer is the upper layer on the lower layer composed of the alternately laminated structure of the thin layer A and the thin layer B. When a composite oxide layer of Al, Cr, and Si with a gradient composition structure that becomes smaller as it goes to the surface of the layer is deposited as an upper layer, it has further improved thermal plasticity in addition to thermal conductivity, heat dissipation, and lubricity. Since the coating tool has such a coating layer structure, it has excellent chipping resistance over a long period of time in high-speed heavy cutting of hard materials with high hardness such as alloy steel and die steel. It was found that it exhibits wear resistance.

この発明は、上記の知見に基づいてなされたものであって、
「(1) 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、薄層Aと薄層Bの交互積層構造からなる下部層と、組成傾斜型の上部層とからなる硬質被覆層を蒸着形成した表面被覆切削工具において、
(a)上記薄層Aは、0.05〜1.5μmの一層平均層厚を有し、かつ、
組成式:(Al1−αCrα)N
で表した場合、0.25≦α≦0.45(但し、αは原子比)を満足するAlとCrの複合窒化物層、
(b)上記薄層Bは、0.05〜3.0μmの一層平均層厚を有し、かつ、
組成式:(Al1−YCr
で表した場合、0.25≦Y≦0.45(但し、Yは原子比)を満足するAlとCrの複合酸化物層、
からなり、さらに、
(c)上記上部層は、0.3〜1μmの平均層厚を有し、
組成式:(Al1−YCr1−X
で表した場合、0≦X≦0.2,0.25≦Y≦0.45(但し、X,Yはいずれも原子比)を満足し、かつ、上部層におけるO(酸素)含有割合は、下部層側から上部層表面に向かって減少する傾斜組成を有する組成傾斜型のAlとCrの複合酸化物層、
からなることを特徴とする表面被覆切削工具。
(2) 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、薄層Aと薄層Bの交互積層構造からなる下部層と、組成傾斜型の上部層とからなる硬質被覆層を蒸着形成した表面被覆切削工具において、
(a)上記薄層Aは、0.05〜1.5μmの一層平均層厚を有し、かつ、
組成式:(Al1−α−βCrαSiβ)N
で表した場合、0.25≦α≦0.45、0.01≦β≦0.1(但し、α、βはいずれも原子比)を満足するAlとCrとSiの複合窒化物層、
(b)上記薄層Bは、0.05〜3.0μmの一層平均層厚を有し、かつ、
組成式:(Al1−Y−ZCrSi
で表した場合、0.25≦Y≦0.45、0.01≦Z≦0.1((但し、Y、Zはいずれも原子比)を満足するAlとCrとSiの複合酸化物層、
からなり、さらに、
(c)上記上部層は、0.3〜1μmの平均層厚を有し、
組成式:(Al1−Y−ZCrSi1−X
で表した場合、0≦X≦0.2,0.25≦Y≦0.45、0.01≦Z≦0.1(但し、X,Y,Zはいずれも原子比)を満足し、かつ、上部層におけるO(酸素)含有割合は、下部層側から上部層表面に向かって減少する傾斜組成を有する組成傾斜型のAlとCrとSiの複合酸化物層、
からなることを特徴とする表面被覆切削工具。」
に特徴を有するものである。
This invention has been made based on the above findings,
“(1) On the surface of a tool base made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet, a lower layer composed of an alternating laminated structure of thin layers A and B, and an upper layer of composition gradient type In a surface-coated cutting tool formed by vapor-depositing a hard coating layer consisting of
(A) The thin layer A has an average layer thickness of 0.05 to 1.5 μm, and
Composition formula: (Al 1-α Cr α ) N
In this case, a composite nitride layer of Al and Cr that satisfies 0.25 ≦ α ≦ 0.45 (where α is an atomic ratio),
(B) The thin layer B has an average layer thickness of 0.05 to 3.0 μm, and
Composition formula: (Al 1-Y Cr Y ) 2 O 3
In this case, a composite oxide layer of Al and Cr that satisfies 0.25 ≦ Y ≦ 0.45 (where Y is an atomic ratio),
And
(C) The upper layer has an average layer thickness of 0.3-1 μm,
Composition formula: (Al 1-Y Cr Y ) 1-X O X
In this case, 0 ≦ X ≦ 0.2, 0.25 ≦ Y ≦ 0.45 (provided that both X and Y are atomic ratios), and the O (oxygen) content ratio in the upper layer is A composition-graded Al and Cr composite oxide layer having a gradient composition that decreases from the lower layer side toward the upper layer surface,
A surface-coated cutting tool comprising:
(2) On the surface of a tool base made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet, a lower layer composed of an alternating laminated structure of thin layers A and B, and a composition gradient type upper layer In a surface-coated cutting tool in which a hard coating layer is formed by vapor deposition,
(A) The thin layer A has an average layer thickness of 0.05 to 1.5 μm, and
Composition formula: (Al 1-α-β Cr α Si β) N
In this case, the composite nitride layer of Al, Cr, and Si satisfying 0.25 ≦ α ≦ 0.45 and 0.01 ≦ β ≦ 0.1 (where α and β are atomic ratios),
(B) The thin layer B has an average layer thickness of 0.05 to 3.0 μm, and
Composition formula: (Al 1-Y-Z Cr Y Si Z) 2 O 3
In this case, the composite oxide layer of Al, Cr, and Si satisfying 0.25 ≦ Y ≦ 0.45 and 0.01 ≦ Z ≦ 0.1 (where Y and Z are atomic ratios). ,
And
(C) The upper layer has an average layer thickness of 0.3-1 μm,
Composition formula: (Al 1-Y-Z Cr Y Si Z) 1-X O X
In this case, 0 ≦ X ≦ 0.2, 0.25 ≦ Y ≦ 0.45, 0.01 ≦ Z ≦ 0.1 (where X, Y, and Z are atomic ratios) are satisfied, And the O (oxygen) content ratio in the upper layer is a composition gradient type Al, Cr, and Si composite oxide layer having a gradient composition that decreases from the lower layer side toward the upper layer surface,
A surface-coated cutting tool comprising: "
It has the characteristics.

つぎに、この発明の被覆工具の硬質被覆層について詳細に説明する。
(a)下部層の薄層Aを構成するAlとCr(とSi)の複合窒化物層((Al,Cr)N層,(Al,Cr,Si)N層):
(Al,Cr)N層あるいは(Al,Cr,Si)N層におけるAl成分には高温硬さと耐熱性を向上させ、Cr成分には高温強度を向上させ、さらにCrとAlの共存含有によって高温耐酸化性を向上させる作用があり、さらに、Si成分には高温硬さを高めるとともに耐熱塑性変形性を高める作用がある。
薄層Aを構成するAlとCr(とSi)の複合窒化物を、
組成式:(Al1−αCrα)N
あるいは
組成式:(Al1−α−βCrαSiβ)N
で表した場合、Al(とSi)との合量に占めるCrの含有割合α(原子比、以下同じ)が0.25未満では、高速重切削加工において最小限必要とされる高温強度を確保することが困難となり、一方、Al(とSi)との合量に占めるCrの含有割合α(原子比)が0.45を越えると、相対的にAlの割合が少なくなり過ぎて、高温硬さの低下、耐熱性の低下が生じ、偏摩耗の発生、熱塑性変形の発生等により耐摩耗性が劣化するようになることから、Al(とSi)との合量に占めるCrの含有割合α(原子比)は、0.25〜0.45と定めた。
また、AlとCrとの合量に占めるSiの含有割合β(原子比、以下同じ)が
0.01未満では、高速重切削加工において高温硬さ、耐熱塑性変形性の向上を期待することはできず、一方、AlとCrとの合量に占めるSiの含有割合β(原子比)が0.1を越えると、相対的にAlの割合が少なくなり過ぎて、高温硬さの低下傾向、耐熱性の低下傾向が生じ、偏摩耗の発生、熱塑性変形の発生等により耐摩耗性が劣化するようになることから、AlとCrとの合量に占めるSiの含有割合β(原子比)は、0.01〜0.1と定めた。
さらに、薄層Aの一層平均層厚が0.05μm未満では、すぐれた耐摩耗性を長期に亘って発揮することができず、工具寿命短命の原因となり、一方その平均層厚が1.5μmを越えると、高速重切削加工で切刃部にチッピングが発生し易くなることから、薄層Aの一層平均層厚を0.05〜1.5μmと定めた。
Next, the hard coating layer of the coated tool of the present invention will be described in detail.
(A) Composite nitride layer of Al and Cr (and Si) constituting the lower layer A ((Al, Cr) N layer, (Al, Cr, Si) N layer):
The Al component in the (Al, Cr) N layer or (Al, Cr, Si) N layer improves high-temperature hardness and heat resistance, the Cr component improves high-temperature strength, and further, the coexistence of Cr and Al increases the temperature. It has the effect of improving oxidation resistance, and the Si component has the effect of increasing the high temperature hardness and the heat resistant plastic deformation.
A composite nitride of Al and Cr (and Si) constituting the thin layer A,
Composition formula: (Al 1-α Cr α ) N
Alternatively the composition formula: (Al 1-α-β Cr α Si β) N
If the Cr content ratio α (atomic ratio, the same shall apply hereinafter) in the total amount of Al (and Si) is less than 0.25, the high temperature strength required at the minimum in high speed heavy cutting is ensured. On the other hand, if the Cr content ratio α (atomic ratio) in the total amount of Al (and Si) exceeds 0.45, the Al ratio becomes relatively small, and the high temperature hard As the wear resistance deteriorates due to the occurrence of uneven wear, the occurrence of uneven wear, the occurrence of thermoplastic deformation, etc., the content ratio of Cr in the total amount of Al (and Si) α The (atomic ratio) was determined to be 0.25 to 0.45.
In addition, when the Si content ratio β (atomic ratio, hereinafter the same) in the total amount of Al and Cr is less than 0.01, it is expected to improve high-temperature hardness and heat-resistant plastic deformation in high-speed heavy cutting. On the other hand, if the Si content ratio β (atomic ratio) in the total amount of Al and Cr exceeds 0.1, the ratio of Al becomes relatively small, and the high temperature hardness tends to decrease. Since the heat resistance tends to decrease and the wear resistance deteriorates due to the occurrence of uneven wear, the occurrence of thermoplastic deformation, etc., the Si content ratio β (atomic ratio) in the total amount of Al and Cr is 0.01 to 0.1.
Furthermore, if the average layer thickness of the thin layer A is less than 0.05 μm, excellent wear resistance cannot be exhibited over a long period of time, resulting in a short tool life, while the average layer thickness is 1.5 μm. If the thickness of the thin layer A exceeds 1, the average layer thickness of the thin layer A is determined to be 0.05 to 1.5 μm.

(b)下部層の薄層Bを構成するAlとCr(とSi)の複合酸化物層((Al,Cr)層,(Al,Cr,Si)層):
下部層の薄層Bを構成する(Al,Cr)層あるいは(Al,Cr,Si)層は、薄層A、上部層のいずれに対しても密着性にすぐれるばかりか、すぐれた高温硬さと靭性を有する。
薄層Bを構成するAlとCr(とSi)の複合窒酸化物を、
組成式:(Al1−YCr
あるいは
組成式:(Al1−Y−ZCrSi
で表した場合、Crの含有割合Y(但し、原子比)が0.25未満であると、溶着性の高い被削材の高速重切削加工において、薄層Bが十分な耐摩耗性を発揮することができず、一方、Y(原子比)が0.45を超えると、下部層全体としての靭性が低下し、高熱下で切刃に作用する高負荷によって、欠損を発生しやすくなるので、薄層BにおけるCr含有割合Yを0.25≦Y≦0.45(原子比)と定めた。
また、Siの含有割合Z(原子比、以下同じ)が0.01未満では、高温硬さ、耐熱塑性変形性の向上は期待できず、一方、Siの含有割合Z(原子比)が0.1を越えると、相対的にAlの量が少なくなりすぎて、高温硬さの低下傾向、耐熱性の低下傾向が生じ、偏摩耗の発生、熱塑性変形の発生等により耐摩耗性が劣化することになることから、Siの含有割合Z(原子比)は、0.01〜0.1と定めた。
また、薄層Bの一層平均層厚が0.05μm未満では、長期の使用に亘って上記の優れた作用を発揮することができず、一方、一層平均層厚が3.0μmを超えると、切刃に作用する高負荷によって、欠損を生じやすくなるので、薄層Bの一層平均層厚は0.05〜3.0μmと定めた。
(B) Al and Cr (and Si) composite oxide layers ((Al, Cr) 2 O 3 layer, (Al, Cr, Si) 2 O 3 layer) constituting the thin layer B of the lower layer:
The (Al, Cr) 2 O 3 layer or the (Al, Cr, Si) 2 O 3 layer constituting the thin layer B of the lower layer has excellent adhesion to both the thin layer A and the upper layer. Or it has excellent high temperature hardness and toughness.
Composite nitride of Al and Cr (and Si) constituting the thin layer B,
Composition formula: (Al 1-Y Cr Y ) 2 O 3
Alternatively the composition formula: (Al 1-Y-Z Cr Y Si Z) 2 O 3
When the Cr content ratio Y (however, the atomic ratio) is less than 0.25, the thin layer B exhibits sufficient wear resistance in high-speed heavy cutting of a work material with high weldability. On the other hand, if Y (atomic ratio) exceeds 0.45, the toughness of the lower layer as a whole decreases, and defects are easily generated due to high loads acting on the cutting blade under high heat. The Cr content ratio Y in the thin layer B was determined to be 0.25 ≦ Y ≦ 0.45 (atomic ratio).
On the other hand, if the Si content ratio Z (atomic ratio, hereinafter the same) is less than 0.01, improvement in high-temperature hardness and heat-resistant plastic deformability cannot be expected, while the Si content ratio Z (atomic ratio) is 0. If it exceeds 1, the amount of Al becomes relatively small, and the high temperature hardness tends to decrease and the heat resistance tends to decrease, and the wear resistance deteriorates due to the occurrence of uneven wear, the occurrence of thermoplastic deformation, etc. Therefore, the Si content ratio Z (atomic ratio) was determined to be 0.01 to 0.1.
In addition, if the average layer thickness of the thin layer B is less than 0.05 μm, the above-mentioned excellent action cannot be exhibited over a long period of use, while if the average layer thickness exceeds 3.0 μm, Since a high load acting on the cutting edge makes it easy to cause defects, the average layer thickness of the thin layer B is determined to be 0.05 to 3.0 μm.

(c)上部層を構成する組成傾斜型のAlとCr(とSi)の複合酸化物層:
組成傾斜型のAlとCrの複合酸化物層(以下、組成傾斜型(Al,Cr)層という)あるいは組成傾斜型のAlとCrとSiの複合酸化物層(以下、組成傾斜型(Al,Cr,Si)層という)は、軟鋼、ステンレス鋼などのように溶着性が高い被削材、合金鋼、ダイス鋼等の高硬度難削材の、特に、高熱発生を伴い、かつ、切刃に対して高負荷が作用する高送り、高切り込みの高速重切削加工における、硬質被覆層全体としての熱伝導性、熱放散性、潤滑性を改善するために設けられた上部層である。
上部層の表面近傍において、O(酸素)含有割合が低下するような組成傾斜型(Al,Cr)層あるいは組成傾斜型(Al,Cr,Si)層を上部層として形成すると、上部層表面は、熱伝導性、熱放散性、潤滑性に優れていることから、切刃に高負荷が作用する条件下での高熱発生によっても、溶着を生じやすい被削材の切粉等の溶着発生が防止され、その結果、高送り、高切り込みの高速重切削加工においても、すぐれた耐チッピング性を発揮するようになる。
(C) Composition gradient type Al and Cr (and Si) composite oxide layer constituting the upper layer:
Composition gradient type Al and Cr composite oxide layer (hereinafter referred to as composition gradient type (Al, Cr) 2 O 3 layer) or composition gradient type Al, Cr and Si complex oxide layer (hereinafter referred to as composition gradient type) (Al, Cr, Si) 2 O 3 layer) produces high heat generation especially for hard materials with high weldability such as mild steel, stainless steel, etc., alloy steel, die steel, etc. In addition, it was provided to improve the thermal conductivity, heat dissipation, and lubricity of the hard coating layer as a whole in high-feed, high-cut, high-speed heavy cutting with a high load acting on the cutting edge. It is the upper layer.
In the vicinity of the surface of the upper layer, a composition gradient type (Al, Cr) 2 O 3 layer or a composition gradient type (Al, Cr, Si) 2 O 3 layer is formed as the upper layer so that the O (oxygen) content ratio decreases. Then, since the upper layer surface is excellent in thermal conductivity, heat dissipation, and lubricity, even when high heat is generated under conditions where a high load acts on the cutting edge, it is possible to cut a work material that is likely to be welded. As a result, the occurrence of welding of powder or the like is prevented, and as a result, excellent chipping resistance is exhibited even in high-feed, high-feed, high-speed heavy cutting.

組成傾斜型(Al,Cr)層、組成傾斜型(Al,Cr,Si)層の上部層全体における平均組成を、
組成式:(Al1−YCr1−X
あるいは
組成式:(Al1−Y−ZCrSi1−X
で表した場合、Al成分とCr成分(とSi成分)の合計含有量に対するO(酸素)含有割合X(但し、原子比)が、0.2を超えると、軟鋼、ステンレス鋼、合金鋼、ダイス鋼等の被削材との滑り性が低下傾向を示し、また、熱伝導性、熱放散性も低下傾向を示し、その結果、耐チッピング性の改善効果が充分発揮されなくなることから、O(酸素)含有割合X(但し、原子比)を0≦X≦0.2と定めた。
しかも、上部層におけるO(酸素)含有割合が、中間層側から上部層表面に向かって減少する傾斜組成構造を採用することによって、上部層の高温硬さ、靭性等を著しく低下させることなしに、被削材とのすぐれた潤滑性を上部層表面で確保することが可能となる。
また、Al(とSi)との合量に占めるCrの含有割合Y(但し、原子比)が0.25未満では、薄層Bの場合と同様、高速重切削加工において、十分な耐摩耗性を発揮することができず、一方、Y(原子比)が0.45を超えると、上部層としての靭性が低下し、高熱下で切刃に作用する高負荷によって、欠損を発生しやすくなるので、上部層におけるCr含有割合Yを0.25≦Y≦0.45(原子比)と定めた。
また、AlとCrとの合量に占めるSiの含有割合Z(但し、原子比)が0.01未満では、薄層Bの場合と同様、高速重切削加工において、十分な耐熱塑性変形性を発揮することができず、一方、Z(原子比)が0.1を超えると、上部層としての靭性が低下し、高熱下で切刃に作用する高負荷によって、欠損を発生しやすくなるので、上部層におけるSi含有割合Zを0.01≦Z≦0.1(原子比)と定めた。
さらに、上記組成傾斜型(Al,Cr)層、組成傾斜型(Al,Cr,Si)層の平均層厚が0.3μm未満では、長期の使用に亘って被削材との優れた潤滑性、熱伝導性、熱放散性を確保することができず、一方、平均層厚が1μmを超えると、切刃に作用する高負荷によって、欠損を生じやすくなるので、組成傾斜型(Al,Cr)層あるいは組成傾斜型(Al,Cr,Si)層からなる上部層の平均層厚は0.3〜1μmと定めた。
The average composition in the entire upper layer of the composition gradient type (Al, Cr) 2 O 3 layer and the composition gradient type (Al, Cr, Si) 2 O 3 layer,
Composition formula: (Al 1-Y Cr Y ) 1-X O X
Alternatively the composition formula: (Al 1-Y-Z Cr Y Si Z) 1-X O X
When the O (oxygen) content ratio X (however, the atomic ratio) with respect to the total content of the Al component and the Cr component (and the Si component) exceeds 0.2, mild steel, stainless steel, alloy steel, The slipperiness with work materials such as die steel tends to decrease, and the thermal conductivity and heat dissipation also tend to decrease. As a result, the effect of improving chipping resistance is not sufficiently exhibited. The (oxygen) content ratio X (however, the atomic ratio) was defined as 0 ≦ X ≦ 0.2.
Moreover, by adopting a gradient composition structure in which the O (oxygen) content ratio in the upper layer decreases from the intermediate layer side toward the upper layer surface, the high temperature hardness, toughness, etc. of the upper layer are not significantly reduced. It is possible to ensure excellent lubricity with the work material on the surface of the upper layer.
Further, if the Cr content ratio Y (however, the atomic ratio) occupies the total amount of Al (and Si) is less than 0.25, as in the case of the thin layer B, sufficient wear resistance in high-speed heavy cutting. On the other hand, if Y (atomic ratio) exceeds 0.45, the toughness of the upper layer is reduced, and defects are likely to occur due to a high load acting on the cutting blade under high heat. Therefore, the Cr content ratio Y in the upper layer was determined to be 0.25 ≦ Y ≦ 0.45 (atomic ratio).
In addition, when the content ratio Z (however, the atomic ratio) of Si in the total amount of Al and Cr is less than 0.01, sufficient heat-resistant plastic deformability can be obtained in high-speed heavy cutting as in the case of the thin layer B. On the other hand, if Z (atomic ratio) exceeds 0.1, the toughness of the upper layer is reduced, and defects are likely to occur due to the high load acting on the cutting blade under high heat. The Si content ratio Z in the upper layer was determined to be 0.01 ≦ Z ≦ 0.1 (atomic ratio).
Furthermore, when the average layer thickness of the composition gradient type (Al, Cr) 2 O 3 layer and the composition gradient type (Al, Cr, Si) 2 O 3 layer is less than 0.3 μm, the work material can be used over a long period of use. The excellent lubricity, thermal conductivity, and heat dissipation properties cannot be ensured, and on the other hand, if the average layer thickness exceeds 1 μm, the high load acting on the cutting blade tends to cause defects. The average layer thickness of the upper layer composed of the gradient type (Al, Cr) 2 O 3 layer or the composition gradient type (Al, Cr, Si) 2 O 3 layer was determined to be 0.3 to 1 μm.

(d)硬質被覆層の蒸着形成
この発明の交互積層構造からなる下部層、組成傾斜型の上部層からなる硬質被覆層は、通常の物理蒸着装置(例えば、アークイオンプレーティング(以下、AIPという)装置)を用いて蒸着形成することができる。
例えば、AIP装置の一方には基体洗浄用のTi電極からなるカソード電極、他方にはAl−Cr(−Si)合金からなるカソード電極を設け、
まず、例えば、炭化タングステン基超硬合金からなる工具基体を洗浄・乾燥し、AIP装置内の回転テーブル上に装着し、基体洗浄用のTi電極とアノード電極との間にアーク放電を発生させて、工具基体表面をボンバード洗浄し、
ついで、装置内に反応ガスとして窒素ガスを導入し、工具基体にバイアス電圧を印加しつつ、Al−Cr(−Si)合金カソード電極とアノード電極との間にアーク放電を発生させ、工具基体表面に所定層厚の(Al,Cr)N層あるいは(Al,Cr,Si)N層を下部層の薄層Aとして蒸着形成し、
ついで、装置内に反応ガスとしての酸素を含有する雰囲気ガスを導入し、Al−Cr(−Si)合金カソード電極とアノード電極との間にアーク放電を発生させ、工具基体表面に所定層厚の(Al,Cr)層あるいは(Al,Cr,Si)層を下部層の薄層Bとして蒸着形成し、
薄層Aと薄層Bの交互積層を、下部層の所定合計層厚になるまで繰り返し、下部層の最表面として所定層厚の薄層Bを形成した後、
Al−Cr(−Si)合金カソード電極とアノード電極との間にアーク放電を維持したままで、雰囲気ガス中の酸素含有量を次第に低減することによって、酸素含有割合が中間層側から上部層表層に向かうにしたがって徐々に減少する、所定層厚の組成傾斜型(Al,Cr)層あるいは組成傾斜型(Al,Cr,Si)層からなる上部層を蒸着形成することができる。
(D) Evaporation formation of hard coating layer The hard coating layer consisting of the lower layer composed of the alternately laminated structure of the present invention and the upper layer of the composition gradient type is formed by an ordinary physical vapor deposition apparatus (for example, arc ion plating (hereinafter referred to as AIP). ) Equipment).
For example, one of the AIP devices is provided with a cathode electrode made of a Ti electrode for substrate cleaning, and the other with a cathode electrode made of an Al—Cr (—Si) alloy,
First, for example, a tool base made of tungsten carbide base cemented carbide is cleaned and dried, mounted on a rotary table in an AIP apparatus, and an arc discharge is generated between the Ti electrode for cleaning the base and the anode electrode. Bombard the tool substrate surface,
Next, nitrogen gas is introduced as a reaction gas into the apparatus, and while applying a bias voltage to the tool base, an arc discharge is generated between the Al—Cr (—Si) alloy cathode electrode and the anode electrode, and the tool base surface (Al, Cr) N layer or (Al, Cr, Si) N layer having a predetermined thickness is deposited as a lower layer A,
Next, an atmospheric gas containing oxygen as a reaction gas is introduced into the apparatus to generate an arc discharge between the Al—Cr (—Si) alloy cathode electrode and the anode electrode, and a predetermined layer thickness is formed on the surface of the tool substrate. (Al, Cr) 2 O 3 layer or (Al, Cr, Si) 2 O 3 layer is vapor-deposited as a lower layer B,
After repeating the alternate lamination of the thin layer A and the thin layer B until the predetermined total layer thickness of the lower layer is reached, and forming the thin layer B having a predetermined layer thickness as the outermost surface of the lower layer,
By gradually reducing the oxygen content in the atmospheric gas while maintaining the arc discharge between the Al—Cr (—Si) alloy cathode electrode and the anode electrode, the oxygen content ratio is changed from the intermediate layer side to the upper layer surface layer. The upper layer composed of a composition gradient type (Al, Cr) 2 O 3 layer or a composition gradient type (Al, Cr, Si) 2 O 3 layer having a predetermined layer thickness that gradually decreases as it goes to the layer is formed by vapor deposition. it can.

この発明の表面被覆切削工具は、(Al,Cr)N層あるいは(Al,Cr,Si)N層からなる薄層Aと、(Al,Cr)層あるいは(Al,Cr,Si)層からなる薄層Bとの交互積層構造として硬質被覆層の下部層を構成しているため、下部層が、すぐれた高温硬さ、高温強度、耐高温酸化性、靭性、耐熱塑性変形性を有するとともに、交互積層の密着性にすぐれ、さらに、この上に形成された組成傾斜型(Al,Cr)層あるいは組成傾斜型(Al,Cr,Si)層からなる上部層が、すぐれた高温硬さ、靭性とともに、溶着性の高い被削材とのすぐれた滑り性を備え、また、優れた熱伝導性、熱放散性を備えていることから、軟鋼、ステンレス鋼などのように溶着性が高い被削材、合金鋼、ダイス鋼等の高硬度難削材の、特に、高熱発生条件下で切刃に対して高負荷が作用する高送り、高切り込みの高速重切削加工において、すぐれた耐チッピング性、耐摩耗性を発揮し、その結果、長期の使用に亘ってすぐれた切削性能を発揮するものである。 The surface-coated cutting tool of the present invention includes a thin layer A composed of an (Al, Cr) N layer or (Al, Cr, Si) N layer, and an (Al, Cr) 2 O 3 layer or (Al, Cr, Si). Since the lower layer of the hard coating layer is formed as an alternate laminated structure with the thin layer B composed of 2 O 3 layers, the lower layer has excellent high temperature hardness, high temperature strength, high temperature oxidation resistance, toughness, heat plasticity In addition to being deformable, it has excellent adhesiveness in alternating layers, and from the composition gradient type (Al, Cr) 2 O 3 layer or composition gradient type (Al, Cr, Si) 2 O 3 layer formed thereon. Because the upper layer has excellent high-temperature hardness and toughness, as well as excellent slipperiness with highly weldable work materials, and also has excellent thermal conductivity and heat dissipation, Work material with high weldability such as stainless steel, alloy steel, die Exhibits excellent chipping resistance and wear resistance in high-hardness difficult-to-cut materials such as steel, especially in high-feed, high-cutting high-speed heavy cutting with high load acting on the cutting edge under high heat generation conditions As a result, it exhibits excellent cutting performance over a long period of use.

つぎに、この発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の工具基体A−1〜A−10を形成した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders are blended into the composition shown in Table 1, wet mixed by a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. Medium, sintered at 1400 ° C for 1 hour, after sintering, WC-based carbide with honing of R: 0.03 on the cutting edge and chip shape of ISO standard CNMG120408 Alloy tool bases A-1 to A-10 were formed.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(重量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったTiCN基サーメット製の工具基体B−1〜B−6を形成した。 In addition, as raw material powders, all are TiCN (weight ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and then pressed into a compact at a pressure of 100 MPa. The green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, the cutting edge portion was subjected to a honing process of R: 0.03 to obtain ISO standard / CNMG120408. Tool bases B-1 to B-6 made of TiCN-based cermet having the following chip shape were formed.

(a)上記の工具基体A−1〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、AIP装置(図示せず)の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、AIP装置の一方にボンバード洗浄用のTiカソード電極(蒸発源)を、他方側に所定組成のAl−Cr(−Si)合金カソード電極(蒸発源)を配置し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する工具基体に−1000Vの直流バイアス電圧を印加し、かつ、Tiカソード電極とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面をボンバード洗浄し、
(c)ついで、装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−100Vの直流バイアス電圧を印加し、かつ前記Al−Cr合金カソード電極とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって前記工具基体の表面に、表3〜6に示される目標組成および目標一層平均層厚の(Al,Cr)N層あるいは(Al,Cr,Si)N層からなる薄層Aを蒸着形成し、
(d)ついで、装置内に反応ガスとして酸素ガスを導入して1Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−100Vの直流バイアス電圧を印加した状態で、Al−Cr(−Si)合金カソード電極(蒸発源)とアノード電極との間に100Aの電流を流してアーク放電を発生させ、薄層Aの上に、表3〜6に示される目標組成および目標一層平均層厚の(Al,Cr)層あるいは(Al,Cr,Si)層からなる薄層Bを蒸着し、
(e)上記(c)、(d)を繰り返し行ない、薄層Bが下部層の最表面となるようにするとともに、表3〜6に示される目標平均層厚となるように薄層Aと薄層Bの交互積層構造からなる下部層を形成し、
(f)ついで、Al−Cr(−Si)合金カソード電極(蒸発源)とアノード電極との間のアーク放電を継続させつつ、酸素含有量が徐々に低減するように雰囲気を調整し、表3〜6に示される目標平均層厚、目標酸素含有割合X値の組成傾斜型(Al,Cr)層あるいは組成傾斜型(Al,Cr,Si)層からなる上部層を形成することにより、
本発明被覆工具としての表面被覆スローアウエイチップ(以下、本発明被覆チップと云う)1〜16,21〜36をそれぞれ製造した。
(A) Each of the tool bases A-1 to A-10 and B-1 to B-6 is ultrasonically cleaned in acetone and dried, on a rotary table of an AIP device (not shown). Attached along the outer periphery at a position that is a predetermined distance in the radial direction from the central axis of the electrode, a Ti cathode electrode (evaporation source) for bombard cleaning is placed on one side of the AIP apparatus, and Al—Cr (− Si) alloy cathode electrode (evaporation source),
(B) First, the inside of the apparatus is heated to 500 ° C. with a heater while the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, and then the tool base that rotates while rotating on the rotary table is −1000 V. A DC bias voltage is applied and a current of 100 A is passed between the Ti cathode electrode and the anode electrode to generate an arc discharge, thereby bombarding the tool base surface.
(C) Next, nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 3 Pa, a DC bias voltage of −100 V is applied to the tool base that rotates while rotating on the rotary table, and An arc discharge is generated by flowing a current of 100 A between the Al—Cr alloy cathode electrode and the anode electrode, so that the target composition and target layer average layer thickness shown in Tables 3 to 6 are formed on the surface of the tool base ( A thin layer A composed of an Al, Cr) N layer or an (Al, Cr, Si) N layer is formed by vapor deposition.
(D) Next, oxygen gas is introduced as a reaction gas into the apparatus to make a reaction atmosphere of 1 Pa, and a DC bias voltage of −100 V is applied to a tool base that rotates while rotating on the rotary table, An arc discharge is generated by passing a current of 100 A between the Al—Cr (—Si) alloy cathode electrode (evaporation source) and the anode electrode, and the target composition shown in Tables 3 to 6 and A thin layer B composed of (Al, Cr) 2 O 3 layer or (Al, Cr, Si) 2 O 3 layer having a target single layer average layer thickness is deposited,
(E) The above (c) and (d) are repeated so that the thin layer B becomes the outermost surface of the lower layer, and the thin layer A and the target average layer thickness shown in Tables 3 to 6 are obtained. Forming a lower layer consisting of alternating layers of thin layers B;
(F) Next, while maintaining the arc discharge between the Al—Cr (—Si) alloy cathode electrode (evaporation source) and the anode electrode, the atmosphere was adjusted so that the oxygen content was gradually reduced. Form an upper layer composed of a composition gradient type (Al, Cr) 2 O 3 layer or a composition gradient type (Al, Cr, Si) 2 O 3 layer having a target average layer thickness and a target oxygen content ratio X value shown in -6 By doing
Surface-coated throwaway tips (hereinafter referred to as the present invention-coated tips) 1 to 16 and 21 to 36 as the present invention-coated tools were produced, respectively.

比較例1:
比較の目的で、これら工具基体A−1〜A−10およびB−1〜B−6を、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるAIP装置に装入し、
まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する工具基体に−1000Vの直流バイアス電圧を印加し、かつ、Tiカソード電極とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面をボンバード洗浄し、
ついで、装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−100Vの直流バイアス電圧を印加し、かつ、Al−Cr(−Si)合金カソード電極とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって前記工具基体の表面に、表7,8に示される目標組成および目標層厚の(Al,Cr)N層あるいは(Al,Cr,Si)N層(本発明でいう薄層Aの組成に相当)を蒸着し、
比較被覆工具としての表面被覆スローアウエイチップ(以下、比較被覆チップと云う)1〜16,21〜36をそれぞれ製造した。
Comparative Example 1:
For the purpose of comparison, these tool bases A-1 to A-10 and B-1 to B-6 were ultrasonically washed in acetone and dried, and then loaded into the AIP apparatus shown in FIG.
First, the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, the inside of the apparatus is heated to 500 ° C. with a heater, and then a DC bias voltage of −1000 V is applied to the tool base that rotates while rotating on the rotary table. And applying an electric current of 100 A between the Ti cathode electrode and the anode electrode to generate an arc discharge, thereby bombarding the tool substrate surface,
Next, nitrogen gas is introduced as a reaction gas into the apparatus to make a reaction atmosphere of 3 Pa, a DC bias voltage of −100 V is applied to the tool base that rotates while rotating on the rotary table, and Al—Cr An arc discharge is generated by flowing a current of 100 A between the (-Si) alloy cathode electrode and the anode electrode, and the target composition and target layer thickness (Al) shown in Tables 7 and 8 are formed on the surface of the tool base. , Cr) N layer or (Al, Cr, Si) N layer (corresponding to the composition of the thin layer A in the present invention) is deposited,
Surface coated throwaway tips (hereinafter referred to as comparative coated tips) 1 to 16 and 21 to 36 as comparative coated tools were produced, respectively.

つぎに、上記の各種の被覆チップを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、まず、本発明被覆チップ1〜16および比較被覆チップ1〜16について、
被削材:JIS・S10Cの丸棒、
切削速度:250 m/min.、
切り込み:2.5 mm、
送り:0.48 mm/rev.、
切削時間:10 分、
の条件(切削条件Aという)での軟鋼の乾式連続高速高送り・高切込み切削加工試験(通常の切削速度、送り及び切り込みは、それぞれ、150m/min、0.25mm/rev、1.5mm)、
被削材:JIS・S55Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:220 m/min.、
切り込み:1.5 mm、
送り:0.50 mm/rev.、
切削時間:5 分、
の条件(切削条件Bという)での炭素鋼の乾式断続高速高送り切削加工試験(通常の切削速度及び送りは、それぞれ、120m/min、0.25mm/rev)、
被削材:JIS・SUS304の丸棒、
切削速度:240 m/min.、
切り込み:2.8 mm、
送り:0.2 mm/rev.、
切削時間:10 分、
の条件(切削条件Cという)でのステンレス鋼の乾式連続高速高切込み切削加工試験(通常の切削速度及び切り込みは、それぞれ、120m/min、1.5mm)、
を行い、いずれの高速重切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表9に示した。
Next, in the state where all the above-mentioned various coated tips are screwed to the tip of the tool steel tool with a fixing jig, first, for the present coated chips 1-16 and the comparative coated chips 1-16,
Work material: JIS / S10C round bar,
Cutting speed: 250 m / min. ,
Cutting depth: 2.5 mm,
Feed: 0.48 mm / rev. ,
Cutting time: 10 minutes,
Dry continuous high-speed high-feed / high-cut cutting test of mild steel under the above conditions (referred to as cutting condition A) (normal cutting speed, feed and cutting are 150 m / min, 0.25 mm / rev, and 1.5 mm, respectively) ,
Work material: JIS / S55C lengthwise equidistant round bars with 4 vertical grooves,
Cutting speed: 220 m / min. ,
Cutting depth: 1.5 mm,
Feed: 0.50 mm / rev. ,
Cutting time: 5 minutes,
Of carbon steel under the following conditions (referred to as cutting condition B) (in normal cutting speed and feed are 120 m / min and 0.25 mm / rev, respectively),
Work material: JIS / SUS304 round bar,
Cutting speed: 240 m / min. ,
Incision: 2.8 mm,
Feed: 0.2 mm / rev. ,
Cutting time: 10 minutes,
Stainless steel dry continuous high-speed high-cut cutting test under normal conditions (referred to as cutting condition C) (normal cutting speed and cutting are 120 m / min and 1.5 mm, respectively),
The flank wear width of the cutting edge was measured in any high speed heavy cutting test. The measurement results are shown in Table 9.

また、同様に、本発明被覆チップ21〜36および比較被覆チップ21〜36については、
被削材:JIS・S55Cの丸棒、
切削速度:270 m/min.、
切り込み:2.7 mm、
送り:0.50 mm/rev.、
切削時間:10 分、
の条件(切削条件Dという)での炭素鋼の乾式連続高速高送り・高切込み切削加工試験(通常の切削速度、送り及び切り込みは、それぞれ、150m/min、0.25mm/rev、1.5mm)、
被削材:JIS・SUS304の長さ方向等間隔4本縦溝入り丸棒
切削速度:240 m/min.、
切り込み:1.8 mm、
送り:0.50 mm/rev.、
切削時間:5 分、
の条件(切削条件Eという)でのステンレス鋼の乾式連続高速高送り切削加工試験(通常の切削速度及び送りは、それぞれ、120m/min、0.25mm/rev.)、
被削材:JIS・S10Cの丸棒、
切削速度:240 m/min.、
切り込み:3.0 mm、
送り:0.2 mm/rev.、
切削時間:10 分、
の条件(切削条件Fという)での軟鋼の乾式連続高速高切込み切削加工試験(通常の切削速度及び切込みは、それぞれ、150m/min、1.5mm)、
を行い、いずれの高速重切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表10に示した。
Similarly, for the inventive coated chips 21-36 and the comparative coated chips 21-36,
Work material: JIS / S55C round bar,
Cutting speed: 270 m / min. ,
Incision: 2.7 mm,
Feed: 0.50 mm / rev. ,
Cutting time: 10 minutes,
(Continuous cutting speed, feed and cutting are 150 m / min, 0.25 mm / rev, and 1.5 mm, respectively) ),
Work material: JIS / SUS304 lengthwise equidistant 4 round grooved round bars
Cutting speed: 240 m / min. ,
Cutting depth: 1.8 mm,
Feed: 0.50 mm / rev. ,
Cutting time: 5 minutes,
(Continuous cutting speed and feed are 120 m / min and 0.25 mm / rev., Respectively)
Work material: JIS / S10C round bar,
Cutting speed: 240 m / min. ,
Cutting depth: 3.0 mm,
Feed: 0.2 mm / rev. ,
Cutting time: 10 minutes,
Dry continuous high-speed high-cut cutting test of mild steel under the following conditions (referred to as cutting conditions F) (normal cutting speed and cutting are 150 m / min and 1.5 mm, respectively),
The flank wear width of the cutting edge was measured in any high speed heavy cutting test. The measurement results are shown in Table 10.

Figure 0005445847
Figure 0005445847

Figure 0005445847
Figure 0005445847

Figure 0005445847
Figure 0005445847

Figure 0005445847
Figure 0005445847

Figure 0005445847
Figure 0005445847

Figure 0005445847
Figure 0005445847

Figure 0005445847
Figure 0005445847

Figure 0005445847
Figure 0005445847

Figure 0005445847
Figure 0005445847

Figure 0005445847
Figure 0005445847

原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C[質量比で、TiC/WC=50/50]粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表11に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mm、13mm、および26mmの3種の工具基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表10に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角30度の4枚刃スクエア形状をもったWC基超硬合金製の工具基体(エンドミル)C−1〜C−8をそれぞれ製造した。 As raw material powders, medium coarse WC powder having an average particle diameter of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, ZrC of 1.2 μm Powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C [by mass ratio, TiC / WC = 50/50] powder, and 1 .8 μm Co powder was prepared, and each of these raw material powders was blended in the blending composition shown in Table 11, and then added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and then pressed into a predetermined shape at a pressure of 100 MPa. The green compacts were press-molded, and these green compacts were heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a rate of temperature increase of 7 ° C./min in a 6 Pa vacuum atmosphere. After holding at temperature for 1 hour, baked under furnace cooling conditions Then, three types of round rod sintered bodies for forming a tool base having a diameter of 8 mm, 13 mm, and 26 mm were formed, and further, the above three types of round rod sintered bodies were ground and shown in Table 10. WC-based cemented carbide with a 4-blade square shape with a cutting blade portion diameter × length of 6 mm × 13 mm, 10 mm × 22 mm, and 20 mm × 45 mm, and a twist angle of 30 degrees. Tool bases (end mills) C-1 to C-8 were manufactured.

ついで、これらの工具基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じくAIP装置に装入し、上記実施例1と同一の条件で、表12、13に示される目標組成および目標層厚の(Al,Cr)N層あるいは(Al,Cr,Si)N層からなる薄層Aと、(Al,Cr)層あるいは(Al,Cr,Si)層からなる薄層Bの交互積層構造として下部層を形成し、さらに、同じく表12、13に示される目標平均層厚、目標酸素含有割合X値の組成傾斜型(Al,Cr)層あるいは組成傾斜型(Al,Cr,Si)層からなる上部層を形成することにより、
本発明被覆工具としての本発明被覆超エンドミル(以下、本発明被覆エンドミルと云う)1〜8,11〜18をそれぞれ製造した。
Next, the surfaces of these tool bases (end mills) C-1 to C-8 were ultrasonically cleaned in acetone and dried, and then charged in the same AIP apparatus, under the same conditions as in Example 1 above. A thin layer A composed of an (Al, Cr) N layer or (Al, Cr, Si) N layer having a target composition and a target layer thickness shown in Tables 12 and 13, and an (Al, Cr) 2 O 3 layer or (Al , Cr, Si) 2 O 3 layers are formed as an alternating layered structure of thin layers B, and the lower layer is formed. Further, the composition gradient type of the target average layer thickness and target oxygen content ratio X value shown in Tables 12 and 13 is used. By forming an upper layer consisting of (Al, Cr) 2 O 3 layer or composition gradient type (Al, Cr, Si) 2 O 3 layer,
Super coated end mills of the present invention (hereinafter referred to as the present coated end mills) 1 to 8 and 11 to 18 as the coated tools of the present invention were produced, respectively.

比較例2:
比較の目的で、上記の工具基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じくAIP装置に装入し、上記比較例1と同一の条件で、表14に示される目標平均層厚および目標組成の(Al,Cr)N層あるいは(Al,Cr,Si)N層(本発明でいう薄層Aの組成に相当)を蒸着することにより、
比較被覆工具としての比較被覆エンドミル(以下、比較被覆エンドミルと云う)1〜8,11〜18をそれぞれ製造した。
Comparative Example 2:
For the purpose of comparison, the surfaces of the tool bases (end mills) C-1 to C-8 were ultrasonically cleaned in acetone and dried, and charged in the same AIP apparatus. Under conditions, the (Al, Cr) N layer or (Al, Cr, Si) N layer (corresponding to the composition of the thin layer A in the present invention) having the target average layer thickness and the target composition shown in Table 14 is deposited. By
Comparative coated end mills (hereinafter referred to as comparative coated end mills) 1 to 8 and 11 to 18 as comparative coated tools were produced, respectively.

つぎに、上記本発明被覆エンドミル1〜8および比較被覆エンドミル1〜8のうち、
本発明被覆エンドミル1〜3および比較被覆エンドミル1〜3については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SUS304の板材、
切削速度:140 m/min.、
溝深さ(切り込み):5 mm、
テーブル送り:120 mm/分、
の条件でのステンレス鋼の湿式高速高切込み溝切削加工試験(通常の切削速度及び切り込みは、それぞれ、80m/min.、3mm.)、
本発明被覆エンドミル4〜6および比較被覆エンドミル4〜6については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・S55Cの板材、
切削速度:180 m/min.、
溝深さ(切り込み):8 mm、
テーブル送り:400 mm/分、
の条件での炭素鋼の乾式高速高切込み溝切削加工試験(通常の切削速度及び切り込みは、それぞれ、100m/min.、5mm.)、
本発明被覆エンドミル7,8および比較被覆エンドミル7,8については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・S10Cの板材、
切削速度:160 m/min.、
溝深さ(切り込み):16 mm、
テーブル送り:250 mm/分、
の条件での軟鋼の乾式高速高切込み溝切削加工試験(通常の切削速度及び切り込みは、それぞれ、100m/min.、10mm.)、
をそれぞれ行い、いずれの高速高切込み溝切削加工試験でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。この測定結果を表12、14にそれぞれ示した。
Next, of the present invention coated end mills 1-8 and comparative coated end mills 1-8,
About this invention coated end mills 1-3 and comparative coated end mills 1-3,
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SUS304 plate,
Cutting speed: 140 m / min. ,
Groove depth (cut): 5 mm,
Table feed: 120 mm / min,
Wet high-speed, high-cut groove cutting test of stainless steel under the conditions (normal cutting speed and cutting are 80 m / min, 3 mm, respectively),
About this invention coated end mills 4-6 and comparative coated end mills 4-6,
Work material-Plane size: 100 mm x 250 mm, thickness: 50 mm JIS / S55C plate material,
Cutting speed: 180 m / min. ,
Groove depth (cut): 8 mm,
Table feed: 400 mm / min,
Carbon steel dry high-speed high-cut groove cutting test under normal conditions (normal cutting speed and cutting are 100 m / min, 5 mm, respectively),
For the coated end mills 7 and 8 and the comparative coated end mills 7 and 8 of the present invention,
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / S10C plate,
Cutting speed: 160 m / min. ,
Groove depth (cut): 16 mm,
Table feed: 250 mm / min,
Dry high-speed high-cut groove cutting test of mild steel under the conditions of (normal cutting speed and cutting is 100 m / min, 10 mm, respectively),
The cutting groove length was measured until the flank wear width of the outer peripheral edge of the cutting edge reached 0.1 mm, which is a guide for the service life, in any high-speed, high-cut groove cutting test. The measurement results are shown in Tables 12 and 14, respectively.

また同様に、上記本発明被覆エンドミル11〜18および比較被覆エンドミル11〜18のうち、
本発明被覆エンドミル11〜13および比較被覆エンドミル11〜13については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・S55Cの板材、
切削速度:160 m/min.、
溝深さ(切り込み):5.5 mm、
テーブル送り:120 mm/分、
の条件での炭素鋼の乾式高速高切込み溝切削加工試験(通常の切削速度及び切り込みは、それぞれ、80m/min.、3mm.)、
本発明被覆エンドミル14〜16および比較被覆エンドミル14〜16については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・S10Cの板材、
切削速度:200 m/min.、
溝深さ(切り込み):9 mm、
テーブル送り:400 mm/分、
の条件での軟鋼の乾式高速高切込み溝切削加工試験(通常の切削速度及び切り込みは、それぞれ、100m/min.、5mm.)、
本発明被覆エンドミル17,18および比較被覆エンドミル17,18については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SUS304の板材、
切削速度:180 m/min.、
溝深さ(切り込み):18 mm、
テーブル送り:250 mm/分、
の条件でのステンレス鋼の湿式高速高切込み溝切削加工試験(通常の切削速度及び切り込みは、それぞれ、100m/min.、10mm.)、
をそれぞれ行い、いずれの高速高切込み溝切削加工試験でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。この測定結果を表13、14にそれぞれ示した。
Similarly, of the present invention coated end mills 11-18 and comparative coated end mills 11-18,
About the present invention coated end mills 11-13 and comparative coated end mills 11-13,
Work material-Plane size: 100 mm x 250 mm, thickness: 50 mm JIS / S55C plate material,
Cutting speed: 160 m / min. ,
Groove depth (cut): 5.5 mm,
Table feed: 120 mm / min,
Carbon steel dry high-speed high-cut groove cutting test under normal conditions (normal cutting speed and cutting are 80 m / min, 3 mm, respectively),
About this invention coated end mills 14-16 and comparative coated end mills 14-16,
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / S10C plate,
Cutting speed: 200 m / min. ,
Groove depth (cut): 9 mm,
Table feed: 400 mm / min,
Dry high-speed high-cut groove cutting test of mild steel under the conditions of (normal cutting speed and cutting is 100 m / min., 5 mm., Respectively),
For the coated end mills 17 and 18 of the present invention and the comparative coated end mills 17 and 18,
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SUS304 plate,
Cutting speed: 180 m / min. ,
Groove depth (cut): 18 mm,
Table feed: 250 mm / min,
Wet high-speed high-cut groove cutting test of stainless steel under the following conditions (normal cutting speed and cutting are 100 m / min, 10 mm, respectively),
The cutting groove length was measured until the flank wear width of the outer peripheral edge of the cutting edge reached 0.1 mm, which is a guide for the service life, in any high-speed, high-cut groove cutting test. The measurement results are shown in Tables 13 and 14, respectively.

Figure 0005445847
Figure 0005445847

Figure 0005445847
Figure 0005445847

Figure 0005445847
Figure 0005445847

Figure 0005445847
Figure 0005445847

上記の実施例2で製造した直径が8mm(工具基体C−1〜C−3形成用)、13mm(工具基体C−4〜C−6形成用)、および26mm(工具基体C−7、C−8形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ4mm×13mm(工具基体D−1〜D−3)、8mm×22mm(工具基体D−4〜D−6)、および16mm×45mm(工具基体D−7、D−8)の寸法、並びにいずれもねじれ角30度の2枚刃形状をもったWC基超硬合金製の工具基体(ドリル)D−1〜D−8をそれぞれ製造した。   The diameters produced in Example 2 above were 8 mm (for forming the tool bases C-1 to C-3), 13 mm (for forming the tool bases C-4 to C-6), and 26 mm (tool bases C-7 and C). -8 for forming), and from these three types of round bar sintered bodies, the diameter x length of the groove forming part is 4 mm x 13 mm (tool base D) by grinding. −1 to D-3), 8 mm × 22 mm (tool base D-4 to D-6), and 16 mm × 45 mm (tool bases D-7 and D-8), and all having a twist angle of 30 degrees 2 WC-base cemented carbide tool bases (drills) D-1 to D-8 having a single-blade shape were produced, respectively.

ついで、これらの工具基体(ドリル)D−1〜D−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、AIP装置に装入し、上記実施例1と同一の条件で、表15、16に示される目標組成および目標層厚の(Al,Cr)N層あるいは(Al,Cr,Si)N層と、(Al,Cr)層あるいは(Al,Cr,Si)層との交互積層構造として下部層として形成し、さらに、同じく表15、16に示される目標平均層厚、目標酸素含有割合X値の組成傾斜型(Al,Cr)層あるいは組成傾斜型(Al,Cr,Si)層からなる上部層を形成することにより、
本発明被覆工具としての本発明被覆ドリル(以下、本発明被覆ドリルと云う)1〜8,11〜18をそれぞれ製造した。
Next, the cutting edges of these tool bases (drills) D-1 to D-8 are honed, ultrasonically cleaned in acetone, and placed in an AIP apparatus in a dry state. Under the same conditions, the (Al, Cr) N layer or (Al, Cr, Si) N layer and the (Al, Cr) 2 O 3 layer or (Al , Cr, Si) 2 O 3 layers are alternately formed as a lower layer, and further, composition gradient type (Al, Cr) of the target average layer thickness and target oxygen content ratio X value shown in Tables 15 and 16 are used. ) By forming an upper layer composed of a 2 O 3 layer or a composition gradient type (Al, Cr, Si) 2 O 3 layer,
Invention coated drills (hereinafter referred to as the present invention coated drills) 1 to 8 and 11 to 18 as the present coated tools were produced, respectively.

比較例3:
比較の目的で、上記の工具基体(ドリル)D−1〜D−8の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、AIP装置に装入し、上記比較例1と同一の条件で、表17に示される目標平均層厚および目標組成の(Al,Cr)N層あるいは(Al,Cr,Si)N層(本発明でいう薄層Aの組成に相当)を蒸着することにより、
比較被覆工具としての比較被覆ドリル(以下、比較被覆ドリルと云う)1〜8、11〜18をそれぞれ製造した。
Comparative Example 3:
For the purpose of comparison, honing is performed on the surfaces of the above-mentioned tool bases (drills) D-1 to D-8, ultrasonic cleaning is performed in acetone, and the dried state is inserted into an AIP apparatus. (Al, Cr) N layer or (Al, Cr, Si) N layer (corresponding to the composition of thin layer A in the present invention) having the target average layer thickness and target composition shown in Table 17 under the same conditions as in Table 1. By evaporating
Comparative coated drills (hereinafter referred to as comparative coated drills) 1 to 8 and 11 to 18 as comparative coated tools were produced, respectively.

つぎに、上記本発明被覆ドリル1〜8および比較被覆ドリル1〜8のうち、本発明被覆ドリル1〜3および比較被覆ドリル1〜3については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・S55Cの板材、
切削速度:120 m/min.、
送り:0.30 mm/rev、
穴深さ:8 mm、
の条件での炭素鋼の湿式高速高送り穴あけ切削加工試験(通常の切削速度及び送りは、それぞれ、80m/min.、0.15mm/rev)、
本発明被覆ドリル4〜6および比較被覆ドリル4〜6については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・S10Cの板材、
切削速度:140 m/min.、
送り:0.45 mm/rev、
穴深さ:15 mm、
の条件での軟鋼の湿式高速高送り穴あけ切削加工試験(通常の切削速度及び送りは、それぞれ、80m/min.、0.25mm/rev)、
本発明被覆ドリル7、8および比較被覆ドリル7、8については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SUS304の板材、
切削速度:120 m/min.、
送り:0.40 mm/rev、
穴深さ:28 mm、
の条件でのステンレス鋼の湿式高速高送り穴あけ切削加工試験(通常の切削速度及び送りは、それぞれ、80m/min.、0.25mm/rev)、
をそれぞれ行い、いずれの湿式高速高送り穴あけ切削加工試験(水溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表15、17にそれぞれ示した。
Next, of the present invention coated drills 1-8 and comparative coated drills 1-8, for the present invention coated drills 1-3 and comparative coated drills 1-3,
Work material-Plane size: 100 mm x 250 mm, thickness: 50 mm JIS / S55C plate material,
Cutting speed: 120 m / min. ,
Feed: 0.30 mm / rev,
Hole depth: 8 mm,
Wet high-speed high-feed drilling test of carbon steel under the conditions (normal cutting speed and feed are 80 m / min. And 0.15 mm / rev, respectively),
About this invention coated drill 4-6 and comparative coated drill 4-6,
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / S10C plate,
Cutting speed: 140 m / min. ,
Feed: 0.45 mm / rev,
Hole depth: 15 mm,
Wet high-speed high-feed drilling test of mild steel under the following conditions (normal cutting speed and feed are 80 m / min. And 0.25 mm / rev, respectively)
About this invention covering drills 7 and 8 and comparative covering drills 7 and 8,
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SUS304 plate,
Cutting speed: 120 m / min. ,
Feed: 0.40 mm / rev,
Hole depth: 28 mm,
Wet high-speed high-feed drilling test of stainless steel under the conditions (normal cutting speed and feed are 80 m / min. And 0.25 mm / rev, respectively)
In each wet high-speed high-feed drilling test (using water-soluble cutting oil), the number of drilling processes until the flank wear width of the tip cutting edge surface reached 0.3 mm was measured. The measurement results are shown in Tables 15 and 17, respectively.

同様に、上記本発明被覆ドリル11〜18および比較被覆ドリル11〜18のうち、本発明被覆ドリル11〜13および比較被覆ドリル11〜13については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのS10Cの板材、
切削速度:150 m/min.、
送り:0.32 mm/rev、
穴深さ:8 mm、
の条件での軟鋼の湿式高速高送り穴あけ切削加工試験(通常の切削速度及び送りは、それぞれ、80m/min.、0.15mm/rev)、
本発明被覆ドリル14〜16および比較被覆ドリル14〜16については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SUS304の板材、
切削速度:160 m/min.、
送り:0.50 mm/rev、
穴深さ:15 mm、
の条件でのステンレス鋼の湿式高速高送り穴あけ切削加工試験(通常の切削速度及び送りは、それぞれ、80m/min.、0.25mm/rev)、
本発明被覆ドリル17、18および比較被覆ドリル17、18については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・S55Cの板材、
切削速度:150 m/min.、
送り:0.45 mm/rev、
穴深さ:28mm、
の条件での炭素鋼の湿式高速高送り穴あけ切削加工試験(通常の切削速度及び送りは、それぞれ、80m/min.、0.25mm/rev)、
をそれぞれ行い、いずれの湿式高速高送り穴あけ切削加工試験(水溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表16、17にそれぞれ示した。
Similarly, of the present invention coated drills 11-18 and comparative coated drills 11-18, the present invention coated drills 11-13 and comparative coated drills 11-13 are:
Work material-planar dimension: 100 mm × 250 mm, thickness: 50 mm S10C plate,
Cutting speed: 150 m / min. ,
Feed: 0.32 mm / rev,
Hole depth: 8 mm,
Wet high-speed high-feed drilling test of mild steel under the conditions (normal cutting speed and feed are 80 m / min, 0.15 mm / rev, respectively)
About this invention coated drills 14-16 and comparative coated drills 14-16,
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SUS304 plate,
Cutting speed: 160 m / min. ,
Feed: 0.50 mm / rev,
Hole depth: 15 mm,
Wet high-speed high-feed drilling test of stainless steel under the conditions (normal cutting speed and feed are 80 m / min. And 0.25 mm / rev, respectively)
About this invention covering drills 17 and 18 and comparative covering drills 17 and 18,
Work material-Plane size: 100 mm x 250 mm, thickness: 50 mm JIS / S55C plate material,
Cutting speed: 150 m / min. ,
Feed: 0.45 mm / rev,
Hole depth: 28mm,
Wet high-speed high-feed drilling test of carbon steel under the conditions (normal cutting speed and feed are 80 m / min. And 0.25 mm / rev, respectively)
In each wet high-speed high-feed drilling test (using water-soluble cutting oil), the number of drilling processes until the flank wear width of the tip cutting edge surface reached 0.3 mm was measured. The measurement results are shown in Tables 16 and 17, respectively.

Figure 0005445847
Figure 0005445847

Figure 0005445847
Figure 0005445847

Figure 0005445847
Figure 0005445847

この結果得られた本発明被覆チップ、本発明被覆エンドミル、本発明被覆ドリルの硬質被覆層の下部層の交互積層を構成する(Al,Cr)N層、(Al,Cr)N層の組成[あるいは(Al,Cr,Si)N層、(Al,Cr,Si)N層の組成]、並びに、比較被覆チップ、比較被覆エンドミル、比較被覆ドリルの硬質被覆層(本発明の下部層に相当)を構成する(Al,Cr)N層の組成[あるいは(Al,Cr,Si)N層の組成]、さらに、上記本発明被覆チップ、本発明被覆エンドミル、本発明被覆ドリルの硬質被覆層の上部層を構成する組成傾斜型(Al,Cr)層の組成[あるいは組成傾斜型(Al,Cr,Si)層の組成]を、透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、それぞれの目標組成と実質的に同じ組成を示した。
また、本発明被覆チップ、本発明被覆エンドミル、本発明被覆ドリルの硬質被覆層の上部層の層厚方向における組成傾斜型(Al,Cr)層中のO(酸素)含有割合の変化[あるいは組成傾斜型(Al,Cr,Si)層中のO(酸素)含有割合の変化]については、オージェ分光分析法により、上部層表層に向かうにしたがって、O(酸素)含有割合が低減していることを確認した。
(Al, Cr) N layers and (Al, Cr) 2 O 3 N layers constituting an alternate lamination of the lower layers of the hard coating layer of the present coated tip, the present coated end mill, and the present coated drill obtained as a result. [Or (Al, Cr, Si) N layer, (Al, Cr, Si) 2 O 3 N layer composition]], and comparative coated tip, comparative coated end mill, and hard coated layer of a comparative coated drill (the present invention) (Al, Cr) N layer composition (or (Al, Cr, Si) N layer composition), the above-described coated tip of the present invention, the coated end mill of the present invention, and the coated drill of the present invention. The composition of the composition gradient type (Al, Cr) 2 O 3 layer constituting the upper layer of the hard coating layer [or the composition of the composition gradient type (Al, Cr, Si) 2 O 3 layer] is measured using a transmission electron microscope. Measured by energy dispersive X-ray analysis When the showed substantially the same composition as the respective target composition.
Moreover, the change of the O (oxygen) content ratio in the composition gradient type (Al, Cr) 2 O 3 layer in the layer thickness direction of the upper layer of the hard coating layer of the present coated tip, the present coated end mill, and the present coated drill For [or change in O (oxygen) content ratio in composition gradient type (Al, Cr, Si) 2 O 3 layer], the O (oxygen) content ratio toward the upper surface layer by Auger spectroscopy Was confirmed to be reduced.

また、上記本発明被覆工具および上記比較被覆工具の硬質被覆層の各構成層の平均層厚を走査型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。   Moreover, when the average layer thickness of each constituent layer of the hard coating layer of the present invention coated tool and the comparative coated tool was measured by cross-section using a scanning electron microscope, the average value was substantially the same as the target layer thickness ( Average value of 5 locations).

表9、10、12〜17に示される結果から、本発明被覆工具は、(Al,Cr)N層と(Al,Cr)層との交互積層構造[あるいは(Al,Cr,Si)N層と(Al,Cr,Si)層との交互積層構造]からなる下部層が、すぐれた高温硬さ、耐熱性、高温強度、靭性、耐熱塑性変形性を有するとともに薄層A−薄層B間のすぐれた層間密着性を有し、さらに、組成傾斜型(Al,Cr)層[あるいは組成傾斜型(Al,Cr,Si)層]からなる上部層が、すぐれた熱伝導性、熱放散性を有することに加え、溶着性の高い被削材との潤滑性に優れていることから、軟鋼、ステンレス鋼などのように溶着性が高い被削材、合金鋼、ダイス鋼などの高硬度難削材の、特に、高熱条件下で切刃に対して高負荷が作用する高送り、高切り込みの高速重切削加工に用いた場合でも、すぐれた耐チッピング性、耐摩耗性を発揮するのに対して、硬質被覆層が(Al,Cr)N層[あるいは(Al,Cr,Si)N層]からなる比較被覆工具においては、被削材との潤滑性が不十分であるため溶着が発生しやすく、また、耐熱性も十分でないため、切粉の溶着に起因するチッピングの発生、偏摩耗の発生により、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 9, 10, and 12-17, the coated tool of the present invention has an alternate laminated structure of (Al, Cr) N layers and (Al, Cr) 2 O 3 layers [or (Al, Cr, Si). ) N layer and (Al, Cr, Si) 2 O 3 layer alternately layered structure] lower layer has excellent high temperature hardness, heat resistance, high temperature strength, toughness, heat resistance plastic deformation and thin layer An upper portion having excellent interlayer adhesion between the A-thin layer B and further comprising a composition gradient type (Al, Cr) 2 O 3 layer [or composition gradient type (Al, Cr, Si) 2 O 3 layer] In addition to excellent thermal conductivity and heat dissipation, the layer is also excellent in lubricity with work materials with high weldability, so it has high weldability such as mild steel and stainless steel. High-hardness difficult-to-cut materials such as steel, alloy steel, die steel, etc., especially high loads on the cutting edge under high heat conditions Even when used for high-feed, high-cutting high-speed heavy cutting, it has excellent chipping resistance and wear resistance, whereas the hard coating layer is an (Al, Cr) N layer [or (Al , Cr, Si) N layer]], it is easy to generate welding due to insufficient lubricity with the work material, and heat resistance is not sufficient, resulting in chip welding. It is clear that the service life is reached in a relatively short time due to occurrence of chipping and uneven wear.

上述のように、この発明の被覆工具は、一般鋼や普通鋳鉄など通常条件での切削加工は勿論のこと、溶着性が高い被削材、高硬度難削材等の高速重切削加工においても、長期に亘ってすぐれた切削性能を示すものであるから、切削加工装置のFA化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention can be used not only for cutting under normal conditions such as general steel and ordinary cast iron, but also for high-speed heavy cutting such as work materials with high weldability and hard hard-to-cut materials. Since it shows excellent cutting performance over a long period of time, it can satisfactorily cope with the FA of the cutting apparatus, labor saving and energy saving of cutting, and cost reduction.

Claims (2)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、薄層Aと薄層Bの交互積層構造からなる下部層と、組成傾斜型の上部層とからなる硬質被覆層を蒸着形成した表面被覆切削工具において、
(a)上記薄層Aは、0.05〜1.5μmの一層平均層厚を有し、かつ、
組成式:(Al1−αCrα)N
で表した場合、0.25≦α≦0.45(但し、αは原子比)を満足するAlとCrの複合窒化物層、
(b)上記薄層Bは、0.05〜3.0μmの一層平均層厚を有し、かつ、
組成式:(Al1−YCr
で表した場合、0.25≦Y≦0.45(但し、Yは原子比)を満足するAlとCrの複合酸化物層、
からなり、さらに、
(c)上記上部層は、0.3〜1μmの平均層厚を有し、
組成式:(Al1−YCr1−X
で表した場合、0≦X≦0.2,0.25≦Y≦0.45(但し、X,Yはいずれも原子比)を満足し、かつ、上部層におけるO(酸素)含有割合は、下部層側から上部層表面に向かって減少する傾斜組成を有する組成傾斜型のAlとCrの複合酸化物層、
からなることを特徴とする表面被覆切削工具。
Hard coating comprising a lower layer composed of alternating layers of thin layer A and thin layer B and an upper layer of composition gradient type on the surface of a tool base composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet In a surface-coated cutting tool in which a layer is formed by vapor deposition,
(A) The thin layer A has an average layer thickness of 0.05 to 1.5 μm, and
Composition formula: (Al 1-α Cr α ) N
In this case, a composite nitride layer of Al and Cr that satisfies 0.25 ≦ α ≦ 0.45 (where α is an atomic ratio),
(B) The thin layer B has an average layer thickness of 0.05 to 3.0 μm, and
Composition formula: (Al 1-Y Cr Y ) 2 O 3
In this case, a composite oxide layer of Al and Cr that satisfies 0.25 ≦ Y ≦ 0.45 (where Y is an atomic ratio),
And
(C) The upper layer has an average layer thickness of 0.3-1 μm,
Composition formula: (Al 1-Y Cr Y ) 1-X O X
In this case, 0 ≦ X ≦ 0.2, 0.25 ≦ Y ≦ 0.45 (provided that both X and Y are atomic ratios), and the O (oxygen) content ratio in the upper layer is A composition-graded Al and Cr composite oxide layer having a gradient composition that decreases from the lower layer side toward the upper layer surface,
A surface-coated cutting tool comprising:
炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、薄層Aと薄層Bの交互積層構造からなる下部層と、組成傾斜型の上部層とからなる硬質被覆層を蒸着形成した表面被覆切削工具において、
(a)上記薄層Aは、0.05〜1.5μmの一層平均層厚を有し、かつ、
組成式:(Al1−α−βCrαSiβ)N
で表した場合、0.25≦α≦0.45、0.01≦β≦0.1(但し、α、βはいずれも原子比)を満足するAlとCrとSiの複合窒化物層、
(b)上記薄層Bは、0.05〜3.0μmの一層平均層厚を有し、かつ、
組成式:(Al1−Y−ZCrSi
で表した場合、0.25≦Y≦0.45、0.01≦Z≦0.1((但し、Y、Zはいずれも原子比)を満足するAlとCrとSiの複合酸化物層、
からなり、さらに、
(c)上記上部層は、0.3〜1μmの平均層厚を有し、
組成式:(Al1−Y−ZCrSi1−X
で表した場合、0≦X≦0.2,0.25≦Y≦0.45、0.01≦Z≦0.1(但し、X,Y,Zはいずれも原子比)を満足し、かつ、上部層におけるO(酸素)含有割合は、下部層側から上部層表面に向かって減少する傾斜組成を有する組成傾斜型のAlとCrとSiの複合酸化物層、
からなることを特徴とする表面被覆切削工具。
Hard coating comprising a lower layer composed of alternating layers of thin layer A and thin layer B and an upper layer of composition gradient type on the surface of a tool base composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet In a surface-coated cutting tool in which a layer is formed by vapor deposition,
(A) The thin layer A has an average layer thickness of 0.05 to 1.5 μm, and
Composition formula: (Al 1-α-β Cr α Si β) N
In this case, the composite nitride layer of Al, Cr, and Si satisfying 0.25 ≦ α ≦ 0.45 and 0.01 ≦ β ≦ 0.1 (where α and β are atomic ratios),
(B) The thin layer B has an average layer thickness of 0.05 to 3.0 μm, and
Composition formula: (Al 1-Y-Z Cr Y Si Z) 2 O 3
In this case, the composite oxide layer of Al, Cr, and Si satisfying 0.25 ≦ Y ≦ 0.45 and 0.01 ≦ Z ≦ 0.1 (where Y and Z are atomic ratios). ,
And
(C) The upper layer has an average layer thickness of 0.3-1 μm,
Composition formula: (Al 1-Y-Z Cr Y Si Z) 1-X O X
In this case, 0 ≦ X ≦ 0.2, 0.25 ≦ Y ≦ 0.45, 0.01 ≦ Z ≦ 0.1 (where X, Y, and Z are atomic ratios) are satisfied, And the O (oxygen) content ratio in the upper layer is a composition gradient type Al, Cr, and Si composite oxide layer having a gradient composition that decreases from the lower layer side toward the upper layer surface,
A surface-coated cutting tool comprising:
JP2010016772A 2010-01-28 2010-01-28 A surface-coated cutting tool that exhibits excellent chipping and wear resistance with a high-speed heavy-cutting hard coating layer Expired - Fee Related JP5445847B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010016772A JP5445847B2 (en) 2010-01-28 2010-01-28 A surface-coated cutting tool that exhibits excellent chipping and wear resistance with a high-speed heavy-cutting hard coating layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010016772A JP5445847B2 (en) 2010-01-28 2010-01-28 A surface-coated cutting tool that exhibits excellent chipping and wear resistance with a high-speed heavy-cutting hard coating layer

Publications (2)

Publication Number Publication Date
JP2011152627A JP2011152627A (en) 2011-08-11
JP5445847B2 true JP5445847B2 (en) 2014-03-19

Family

ID=44538941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010016772A Expired - Fee Related JP5445847B2 (en) 2010-01-28 2010-01-28 A surface-coated cutting tool that exhibits excellent chipping and wear resistance with a high-speed heavy-cutting hard coating layer

Country Status (1)

Country Link
JP (1) JP5445847B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013159870A1 (en) * 2012-04-22 2013-10-31 Oerlikon Trading Ag, Trübbach Arc-deposited al-cr-o coatings having enhanced coating properties
MX2016005564A (en) 2013-11-03 2016-12-09 Oerlikon Surface Solutions Ag Pfäffikon Oxidation barrier layer.
DE102013019691A1 (en) * 2013-11-26 2015-05-28 Oerlikon Trading Ag, Trübbach Hard material layer for reducing heat input into the coated substrate
JP7315931B2 (en) * 2017-09-15 2023-07-27 エリコン サーフェス ソリューションズ アーゲー、 プフェフィコン Al-CrO-based coating with higher thermal stability and method for producing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4150914B2 (en) * 2003-05-20 2008-09-17 三菱マテリアル株式会社 Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance of hard coating layer under high-speed cutting conditions and method for manufacturing the same
US9997338B2 (en) * 2005-03-24 2018-06-12 Oerlikon Surface Solutions Ag, Pfäffikon Method for operating a pulsed arc source
JP2007168032A (en) * 2005-12-22 2007-07-05 Mitsubishi Materials Corp Surface-coated cutting tool with hard covered layer displaying excellent abrasion resistance and chipping resistance under high speed heavy cutting condition
JP5303816B2 (en) * 2009-10-01 2013-10-02 日立ツール株式会社 Hard coating tool

Also Published As

Publication number Publication date
JP2011152627A (en) 2011-08-11

Similar Documents

Publication Publication Date Title
JP4702520B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP5594575B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP5445847B2 (en) A surface-coated cutting tool that exhibits excellent chipping and wear resistance with a high-speed heavy-cutting hard coating layer
JP5440345B2 (en) Surface coated cutting tool
JP5041222B2 (en) Surface coated cutting tool
JP5440346B2 (en) Surface coated cutting tool
JP5088480B2 (en) Surface coated cutting tool
JP5196122B2 (en) Surface coated cutting tool
JP2009101490A (en) Surface-coated cutting tool having hard coating layer exerting excellent lubricity and wear resistance in high-speed cutting
JP4687965B2 (en) Surface coated cutting tool with excellent wear resistance due to high hard coating layer in high speed cutting of high hardness steel
JP5035527B2 (en) Surface coated cutting tool
JP4697662B2 (en) Surface coated cutting tool with excellent wear resistance due to high hard coating layer in high speed cutting of high hardness steel
JP4645820B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP4645819B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP5459618B2 (en) Surface coated cutting tool
JP5476842B2 (en) A surface-coated cutting tool that exhibits excellent chipping and wear resistance with a high-speed heavy-cutting hard coating layer
JP4678582B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP4244379B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting
JP5239950B2 (en) Surface coated cutting tool with excellent chipping resistance and wear resistance due to excellent hard coating layer in heavy cutting of highly welded work
JP5499861B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5099495B2 (en) Surface coated cutting tool
JP5077743B2 (en) Surface coated cutting tool with excellent chipping resistance and wear resistance due to hard coating layer
JP5440351B2 (en) Surface coated cutting tool
JP5239953B2 (en) Surface coated cutting tool with excellent chipping resistance and wear resistance with excellent hard coating layer in heavy cutting of highly weldable work material
JP4645818B2 (en) Cutting tool made of surface-coated cemented carbide with excellent wear resistance due to high-speed cutting of heat-resistant alloys

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131211

R150 Certificate of patent or registration of utility model

Ref document number: 5445847

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees