JP2007168032A - Surface-coated cutting tool with hard covered layer displaying excellent abrasion resistance and chipping resistance under high speed heavy cutting condition - Google Patents

Surface-coated cutting tool with hard covered layer displaying excellent abrasion resistance and chipping resistance under high speed heavy cutting condition Download PDF

Info

Publication number
JP2007168032A
JP2007168032A JP2005370001A JP2005370001A JP2007168032A JP 2007168032 A JP2007168032 A JP 2007168032A JP 2005370001 A JP2005370001 A JP 2005370001A JP 2005370001 A JP2005370001 A JP 2005370001A JP 2007168032 A JP2007168032 A JP 2007168032A
Authority
JP
Japan
Prior art keywords
layer
highest
content point
point
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005370001A
Other languages
Japanese (ja)
Inventor
Makoto Nishida
真 西田
Hitoshi Kunugi
斉 功刀
Takeshi Ishii
剛 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2005370001A priority Critical patent/JP2007168032A/en
Publication of JP2007168032A publication Critical patent/JP2007168032A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface coated cutting tool, the hard coated layer of which displays excellent abrasion resistance and chipping resistance under a high speed heavy cutting condition. <P>SOLUTION: The hard covered layer of the surface coated cutting tool is constituted of a Ti compound layer having total average layer thickness of 0.5 to 15 μm as a lower part layer, and an upper part layer having average layer thickness of 3 to 15μm as the upper part layer, along a layer thickness direction of which the Al highest containing points (hereinafter called point A) and the most Cr containing points (hereinafter called point B) alternately and repeatedly exist with specified intervals, also having component concentration distribution structure in which Al and Cr contents continuously change between the both points, and satisfying a specific composition formula showing a mutual content rate of Al, Cr and Si at the point A: [Al<SB>1-(A+B)</SB>Cr<SB>A</SB>Si<SB>B</SB>] and a specific composition formula showing a mutual content rate of Cr, Al and Si at the point B: [Cr<SB>1-(C+D)</SB>Al<SB>C</SB>Si<SB>D</SB>]and made of a composite oxide layer of Al, Cr and Si to satisfy the condition that the interval between the adjacent point A and point B is 0.1 to 0.5 μm. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、硬質被覆層がすぐれた高温硬さと耐熱性に加えて、すぐれた高温強度を有し、したがって特に各種の鋼や鋳鉄などの切削加工を、高い発熱を伴なう高速条件に加えて、高い機械的衝撃が負荷される高切り込みや高送りなどの重切削条件で行なった場合にも、硬質被覆層にチッピング(微少欠け)の発生なく、すぐれた耐摩耗性を長期に亘って発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   This invention has excellent high-temperature strength and heat resistance in addition to excellent high-temperature hardness and heat resistance. Therefore, cutting of various steels and cast irons is especially added to high-speed conditions with high heat generation. Even under heavy cutting conditions such as high cutting and high feed that are subject to high mechanical impact, the hard coating layer has excellent wear resistance over a long period without chipping (small chipping). The present invention relates to a surface-coated cutting tool to be exhibited (hereinafter referred to as a coated tool).

一般に、被覆工具として、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットからなる基体(以下、これらを総称して工具基体と云う)の表面に、
(a)下部層として、いずれも化学蒸着形成されたTiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなり、かつ0.5〜15μmの全体平均層厚を有するTi化合物層、
(b)上部層として、3〜15μmの平均層厚を有し、かつAlとCrの相互含有割合を示す組成式:(Al1−MCr)(ただし、原子比で、Mは0.35〜0.65を示す)を満足し、かつ酸化アルミニウム(以下、Alで示す)と酸化クロム(以下、Crで示す)の固溶体組織を有するAlとCrの複合酸化物[以下、(Al−Cr)で示す]層、
上記の下部層と上部層で構成された硬質被覆層を化学蒸着形成してなる、被覆工具が知られている。
また、上記の従来被覆工具の硬質被覆層を構成する上部層である(Al−Cr)層が、Alによる高温硬さおよび耐熱性と、Crによる高温強度を具備することから、かかる被覆工具を各種の鋼や鋳鉄などの連続切削や断続切削加工に用いた場合にすぐれた切削性能を発揮することも知られている。
Generally, as a coated tool, a surface of a substrate (hereinafter collectively referred to as a tool substrate) made of tungsten carbide (hereinafter referred to as WC) based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) based cermet. In addition,
(A) As a lower layer, a Ti carbide (hereinafter referred to as TiC) layer, nitride (hereinafter also referred to as TiN) layer, carbonitride (hereinafter referred to as TiCN) layer formed by chemical vapor deposition, Ti consisting of one or more of a carbon oxide (hereinafter referred to as TiCO) layer and a carbonitride oxide (hereinafter referred to as TiCNO) layer and having an overall average layer thickness of 0.5 to 15 μm Compound layer,
(B) As an upper layer, a composition formula having an average layer thickness of 3 to 15 μm and showing a mutual content ratio of Al and Cr: (Al 1-M Cr M ) (wherein M is 0. A composite oxide of Al and Cr that satisfies the requirements of 35 to 0.65 and has a solid solution structure of aluminum oxide (hereinafter referred to as Al 2 O 3 ) and chromium oxide (hereinafter referred to as Cr 2 O 3 ) [Hereinafter referred to as (Al—Cr) 2 O 3 ] layer,
There is known a coated tool formed by chemical vapor deposition of a hard coating layer composed of the lower layer and the upper layer.
Further, since the a top layer constituting the hard coating layer of the conventional coated tools (Al-Cr) 2 O 3 layers comprises a high-temperature hardness and heat resistance by Al, high-temperature strength by Cr, such It is also known to exhibit excellent cutting performance when the coated tool is used for continuous cutting and intermittent cutting of various types of steel and cast iron.

さらに、上記の従来被覆工具が、例えば図1に概略縦断面図で示される通り、中央部にステンレス鋼製の反応ガス吹き出し管が立設され、前記反応ガス吹き出し管には、図2(a)に概略斜視図で、同(b)に概略平面図で例示される黒鉛製の工具基体支持パレットが串刺し積層嵌着され、かつこれらがステンレス鋼製のカバーを介してヒーターで加熱される構造を有する化学蒸着装置を用い、工具基体を前記工具基体支持パレットの底面に形成された多数の反応ガス通過穴位置に図示される通りに載置した状態で前記化学蒸着装置に装入し、ヒータで装置内を、例えば850〜1050℃の範囲内の所定の温度に加熱した後、まず、硬質被覆層の下部層として、例えば表3に示される形成条件でTi化合物層を形成し、ついで、反応ガスとして、容量%で(以下、反応ガスの%は容量%を示す)、
AlCl:0.77〜1.43%、
CrCl:0.77〜1.43%、
CO:5〜6%、
HCl:2〜3%、
:残り、
からなる組成を有する反応ガスを用い、この反応ガスを予め真空排気された装置内に前記反応ガス吹き出し管を通して導入し、装置内の反応ガス圧力を、6〜30kPaの範囲内の所定の圧力に所定時間保持することにより(Al−Cr)層からなる同上部層を形成することにより製造されることも知られている。
Further, in the above conventional coated tool, for example, as shown in a schematic longitudinal sectional view in FIG. 1, a reaction gas blowing pipe made of stainless steel is erected at the center, and the reaction gas blowing pipe has a structure shown in FIG. ) Is a schematic perspective view, and a graphite tool base support pallet exemplified in (b) is a schematic plan view. The structure is skewered and fitted, and these are heated by a heater through a stainless steel cover. A chemical vapor deposition apparatus having a tool base is loaded into the chemical vapor deposition apparatus in a state where the tool base is placed as illustrated in a plurality of reaction gas passage hole positions formed on the bottom surface of the tool base support pallet, and a heater Then, after heating the inside of the apparatus to a predetermined temperature within a range of 850 to 1050 ° C., for example, a Ti compound layer is first formed as a lower layer of the hard coating layer under the formation conditions shown in Table 3, for example. With reactive gas Te, by volume% (hereinafter,% of the reaction gas are capacitors%),
AlCl 3 : 0.77 to 1.43%,
CrCl 2: 0.77~1.43%,
CO 2: 5~6%,
HCl: 2-3%
H 2 : Remaining
The reaction gas is introduced into the device that has been evacuated in advance through the reaction gas blowing pipe, and the reaction gas pressure in the device is set to a predetermined pressure within the range of 6 to 30 kPa. It is also known that it is manufactured by forming the upper layer composed of the (Al—Cr) 2 O 3 layer by holding it for a predetermined time.

また、一般に、上記の従来被覆工具の硬質被覆層の下部層を構成するTi化合物層や(Al−Cr)層が粒状結晶組織を有し、さらに、前記Ti化合物層を構成するTiCN層を、層自身の強度向上を目的として、通常の化学蒸着装置にて、反応ガスとして有機炭窒化物を含む混合ガスを使用し、700〜950℃の中温温度域で化学蒸着することにより形成して縦長成長結晶組織をもつようにすることも知られている。
特開昭54−153758号公報 特開平6−8010号公報
In general, the Ti compound layer and the (Al—Cr) 2 O 3 layer constituting the lower layer of the hard coating layer of the conventional coated tool described above have a granular crystal structure, and further the TiCN constituting the Ti compound layer For the purpose of improving the strength of the layer itself, the layer is formed by chemical vapor deposition at a medium temperature range of 700 to 950 ° C. using a mixed gas containing an organic carbonitride as a reaction gas in an ordinary chemical vapor deposition apparatus. It is also known to have a vertically elongated crystal structure.
JP 54-153758 A Japanese Patent Laid-Open No. 6-8010

近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高速化の傾向を強め、かつ高切り込みや高送りなどの重切削条件での切削加工を余儀なくされる傾向にあるが、上記の従来被覆工具においては、これを高い機械的衝撃を伴う高切り込みや高送りなどの重切削加工を高速で行なうのに用いた場合には、特に硬質被覆層の上部層を構成する層厚方向に沿って一定の組成を有する(Al−Cr)層の高温硬さおよび耐熱性不足、さらに高温強度不足が原因で、摩耗進行が速くなるばかりでなく、チッピング(微小割れ)も発生し易く、この結果比較的短時間で使用寿命に至るのが現状である。 In recent years, there has been a remarkable increase in the performance of cutting equipment, while there has been a strong demand for labor saving and energy saving and further cost reduction for cutting work. Although there is a tendency to be forced to perform cutting under heavy cutting conditions such as high feed, the above-mentioned conventional coated tool performs heavy cutting such as high cutting with high mechanical impact and high feed at high speed. When used, the (Al—Cr) 2 O 3 layer having a certain composition along the layer thickness direction constituting the upper layer of the hard coating layer, in particular, lack of high temperature hardness and heat resistance, and high temperature strength Due to the shortage, not only the progress of wear is accelerated, but chipping (microcracking) is likely to occur, and as a result, the service life is reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、特に高速重切削加工で硬質被覆層がすぐれた耐摩耗性および耐チッピング性を発揮する被覆工具を開発すべく、上記の従来被覆工具を構成する硬質被覆層に着目し、研究を行った結果、
(a)上記の化学蒸着装置を用いて形成された従来被覆工具の硬質被覆層の上部層を構成する(Al−Cr)層は、層厚全体に亘って実質的に均一な組成および固溶体組織を有し、したがって均質な高温硬さと耐熱性、さらに高温強度を有するが、例えば図3に反応ガス組成自動制御システムが概略チャート図で示される通り、前記(Al−Cr)層に、AlとCrの合量に占める割合で、1〜10原子%のSiを含有させた状態で、これに層厚方向にそってAl最高含有点とCr最高含有点とを所定間隔をおいて交互に繰り返し形成させる目的で、反応ガス組成および流量中央制御装置に、前記Al最高含有点およびCr最高含有点に対応した反応ガス組成、並びに前記両点間のAlおよびCrの連続変化に対応した反応ガス組成、さらに前記両点間の間隔を、過去の実績データに基づいてインプットし、この反応ガス組成および流量中央制御装置からの制御信号にしたがって、原料ガスボンベからのAlClガス、CrClガス、SiClガス、Hガス、COガス、およびHClガスの流量をそれぞれの原料ガス流量自動制御装置にて制御しながら、化学蒸着装置の反応ガス吹き出し管に導入すると、層厚方向にそって、Al最高含有点とCr最高含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Al最高含有点から前記Cr最高含有点、前記Cr最高含有点から前記Al最低含有点へAlおよびCr含有量が連続的に変化する成分濃度分布構造、およびAlとCrの固溶体素地中にAlとCrとSiの複合酸化物相が分散分布した組織を有するAlとCrとSiの複合酸化物[以下、(Al,Cr)−SiOで示す]層からなる上部層が形成されるようになること。
In view of the above, the present inventors have developed the above-mentioned conventional coated tool in order to develop a coated tool that exhibits excellent wear resistance and chipping resistance, particularly in a high-speed heavy cutting process. As a result of conducting research with a focus on the hard coating layer,
(A) The (Al—Cr) 2 O 3 layer constituting the upper layer of the hard coating layer of the conventional coated tool formed using the above chemical vapor deposition apparatus has a substantially uniform composition over the entire layer thickness. And has a solid solution structure, and therefore has a uniform high temperature hardness and heat resistance, and a high temperature strength. For example, as shown in the schematic chart of FIG. 3, the (Al—Cr) 2 O In a state where 1 to 10 atomic% of Si is contained in the proportion of the total amount of Al and Cr in the three layers, the Al highest content point and the Cr highest content point are arranged at a predetermined interval along the layer thickness direction. For the purpose of alternately and repeatedly forming the reaction gas composition and the flow rate central control unit, the reaction gas composition corresponding to the Al highest content point and the Cr highest content point, and the continuous change of Al and Cr between the two points Reaction corresponding to Scan composition, further wherein the distance between two points, and inputs based on historical data, according to a control signal from the reaction gas composition and flow rates central control unit, AlCl 3 gas from the raw material gas cylinder, CrCl 2 gas, When the flow rates of SiCl 4 gas, H 2 gas, CO 2 gas, and HCl gas are controlled by the respective raw material gas flow rate automatic control devices and introduced into the reaction gas blowing tube of the chemical vapor deposition device, they follow the layer thickness direction. The highest Al content point and the highest Cr content point are alternately present at predetermined intervals, and the highest Al content point to the highest Cr content point, the highest Cr content point to the lowest Al content point, and Al Component concentration distribution structure in which Cr content varies continuously, and composite oxide of Al, Cr, and Si in a solid solution substrate of Al 2 O 3 and Cr 2 O 3 An upper layer composed of a composite oxide of Al, Cr, and Si (hereinafter referred to as (Al, Cr) 2 O 3 —SiO 2 ) having a structure in which phases are distributed and distributed is formed.

(b)上記(a)の繰り返し連続変化成分濃度分布構造の(Al,Cr)−SiO層において、
上記Al最高含有点におけるAlとCrとSiの相互含有割合を示す組成式:[Al1−(A+B)CrSi](ただし、原子比で、Aは0.02〜0.15、Bは0.01〜0.10を示す)、
上記Cr最高含有点におけるCrとAlとSiの相互含有割合を示す組成式:[Cr1−(C+D)AlSi](ただし、原子比で、Cは0.02〜0.15、Dは0.01〜0.10を示す)、
を満足し、かつ隣り合う上記Al最高含有点とCr最高含有点の厚さ方向の間隔を0.1〜0.5μmとすると、
上記Al最高含有点部分では、上記の従来(Al−Cr)層に比してAlの含有割合が相対的に高く、Crのそれはきわめて低いものとなるので、これのもつ高温硬さおよび耐熱性に比して一段とすぐれた高温硬さおよび耐熱性を具備する反面、一方高温強度は低いものとなり、また、上記Cr最高含有点部分では、前記Al最高含有点部分に比してAl含有量が低く、相対的にCr含有量の高いものとなるので、一段と高い高温強度を具備する反面、高温硬さおよび耐熱性の低いものとなるが、これらAl最高含有点とCr最高含有点の間隔をきわめて小さくしたことから、層全体の特性として一段とすぐれた高温硬さと耐熱性を保持した状態で、一段とすぐれた高温強度を具備するようになり、さらにSiを含有させることにより、AlとCrとSiの複合酸化物相が分散分布した組織を形成することによって層自体の高温強度が一層向上するようになり、したがって、硬質被覆層の上部層がかかる構成の(Al,Cr)−SiO層からなる被覆工具は、特に各種の鋼や鋳鉄などの切削加工を、高速で、かつ高い機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合にも、硬質被覆層がすぐれた耐摩耗性および耐チッピング性を発揮するようになること。
以上(a)および(b)に示される研究結果を得たのである。
(B) In the (Al, Cr) 2 O 3 —SiO 2 layer having the repeated continuous change component concentration distribution structure of (a),
Composition formula showing the mutual content ratio of Al, Cr, and Si at the Al highest content point: [Al 1- (A + B) Cr A Si B ] (where A is 0.02 to 0.15, B Represents 0.01 to 0.10),
Composition formula showing the mutual content ratio of Cr, Al and Si at the highest Cr content point: [Cr 1- (C + D) Al C Si D ] (where C is 0.02 to 0.15, D Represents 0.01 to 0.10),
And the interval in the thickness direction of the adjacent Al highest content point and Cr highest content point adjacent to each other is 0.1 to 0.5 μm,
In the Al highest content point portion, the Al content is relatively higher than that of the conventional (Al—Cr) 2 O 3 layer, and that of Cr is extremely low. In addition, it has excellent high-temperature hardness and heat resistance compared to heat resistance, but on the other hand, the high-temperature strength is low, and in the above-mentioned Cr highest content point portion, Al is higher than the Al highest content point portion. Since the content is low and the content of Cr is relatively high, it has higher high-temperature strength, but it has low high-temperature hardness and heat resistance. Since the gap between the layers is extremely small, the layer has excellent high-temperature strength and heat resistance while maintaining excellent high-temperature hardness and heat resistance as a whole layer. By forming a structure in which a composite oxide phase of Al, Cr and Si is dispersed and distributed, the high-temperature strength of the layer itself is further improved. Therefore, the upper layer of the hard coating layer is applied (Al, Cr ) For coated tools consisting of 2 O 3 —SiO 2 layers, especially when cutting various steels and cast irons at high speed and under heavy cutting conditions such as high cutting and high feed with high mechanical impact In addition, the hard coating layer should exhibit excellent wear resistance and chipping resistance.
The research results shown in (a) and (b) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、超硬基体の表面に、
(A)下部層として、いずれも化学蒸着形成された、TiC層、TiN層、TiCN層、TiCO層、およびTiCNO層のうちの1層または2種以上で構成され、かつ0.5〜15μmの合計平均層厚を有するTi化合物層、
(B)上部層として、3〜15μmの平均層厚を有し、かつ、
(a)化学蒸着形成され、層厚方向にそって、Al最高含有点とCr最高含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Al最高含有点から前記Cr最高含有点、前記Cr最高含有点から前記Al最高含有点へAlおよびCr含有量が連続的に変化する成分濃度分布構造を有し、
(b)上記Al最高含有点におけるAlとCrとSiの相互含有割合を示す組成式:[Al1−(A+B)CrSi](ただし、原子比で、Aは0.02〜0.15、Bは0.01〜0.10を示す)、
上記Cr最高含有点におけるCrとAlとSiの相互含有割合を示す組成式:[Cr1−(C+D)AlSi](ただし、原子比で、Cは0.02〜0.15、Dは0.01〜0.10を示す)、
を満足し、
(c)さらに、隣り合う上記Al最高含有点とCr最高含有点の間隔が、0.1〜0.5μmであること、
以上(a)〜(c)を満足する(Al,Cr)−SiO層からなる上部層、
上記の下部層と上部層で構成された硬質被覆層を化学蒸着形成してなる、高速重切削条件で硬質被覆層がすぐれた耐摩耗性および耐チッピング性を発揮する被覆超硬工具に特徴を有するものである。
This invention was made based on the above research results, and on the surface of the carbide substrate,
(A) As a lower layer, each is formed by one or more of TiC layer, TiN layer, TiCN layer, TiCO layer, and TiCNO layer formed by chemical vapor deposition, and 0.5 to 15 μm A Ti compound layer having a total average layer thickness;
(B) As an upper layer, it has an average layer thickness of 3 to 15 μm, and
(A) formed by chemical vapor deposition, the highest Al content point and the highest Cr content point are alternately present at predetermined intervals along the layer thickness direction, and the highest Cr content point from the highest Al content point, A component concentration distribution structure in which the Al and Cr contents continuously change from the highest Cr content point to the highest Al content point,
(B) Composition formula showing the mutual content ratio of Al, Cr, and Si at the Al highest content point: [Al 1- (A + B) Cr A Si B ] (where A is 0.02 to 0.00. 15, B represents 0.01 to 0.10),
Composition formula showing the mutual content ratio of Cr, Al and Si at the highest Cr content point: [Cr 1- (C + D) Al C Si D ] (where C is 0.02 to 0.15, D Represents 0.01 to 0.10),
Satisfied,
(C) Furthermore, the interval between the adjacent Al highest content point and the Cr highest content point adjacent to each other is 0.1 to 0.5 μm.
An upper layer composed of an (Al, Cr) 2 O 3 —SiO 2 layer satisfying the above (a) to (c);
Characterized by coated carbide tools that exhibit excellent wear resistance and chipping resistance under high-speed heavy cutting conditions, formed by chemical vapor deposition of the hard coating layer composed of the lower and upper layers described above. I have it.

つぎに、この発明の被覆超硬工具において、これを構成する硬質被覆層の構成を上記の通りに限定した理由を説明する。
(A)Ti化合物層(下部層)
Ti化合物層は、基本的には(Al,Cr)−SiO層の下部層として存在し、自身の具備するすぐれた高温強度によって硬質被覆層の高温強度向上に寄与するほか、工具基体と(Al,Cr)−SiO層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性を向上させる作用を有するが、その平均層厚が0.5μm未満では、前記作用を十分に発揮させることができず、一方その平均層厚が15μmを越えると、切削時の発生熱によって偏摩耗の原因となる熱塑性変形を起し易くなることから、その平均層厚を0.5〜15μmと定めた。
Next, in the coated carbide tool of the present invention, the reason why the structure of the hard coating layer constituting the tool is limited as described above will be described.
(A) Ti compound layer (lower layer)
The Ti compound layer basically exists as a lower layer of the (Al, Cr) 2 O 3 —SiO 2 layer and contributes to improving the high temperature strength of the hard coating layer by its excellent high temperature strength. The substrate and the (Al, Cr) 2 O 3 —SiO 2 layer are firmly adhered to each other, thereby improving the adhesion of the hard coating layer to the tool substrate, but the average layer thickness is less than 0.5 μm. However, the above-mentioned action cannot be sufficiently exhibited. On the other hand, if the average layer thickness exceeds 15 μm, it becomes easy to cause thermoplastic deformation that causes uneven wear due to heat generated during cutting. The thickness was set to 0.5 to 15 μm.

(B)(Al,Cr)−SiO層(上部層)
(a)Al最高含有点の組成
上記した通り(Al,Cr)−SiO層におけるAl成分は高温硬さおよび耐熱性(高温特性)、Cr成分は高温強度を向上させ、さらにSi成分は一段と高温強度を向上させる作用があり、したがってAl最高含有点では、Al成分の含有割合を高くして高温硬さおよび耐熱性を一段と向上させ、高熱発生を伴う高速切削に適合したものにしているが、AlとCrとSi成分の相互含有割合を示す組成式:[Al1−(A+B)CrSi]で、A値が原子比で(以下同じ)0.15を越えたり、同B値が0.10を越えたりすると、相対的にAlの含有割合が低くなることから、層自体の高温硬さおよび耐熱性の低下は避けられず、これが摩耗促進の原因となり、一方、A値が0.02未満であったり、B値が0.01未満であったりすると、すぐれた高温強度を有するCr最高含有点が隣接して存在しても層自体の高温強度の低下は避けられず、この結果チッピングなどが発生し易くなることから、Al最高含有点の組成式:[Al1−(A+B)CrSi]におけるA値を0.02〜0.15、同B値を0.01〜0.10と定めた。
(B) (Al, Cr) 2 O 3 —SiO 2 layer (upper layer)
(A) Composition of the highest Al content point As described above, the Al component in the (Al, Cr) 2 O 3 —SiO 2 layer is high-temperature hardness and heat resistance (high-temperature characteristics), and the Cr component improves high-temperature strength. The component has the effect of further improving the high-temperature strength. Therefore, at the highest Al content point, the Al component content is increased to further improve the high-temperature hardness and heat resistance, making it suitable for high-speed cutting with high heat generation. However, in the composition formula showing the mutual content ratio of Al, Cr and Si components: [Al 1- (A + B) Cr A Si B ], the A value exceeds 0.15 in atomic ratio (the same applies hereinafter), If the B value exceeds 0.10, since the Al content is relatively low, the high-temperature hardness and heat resistance of the layer itself is inevitably lowered, which causes wear promotion, A value is not 0.02 If the B value is less than 0.01, even if the highest Cr content point having excellent high-temperature strength is present adjacently, a decrease in the high-temperature strength of the layer itself is unavoidable. 0.01~0 [Al 1- (a + B ) Cr a Si B] 0.02~0.15 the a value in the same B value: since but tends to occur, Al highest containing point composition formula. 10 was determined.

(b)Cr最高含有点の組成
上記の通りAl最高含有点は高温特性(高温硬さおよび耐熱性)のすぐれたものであるが、反面高温強度の劣るものであるため、このAl最高含有点の高温強度不足を補う目的で、Crの含有割合を高くし、さらに高温強度向上効果の著しいSiを含有させることによってすぐれた高温強度を有するようになるCr最高含有点を厚さ方向に交互に介在させるものであり、しかしAlとCrとSi成分の相互含有割合を示す組成式:[Cr1−(C+D)AlSi]で、Alの割合を示すC値がCrとSiの合量に占める割合(原子比)で0.02未満では、所定の高温特性を確保することができず、この結果すぐれた高温特性を有するAl最高含有点が隣接して存在しても層自体の高温特性の低下が避けられなくなり、これが摩耗促進の原因となり、一方同C値が0.15を越えると、相対的にCrの割合が低くなり過ぎて、層自体の高温強度の低下は避けられず、この結果チッピングなどが発生し易くなることから、C値を0.02〜0.15と定めたものであり、同Siの割合を示すD値が0.10を越えると、層自体の高温特性の低下は避けられず、これが摩耗促進の原因となり、一方、D値が0.01未満では、所望の高温強度向上効果が得られないことから、Cr最高含有点の組成式:[Cr1−(C+D)AlSi]におけるC値を0.02〜0.15、同D値を0.01〜0.10と定めた。
(B) Composition of highest Cr content point As described above, the highest Al content point is excellent in high-temperature characteristics (high temperature hardness and heat resistance), but on the other hand, it is inferior in high-temperature strength. In order to compensate for the lack of high-temperature strength of the steel, the Cr content is alternately increased in the thickness direction by increasing the Cr content ratio, and further by including Si, which has a remarkable effect of improving the high-temperature strength. However, the composition formula showing the mutual content of Al, Cr and Si components: [Cr 1- (C + D) Al C Si D ], where the C value indicating the ratio of Al is the total amount of Cr and Si If the ratio (atomic ratio) in the ratio is less than 0.02, the predetermined high-temperature characteristics cannot be ensured. As a result, even if there are adjacent Al highest content points having excellent high-temperature characteristics, the high temperature of the layer itself Avoid deterioration of characteristics This causes wear promotion. On the other hand, if the C value exceeds 0.15, the ratio of Cr becomes relatively low, and the high temperature strength of the layer itself is inevitably lowered. Therefore, if the D value indicating the ratio of Si exceeds 0.10, the deterioration of the high temperature characteristics of the layer itself is avoided. This is a cause of accelerated wear. On the other hand, if the D value is less than 0.01, the desired effect of improving the high temperature strength cannot be obtained. Therefore, the composition formula of the highest Cr content point: [Cr 1- (C + D) Al C Si D ] was determined to be 0.02 to 0.15 and the D value was 0.01 to 0.10.

(c)Al最高含有点とCr最高含有点間の間隔
その間隔が0.1μm未満ではそれぞれの点を上記の組成で明確に形成することが困難であり、この結果層に所望のすぐれた高温硬さおよび耐熱性、さらに高温強度を確保することができなくなり、またその間隔が0.5μmを越えるとそれぞれの点がもつ欠点、すなわちAl最高含有点であれば高温強度不足、Cr最高含有点であれば高温硬さおよび耐熱性不足が層内に局部的に現れ、これが原因でチッピングが発生し易くなったり、摩耗進行が促進されるようになることから、その間隔を0.1〜0.5μmと定めた。
(C) Interval between the highest Al content point and the highest Cr content point If the distance is less than 0.1 μm, it is difficult to form each point clearly with the above composition. Hardness, heat resistance, and high temperature strength cannot be ensured. Also, when the interval exceeds 0.5 μm, each point has a defect, that is, if Al is the highest content point, insufficient high temperature strength, Cr highest content point Then, high temperature hardness and insufficient heat resistance appear locally in the layer, and this makes it easy to generate chipping and promotes the progress of wear. .5 μm.

(d)平均層厚
その平均層厚が3μm未満では、所望の耐摩耗性を長期に亘って確保することができず、一方その平均層厚が15μmを越えると、チッピングが発生し易くなることから、その平均層厚を3〜15μmと定めた。
(D) Average layer thickness If the average layer thickness is less than 3 μm, the desired wear resistance cannot be ensured over a long period of time. On the other hand, if the average layer thickness exceeds 15 μm, chipping tends to occur. Therefore, the average layer thickness was determined to be 3 to 15 μm.

この発明の被覆工具は、硬質被覆層の上部層が層厚方向にすぐれた高温硬さと耐熱性を有するAl最高含有点と高温強度のすぐれたCr最高含有点とが交互に所定間隔をおいて繰り返し存在し、かつ前記両点間でAlおよびCr含有量が連続的に変化する成分濃度分布構造を有し、これによって前記硬質被覆層が下部層であるTi化合物層の具備するすぐれた層間密着性および高温強度と相俟って、すぐれた高温硬さと耐熱性、さらに一段とすぐれた高温強度を有するようになるので、各種の鋼や鋳鉄などの切削加工を、高速で、かつ高い機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合にも、硬質被覆層がすぐれた耐摩耗性および耐チッピング性を示し、長期に亘ってすぐれた切削性能を発揮するのである。   In the coated tool of this invention, the uppermost layer of the hard coating layer has an Al highest content point having high temperature hardness and heat resistance excellent in the layer thickness direction and a Cr highest content point having excellent high temperature strength at predetermined intervals alternately. It has a component concentration distribution structure that repeatedly exists and the Al and Cr contents continuously change between the two points, whereby the hard coating layer has a superior interlaminar adhesion provided by the Ti compound layer as the lower layer High temperature hardness and heat resistance combined with high temperature and high temperature strength, as well as excellent high temperature strength, cutting various steels and cast irons at high speed and high mechanical impact. Even when performed under heavy cutting conditions such as high cutting and high feed, the hard coating layer exhibits excellent wear resistance and chipping resistance, and exhibits excellent cutting performance over a long period of time.

つぎに、この発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、TiN粉末、TaC粉末、NbC粉末、Cr粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の工具基体A1〜A10を形成した。 As raw material powders, WC powder, TiC powder, TiN powder, TaC powder, NbC powder, Cr 3 C 2 powder, and Co powder, all having an average particle diameter of 1 to 3 μm, were prepared. And then wet-mixed with a ball mill for 72 hours, dried, and press-molded into a green compact at a pressure of 100 MPa. The green compact was vacuumed at 6 Pa at a temperature of 1400 ° C. for 1 hour. Sintering is performed under holding conditions, and after sintering, tool bases A1 to A10 made of WC-base cemented carbide having ISO standard and CNMG120408 chip shape are subjected to honing of R: 0.07 on the cutting edge portion. Formed.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比で、TiC/TiN=50/50)粉末、MoC粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったTiCN基サーメット製の工具基体B1〜B6を形成した。 In addition, as raw material powders, TiCN (mass ratio, TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC, all having an average particle diameter of 0.5 to 2 μm. Prepare powder, Co powder, and Ni powder, mix these raw material powders into the composition shown in Table 2, wet mix for 24 hours with a ball mill, dry, and press-mold into green compact at 100 MPa pressure The green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour. After sintering, the cutting edge portion was subjected to a honing process of R: 0.07 and ISO standard Tool bases B1 to B6 made of TiCN base cermet having a chip shape of CNMG120408 were formed.

つぎに、上記の工具基体A1〜A10およびB1〜B6のそれぞれを、アセトン中で超音波洗浄し、乾燥した後、図1に示される化学蒸着装置内に、第2図に示される工具基体支持パレットの位置決め穴に載置した状態で装入し、まず、表3(表3中のl−TiCNは特開平6−8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)に示される通常の条件にて、表7に示される組み合わせおよび目標層厚のTi化合物層を硬質被覆層の下部層として蒸着形成し、ついで、同じく装置内の雰囲気温度をヒーターにて加熱して1020℃とした後、図3に示される反応ガス組成自動制御システムの反応ガス組成および流量中央制御装置に過去の実績にデータにしたがって、表4,5に示されるAl最高含有点のAlとCrとSiの相互含有割合を示す目標組成式、およびCr最高含有点のCrとAlとSiの相互含有割合を示す目標組成と反応ガス組成の関係、前記Al最高含有点とCr最高含有点間のAlとCr含有量の連続変化に対応する反応ガス組成、さらに同じく表7に示される前記両点間の目標間隔および硬質被覆層の上部層としての目標層厚をインプットし、この反応ガス組成および流量中央制御装置からの信号にしたがって作動するコントロールバルブ内蔵の原料ガス流量自動制御装置を通して、原料ガスであるHガス、COガス、およびHClガス(なお、同じく原料ガスであるAlClガス、CrCl、およびSiClガスは、それぞれAlClガス発生器、CrClガス発生器、およびSiClガス発生器で金属Al、金属Cr、およびSiとHClガスをそれぞれ反応させることにより形成される)を、それぞれのガス流量を制御しながら、図1の化学蒸着装置の反応ガス吹き出し管から装置内に導入し(装置内の反応雰囲気圧力は常に10kPaに保持される)、もって前記工具基体の表面に、層厚方向に沿って表4,5に示される上記目標組成式のAl最高含有点とCr最高含有点とが交互に同じく表7に示される目標間隔で繰り返し存在し、かつ前記Al最高含有点から前記Cr最高含有点、前記Cr最高含有点から前記Al最高含有点へAlおよびCr含有量がそれぞれ連続的に変化する成分濃度分布構造を有し、かつ同じく表7に示される目標層厚の(Al,Cr)−SiO層を硬質被覆層の上部層として蒸着することにより、本発明被覆工具である本発明表面被覆スローアウエイチップ(以下、本発明被覆チップと云う)1〜16をそれぞれ製造した。 Next, after each of the tool bases A1 to A10 and B1 to B6 is ultrasonically cleaned in acetone and dried, the tool base support shown in FIG. 2 is placed in the chemical vapor deposition apparatus shown in FIG. First, in the state of being placed in the positioning hole of the pallet, first, the conditions for forming a TiCN layer having a vertically grown crystal structure as described in Table 3 (l-TiCN in Table 3 is described in JP-A-6-8010). In the normal conditions shown in Table 7), the combinations shown in Table 7 and the Ti compound layer having the target layer thickness are formed on the hard coating layer. After vapor deposition as a lower layer, the atmospheric temperature in the apparatus was also heated to 1020 ° C. with a heater, and the past was stored in the reaction gas composition and flow rate central control apparatus of the reaction gas composition automatic control system shown in FIG. According to the results, the target composition formula showing the mutual content ratio of Al, Cr and Si at the Al highest content point shown in Tables 4 and 5 and the mutual content ratio of Cr, Al and Si at the highest Cr content point are shown. Relationship between target composition and reaction gas composition, reaction gas composition corresponding to continuous change in Al and Cr content between the Al highest content point and the Cr highest content point, and also the target interval between the two points shown in Table 7 And a target layer thickness as an upper layer of the hard coating layer is inputted, and H 2 which is a raw material gas is passed through a raw material gas flow rate automatic control device with a built-in control valve which operates in accordance with the reaction gas composition and a signal from the flow rate central control device. gas, CO 2 gas, and HCl gas (Note, also AlCl 3 gas as a source gas, CrCl 2, and SiCl 4 gas, respectively AlCl Gas generator, CrCl 2 gas generator, and metal Al with SiCl 4 gas generator, metallic Cr, and Si and a and is formed by reacting respectively) HCl gas, while controlling the respective gas flow rates, FIG. 1 is introduced into the apparatus through the reaction gas blowing pipe of the chemical vapor deposition apparatus 1 (the reaction atmosphere pressure in the apparatus is always maintained at 10 kPa), and thus the surface of the tool base is arranged along the layer thickness direction in Tables 4 and 5 The highest Al content point and the highest Cr content point of the target composition formula shown in FIG. 7 are alternately repeated at the target intervals shown in Table 7, and from the highest Al content point, the highest Cr content point, the highest Cr content It has a component concentration distribution structure in which the Al and Cr contents continuously change from the content point to the Al maximum content point, and the target layer thickness (Al, Cr) also shown in Table 7 ) 2 O 3 —SiO 2 layer is deposited as an upper layer of the hard coating layer, thereby manufacturing the present surface coated throwaway tip (hereinafter referred to as “the present coated tip”) 1 to 16 as the present coated tool. did.

また、比較の目的で、これら工具基体A1〜A10およびB1〜B6を、アセトン中で超音波洗浄し、乾燥した後、同じくそれぞれ図1,2に示される通常の化学蒸着装置に装入し、硬質被覆層の上部層形成に際して、反応ガス吹き出し管から導入される反応ガスを、それぞれ表6に示されるAlとCrの相互含有割合を示す目標組成式に対応した組成の反応ガスとする以外は同一の条件で、前記工具基体A1〜A10およびB1〜B6のそれぞれの表面に、同じく表8に示される目標層厚を有し、かつ層厚方向に沿って実質的に組成変化のない(Al−Cr)層を硬質被覆層の上部層として蒸着することにより、従来被覆工具としての従来表面被覆スローアウエイチップ(以下、従来被覆チップと云う)1〜16をそれぞれ製造した。 For comparison purposes, these tool bases A1 to A10 and B1 to B6 were ultrasonically cleaned in acetone and dried, and then charged into the normal chemical vapor deposition apparatus shown in FIGS. When forming the upper layer of the hard coating layer, except that the reaction gas introduced from the reaction gas blowing tube is a reaction gas having a composition corresponding to the target composition formula showing the mutual content ratio of Al and Cr shown in Table 6, respectively. Under the same conditions, the surface of each of the tool bases A1 to A10 and B1 to B6 has the target layer thickness shown in Table 8 and has substantially no composition change along the layer thickness direction (Al the -cr) 2 O 3 layer by depositing a top layer of the hard coating layer, the conventional surface-coated throw-away tip as a conventional coated tool (hereinafter, referred to as conventional coated chip) 1-16 were prepared respectively .

つぎに、上記本発明被覆チップ1〜16および従来被覆チップ1〜16について、これを工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・SNCM220の丸棒、
切削速度:450m/min.、
切り込み:5mm、
送り:0.3mm/rev.、
切削時間:5分、
の条件(切削条件Aという)での合金鋼の乾式連続高速高切り込み切削加工試験(通常の切削速度および切り込みは250m/min.および2mm)、
被削材:JIS・S15Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:450m/min.、
切り込み:1.0mm、
送り:0.6mm/rev.、
切削時間:5分、
の条件(切削条件Bという)での炭素鋼の乾式断続高速高送り切削加工試験(通常の切削速度および送りは200m/min.および0.3mm/rev.)、さらに、
被削材:JIS・FC300の丸棒、
切削速度:500m/min.、
切り込み:4.5mm、
送り:0.3mm/rev.、
切削時間:5分、
の条件(切削条件Cという)での鋳鉄の乾式連続高速高切り込み切削加工試験(通常の切削速度および切り込みは250m/min.および2.5mm)を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表9に示した。
Next, for the above-mentioned coated chips 1-16 of the present invention and the conventional coated chips 1-16, this is screwed to the tip of the tool steel tool with a fixing jig,
Work material: JIS / SNCM220 round bar,
Cutting speed: 450 m / min. ,
Cutting depth: 5mm,
Feed: 0.3 mm / rev. ,
Cutting time: 5 minutes
Dry continuous high-speed high-cut cutting test of alloy steel under the following conditions (referred to as cutting condition A) (normal cutting speed and cutting are 250 m / min. And 2 mm),
Work material: JIS / S15C lengthwise equal length 4 vertical grooved round bars,
Cutting speed: 450 m / min. ,
Cutting depth: 1.0 mm,
Feed: 0.6 mm / rev. ,
Cutting time: 5 minutes
Of carbon steel under the following conditions (referred to as cutting condition B) (a normal cutting speed and feed are 200 m / min. And 0.3 mm / rev.),
Work material: JIS / FC300 round bar,
Cutting speed: 500 m / min. ,
Cutting depth: 4.5mm,
Feed: 0.3 mm / rev. ,
Cutting time: 5 minutes
The dry continuous high-speed, high-cut cutting test (normal cutting speed and cutting is 250 m / min. And 2.5 mm) of cast iron under the above conditions (referred to as cutting condition C). The surface wear width was measured. The measurement results are shown in Table 9.

Figure 2007168032
Figure 2007168032

Figure 2007168032
Figure 2007168032

Figure 2007168032
Figure 2007168032

Figure 2007168032
Figure 2007168032

Figure 2007168032
Figure 2007168032

Figure 2007168032
Figure 2007168032

Figure 2007168032
Figure 2007168032

Figure 2007168032
Figure 2007168032

Figure 2007168032
Figure 2007168032

この結果得られた本発明被覆チップ1〜16および従来被覆チップ1〜16を構成する硬質被覆層の上部層について、厚さ方向に沿ってAl、Cr、およびSiの含有量をオージェ分光分析装置を用いて測定し、この測定結果から各測定点におけるAl、Cr、およびSiの含有量を算出したところ、本発明被覆チップ1〜16の上部層では、Al最高含有点と、Cr最高含有点とがそれぞれ実質的に目標組成式を満足する組成および目標間隔と実質的に同じ間隔で交互に繰り返し存在し、かつAl最高含有点からCr最高含有点、前記Cr最高含有点からAl最高含有点へAlとCrの含有量が連続的に変化する成分濃度分布構造を有することが確認され、一方前記従来被覆チップ1〜16の硬質被覆層の上部層では、実質的に目標組成式を満足する組成を示したが、厚さ方向に沿って組成変化が見られなかった。
また、硬質被覆層の下部層を構成するTi化合物層の組成についても同様に測定したところ、いずれも目標組成と実質的に同じ組成を示し、さらに、硬質被覆層を構成する上部層および下部層の平均層厚も目標層厚と実質的に同じ値を示した。
For the upper layers of the hard coating layers constituting the coated chips 1 to 16 of the present invention and the conventional coated chips 1 to 16 obtained as a result, the contents of Al, Cr, and Si along the thickness direction are Auger spectroscopic analyzers The content of Al, Cr, and Si at each measurement point was calculated from the measurement results. In the upper layers of the present coated chips 1 to 16, the highest Al content point and the highest Cr content point Are alternately and repeatedly present at substantially the same interval as the composition and the target interval that substantially satisfy the target composition formula, and from the highest Al content point to the highest Cr content point, from the highest Cr content point to the highest Al content point It is confirmed that the Al and Cr contents have a component concentration distribution structure in which the content of Al and Cr changes continuously, while the upper layer of the hard coating layer of the conventional coated chips 1 to 16 is substantially the target composition formula Showed a composition satisfying, but the composition varies along the thickness direction was observed.
Further, when the composition of the Ti compound layer constituting the lower layer of the hard coating layer was measured in the same manner, both showed substantially the same composition as the target composition, and further, the upper layer and the lower layer constituting the hard coating layer The average layer thickness was substantially the same as the target layer thickness.

表7〜9に示される結果から、硬質被覆層の上部層が層厚方向に、相対的にすぐれた高温硬さと耐熱性を有するAl最高含有点と相対的にすぐれた高温強度を有するCr最高含有点とが交互に所定間隔をおいて繰り返し存在し、かつ前記Al最高含有点から前記Cr最高含有点、前記Cr最高含有点から前記Al最高含有点へAlおよびCr含有量が連続的に変化する成分濃度分布構造を有する本発明被覆チップ1〜16は、いずれも各種の鋼や鋳鉄などの切削加工を、高速で、かつ高い機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合にも、硬質被覆層がすぐれた耐チッピング性を発揮し、すぐれた耐摩耗性を長期に亘って発揮するのに対して、硬質被覆層の上部層が、層厚方向に沿って実質的に組成変化のない(Al−Cr)層からなる従来被覆チップ1〜16においては、特に前記硬質被覆層の上部層が、前記本発明被覆チップ1〜16の上部層の具備する高温硬さおよび耐熱性、さらに高温強度に比して相対的に劣るものであるために、チッピングが発生し易く、かつ摩耗進行の速いものであるために、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 7 to 9, the uppermost layer of the hard coating layer has a highest Cr content having a relatively high high temperature hardness and heat resistance, and a relatively high high temperature strength in the layer thickness direction. Al and Cr content continuously change from the highest Al content point to the highest Cr content point and from the highest Cr content point to the highest Al content point. The coated chips 1 to 16 of the present invention having a component concentration distribution structure are capable of cutting various steels and cast irons at high speeds and under heavy cutting conditions such as high cutting and high feed with high mechanical impact. When performed, the hard coating layer exhibits excellent chipping resistance and excellent wear resistance over a long period of time, whereas the upper layer of the hard coating layer extends along the layer thickness direction. Substantially no composition change (A In conventional coating chips 1-16 consisting -Cr) 2 O 3 layer, in particular an upper layer of the hard coating layer, high-temperature hardness and heat resistance comprising the upper layer of the present invention cover the chip 1 to 16, further Since it is relatively inferior to the high-temperature strength, chipping is likely to occur and wear progresses rapidly, so that it is clear that the service life is reached in a relatively short time.

上述のように、この発明の被覆工具は、通常の条件での切削加工は勿論のこと、特に各種の鋼や鋳鉄などの切削加工を、高速で、かつ高い機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合にも、すぐれた耐チッピング性を発揮し、長期に亘ってすぐれた耐摩耗性を示すものであるから、切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention is capable of cutting various steels and cast irons as well as cutting under normal conditions at high speeds and with high cutting and high mechanical impact. Even when performed under heavy cutting conditions such as feeding, it exhibits excellent chipping resistance and excellent wear resistance over a long period of time. It is possible to cope with the conversion sufficiently satisfactorily.

被覆工具を構成する硬質被覆層を形成するのに用いた化学蒸着装置を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows the chemical vapor deposition apparatus used in forming the hard coating layer which comprises a coating tool. 化学蒸着装置の構造部材である工具基体支持パレットを示し、(a)が概略斜視図、(b)が概略平面図である。The tool base support pallet which is a structural member of a chemical vapor deposition apparatus is shown, (a) is a schematic perspective view, (b) is a schematic plan view. この発明の被覆工具を構成する硬質被覆層の上部層の形成に用いられる反応ガス組成自動制御システムである。It is the reaction gas composition automatic control system used for formation of the upper layer of the hard coating layer which comprises the coating tool of this invention.

Claims (1)

炭化タングステン基超硬合金基体または炭窒化チタン基サーメット基体の表面に、
(A)下部層として、いずれも化学蒸着形成された、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2種以上で構成され、かつ0.5〜15μmの合計平均層厚を有するTi化合物層、
(B)上部層として、3〜15μmの平均層厚を有し、かつ、
(a)化学蒸着形成され、層厚方向にそって、Al最高含有点とCr最高含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Al最高含有点から前記Cr最高含有点、前記Cr最高含有点から前記Al最高含有点へAlおよびCr含有量が連続的に変化する成分濃度分布構造を有し、
(b)上記Al最高含有点におけるAlとCrとSiの相互含有割合を示す組成式:[Al1−(A+B)CrSi](ただし、原子比で、Aは0.02〜0.15、Bは0.01〜0.10を示す)、
上記Cr最高含有点におけるCrとAlとSiの相互含有割合を示す組成式:[Cr1−(C+D)AlSi](ただし、原子比で、Cは0.02〜0.15、Dは0.01〜0.10を示す)、
を満足し、
(c)さらに、隣り合う上記Al最高含有点とCr最高含有点の間隔が、0.1〜0.5μmであること、
以上(a)〜(c)を満足するAlとCrとSiの複合酸化物層からなる上部層、
上記の下部層と上部層で構成された硬質被覆層を化学蒸着形成してなる、高速重切削条件で硬質被覆層がすぐれた耐摩耗性および耐チッピング性を発揮する表面被覆切削工具。
On the surface of a tungsten carbide-based cemented carbide substrate or a titanium carbonitride-based cermet substrate,
(A) As a lower layer, it is composed of one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer, and carbonitride layer formed by chemical vapor deposition. And a Ti compound layer having a total average layer thickness of 0.5 to 15 μm,
(B) As an upper layer, it has an average layer thickness of 3 to 15 μm, and
(A) formed by chemical vapor deposition, the highest Al content point and the highest Cr content point are alternately present at predetermined intervals along the layer thickness direction, and the highest Cr content point from the highest Al content point, A component concentration distribution structure in which the Al and Cr contents continuously change from the highest Cr content point to the highest Al content point,
(B) Composition formula showing the mutual content ratio of Al, Cr, and Si at the Al highest content point: [Al 1- (A + B) Cr A Si B ] (where A is 0.02 to 0.00. 15, B represents 0.01 to 0.10),
Composition formula showing the mutual content ratio of Cr, Al and Si at the highest Cr content point: [Cr 1- (C + D) Al C Si D ] (where C is 0.02 to 0.15, D Represents 0.01 to 0.10),
Satisfied,
(C) Furthermore, the interval between the adjacent Al highest content point and the Cr highest content point adjacent to each other is 0.1 to 0.5 μm.
An upper layer composed of a composite oxide layer of Al, Cr and Si satisfying the above (a) to (c);
A surface-coated cutting tool that exhibits excellent wear resistance and chipping resistance under high-speed heavy cutting conditions, formed by chemical vapor deposition of a hard coating layer composed of the lower layer and the upper layer.
JP2005370001A 2005-12-22 2005-12-22 Surface-coated cutting tool with hard covered layer displaying excellent abrasion resistance and chipping resistance under high speed heavy cutting condition Withdrawn JP2007168032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005370001A JP2007168032A (en) 2005-12-22 2005-12-22 Surface-coated cutting tool with hard covered layer displaying excellent abrasion resistance and chipping resistance under high speed heavy cutting condition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005370001A JP2007168032A (en) 2005-12-22 2005-12-22 Surface-coated cutting tool with hard covered layer displaying excellent abrasion resistance and chipping resistance under high speed heavy cutting condition

Publications (1)

Publication Number Publication Date
JP2007168032A true JP2007168032A (en) 2007-07-05

Family

ID=38295260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005370001A Withdrawn JP2007168032A (en) 2005-12-22 2005-12-22 Surface-coated cutting tool with hard covered layer displaying excellent abrasion resistance and chipping resistance under high speed heavy cutting condition

Country Status (1)

Country Link
JP (1) JP2007168032A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009160692A (en) * 2008-01-08 2009-07-23 Hitachi Tool Engineering Ltd Coated tool
JP2009255206A (en) * 2008-04-14 2009-11-05 Hitachi Tool Engineering Ltd Coated tool
JP2011152627A (en) * 2010-01-28 2011-08-11 Mitsubishi Materials Corp Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance and wear resistance in high-speed heavy cutting
WO2014103507A1 (en) * 2012-12-28 2014-07-03 住友電工ハードメタル株式会社 Surface coated member, and manufacturing method for same
EP2989227B1 (en) * 2013-04-26 2018-06-27 Walter AG Tool having cvd coating
JP2019214796A (en) * 2017-11-16 2019-12-19 三菱日立ツール株式会社 Chemical vapor deposition apparatus

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009160692A (en) * 2008-01-08 2009-07-23 Hitachi Tool Engineering Ltd Coated tool
JP2009255206A (en) * 2008-04-14 2009-11-05 Hitachi Tool Engineering Ltd Coated tool
JP2011152627A (en) * 2010-01-28 2011-08-11 Mitsubishi Materials Corp Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance and wear resistance in high-speed heavy cutting
WO2014103507A1 (en) * 2012-12-28 2014-07-03 住友電工ハードメタル株式会社 Surface coated member, and manufacturing method for same
JP2014128848A (en) * 2012-12-28 2014-07-10 Sumitomo Electric Hardmetal Corp Surface coated member, and manufacturing method for the same
CN104884200A (en) * 2012-12-28 2015-09-02 住友电工硬质合金株式会社 Surface coated member, and manufacturing method for same
US9777367B2 (en) 2012-12-28 2017-10-03 Sumitomo Electric Hardmetal Corp. Surface coated member and method for manufacturing same
CN104884200B (en) * 2012-12-28 2019-08-16 住友电工硬质合金株式会社 Surface is coated component and its manufacturing method
EP2989227B1 (en) * 2013-04-26 2018-06-27 Walter AG Tool having cvd coating
JP2019214796A (en) * 2017-11-16 2019-12-19 三菱日立ツール株式会社 Chemical vapor deposition apparatus
EP3711883A4 (en) * 2017-11-16 2021-08-25 MOLDINO Tool Engineering, Ltd. Coated cutting tool, and manufacturing method and chemical vapor deposition device for same
US11541461B2 (en) 2017-11-16 2023-01-03 Moldino Tool Engineering, Ltd. Coated cutting tool, and method and system for manufacturing the same by chemical vapor deposition

Similar Documents

Publication Publication Date Title
JP2007168032A (en) Surface-coated cutting tool with hard covered layer displaying excellent abrasion resistance and chipping resistance under high speed heavy cutting condition
JP4330100B2 (en) Surface-coated cutting tip whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP3978779B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP4048364B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP3922141B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance and wear resistance under high-speed heavy cutting conditions.
JP4224782B2 (en) Surface-coated throw-away tip with excellent wear resistance and chipping resistance under high-speed heavy cutting conditions
JP3900521B2 (en) Surface-coated cemented carbide cutting tool with excellent chipping resistance under heavy cutting conditions
JP3900520B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance with hard coating layer under high-speed cutting conditions
JP2007075968A (en) Surface coated cemented carbide cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting
JP2007136580A (en) Surface-coated cutting tool having hard coated layer exhibiting wear resistance and chipping resistance on high-speed heavy cutting condition
JP3948020B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP3900517B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance with hard coating layer under high-speed cutting conditions
JP3922132B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance and wear resistance under high-speed heavy cutting conditions.
JP2007144555A (en) Surface coated cutting tool having hard coated layer which can show excellent chipping resistance in high speed intermittent cutting
JP3900523B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP4235904B2 (en) Surface-coated cutting tool with excellent wear resistance with a hard coating layer in high-speed cutting
JP4075052B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance under heavy cutting conditions.
JP3900526B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP2006346763A (en) Cutting tool made of surface coated cemented carbide having hard coating layer exhibiting excellent abrasion resistance and chipping resistance in high-speed heavy cutting condition
JP3948019B2 (en) Surface-coated cemented carbide cutting tool with excellent chipping resistance under heavy cutting conditions
JP3900516B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP3963136B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance and wear resistance under high-speed heavy cutting conditions.
JP3922128B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance and wear resistance under high-speed heavy cutting conditions.
JP3900527B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP3900518B2 (en) Surface-coated cemented carbide cutting tool with excellent chipping resistance under heavy cutting conditions

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090303