JP2007075968A - Surface coated cemented carbide cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting - Google Patents

Surface coated cemented carbide cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting Download PDF

Info

Publication number
JP2007075968A
JP2007075968A JP2005269380A JP2005269380A JP2007075968A JP 2007075968 A JP2007075968 A JP 2007075968A JP 2005269380 A JP2005269380 A JP 2005269380A JP 2005269380 A JP2005269380 A JP 2005269380A JP 2007075968 A JP2007075968 A JP 2007075968A
Authority
JP
Japan
Prior art keywords
layer
hard coating
thin
thickness
average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005269380A
Other languages
Japanese (ja)
Inventor
Makoto Nishida
真 西田
Hitoshi Kunugi
斉 功刀
Takeshi Ishii
剛 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2005269380A priority Critical patent/JP2007075968A/en
Publication of JP2007075968A publication Critical patent/JP2007075968A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface coated cemented carbide cutting tool having a hard coating layer exhibiting excellent wear resistance in high-speed cutting. <P>SOLUTION: The surface coated cemented carbide cutting tool is formed by vapor depositing a hard coating layer composed of an upper layer and a lower layer on the surface of a substrate composed of cemented carbide or cermet, wherein the lower layer is formed of a Ti compound layer having a total average layer thickness of 0.5 to 15 μm, and the upper layer is composed of an upper inner peripheral layer and an upper outer peripheral layer, the upper inner peripheral layer is formed of a composite oxide layer of Al and Cr satisfying a specified composition formula: (Al<SB>1-X</SB>Cr<SB>X</SB>)<SB>2</SB>O<SB>3</SB>, and (e) the upper outer peripheral layer is formed of an alternate multi layer having total average layer thickness of 2 to 10 μm formed by alternately laminating a thin layer A having an average layer thickness of 0.1 to 0.8 μm, and a thin layer B having the average layer thickness of 0.1 to 0.6 μm, the thin layer A is formed of aluminum oxide (Al<SB>2</SB>O<SB>3</SB>) layer, and the thin layer B is formed of the composite oxide layer of Al and Cr satisfying a specified composition formula: (Al<SB>1-X</SB>Cr<SB>X</SB>)<SB>2</SB>O<SB>3</SB>. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、硬質被覆層がすぐれた耐熱性・高温強度を備えるとともに、一段とすぐれた高温硬さを示し、したがって、各種の鋼や鋳鉄などの切削加工を、高速で行った場合にも、硬質被覆層が長期に亘ってすぐれた耐摩耗性を発揮する、炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された基体の表面に、化学蒸着により硬質被覆層を形成してなる表面被覆超硬切削工具(以下、被覆超硬工具という)に関するものである。   This invention has a hard coating layer with excellent heat resistance and high-temperature strength, and even better high-temperature hardness. Therefore, even when various types of steel and cast iron are cut at high speed, A surface coating in which a hard coating layer is formed by chemical vapor deposition on the surface of a substrate made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet, which exhibits excellent wear resistance over a long period of time. The present invention relates to a carbide cutting tool (hereinafter referred to as a coated carbide tool).

被覆超硬工具として、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットからなる基体(以下、これらを総称して超硬基体と云う)の表面に、
(a)いずれも化学蒸着形成されたTiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなり、かつ0.5〜15μmの全体平均層厚を有するTi化合物層からなる下部層、
(b)化学蒸着で形成された、0.5〜13μmの平均層厚を有し、AlとCrの相互含有割合を示す組成式:(Al1−XCr)(ただし、原子比で、Xは0.05〜0.35を示す)を満足するAlとCrの複合酸化物[以下、(Al,Cr)で示す]層からなる上部層、
上記の下部層と上部層で構成された硬質被覆層を形成してなる、被覆超硬工具が知られている。
As a coated carbide tool, a substrate made of tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet (hereinafter collectively referred to as a cemented carbide substrate). On the surface,
(A) All of these are Ti carbide (hereinafter referred to as TiC) layer, nitride (hereinafter also referred to as TiN) layer, carbonitride (hereinafter referred to as TiCN) layer, carbon oxide (hereinafter referred to as TiC) formed by chemical vapor deposition. And a Ti compound layer having an overall average layer thickness of 0.5 to 15 μm. Lower layer,
(B) Composition formula formed by chemical vapor deposition and having an average layer thickness of 0.5 to 13 μm and showing a mutual content ratio of Al and Cr: (Al 1-X Cr X ) (however, in atomic ratio, X represents 0.05 to 0.35) and an upper layer composed of a composite oxide of Al and Cr [hereinafter referred to as (Al, Cr) 2 O 3 ] layer;
A coated cemented carbide tool formed by forming a hard coating layer composed of the above lower layer and upper layer is known.

また、上記の従来被覆超硬工具の硬質被覆層を構成する上部層である(Al,Cr)層が、Alによる高温硬さおよび耐熱性と、Crによる高温強度を具備することから、かかる被覆超硬工具を各種の鋼や鋳鉄などの切削加工に用いた場合にすぐれた切削性能を発揮することも知られている。 In addition, the (Al, Cr) 2 O 3 layer, which is the upper layer constituting the hard coating layer of the conventional coated carbide tool, has high-temperature hardness and heat resistance due to Al, and high-temperature strength due to Cr. It is also known that such coated carbide tools exhibit excellent cutting performance when used for cutting various types of steel and cast iron.

さらに、上記の従来被覆超硬工具が、例えば図1に概略縦断面図で示される通り、中央部にステンレス鋼製の反応ガス吹き出し管が立設され、前記反応ガス吹き出し管には、図2(a)に概略斜視図で、同(b)に概略平面図で例示される黒鉛製の超硬基体支持パレットが串刺し積層嵌着され、かつこれらがステンレス鋼製のカバーを介してヒーターで加熱される構造を有する化学蒸着装置を用い、超硬基体を前記超硬基体支持パレットの底面に形成された多数の反応ガス通過穴位置に図示される通りに載置した状態で前記化学蒸着装置に装入し、ヒータで装置内を、例えば850〜1050℃の範囲内の所定の温度に加熱した後、まず、硬質被覆層の下部層として、例えば表3に示される形成条件でTi化合物層を形成し、ついで、 (a)反応ガス組成:容量%で(以下、反応ガスの%は容量%を示す)、
AlCl: 1.43〜2.09 %、
CrCl: 0.11〜0.77 %、
CO: 5〜6 %、
HCl: 2〜3 %、
2:残り、
(b)反応雰囲気温度: 980〜1050 ℃、
(c)反応雰囲気圧力: 10〜20 kPa、
の条件で、上記の(Al,Cr)層からなる上部層を形成することにより製造されることも知られている。
Further, in the above conventional coated carbide tool, for example, as shown in a schematic longitudinal sectional view in FIG. 1, a reaction gas blowing pipe made of stainless steel is erected at the center portion. (A) is a schematic perspective view, and (b) is a schematic plan view illustrating a carbide substrate support pallet made of graphite that is skewered and laminated, and these are heated by a heater through a stainless steel cover. The chemical vapor deposition apparatus having the structure described above is used, and the cemented carbide substrate is placed on the chemical vapor deposition apparatus in a state where the carbide substrate is placed as illustrated in a plurality of reaction gas passage hole positions formed on the bottom surface of the carbide substrate support pallet. After charging and heating the inside of the apparatus with a heater to a predetermined temperature within a range of 850 to 1050 ° C., for example, a Ti compound layer is first formed as a lower layer of the hard coating layer under the formation conditions shown in Table 3, for example. Forming, then (a) Reaction gas composition: In volume% (hereinafter,% of reaction gas indicates volume%)
AlCl 3 : 1.43 to 2.09%,
CrCl 2: 0.11~0.77%,
CO 2: 5~6%,
HCl: 2-3%,
H 2 : Remaining
(B) Reaction atmosphere temperature: 980-1050 ° C.,
(C) Reaction atmosphere pressure: 10 to 20 kPa,
It is also known that it is manufactured by forming an upper layer made of the above (Al, Cr) 2 O 3 layer under the above conditions.

また、一般に、上記の従来被覆超硬工具の硬質被覆層を構成するTi化合物層や(Al,Cr)層が粒状結晶組織を有し、さらに、前記Ti化合物層を構成するTiCN層を、層自身の強度向上を目的として、通常の化学蒸着装置にて、反応ガスとしてCHCNなどの有機炭窒化物を含む混合ガスを使用し、700〜950℃の中温温度域で化学蒸着することにより形成して縦長成長結晶組織をもつようにすることも知られている。
特開昭54−153758号公報 特開平6−8010号公報
In general, the Ti compound layer and the (Al, Cr) 2 O 3 layer constituting the hard coating layer of the above conventional coated carbide tool have a granular crystal structure, and further the TiCN layer constituting the Ti compound layer For the purpose of improving the strength of the layer itself, chemical vapor deposition is performed at a medium temperature range of 700 to 950 ° C. using a mixed gas containing an organic carbonitride such as CH 3 CN as a reaction gas in an ordinary chemical vapor deposition apparatus. It is also known to have a vertically elongated crystal structure by forming the same.
JP 54-153758 A Japanese Patent Laid-Open No. 6-8010


近年の切削加工装置のFA化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は、通常の切削条件に加えて、より高速条件化での切削加工が要求される傾向にあるが、上記の従来被覆超硬工具においては、各種の鋼や鋳鉄を通常条件下で切削加工した場合に問題は生じないが、特にこれを高い発熱を伴う高速切削条件で用いた場合には、硬質被覆層の高温硬さが不十分となり、摩耗が急速に進行するようになり、比較的短時間で使用寿命に至るのが現状である。

In recent years, FA has been remarkable for cutting devices, but on the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for cutting, and accordingly, cutting is performed at higher speed conditions in addition to normal cutting conditions. However, in the above conventional coated carbide tools, there is no problem when various steels and cast irons are machined under normal conditions. When used in high-speed cutting conditions with a high temperature, the high temperature hardness of the hard coating layer becomes insufficient, the wear proceeds rapidly, and the service life is reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、特に各種の鋼や鋳鉄等の高速切削加工でも、硬質被覆層がすぐれた耐摩耗性を発揮する被覆超硬工具を開発すべく、上記従来の被覆超硬工具を構成する硬質被覆層に着目し、研究を行った結果、

(1)下部層がTi化合物層、上部層が(Al,Cr)層からなる上記従来の硬質被覆層上に、例えば、
(a)反応ガス組成(容量%):
AlCl: 2.2 %、
CO: 5.5 %、
HCl: 2.2 %、

2: 残り、

(b)反応雰囲気温度:1000 ℃、
(c)反応雰囲気圧力: 7 kPa、

の条件で化学蒸着を行い、従来の硬質被覆層上に、0.1〜0.8μmの平均層厚を有するアルミニウム酸化物(以下、Alで示す)層の薄層を形成すると、該化学蒸着により形成された薄層のAl層は、非常に高い高温硬さを有すること。
(2)上記(1)で蒸着形成した平均層厚0.1〜0.8μmの薄層のAl層(以下、「薄層A」という)の上に、従来の硬質被覆層の上部層を構成する層である(Al,Cr)層を、
例えば、
(a)反応ガス組成(容量%):

AlCl: 1.8 %、

CrCl: 0.5 %、
CO: 5.5 %、
HCl: 2.2 %、
2: 残り、
(b)反応雰囲気温度: 1000 ℃、
(c)反応雰囲気圧力: 10 kPa、

の条件で化学蒸着し、0.1〜0.6μmの平均層厚を有する(Al,Cr)層の薄層(以下、「薄層B」という)を形成し、さらに、この(Al,Cr)層からなる薄層Bと、前記(1)の条件で蒸着形成したAl層からなる薄層Aとを、交互に繰り返し積層して、その合計平均層厚が2〜10μmとなるように薄層Aと薄層Bとの交互積層構造からなる交互多重積層を形成すると、該交互多重積層は、(Al,Cr)層からなる薄層Bの有するすぐれた耐熱性、高温強度および所定のすぐれた高温硬さを備えると同時に、薄膜Aの有するより一段と優れた高い高温硬さをも具備するようになること、
(3)前記交互多重積層は、薄層Bの有するすぐれた耐熱性、高温強度および所定のすぐれた高温硬さを損なうことなく、薄層Aの有するより一段と優れた高い高温硬さをも備えることから、鋼、鋳鉄等の高速切削加工における高い熱発生が生じた場合であっても、前記交互多重積層のすぐれた耐熱性、高温強度、さらには、より一段と優れた高い高温硬さによって、すぐれた耐摩耗性を示すこと。
以上(1)〜(3)に示される研究結果を得たのである。

この発明は、上記の研究結果に基づいてなされたものであって、基体の表面に、硬質被覆層を形成してなる被覆超硬工具(表面被覆超硬切削工具)において、
(a)前記硬質被覆層は、基体の表面を被覆する下部層と、該下部層の表面を被覆する上部層からなり、
(b)上記下部層は、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2種以上で構成され、かつ0.5〜15μmの合計平均層厚を有するTi化合物層からなり、
(c)上記下部層の表面を被覆する上部層は、上部内周層と、該上部内周層を被覆する上部外周層とからなり、
(d)上記上部内周層は、

組成式:(Al1−XCr(ただし、原子比で、Xは0.05〜0.35を示す)を満足し、かつ、0.5〜13μmの平均層厚を有するAlとCrの複合酸化物((Al,Cr))層からなり、

(e)上記上部内周層を被覆する上部外周層は、0.1〜0.8μmの平均層厚を有する薄層Aと、0.1〜0.6μmの平均層厚を有する薄層Bとを交互に積層して形成された、2〜10μmの合計平均層厚を有する交互多重積層からなり、
(f)上記薄層Aは、アルミニウム酸化物(Al)層からなり、
(g)上記薄層Bは、

組成式:(Al1−XCr(ただし、原子比で、Xは0.05〜0.35を示す)を満足するAlとCrの複合酸化物((Al,Cr))層からなり、

前記硬質被覆層を、炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された基体の表面に化学蒸着により形成してなる、硬質被覆層が高速切削加工ですぐれた耐摩耗性を発揮する被覆超硬工具(表面被覆超硬切削工具)に特徴を有するものである。
In view of the above, the present inventors have developed the above-mentioned coated carbide tool that exhibits excellent wear resistance with a hard coating layer, especially in high-speed cutting of various steels and cast irons. As a result of conducting research by focusing on the hard coating layer that constitutes conventional coated carbide tools,

(1) On the above conventional hard coating layer in which the lower layer is a Ti compound layer and the upper layer is an (Al, Cr) 2 O 3 layer, for example,
(A) Reaction gas composition (volume%):
AlCl 3 : 2.2%,
CO 2 : 5.5%,
HCl: 2.2%,

H 2 : Remaining

(B) Reaction atmosphere temperature: 1000 ° C.
(C) Reaction atmosphere pressure: 7 kPa,

When chemical vapor deposition is performed under the above conditions, a thin layer of an aluminum oxide (hereinafter referred to as Al 2 O 3 ) layer having an average layer thickness of 0.1 to 0.8 μm is formed on a conventional hard coating layer. The thin Al 2 O 3 layer formed by chemical vapor deposition has a very high high temperature hardness.
(2) On the thin Al 2 O 3 layer (hereinafter referred to as “thin layer A”) having an average layer thickness of 0.1 to 0.8 μm formed by vapor deposition in (1) above, a conventional hard coating layer (Al, Cr) 2 O 3 layer that is a layer constituting the upper layer,
For example,
(A) Reaction gas composition (volume%):

AlCl 3 : 1.8%,

CrCl 2 : 0.5%,
CO 2 : 5.5%,
HCl: 2.2%,
H 2 : Remaining
(B) Reaction atmosphere temperature: 1000 ° C.,
(C) Reaction atmosphere pressure: 10 kPa,

Chemical vapor deposition was performed to form a thin (Al, Cr) 2 O 3 layer (hereinafter referred to as “thin layer B”) having an average layer thickness of 0.1 to 0.6 μm. A thin layer B composed of Al, Cr) 2 O 3 layers and a thin layer A composed of Al 2 O 3 layers formed by vapor deposition under the conditions of (1) above are alternately and repeatedly laminated, and the total average layer thickness When the alternate multiple stack composed of the alternate stack structure of the thin layers A and B is formed so that the thickness becomes 2 to 10 μm, the alternate multiple stack is formed of the thin layer B composed of (Al, Cr) 2 O 3 layers. Having excellent heat resistance, high temperature strength and predetermined excellent high temperature hardness, and at the same time, having higher high temperature hardness superior to that of the thin film A,
(3) The alternating multi-layered structure also has a higher high temperature hardness that is superior to that of the thin layer A without impairing the excellent heat resistance, high temperature strength and predetermined excellent high temperature hardness of the thin layer B. Therefore, even when high heat generation in high-speed cutting processing such as steel, cast iron, etc., due to the excellent heat resistance, high-temperature strength, and even more excellent high-temperature hardness of the alternating multiple lamination, Exhibit excellent wear resistance.
The research results shown in (1) to (3) above were obtained.

This invention was made based on the above research results, and in a coated carbide tool (surface coated carbide cutting tool) formed by forming a hard coating layer on the surface of a substrate,
(A) The hard coating layer comprises a lower layer covering the surface of the substrate and an upper layer covering the surface of the lower layer,
(B) The lower layer is composed of one or more of a Ti carbide layer, a nitride layer, a carbonitride layer, a carbonate layer, and a carbonitride layer, and 0.5 to Consisting of a Ti compound layer having a total average layer thickness of 15 μm,
(C) The upper layer covering the surface of the lower layer is composed of an upper inner peripheral layer and an upper outer peripheral layer covering the upper inner peripheral layer,
(D) The upper inner circumferential layer is

Composition formula: (Al 1-X Cr X ) 2 O 3 (wherein X is 0.05 to 0.35 in atomic ratio) and has an average layer thickness of 0.5 to 13 μm It consists of a complex oxide ((Al, Cr) 2 O 3 ) layer of Al and Cr,

(E) The upper outer peripheral layer covering the upper inner peripheral layer includes a thin layer A having an average layer thickness of 0.1 to 0.8 μm and a thin layer B having an average layer thickness of 0.1 to 0.6 μm. Formed by alternately laminating and having an alternating multiple lamination having a total average layer thickness of 2 to 10 μm,
(F) The thin layer A is composed of an aluminum oxide (Al 2 O 3 ) layer,
(G) The thin layer B is

A composite oxide of (Al, Cr) 2 that satisfies the composition formula: (Al 1-X Cr X ) 2 O 3 (wherein X represents 0.05 to 0.35 in atomic ratio). O 3 ) layer,

The hard coating layer is formed by chemical vapor deposition on the surface of a substrate composed of a tungsten carbide-based cemented carbide or titanium carbonitride-based cermet, and the hard coating layer exhibits excellent wear resistance by high-speed cutting. It is characterized by a coated carbide tool (surface coated carbide cutting tool).

つぎに、この発明の被覆超硬工具において、これを構成する硬質被覆層の構成を上記の通りに限定した理由を説明する。
(1)下部層(Ti化合物層)
Ti化合物層は、基本的には上部層の上部内周層を構成する(Al,Cr)層の下部層として存在し、自身の具備するすぐれた高温強度によって硬質被覆層の高温強度向上に寄与するほか、基体と上記上部内周層((Al,Cr)層)のいずれにも強固に密着し、よって硬質被覆層の超硬基体に対する密着性を向上させる作用を有するが、その合計平均層厚が0.5μm未満では、前記作用を十分に発揮させることができず、一方その合計平均層厚が15μmを越えると、切削時の発生熱によって偏摩耗の原因となる熱塑性変形を起し易くなることから、その合計平均層厚を0.5〜15μmと定めた。

(2)上部内周層((Al,Cr)層)
上記した通り上部内周層を構成する(Al,Cr)層(従来硬質被覆層における上部層に相当)におけるAl成分は高温硬さおよび耐熱性、同Cr成分は高温強度を向上させるが、AlとCr成分の相互含有割合を示す組成式:(Al1−XCr)で、X値が原子比で(以下同じ)0.35を越えると、相対的にAlの含有割合が低くなることから、層自体の高温硬さおよび耐熱性の低下は避けられず、これが摩耗促進の原因となり、一方、X値が0.05未満になると、層自体の高温強度の低下は避けられず、この結果チッピングなどが発生し易くなることから、X値を0.05〜0.35と定めた。
Next, in the coated carbide tool of the present invention, the reason why the structure of the hard coating layer constituting the tool is limited as described above will be described.
(1) Lower layer (Ti compound layer)
The Ti compound layer basically exists as the lower layer of the (Al, Cr) 2 O 3 layer that constitutes the upper inner peripheral layer of the upper layer, and the high temperature strength of the hard coating layer by the excellent high temperature strength possessed by itself. In addition to contributing to the improvement, the substrate and the upper inner peripheral layer ((Al, Cr) 2 O 3 layer) are firmly adhered to each other, thereby improving the adhesion of the hard coating layer to the carbide substrate. However, if the total average layer thickness is less than 0.5 μm, the above-mentioned effect cannot be sufficiently exerted. On the other hand, if the total average layer thickness exceeds 15 μm, it causes uneven wear due to heat generated during cutting. Since it becomes easy to cause thermoplastic deformation, the total average layer thickness was determined to be 0.5 to 15 μm.

(2) Upper inner peripheral layer ((Al, Cr) 2 O 3 layer)
As described above, the Al component in the (Al, Cr) 2 O 3 layer (corresponding to the upper layer in the conventional hard coating layer) constituting the upper inner peripheral layer improves the high temperature hardness and heat resistance, and the Cr component improves the high temperature strength. Is a composition formula showing the mutual content ratio of Al and Cr components: (Al 1-X Cr X ), and when the X value exceeds 0.35 in terms of atomic ratio (hereinafter the same), the Al content ratio is relatively The lowering of the high-temperature hardness and heat resistance of the layer itself is unavoidable because it becomes lower, which causes wear promotion. On the other hand, when the X value is less than 0.05, the lowering of the high-temperature strength of the layer itself is avoided. As a result, chipping and the like are likely to occur, so the X value was set to 0.05 to 0.35.

また、その平均層厚が0.5μm未満では、所望の耐摩耗性を長期に亘って確保することができず、一方その平均層厚が13μmを越えると、チッピングが発生し易くなることから、その平均層厚を0.5〜13μmと定めた。

(3)上部外周層(薄層Aと薄層Bとからなる交互多重積層)

(Al,Cr)層からなる上部内周層は、高温硬さ、耐熱性、高温強度にすぐれるものの、鋼、鋳鉄等の高熱を発生する高速切削加工においては、摩耗の発生を防止するには十分に満足できるものではないことから、上部内周層上に、高い高温硬さを有するAl層からなる薄層Aと、(Al,Cr)層からなる薄層Bとの交互多重積層を設けることにより、上部内周層の備える耐熱性、高温強度および所定の高温硬さを特段低下させることなく、高温硬さのより一層の改善を図った。つまり、薄層Aと薄層Bの交互多重積層からなる上部外周層は、鋼、鋳鉄等の高速切削加工において、上部層が(Al,Cr)層のみからなっていた従来の硬質被覆層に比して、耐熱性、高温強度の低下を招くことなく高温硬さをより一層高めることによって、耐摩耗性の改善を図った。
Further, if the average layer thickness is less than 0.5 μm, the desired wear resistance cannot be ensured over a long period of time, while if the average layer thickness exceeds 13 μm, chipping tends to occur. The average layer thickness was set to 0.5 to 13 μm.

(3) Upper outer peripheral layer (alternate multiple lamination consisting of thin layer A and thin layer B)

The upper inner circumferential layer made of (Al, Cr) 2 O 3 layer is excellent in high temperature hardness, heat resistance, and high temperature strength. However, in high-speed cutting that generates high heat such as steel and cast iron, it does not generate wear. Since it is not satisfactory enough to prevent, it consists of a thin layer A composed of an Al 2 O 3 layer having a high high temperature hardness and an (Al, Cr) 2 O 3 layer on the upper inner peripheral layer. By providing the alternate multiple lamination with the thin layer B, the high temperature hardness was further improved without particularly reducing the heat resistance, high temperature strength and predetermined high temperature hardness of the upper inner peripheral layer. That is, the upper outer peripheral layer composed of the alternating multi-layers of the thin layer A and the thin layer B is a conventional hard layer in which the upper layer is composed of only the (Al, Cr) 2 O 3 layer in high-speed cutting such as steel and cast iron. As compared with the coating layer, the wear resistance was improved by further increasing the high temperature hardness without causing a decrease in heat resistance and high temperature strength.

ただし、薄層Aと薄層Bの交互多重積層(上部外周層)が、所定の耐熱性、高温強度とともに一段と優れた高温硬さを、その結果として、優れた耐摩耗性を発揮するためには、薄層Aは、少なくとも0.1μmの厚さが必要とされ、これ未満の厚さでは高速切削加工において必要とされる耐摩耗性を発揮することはできず、また、その厚みは0.8μm以下であれば、上部外周層の耐熱性、高温強度の低下を招くことなく十分な高温硬さを付与することができることから、薄層Aの平均層厚を0.1〜0.8μmに定めた。また、薄層Bの平均層厚が0.1μm未満の場合には、上部外周層に最小限必要とされる耐熱性、高温強度を維持することができず、一方、交互積層する薄層Bの平均層厚が0.6μmを超えるような場合には、上部外周層の全体層厚に占める薄層Bの割合が多いため、薄層Aによる高温硬さの改善効果が十分に期待できなくなることから、薄層Bの平均層厚を0.1〜0.6μmに定めた。

そして、薄層Aと薄層Bを、それぞれ前記所定平均層厚の薄層として交互に積層することにより、薄層Aと薄層Bの交互多重積層からなる上部外周層は、すぐれた耐熱性、高温強度を有し、かつ、より一段と優れた高温硬さを具備したあたかも一つの層であるかのように機能する。ただ、上部外周層(交互多重積層)の合計平均層厚が2μm未満では、自身のもつすぐれた耐熱性、高温強度および一段と優れた高温硬さを硬質被覆層に長期に亘って付与できず、工具寿命短命の原因となり、一方その合計平均層厚が10μmを越えると、チッピングが発生し易くなることから、その合計平均層厚を2〜10μmと定めた。
However, in order for the alternating multiple lamination (upper outer peripheral layer) of the thin layer A and the thin layer B to exhibit excellent wear resistance as a result of higher heat hardness with predetermined heat resistance and high temperature strength. The thin layer A is required to have a thickness of at least 0.1 μm, and if it is less than this, it cannot exhibit the wear resistance required in high-speed cutting, and the thickness is 0. If it is .8 μm or less, the heat resistance of the upper outer peripheral layer and sufficient high temperature hardness can be imparted without causing a decrease in the high temperature strength, so the average layer thickness of the thin layer A is 0.1 to 0.8 μm. Determined. Further, when the average layer thickness of the thin layer B is less than 0.1 μm, the heat resistance and high temperature strength required for the upper outer peripheral layer cannot be maintained at the minimum, while the thin layers B are alternately laminated. When the average layer thickness exceeds 0.6 μm, the ratio of the thin layer B to the total thickness of the upper outer peripheral layer is large, so that the effect of improving the high-temperature hardness by the thin layer A cannot be sufficiently expected. Therefore, the average layer thickness of the thin layer B was set to 0.1 to 0.6 μm.

And by laminating the thin layer A and the thin layer B alternately as a thin layer having the predetermined average layer thickness, the upper outer peripheral layer composed of the alternating multiple lamination of the thin layer A and the thin layer B has excellent heat resistance. It functions as if it is a single layer having high-temperature strength and even more excellent high-temperature hardness. However, if the total average layer thickness of the upper outer peripheral layer (alternate multiple lamination) is less than 2 μm, it cannot impart its own excellent heat resistance, high temperature strength and much higher temperature hardness to the hard coating layer over a long period of time, The tool life is shortened, and on the other hand, if the total average layer thickness exceeds 10 μm, chipping tends to occur. Therefore, the total average layer thickness is set to 2 to 10 μm.

この発明の被覆超硬工具は、硬質被覆層を、基体を覆う下部層、該下部層を覆う上部内周層、該上部内周層を覆う上部外周層で構成し、かつ、該上部外周層を薄層A(Al層)と薄層B((Al,Cr)層)との交互多重積層として構成することにより、硬質被覆層の下部層(Ti化合物層)および上部内周層((Al,Cr)層)の具備する高温硬さ、耐熱性、高温強度を何ら損なうことなくこれを維持したままで、硬質被覆層がさらに一段とすぐれた高温硬さをも保持することになるので、各種の鋼、鋳鉄等の通常条件の切削加工に用いることができるばかりか、特に、鋼、鋳鉄等の高速切削加工においても、硬質被覆層が長期に亘ってすぐれた耐摩耗性を発揮するのである。 In the coated carbide tool of the present invention, the hard coating layer is composed of a lower layer covering the base, an upper inner peripheral layer covering the lower layer, an upper outer peripheral layer covering the upper inner peripheral layer, and the upper outer peripheral layer. Is formed as an alternating multiple lamination of thin layer A (Al 2 O 3 layer) and thin layer B ((Al, Cr) 2 O 3 layer), thereby forming a lower layer (Ti compound layer) and an upper portion of the hard coating layer While maintaining the high temperature hardness, heat resistance, and high temperature strength of the inner peripheral layer ((Al, Cr) 2 O 3 layer) without any loss, the hard coating layer has an even higher temperature hardness. In addition to being able to be used for cutting under normal conditions such as various steels and cast iron, the hard coating layer is excellent over a long period of time, especially in high-speed cutting of steel and cast iron. It exhibits high wear resistance.

つぎに、この発明の被覆超硬工具を実施例により具体的に説明する。   Next, the coated carbide tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、VC粉末、TaC粉末、NbC粉末、Cr3 2 粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の超硬基体A1〜A10を形成した。 As raw material powders, WC powder, TiC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, and Co powder, all having an average particle diameter of 1 to 3 μm, were prepared. And then wet-mixed with a ball mill for 72 hours, dried, and press-molded into a green compact at a pressure of 100 MPa. The green compact was vacuumed at 6 Pa at a temperature of 1400 ° C. for 1 hour. Sintered under the holding conditions, and after sintering, the cutting edge portion was subjected to honing of R: 0.07, and the carbide bases A1 to A10 made of WC-base cemented carbide having ISO standard CNMG120408 chip shape Formed.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比で、TiC/TiN=50/50)粉末、Mo2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったTiCN系サーメット製の超硬基体B1〜B6を形成した。

上記の超硬基体A1〜A10およびB1〜B6のそれぞれを、アセトン中で超音波洗浄し、乾燥した後、図1に示される化学蒸着装置内に、第2図に示される超硬基体支持パレットの位置決め穴に載置した状態で装入し、まず、表3(表3中のl−TiCNは特開平6−8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)に示される通常の条件にて、表6に示される組み合わせおよび目標平均層厚のTi化合物層を硬質被覆層の下部層として蒸着形成した。
Further, as raw material powders, TiCN (mass ratio, TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC, all having an average particle diameter of 0.5 to 2 μm. Prepare powder, Co powder, and Ni powder, mix these raw material powders into the composition shown in Table 2, wet mix for 24 hours with a ball mill, dry, and press-mold into green compact at 100 MPa pressure The green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour. After sintering, the cutting edge portion was subjected to a honing process of R: 0.07 and ISO standard TiCN-based cermet carbide substrates B1 to B6 having a chip shape of CNMG120408 were formed.

Each of the above-mentioned carbide substrates A1 to A10 and B1 to B6 is ultrasonically cleaned in acetone and dried, and then placed in the chemical vapor deposition apparatus shown in FIG. 1 and the carbide substrate support pallet shown in FIG. First, Table 3 (l-TiCN in Table 3 indicates the conditions for forming a TiCN layer having a vertically grown crystal structure described in JP-A-6-8010). In the normal conditions shown in Table 6 above, the combinations shown in Table 6 and the Ti compound layer with the target average layer thickness are applied to the hard coating layer. Vapor deposition was formed as the lower layer.

つぎに、表4に示される条件で、かつ同じく表6に示される目標平均層厚の(Al,Cr)層を硬質被覆層の上部内周層として蒸着形成した。

その後、表5に示される条件で、かつ同じく表6に示される目標平均層厚のAl層を、硬質被覆層の上部外周層の薄層Aとして蒸着形成し、ついで、表4に示される条件で、かつ同じく表6に示される目標平均層厚の(Al,Cr)層を、硬質被覆層の上部外周層の薄層Bとして蒸着形成した。薄層Aと薄層Bの蒸着形成は、上部外周層の目標合計平均層厚に達するまで、交互に繰り返し行い、本発明表面被覆超硬切削工具である本発明表面被覆超硬スローアウエイチップ(以下、本発明被覆超硬チップと云う)1〜16をそれぞれ製造した。
Next, an (Al, Cr) 2 O 3 layer having the target average layer thickness shown in Table 6 under the conditions shown in Table 4 was formed by vapor deposition as the upper inner peripheral layer of the hard coating layer.

Thereafter, an Al 2 O 3 layer having the target average layer thickness shown in Table 6 under the conditions shown in Table 5 was formed by vapor deposition as a thin layer A of the upper outer peripheral layer of the hard coating layer. (Al, Cr) 2 O 3 layer having the target average layer thickness shown in Table 6 under the conditions shown was deposited as a thin layer B of the upper outer peripheral layer of the hard coating layer. The vapor deposition of the thin layer A and the thin layer B is alternately repeated until the target total average layer thickness of the upper outer peripheral layer is reached, and the surface-coated carbide throwaway tip of the present invention which is the surface-coated carbide cutting tool of the present invention ( Hereinafter, the coated carbide chips of the present invention were produced.

また、比較の目的で、これら超硬基体A1〜A10およびB1〜B6を、アセトン中で超音波洗浄し、乾燥した後、同じくそれぞれ図1,2に示される通常の化学蒸着装置に装入し、表7に示されるTi化合物層を硬質被覆層の下部層として蒸着形成した(なお、表7に示される従来被覆超硬工具1〜16の下部層(Ti化合物層)は、本発明被覆超硬工具1〜16のそれぞれと同じにしてあるので、下部層の具体的な形成条件、目標平均層厚は、表3、表6に示されているとおりである)。

次に、表4に示される条件で、かつ同じく表7に示される目標平均層厚の(Al,Cr)層を硬質被覆層の上部層として下部層(Ti化合物層)の表面に蒸着形成し、従来表面被覆超硬切削工具としての従来表面被覆超硬スローアウエイチップ(以下、従来被覆超硬チップと云う)1〜16をそれぞれ製造した。

つぎに、上記の各種の被覆超硬チップを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆超硬チップ1〜16および従来被覆超硬チップ1〜16について、
被削材: JIS・S35Cの丸棒、
切削速度: 550 m/min.、
切り込み: 1.5 mm、
送り: 0.3 mm/rev.、
切削時間: 5 分、
の条件(切削条件Aという)での炭素鋼の乾式連続高速切削加工試験(通常の切削速度は250m/min.)、
被削材: JIS・SCM415の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 500 m/min.、
切り込み: 2.0 mm、
送り: 0.3 mm/rev.、
切削時間: 5 分、
の条件(切削条件Bという)での合金鋼の乾式断続高速切削加工試験(通常の切削速度は250m/min.)、
被削材: JIS・FC300の丸棒、
切削速度: 600 m/min.、
切り込み: 2.0 mm、
送り: 2.5 mm/rev.、
切削時間: 5 分、

の条件(切削条件Cという)での鋳鉄の乾式連続高速切削加工試験(通常の切削速度は300m/min.)を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表8に示した。
For comparison purposes, these carbide substrates A1 to A10 and B1 to B6 were ultrasonically cleaned in acetone and dried, and then charged into the normal chemical vapor deposition apparatus shown in FIGS. The Ti compound layer shown in Table 7 was vapor-deposited as the lower layer of the hard coating layer (Note that the lower layer (Ti compound layer) of the conventional coated carbide tools 1 to 16 shown in Table 7 was coated with the present invention. Since it is the same as each of the hard tools 1-16, the specific formation conditions of the lower layer and the target average layer thickness are as shown in Tables 3 and 6.

Next, the (Al, Cr) 2 O 3 layer having the target average layer thickness shown in Table 7 under the conditions shown in Table 4 is used as the upper layer of the hard coating layer on the surface of the lower layer (Ti compound layer). The conventional surface-coated carbide throwaway tips (hereinafter referred to as conventional coated carbide tips) 1 to 16 as conventional surface-coated carbide cutting tools were produced by vapor deposition.

Next, the coated carbide chips 1 to 16 of the present invention and the conventional coated carbide chip 1 in the state in which each of the various coated carbide chips is screwed to the tip of the tool steel tool with a fixing jig. About ~ 16
Work material: JIS / S35C round bar,
Cutting speed: 550 m / min. ,
Cutting depth: 1.5 mm,
Feed: 0.3 mm / rev. ,
Cutting time: 5 minutes,
Dry continuous high-speed cutting test of carbon steel under the conditions (referred to as cutting condition A) (normal cutting speed is 250 m / min.),
Work material: JIS · SCM415 lengthwise equidistant 4 vertical grooved round bar,
Cutting speed: 500 m / min. ,
Cutting depth: 2.0 mm,
Feed: 0.3 mm / rev. ,
Cutting time: 5 minutes,
Dry interrupted high-speed cutting test of alloy steel under the conditions (referred to as cutting condition B) (normal cutting speed is 250 m / min.),
Work material: JIS / FC300 round bar,
Cutting speed: 600 m / min. ,
Cutting depth: 2.0 mm,
Feed: 2.5 mm / rev. ,
Cutting time: 5 minutes,

The dry continuous high-speed cutting test (normal cutting speed is 300 m / min.) Of cast iron under the above conditions (referred to as cutting condition C) was performed, and the flank wear width of the cutting edge was measured in any cutting test. The measurement results are shown in Table 8.

Figure 2007075968
Figure 2007075968

Figure 2007075968
Figure 2007075968

Figure 2007075968
Figure 2007075968

Figure 2007075968
Figure 2007075968

Figure 2007075968
Figure 2007075968

Figure 2007075968
Figure 2007075968

Figure 2007075968
Figure 2007075968

Figure 2007075968
Figure 2007075968

この結果得られた本発明被覆超硬チップ1〜16および従来被覆超硬チップ1〜16の硬質被覆層を構成する各層について、その組成を、オージェ分光分析装置を用いて測定したところ、いずれのTi化合物層、(Al,Cr)層も目標組成と実質的に同じ組成を示し、各層の層厚も目標平均層厚と実質的に同じ値を示した。さらに、本発明被覆超硬チップ1〜16の硬質被覆層の上部外周層の薄層Aを構成するAl層についても、目標平均層厚と実質的に同じ値を示すAl層が形成されていることが確認された。 About each layer which comprises the hard coating layer of this invention coated carbide | carbonized_material chip | tip 1-16 obtained as a result of this and the conventional coated carbide | carbonized_material chip | tip 1-16, when the composition was measured using the Auger spectroscopic analyzer, The Ti compound layer and the (Al, Cr) 2 O 3 layer also showed substantially the same composition as the target composition, and the layer thickness of each layer also showed substantially the same value as the target average layer thickness. Further, the Al 2 O 3 layer constituting the thin layer A of the upper outer peripheral layer of the hard coating layer of the coated carbide chips 1 to 16 of the present invention also has an Al 2 O 3 value substantially the same as the target average layer thickness. It was confirmed that a layer was formed.

表8に示される結果から、硬質被覆層の上部層が、上部内周層((Al,Cr)層)と、薄層A(Al層)及び薄層B((Al,Cr)層)の交互多重積層からなる上部外周層とで構成されている本発明被覆超硬チップ1〜16は、いずれも鋼、鋳鉄などの切削加工を、高い発熱の生じる高速切削条件で行なった場合にも、硬質被覆層がすぐれた耐摩耗性を長期に亘って発揮するのに対して、硬質被覆層の上部層が、(Al,Cr)層のみからなる従来被覆超硬チップ1〜16においては、特に前記上部層の高温硬さ不足が原因して、チッピングが発生し易く、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Table 8, the upper layer of the hard coating layer consists of an upper inner peripheral layer ((Al, Cr) 2 O 3 layer), a thin layer A (Al 2 O 3 layer), and a thin layer B ((Al , Cr) 2 O 3 layer) The coated outer cemented carbide tips 1 to 16 of the present invention, which are composed of alternating multiple laminated layers, are each made of a cutting process such as steel and cast iron at high speed that generates high heat. Even when performed under cutting conditions, the hard coating layer exhibits excellent wear resistance over a long period of time, whereas the upper layer of the hard coating layer consists only of (Al, Cr) 2 O 3 layers. In the conventional coated carbide chips 1 to 16, it is apparent that chipping is likely to occur due to the lack of high-temperature hardness of the upper layer, and the service life is reached in a relatively short time.

上述のように、この発明の被覆超硬工具は、通常の条件での切削加工は勿論のこと、特に鋼、鋳鉄などを、高速切削条件で切削加工を行なった場合にも、すぐれた耐摩耗性を長期に亘って示すものであるから、切削装置のFA化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated carbide tool of the present invention has excellent wear resistance not only when cutting under normal conditions, but also when cutting steel, cast iron, etc. under high-speed cutting conditions. Therefore, it is possible to sufficiently satisfactorily cope with the FA of the cutting device, the labor saving and energy saving of the cutting work, and the cost reduction.

被覆超硬工具を構成する硬質被覆層を形成するのに用いた化学蒸着装置を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows the chemical vapor deposition apparatus used in forming the hard coating layer which comprises a coated carbide tool. 化学蒸着装置の構造部材である超硬基体支持パレットを示し、(a)が概略斜視図、(b)が概略平面図である。The cemented carbide substrate support pallet which is a structural member of a chemical vapor deposition apparatus is shown, (a) is a schematic perspective view, (b) is a schematic plan view.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された基体の表面に、硬質被覆層を形成してなる表面被覆超硬切削工具において、
(a)前記硬質被覆層は、基体の表面を被覆する下部層と、該下部層の表面を被覆する上部層からなり、
(b)上記下部層は、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2種以上で構成され、かつ0.5〜15μmの合計平均層厚を有するTi化合物層からなり、
(c)上記下部層の表面を被覆する上部層は、上部内周層と、該上部内周層を被覆する上部外周層とからなり、
(d)上記上部内周層は、

組成式:(Al1−XCr(ただし、原子比で、Xは0.05〜0.35を示す)を満足し、かつ、0.5〜13μmの平均層厚を有するAlとCrの複合酸化物層からなり、

(e)上記上部内周層を被覆する上部外周層は、0.1〜0.8μmの平均層厚を有する薄層Aと、0.1〜0.6μmの平均層厚を有する薄層Bとを交互に積層して形成された、2〜10μmの合計平均層厚を有する交互多重積層からなり、
(f)上記薄層Aは、アルミニウム酸化物(Al)層からなり、
(g)上記薄層Bは、

組成式:(Al1−XCr(ただし、原子比で、Xは0.05〜0.35を示す)を満足するAlとCrの複合酸化物層からなり、
前記硬質被覆層を、炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された基体の表面に化学蒸着により形成してなる、高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬切削工具。
In a surface-coated cemented carbide cutting tool in which a hard coating layer is formed on the surface of a substrate composed of a tungsten carbide-based cemented carbide alloy or a titanium carbonitride-based cermet,
(A) The hard coating layer comprises a lower layer covering the surface of the substrate and an upper layer covering the surface of the lower layer,
(B) The lower layer is composed of one or more of a Ti carbide layer, a nitride layer, a carbonitride layer, a carbonate layer, and a carbonitride layer, and 0.5 to Consisting of a Ti compound layer having a total average layer thickness of 15 μm,
(C) The upper layer covering the surface of the lower layer is composed of an upper inner peripheral layer and an upper outer peripheral layer covering the upper inner peripheral layer,
(D) The upper inner circumferential layer is

Composition formula: (Al 1-X Cr X ) 2 O 3 (wherein X is 0.05 to 0.35 in atomic ratio) and has an average layer thickness of 0.5 to 13 μm It consists of a complex oxide layer of Al and Cr,

(E) The upper outer peripheral layer covering the upper inner peripheral layer includes a thin layer A having an average layer thickness of 0.1 to 0.8 μm and a thin layer B having an average layer thickness of 0.1 to 0.6 μm. Formed by alternately laminating and having an alternating multiple lamination having a total average layer thickness of 2 to 10 μm,
(F) The thin layer A is composed of an aluminum oxide (Al 2 O 3 ) layer,
(G) The thin layer B is

It consists of a composite oxide layer of Al and Cr that satisfies the composition formula: (Al 1-X Cr X ) 2 O 3 (where X is 0.05 to 0.35 in atomic ratio),
The hard coating layer is formed by chemical vapor deposition on the surface of a substrate composed of a tungsten carbide base cemented carbide or a titanium carbonitride base cermet, and the hard coating layer exhibits excellent wear resistance by high-speed cutting. Surface coated carbide cutting tool.
JP2005269380A 2005-09-16 2005-09-16 Surface coated cemented carbide cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting Withdrawn JP2007075968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005269380A JP2007075968A (en) 2005-09-16 2005-09-16 Surface coated cemented carbide cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005269380A JP2007075968A (en) 2005-09-16 2005-09-16 Surface coated cemented carbide cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting

Publications (1)

Publication Number Publication Date
JP2007075968A true JP2007075968A (en) 2007-03-29

Family

ID=37936759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005269380A Withdrawn JP2007075968A (en) 2005-09-16 2005-09-16 Surface coated cemented carbide cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting

Country Status (1)

Country Link
JP (1) JP2007075968A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010214557A (en) * 2009-03-18 2010-09-30 Mitsubishi Materials Corp Surface coated cutting tool with hard coating layer exerting excellent chipping resistance
JP2010234517A (en) * 2009-03-10 2010-10-21 Mitsubishi Materials Corp Surface-coating cutting tool with hard coating layer exerting excellent chipping resistance and wear resistance in high speed heavy cutting machining

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010234517A (en) * 2009-03-10 2010-10-21 Mitsubishi Materials Corp Surface-coating cutting tool with hard coating layer exerting excellent chipping resistance and wear resistance in high speed heavy cutting machining
JP2010214557A (en) * 2009-03-18 2010-09-30 Mitsubishi Materials Corp Surface coated cutting tool with hard coating layer exerting excellent chipping resistance

Similar Documents

Publication Publication Date Title
JP2007168032A (en) Surface-coated cutting tool with hard covered layer displaying excellent abrasion resistance and chipping resistance under high speed heavy cutting condition
JP2004122269A (en) Surface coated cermet cutting tool exhibiting superior chipping resistance under high speed heavy duty cutting
JP2007075968A (en) Surface coated cemented carbide cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting
JP4048364B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP3978779B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP4770387B2 (en) Surface coated carbide cutting tool with excellent wear resistance due to hard coating layer in high speed heavy cutting
JP4210930B2 (en) Surface-coated throw-away tip that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP3922141B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance and wear resistance under high-speed heavy cutting conditions.
JP2007075969A (en) Surface coated cemented carbide cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting of hard-to-cut material
JP2008105135A (en) Surface coated cutting tool having hard coating layer exhibiting excellent wear resistance
JP2007130708A (en) Surface coated cemented carbide cutting tool having hard coating layer exhibiting superior chipping resistance in heavy cutting
JP2007111835A (en) Surface-coated carbide cutting tool having carbide coating layer of excellent chipping resistance in heavy cutting
JP3900520B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance with hard coating layer under high-speed cutting conditions
JP4235904B2 (en) Surface-coated cutting tool with excellent wear resistance with a hard coating layer in high-speed cutting
JP4210931B2 (en) Surface-coated throw-away tip that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP2007144555A (en) Surface coated cutting tool having hard coated layer which can show excellent chipping resistance in high speed intermittent cutting
JP2007130741A (en) Surface coated cemented carbide cutting tool having hard coating layer exhibiting superior chipping resistance in heavy cutting for material hard to cut
JP3922132B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance and wear resistance under high-speed heavy cutting conditions.
JP3900517B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance with hard coating layer under high-speed cutting conditions
JP2005034912A (en) Surface coated cemented carbide cutting tool having hard surface coating layer which is excellent in wear resistance and chipping resistance under high-speed and heavy-cutting condition
JP2005288639A (en) Machining tool made of surface-covered thermet with its hard covering layer exerting excellent anti-chipping performance in high-speed intermittent machining of hard-to-machine material
JP3900523B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP3963136B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance and wear resistance under high-speed heavy cutting conditions.
JP2007044788A (en) Surface coated cemented carbide cutting tool having hard coating layer displaying excellent chipping resistance in heavy cutting
JP3963149B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081202