JP2007075969A - Surface coated cemented carbide cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting of hard-to-cut material - Google Patents
Surface coated cemented carbide cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting of hard-to-cut material Download PDFInfo
- Publication number
- JP2007075969A JP2007075969A JP2005269381A JP2005269381A JP2007075969A JP 2007075969 A JP2007075969 A JP 2007075969A JP 2005269381 A JP2005269381 A JP 2005269381A JP 2005269381 A JP2005269381 A JP 2005269381A JP 2007075969 A JP2007075969 A JP 2007075969A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- hard coating
- cutting
- coating layer
- thin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
この発明は、硬質被覆層がすぐれた高温硬さ・耐熱性・高温強度を備えるとともに、すぐれた潤滑性を示し、したがって、ステンレス鋼、高マンガン鋼や軟鋼などの粘性の高い難削材を、切刃部に大きな機械的・熱的衝撃のかかる高切り込み、高送りの高速重切削加工条件下で切削加工を行なった場合にも、被削材と切削工具との間の摩擦力が低減され、硬質被覆層の過熱が防止されることによって、切削時に切粉が切刃部に溶着することなく、すぐれた耐チッピング性を発揮する、炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された基体の表面に、化学蒸着により硬質被覆層を形成してなる表面被覆超硬切削工具(以下、被覆超硬工具という)に関するものである。 This invention has a hard coating layer with excellent high-temperature hardness, heat resistance and high-temperature strength and excellent lubricity. Therefore, highly viscous difficult-to-cut materials such as stainless steel, high manganese steel and mild steel can be obtained. The frictional force between the work material and the cutting tool is reduced even when cutting is performed under conditions of high depth of cut and high feed rate heavy cutting with large mechanical and thermal impact on the cutting edge. Constructed from tungsten carbide-based cemented carbide or titanium carbonitride-based cermet that provides excellent chipping resistance without cutting chips adhering to the cutting edge during cutting by preventing overheating of the hard coating layer The present invention relates to a surface-coated carbide cutting tool (hereinafter referred to as a coated carbide tool) formed by forming a hard coating layer on the surface of the substrate by chemical vapor deposition.
被覆超硬工具として、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットからなる基体(以下、これらを総称して超硬基体と云う)の表面に、
(a)いずれも化学蒸着形成されたTiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなり、かつ0.5〜15μmの全体平均層厚を有するTi化合物層からなる下部層、
(b)1〜30μmの平均層厚を有し、AlとCrの相互含有割合を示す組成式:(Al1−XCrX)2O3(ただし、原子比で、Xは0.4〜0.65を示す)を満足する化学蒸着形成したAlとCrの複合酸化物[以下、(Al,Cr)2O3で示す]層からなる上部層、
上記の下部層と上部層で構成された硬質被覆層を形成してなる、被覆超硬工具が知られている。
As a coated carbide tool, a substrate made of tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet (hereinafter collectively referred to as a cemented carbide substrate). On the surface,
(A) All of these are Ti carbide (hereinafter referred to as TiC) layer, nitride (hereinafter also referred to as TiN) layer, carbonitride (hereinafter referred to as TiCN) layer, carbon oxide (hereinafter referred to as TiC) formed by chemical vapor deposition. And a Ti compound layer having an overall average layer thickness of 0.5 to 15 μm. Lower layer,
(B) Composition formula having an average layer thickness of 1 to 30 μm and showing a mutual content ratio of Al and Cr: (Al 1-X Cr X ) 2 O 3 (wherein X is 0.4 to 4 in terms of atomic ratio) An upper layer composed of a compound oxide [hereinafter referred to as (Al, Cr) 2 O 3 ] layer formed by chemical vapor deposition and satisfying chemical vapor deposition satisfying 0.65)
A coated cemented carbide tool formed by forming a hard coating layer composed of the above lower layer and upper layer is known.
また、上記の従来被覆超硬工具の硬質被覆層を構成する上部層である(Al,Cr)2O3層が、Alによる高温硬さおよび耐熱性と、Crによる高温強度を具備することから、かかる被覆超硬工具を各種の鋼や鋳鉄などの切削加工に用いた場合にすぐれた切削性能を発揮することも知られている。 In addition, the (Al, Cr) 2 O 3 layer, which is the upper layer constituting the hard coating layer of the conventional coated carbide tool, has high-temperature hardness and heat resistance due to Al, and high-temperature strength due to Cr. It is also known that such coated carbide tools exhibit excellent cutting performance when used for cutting various types of steel and cast iron.
さらに、上記の従来被覆超硬工具が、例えば図1に概略縦断面図で示される通り、中央部にステンレス鋼製の反応ガス吹き出し管が立設され、前記反応ガス吹き出し管には、図2(a)に概略斜視図で、同(b)に概略平面図で例示される黒鉛製の超硬基体支持パレットが串刺し積層嵌着され、かつこれらがステンレス鋼製のカバーを介してヒーターで加熱される構造を有する化学蒸着装置を用い、超硬基体を前記超硬基体支持パレットの底面に形成された多数の反応ガス通過穴位置に図示される通りに載置した状態で前記化学蒸着装置に装入し、ヒータで装置内を、例えば850〜1050℃の範囲内の所定の温度に加熱した後、まず、硬質被覆層の下部層として、例えば表3に示される形成条件でTi化合物層を形成し、ついで、
(a)反応ガス組成:容量%で(以下、反応ガスの%は容量%を示す)、
AlCl3:0.77〜1.32 %、
CrCl2:0.88〜1.43 %、
CO2: 5〜6 %、
HCl: 2〜3 %、
H2 : 残り、
(b)反応雰囲気温度:800〜1050 ℃、
(c)反応雰囲気圧力: 5〜25 kPa、
の条件で、上記の(Al,Cr)2O3層からなる上部層を形成することにより製造されることも知られている。
Further, in the above conventional coated carbide tool, for example, as shown in a schematic longitudinal sectional view in FIG. 1, a reaction gas blowing pipe made of stainless steel is erected at the center portion. (A) is a schematic perspective view, and (b) is a schematic plan view illustrating a carbide substrate support pallet made of graphite that is skewered and laminated, and these are heated by a heater through a stainless steel cover. The chemical vapor deposition apparatus having the structure described above is used, and the cemented carbide substrate is placed on the chemical vapor deposition apparatus in a state where the carbide substrate is placed as illustrated in a plurality of reaction gas passage hole positions formed on the bottom surface of the carbide substrate support pallet. After charging and heating the inside of the apparatus with a heater to a predetermined temperature within a range of 850 to 1050 ° C., for example, a Ti compound layer is first formed as a lower layer of the hard coating layer under the formation conditions shown in Table 3, for example. Forming, then
(A) Reaction gas composition: in volume% (hereinafter,% of reaction gas indicates volume%)
AlCl 3 : 0.77 to 1.32%,
CrCl 2: 0.88~1.43%,
CO 2: 5~6%,
HCl: 2-3%,
H 2 : Remaining
(B) Reaction atmosphere temperature: 800 to 1050 ° C.
(C) Reaction atmosphere pressure: 5 to 25 kPa,
It is also known that it is manufactured by forming an upper layer made of the above (Al, Cr) 2 O 3 layer under the above conditions.
また、一般に、上記の従来被覆超硬工具の硬質被覆層を構成するTi化合物層や(Al,Cr)2O3層が粒状結晶組織を有し、さらに、前記Ti化合物層を構成するTiCN層を、層自身の強度向上を目的として、通常の化学蒸着装置にて、反応ガスとしてCH3CNなどの有機炭窒化物を含む混合ガスを使用し、700〜950℃の中温温度域で化学蒸着することにより形成して縦長成長結晶組織をもつようにすることも知られている。
近年の切削加工装置のFA化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は、通常の切削条件に加えて、より高速条件下での切削加工が要求される傾向にあるが、上記の従来被覆超硬工具においては、各種の鋼や鋳鉄を通常条件下で切削加工した場合に特段の問題は生じないが、切刃部に高い機械的・熱的衝撃が加わる難削材の高速重切削条件下での切削加工に用いた場合には、高速重切削加工により生じる高い発熱と、硬質被覆層の上部層を構成する(Al,Cr)2O3層の潤滑性不足のために、硬質被覆層が過熱されて切粉が切刃部に溶着し易くなり、これが原因でチッピング(微少欠け)が発生し、この結果比較的短時間で使用寿命に至るのが現状である。
In recent years, FA has been remarkable for cutting devices, but on the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for cutting, and accordingly, cutting is performed at higher speed conditions in addition to normal cutting conditions. However, in the above conventional coated carbide tools, there is no particular problem when various steels and cast irons are cut under normal conditions. When it is used for cutting of difficult-to-cut materials subjected to high mechanical and thermal shock under high-speed heavy cutting conditions, it forms high heat generated by high-speed heavy cutting and the upper layer of the hard coating layer ( Due to insufficient lubricity of the Al, Cr) 2 O 3 layer, the hard coating layer is overheated, making it easier for the chips to weld to the cutting edge, causing chipping (small chipping), and comparing the results. The current situation is that the service life is reached in a short time.
そこで、本発明者等は、上述のような観点から、特に難削材の高速重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する被覆超硬工具を開発すべく、上記従来の被覆超硬工具を構成する硬質被覆層に着目し、研究を行った結果、
(1)下部層がTi化合物層、上部層が(Al,Cr)2O3層からなる上記従来の硬質被覆層上に、
(a)反応ガス組成(容量%):
VCl4: 3.0〜4.5 %、
N2: 25〜27 %、
H2 : 残り、
(b)反応雰囲気温度:800〜1050 ℃、
(c)反応雰囲気圧力: 5〜30 kPa、
の条件で化学蒸着を行うと、従来の硬質被覆層上に、0.5〜1.2μmの平均層厚を有するバナジウム窒化物(VN)層が蒸着形成されること。
(2)従来の硬質被覆層(下部層がTi化合物層、上部層が(Al,Cr)2O3層)上に、上記バナジウム窒化物(VN)層が蒸着形成された被覆超硬工具を、難削材の高速重切削加工条件下での切削加工に供すると、硬質被覆層上のバナジウム窒化物(VN)層は、高速重切削加工時に発生する高熱により、バナジウム酸化物(VO、V2O3およびVO2)を一部生成するが、この生成したバナジウム酸化物は潤滑性にすぐれるため、切削時の発熱で被削材およびその切粉が高温加熱された状態でも、切刃部(すくい面および逃げ面と、これら両面が交わる切刃稜線部)と被削材および切粉との間には常にすぐれた表面滑り性・潤滑性が確保され、前記被削材および切粉の切刃部表面に対する粘着性および反応性が著しく低減され、切刃部への切粉の溶着等が防止されるようになること。
(3)従来の硬質被覆層(下部層がTi化合物層、上部層が(Al,Cr)2O3層)上に蒸着形成されたバナジウム窒化物(VN)層は、難削材の高速重切削加工時に発生する高熱によって表面滑り性・潤滑性にすぐれたバナジウム酸化物を生成するが、この酸化物自体は高温硬さ、耐熱性、高温強度に特に優れるわけではない。しかし、0.5〜1.2μmの平均層厚を有するバナジウム窒化物(VN)層からなる薄層(以下、「薄層A」という)と、0.2〜0.5μmの平均層厚を有する(Al,Cr)2O3層(従来の硬質被覆層の上部層に相当する層)からなる薄層(以下、「薄層B」という)とを交互に積層して構成した3〜5μmの合計平均層厚を有する交互多重積層は、薄層Bの有するすぐれた高温硬さ、耐熱性、高温強度を損なうことなく、薄層Aの有する潤滑作用をも具備するようになることから、前記交互多重積層は、難削材の高速重切削加工において、所定のすぐれた高温硬さ、耐熱性、高温強度を備えると同時に、しかも、すぐれた潤滑効果をもたらし、切刃部への切粉の溶着等によるチッピングの発生を防止することができること。
以上(1)〜(3)に示される研究結果を得たのである。
この発明は、上記の研究結果に基づいてなされたものであって、基体の表面に、硬質被覆層を形成してなる被覆超硬工具(表面被覆超硬切削工具)において、
(a)前記硬質被覆層は、基体の表面を被覆する下部層と、該下部層の表面を被覆する上部層からなり、
(b)上記下部層は、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2種以上で構成され、かつ0.5〜15μmの合計平均層厚を有するTi化合物層からなり、
(c)上記下部層の表面を被覆する上部層は、上部内周層と、該上部内周層を被覆する上部外周層とからなり、
(d)上記上部内周層は、
組成式:(Al1−XCrX)2O3(ただし、原子比で、Xは0.4〜0.65を示す)を満足し、かつ、1〜10μmの平均層厚を有するAlとCrの複合酸化物((Al,Cr)2O3)層からなり、
(e)上記上部内周層を被覆する上部外周層は、0.5〜1.2μmの平均層厚を有する薄層Aと、0.2〜0.5μmの平均層厚を有する薄層Bとを交互に積層して形成された、3〜5μmの合計平均層厚を有する交互多重積層からなり、
(f)上記薄層Aは、バナジウム窒化物(VN)層からなり、
(g)上記薄層Bは、
組成式:(Al1−XCrX)2O3(ただし、原子比で、Xは0.4〜0.65を示す)を満足するAlとCrの複合酸化物層からなり、
前記硬質被覆層を、炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された基体の表面に化学蒸着により形成してなる、難削材の高速重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する被覆超硬工具(表面被覆超硬切削工具)に特徴を有するものである。
In view of the above, the inventors of the present invention have developed the above-mentioned conventional coating in order to develop a coated carbide tool exhibiting excellent chipping resistance with a hard coating layer particularly in high-speed heavy cutting of difficult-to-cut materials. As a result of conducting research by focusing on the hard coating layer that makes up carbide tools,
(1) On the above conventional hard coating layer in which the lower layer is a Ti compound layer and the upper layer is an (Al, Cr) 2 O 3 layer,
(A) Reaction gas composition (volume%):
VCl 4 : 3.0 to 4.5%,
N 2: 25~27%,
H 2 : Remaining
(B) Reaction atmosphere temperature: 800 to 1050 ° C.
(C) Reaction atmosphere pressure: 5 to 30 kPa,
When chemical vapor deposition is performed under the conditions, a vanadium nitride (VN) layer having an average layer thickness of 0.5 to 1.2 μm is deposited on the conventional hard coating layer.
(2) A coated carbide tool in which the vanadium nitride (VN) layer is deposited on a conventional hard coating layer (the lower layer is a Ti compound layer and the upper layer is an (Al, Cr) 2 O 3 layer). When subjected to cutting of difficult-to-cut materials under high-speed heavy cutting conditions, the vanadium nitride (VN) layer on the hard coating layer is subjected to vanadium oxide (VO, V) due to high heat generated during high-speed heavy cutting. 2 O 3 and VO 2 ) are produced in part. However, since the produced vanadium oxide is excellent in lubricity, the cutting edge is generated even when the work material and its chips are heated at high temperature due to heat generated during cutting. Excellent slipperiness and lubricity are always ensured between the part (the rake face and flank face, and the cutting edge ridge line where these two surfaces intersect) and the work material and chips. The stickiness and reactivity to the cutting edge surface is significantly reduced. , Be like welding or the like of the chips to the cutting edge is prevented.
(3) The vanadium nitride (VN) layer deposited on the conventional hard coating layer (the lower layer is a Ti compound layer and the upper layer is an (Al, Cr) 2 O 3 layer) Although the vanadium oxide excellent in surface slipperiness and lubricity is produced by high heat generated during cutting, the oxide itself is not particularly excellent in high temperature hardness, heat resistance and high temperature strength. However, a thin layer composed of a vanadium nitride (VN) layer (hereinafter referred to as “thin layer A”) having an average layer thickness of 0.5 to 1.2 μm and an average layer thickness of 0.2 to 0.5 μm. 3-5 μm composed of alternately laminated thin layers (hereinafter referred to as “thin layer B”) composed of (Al, Cr) 2 O 3 layers (layers corresponding to the upper layer of the conventional hard coating layer). Since the alternating multiple lamination having the total average layer thickness of the thin layer A has the lubricating action of the thin layer A without impairing the excellent high temperature hardness, heat resistance, and high temperature strength of the thin layer B, The alternating multi-layer has a predetermined excellent high-temperature hardness, heat resistance, and high-temperature strength in high-speed heavy cutting of difficult-to-cut materials. It is possible to prevent the occurrence of chipping due to welding or the like.
The research results shown in (1) to (3) above were obtained.
This invention was made based on the above research results, and in a coated carbide tool (surface coated carbide cutting tool) formed by forming a hard coating layer on the surface of a substrate,
(A) The hard coating layer comprises a lower layer covering the surface of the substrate and an upper layer covering the surface of the lower layer,
(B) The lower layer is composed of one or more of a Ti carbide layer, a nitride layer, a carbonitride layer, a carbonate layer, and a carbonitride layer, and 0.5 to Consisting of a Ti compound layer having a total average layer thickness of 15 μm,
(C) The upper layer covering the surface of the lower layer is composed of an upper inner peripheral layer and an upper outer peripheral layer covering the upper inner peripheral layer,
(D) The upper inner circumferential layer is
The compositional formula: (Al 1-X Cr X ) 2 O 3 (wherein X is 0.4 to 0.65 in atomic ratio) and Al having an average layer thickness of 1 to 10 μm It consists of a complex oxide ((Al, Cr) 2 O 3 ) layer of Cr,
(E) The upper outer peripheral layer covering the upper inner peripheral layer includes a thin layer A having an average layer thickness of 0.5 to 1.2 μm and a thin layer B having an average layer thickness of 0.2 to 0.5 μm. Consisting of alternating multiple layers having a total average layer thickness of 3-5 μm,
(F) The thin layer A is composed of a vanadium nitride (VN) layer,
(G) The thin layer B is
It consists of a composite oxide layer of Al and Cr that satisfies the composition formula: (Al 1-X Cr X ) 2 O 3 (wherein X is 0.4 to 0.65 in atomic ratio),
The hard coating layer is formed by chemical vapor deposition on the surface of a substrate made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet, and the hard coating layer has excellent resistance to high-speed heavy cutting of difficult-to-cut materials. It is characterized by a coated carbide tool that exhibits chipping properties (surface-coated carbide cutting tool).
つぎに、この発明の被覆超硬工具において、これを構成する硬質被覆層の構成を上記の通りに限定した理由を説明する。
(1)下部層(Ti化合物層)
Ti化合物層は、基本的には上部層の上部内周層を構成する(Al,Cr)2O3層の下部層として存在し、自身の具備するすぐれた高温強度によって硬質被覆層の高温強度向上に寄与するほか、基体と上記上部内周層((Al,Cr)2O3層)のいずれにも強固に密着し、よって硬質被覆層の超硬基体に対する密着性を向上させる作用を有するが、その合計平均層厚が0.5μm未満では、前記作用を十分に発揮させることができず、一方その合計平均層厚が15μmを越えると、切削時の発生熱によって偏摩耗の原因となる熱塑性変形を起し易くなることから、その合計平均層厚を0.5〜15μmと定めた。
(2)上部内周層((Al,Cr)2O3層)
上記したとおり上部内周層を構成する(Al,Cr)2O3層(従来硬質被覆層における上部層に相当)におけるAl成分は高温硬さおよび耐熱性、同Cr成分は高温強度を向上させるが、AlとCr成分の相互含有割合を示す組成式:(Al1−XCrX)2O3で、X値が原子比で(以下同じ)0.65を越えると、相対的にAlの含有割合が低くなることから、層自体の高温硬さおよび耐熱性の低下は避けられず、これが摩耗促進の原因となり、一方、X値が0.4未満になると、難削材の高速重切削において必要とされる高温強度を満足することができなくなり、この結果チッピングなどが発生し易くなることから、X値を0.4〜0.65と定めた。
Next, in the coated carbide tool of the present invention, the reason why the structure of the hard coating layer constituting the tool is limited as described above will be described.
(1) Lower layer (Ti compound layer)
The Ti compound layer basically exists as the lower layer of the (Al, Cr) 2 O 3 layer that constitutes the upper inner peripheral layer of the upper layer, and the high temperature strength of the hard coating layer by the excellent high temperature strength possessed by itself. In addition to contributing to the improvement, the substrate and the upper inner peripheral layer ((Al, Cr) 2 O 3 layer) are firmly adhered to each other, thereby improving the adhesion of the hard coating layer to the carbide substrate. However, if the total average layer thickness is less than 0.5 μm, the above-mentioned effect cannot be sufficiently exerted. On the other hand, if the total average layer thickness exceeds 15 μm, it causes uneven wear due to heat generated during cutting. Since it becomes easy to cause thermoplastic deformation, the total average layer thickness was determined to be 0.5 to 15 μm.
(2) Upper inner peripheral layer ((Al, Cr) 2 O 3 layer)
As described above, the Al component in the (Al, Cr) 2 O 3 layer (corresponding to the upper layer in the conventional hard coating layer) constituting the upper inner peripheral layer improves the high temperature hardness and heat resistance, and the Cr component improves the high temperature strength. Is a composition formula showing the mutual content ratio of Al and Cr components: (Al 1-X Cr X ) 2 O 3 , and when the X value exceeds 0.65 by atomic ratio (the same applies hereinafter), the relative content of Al Since the content ratio is low, a decrease in the high-temperature hardness and heat resistance of the layer itself is unavoidable, which causes accelerated wear. On the other hand, if the X value is less than 0.4, high-speed heavy cutting of difficult-to-cut materials In this case, the high temperature strength required in the process cannot be satisfied, and as a result, chipping or the like is likely to occur. Therefore, the X value is set to 0.4 to 0.65.
また、その平均層厚が1μm未満では、所望の耐摩耗性を長期に亘って確保することができず、一方その平均層厚が10μmを越えると、チッピングが発生し易くなることから、その平均層厚を1〜10μmと定めた。
(3)上部外周層(薄層Aと薄層Bとからなる交互多重積層)
(Al,Cr)2O3層からなる上部内周層は、高温硬さ、耐熱性、高温強度にすぐれるものの、潤滑性不足のために難削材の高速重切削における耐チッピング性については十分ではないことから、上部内周層上に、バナジウム窒化物(VN)層からなる薄層Aと(Al,Cr)2O3層からなる薄層Bとの交互多重積層を設けることにより、上部内周層の特性を特段低下させることなく、その表面滑り性・潤滑性不足を改善することができる。
Further, if the average layer thickness is less than 1 μm, the desired wear resistance cannot be ensured over a long period of time, while if the average layer thickness exceeds 10 μm, chipping tends to occur. The layer thickness was set to 1 to 10 μm.
(3) Upper outer peripheral layer (alternate multiple lamination consisting of thin layer A and thin layer B)
The upper inner peripheral layer made of (Al, Cr) 2 O 3 layer is excellent in high temperature hardness, heat resistance and high temperature strength, but due to lack of lubricity, chipping resistance in high-speed heavy cutting of difficult-to-cut materials Since it is not sufficient, on the upper inner peripheral layer, by providing an alternating multiple stack of the thin layer A composed of the vanadium nitride (VN) layer and the thin layer B composed of the (Al, Cr) 2 O 3 layer, The surface slipperiness and lack of lubricity can be improved without deteriorating the characteristics of the upper inner circumferential layer.
つまり、薄層Aを構成するバナジウム窒化物(VN)層は、難削材の高速重切削加工時の高い発熱により、バナジウム酸化物(VO、V2O3およびVO2)を一部生成し、この生成したバナジウム酸化物のすぐれた表面滑り性・潤滑性により、切刃部と被削材および切粉との間の溶着等が防止されるが、薄層Aと薄層Bの交互多重積層(上部外周層)が、所定の表面滑り性・潤滑性を有し、切刃部への切粉の溶着等によるチッピングの発生を防止するためには、潤滑作用をもたらす薄層Aは、少なくとも0.5μmの厚さが必要とされ、これ未満の厚さでは難削材の高速重切削加工において必要とされる潤滑作用を発揮することができず、また、その厚みは1.2μm以下であれば、上部外周層の高温硬さ、耐熱性、高温強度の低下を招くことなく十分な潤滑作用をもたらすことができることから、薄層Aの平均層厚を0.5〜1.2μmに定めた。
また、薄層Aは、高速重切削加工時にバナジウム酸化物(VO、V2O3およびVO2)を生成するによって潤滑作用をもたらすが、薄層A或いはバナジウム酸化物の高温硬さ、耐熱性、高温強度は、(Al,Cr)2O3層と比べるといずれも十分なものではないことから、上部外周層が、従来の硬質被覆層と同程度の高温硬さ、耐熱性、高温強度を維持するためには、少なくとも0.2〜0.5μmの平均層厚を有する(Al,Cr)2O3層からなる薄層Bを、薄層Aと交互に積層して交互積層構造の多重層として構成し、上部外周層の高温硬さ、耐熱性、高温強度を補完することが必要である。交互に積層する薄層Bの平均層厚が0.2μm未満の場合には、上部外周層に最小限必要とされる高温硬さ、耐熱性、高温強度を維持することができず、一方、交互積層する薄層Bの平均層厚が0.5μmを超えるような場合には、難削材の高速重切削加工において十分に満足できる程度の表面滑り性・潤滑性を上部外周層に付与することはできないことから、交互積層する薄層Bの平均層厚を0.2〜0.5μmに定めた。
そして、薄層Aと薄層Bを、それぞれ前記所定平均層厚の薄層として交互に積層することにより、上記薄層Aと薄層Bの交互多重積層からなる上部外周層は、すぐれた表面滑り性・潤滑性を有し、かつ、所定の高温硬さ、耐熱性、高温強度を具備したあたかも一つの層であるかのように機能する。ただ、上部外周層(交互多重積層)の合計平均層厚が3μm未満では、自身のもつすぐれた潤滑性および所定の高温硬さ、耐熱性、高温強度を硬質被覆層に長期に亘って付与できず、工具寿命短命の原因となり、一方その合計平均層厚が5μmを越えると、チッピングが発生し易くなることから、その合計平均層厚を3〜5μmと定めた。
That is, the vanadium nitride (VN) layer constituting the thin layer A partially generates vanadium oxides (VO, V 2 O 3 and VO 2 ) due to high heat generation during high-speed heavy cutting of difficult-to-cut materials. The excellent surface slipperiness / lubricity of the generated vanadium oxide prevents welding between the cutting edge portion and the work material and chips, but the thin layers A and B are alternately multiplexed. In order to prevent the occurrence of chipping due to the welding of chips to the cutting edge, etc., the laminated layer (upper outer peripheral layer) has a predetermined surface slipperiness and lubricity, A thickness of at least 0.5 μm is required. If the thickness is less than 0.5 μm, the lubricating action required for high-speed heavy cutting of difficult-to-cut materials cannot be achieved, and the thickness is 1.2 μm or less. If this is the case, the high temperature hardness, heat resistance and high temperature strength of the upper outer peripheral layer will be reduced. Since it is possible to provide sufficient lubrication without, defining the average layer thickness of the thin layer A to 0.5~1.2Myuemu.
In addition, the thin layer A provides a lubricating action by generating vanadium oxides (VO, V 2 O 3 and VO 2 ) during high-speed heavy cutting, but the high-temperature hardness and heat resistance of the thin layer A or vanadium oxide. Since the high temperature strength is not enough compared to the (Al, Cr) 2 O 3 layer, the upper outer peripheral layer has the same high temperature hardness, heat resistance and high temperature strength as the conventional hard coating layer. In order to maintain the above, a thin layer B composed of (Al, Cr) 2 O 3 layers having an average layer thickness of at least 0.2 to 0.5 μm is alternately laminated with the thin layer A to obtain an alternate laminated structure. It is necessary to construct as a multilayer and supplement the high temperature hardness, heat resistance and high temperature strength of the upper outer peripheral layer. When the average layer thickness of the thin layers B that are alternately stacked is less than 0.2 μm, the minimum required high temperature hardness, heat resistance, and high temperature strength cannot be maintained for the upper outer peripheral layer, When the average layer thickness of the thin layers B that are alternately stacked exceeds 0.5 μm, the upper outer peripheral layer is provided with surface slipperiness and lubricity sufficiently satisfactory in high-speed heavy cutting of difficult-to-cut materials. Since this is not possible, the average layer thickness of the thin layers B that are alternately stacked is set to 0.2 to 0.5 μm.
Then, by laminating the thin layers A and B alternately as the thin layers having the predetermined average layer thickness, the upper outer peripheral layer consisting of the multiple layers of the thin layers A and B has an excellent surface. It has slipperiness and lubricity, and functions as if it is a single layer having a predetermined high-temperature hardness, heat resistance, and high-temperature strength. However, if the total average layer thickness of the upper outer peripheral layer (alternate multi-layer) is less than 3 μm, it can impart its own excellent lubricity and predetermined high temperature hardness, heat resistance, and high temperature strength to the hard coating layer over a long period of time. However, the tool life is shortened. On the other hand, if the total average layer thickness exceeds 5 μm, chipping tends to occur. Therefore, the total average layer thickness is set to 3 to 5 μm.
この発明の被覆超硬工具は、硬質被覆層を、超硬基体を覆う下部層、該下部層を覆う上部内周層、該上部内周層を覆う上部外周層で構成し、かつ、該上部外周層を薄層A(VN層)と薄層B((Al,Cr)2O3層)との交互多重積層として構成することにより、硬質被覆層の下部層(Ti化合物層)および上部内周層((Al,Cr)2O3層)の具備する高温硬さ、耐熱性、高温強度の各特性を何ら損なうことなくこれを維持したままで、硬質被覆層がすぐれた表面滑り性・潤滑性をも保持しているので、各種の鋼や鋳鉄などの通常条件の切削加工に用いることができるばかりか、特に、ステンレス鋼、高マンガン鋼や軟鋼などの粘性の高い難削材の高速重切削加工においても、被削材と切削工具との間の摩擦力が低減され、硬質被覆層の過熱が防止され、切刃部への切粉の溶着が防止され、また、下部層であるTi化合物層の具備するすぐれた層間密着性および高温強度と相俟って、硬質被覆層がすぐれた耐チッピング性を示し、長期に亘ってすぐれた耐摩耗性を発揮するのである。
In the coated carbide tool of the present invention, the hard coating layer is composed of a lower layer covering the carbide substrate, an upper inner circumferential layer covering the lower layer, an upper outer circumferential layer covering the upper inner circumferential layer, and the upper portion. By configuring the outer peripheral layer as an alternating multiple lamination of thin layer A (VN layer) and thin layer B ((Al, Cr) 2 O 3 layer), the lower layer (Ti compound layer) and the upper inner layer of the hard coating layer Surface slipperiness with excellent hard coating layer while maintaining the high-temperature hardness, heat resistance, and high-temperature strength characteristics of the peripheral layer ((Al, Cr) 2 O 3 layer). Since it retains lubricity, it can be used for cutting under normal conditions such as various types of steel and cast iron, and in particular, high speeds of difficult-to-cut materials with high viscosity such as stainless steel, high manganese steel and mild steel. Even in heavy cutting, the frictional force between the work material and the cutting tool is reduced and hard Hard coating layer combined with excellent interlaminar adhesion and high-temperature strength of the Ti compound layer as the lower layer, preventing overheating of the cover layer, preventing chip welding to the cutting edge. It exhibits excellent chipping resistance and exhibits excellent wear resistance over a long period of time.
つぎに、この発明の被覆超硬工具を実施例により具体的に説明する。 Next, the coated carbide tool of the present invention will be specifically described with reference to examples.
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、VC粉末、TaC粉末、NbC粉末、Cr3 C2 粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の基体A1〜A10(以下、超硬基体A1〜A10という)を形成した。 As raw material powders, WC powder, TiC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, and Co powder, all having an average particle diameter of 1 to 3 μm, were prepared. And then wet-mixed with a ball mill for 72 hours, dried, and press-molded into a green compact at a pressure of 100 MPa. The green compact was vacuumed at 6 Pa at a temperature of 1400 ° C. for 1 hour. Sintering is performed under holding conditions, and after sintering, the cutting edge portion is subjected to a honing process of R: 0.07, and bases A1 to A10 made of ISO standard / CNMG120408 chips made of WC base cemented carbide (hereinafter referred to as “a”) And carbide substrates A1 to A10).
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比で、TiC/TiN=50/50)粉末、Mo2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったTiCN系サーメット製の基体B1〜B6(以下、超硬基体B1〜B6という)を形成した。 Further, as raw material powders, TiCN (mass ratio, TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC, all having an average particle diameter of 0.5 to 2 μm. Prepare powder, Co powder, and Ni powder, mix these raw material powders into the composition shown in Table 2, wet mix for 24 hours with a ball mill, dry, and press-mold into green compact at 100 MPa pressure The green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour. After sintering, the cutting edge portion was subjected to a honing process of R: 0.07 and ISO standard TiCN-based cermet bases B1 to B6 (hereinafter referred to as carbide bases B1 to B6) having a chip shape of CNMG120408 were formed.
上記の超硬基体A1〜A10およびB1〜B6のそれぞれを、アセトン中で超音波洗浄し、乾燥した後、図1に示される化学蒸着装置内に、第2図に示される超硬基体支持パレットの位置決め穴に載置した状態で装入し、まず、表3(表3中のl−TiCNは特開平6−8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)に示される通常の条件にて、表6に示される組み合わせおよび目標平均層厚のTi化合物層を硬質被覆層の下部層として蒸着形成した。
つぎに、表4に示される条件で、かつ同じく表6に示される目標平均層厚の(Al,Cr)2O3層を硬質被覆層の上部内周層として蒸着形成した。
その後、表5に示される条件で、かつ同じく表6に示される目標平均層厚のバナジウム窒化物(VN)層を、硬質被覆層の上部外周層の薄層Aとして蒸着形成し、ついで、表4に示される条件で、かつ同じく表6に示される目標平均層厚の(Al,Cr)2O3層を、硬質被覆層の上部外周層の薄層Bとして蒸着形成した。薄層Aと薄層Bの蒸着形成は、上部外周層の目標合計平均層厚に達するまで、交互に繰り返し行い、本発明表面被覆超硬切削工具である本発明表面被覆超硬スローアウエイインサート(以下、本発明被覆超硬インサートと云う)1〜16をそれぞれ製造した。
また、比較の目的で、これら超硬基体A1〜A10およびB1〜B6を、アセトン中で超音波洗浄し、乾燥した後、同じくそれぞれ図1,2に示される通常の化学蒸着装置に装入し、表7に示されるTi化合物層を硬質被覆層の下部層として蒸着形成した(なお、表7に示される従来被覆超硬工具1〜16の下部層(Ti化合物層)は、本発明被覆超硬工具1〜16のそれぞれと同じにしてあるので、下部層の具体的な形成条件、目標平均層厚は、表3、表6に示されているとおりである)。次に、表4に示される条件で、かつ同じく表7に示される目標平均層厚の(Al,Cr)2O3層を硬質被覆層の上部層として下部層(Ti化合物層)の表面に蒸着形成し、従来表面被覆超硬切削工具としての従来表面被覆超硬スローアウエイインサート(以下、従来被覆超硬インサートと云う)1〜16をそれぞれ製造した。
つぎに、上記の各種の被覆超硬チップを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆超硬チップ1〜16および従来被覆超硬チップ1〜16について、
被削材: JIS・SUS304の丸棒、
切削速度: 400 m/min.、
切り込み: 5.0 mm、
送り: 0.2 mm/rev.、
切削時間: 20 分、
の条件(切削条件Aという)でのステンレス鋼の乾式連続高速高切込み切削加工試験(通常の切削速度および切り込みは、それぞれ200m/min.、1.3mm)、
被削材: JIS・SCMnH11の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 400 m/min.、
切り込み: 4.5 mm、
送り: 0.3 mm/rev.、
切削時間: 25 分、
の条件(切削条件Bという)での高マンガン鋼の乾式断続高速高切込み切削加工試験(通常の切削速度および切り込みは、それぞれ180m/min.、1.5mm)、
被削材: JIS・S10Cの丸棒、
切削速度: 450 m/min.、
切り込み: 1.7 mm、
送り: 0.5 mm/rev.、
切削時間: 30 分、
の条件(切削条件Cという)での軟鋼の乾式連続高速高送り切削加工試験(通常の切削速度および送りは、それぞれ220m/min.、0.3mm/rev.)、
を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表8に示した。
Each of the above-mentioned carbide substrates A1 to A10 and B1 to B6 is ultrasonically cleaned in acetone and dried, and then placed in the chemical vapor deposition apparatus shown in FIG. 1 and the carbide substrate support pallet shown in FIG. First, Table 3 (l-TiCN in Table 3 indicates the conditions for forming a TiCN layer having a vertically grown crystal structure described in JP-A-6-8010). In the normal conditions shown in Table 6 above, the combinations shown in Table 6 and the Ti compound layer with the target average layer thickness are applied to the hard coating layer. Vapor deposition was formed as the lower layer.
Next, an (Al, Cr) 2 O 3 layer having the target average layer thickness shown in Table 6 under the conditions shown in Table 4 was formed by vapor deposition as the upper inner peripheral layer of the hard coating layer.
Thereafter, a vanadium nitride (VN) layer having the target average layer thickness similarly shown in Table 6 under the conditions shown in Table 5 was formed by vapor deposition as a thin layer A of the upper outer peripheral layer of the hard coating layer. The (Al, Cr) 2 O 3 layer having the target average layer thickness shown in Table 6 under the conditions shown in FIG. 4 was deposited as a thin layer B of the upper outer peripheral layer of the hard coating layer. The vapor deposition of the thin layer A and the thin layer B is alternately repeated until the target total average layer thickness of the upper outer peripheral layer is reached, and the surface coated carbide throwaway insert of the present invention which is the surface coated carbide cutting tool of the present invention ( Hereinafter, the coated carbide inserts of the present invention) 1 to 16 were produced.
For comparison purposes, these carbide substrates A1 to A10 and B1 to B6 were ultrasonically cleaned in acetone and dried, and then charged into the normal chemical vapor deposition apparatus shown in FIGS. The Ti compound layer shown in Table 7 was vapor-deposited as the lower layer of the hard coating layer (Note that the lower layer (Ti compound layer) of the conventional coated carbide tools 1 to 16 shown in Table 7 was coated with the present invention. Since it is the same as each of the hard tools 1-16, the specific formation conditions of the lower layer and the target average layer thickness are as shown in Tables 3 and 6. Next, the (Al, Cr) 2 O 3 layer having the target average layer thickness shown in Table 7 under the conditions shown in Table 4 is used as the upper layer of the hard coating layer on the surface of the lower layer (Ti compound layer). The conventional surface-coated carbide throwaway inserts (hereinafter referred to as conventional coated carbide inserts) 1 to 16 as conventional surface-coated carbide cutting tools were produced by vapor deposition.
Next, the coated carbide chips 1 to 16 of the present invention and the conventional coated carbide chip 1 in the state in which each of the various coated carbide chips is screwed to the tip of the tool steel tool with a fixing jig. About ~ 16
Work material: JIS / SUS304 round bar,
Cutting speed: 400 m / min. ,
Cutting depth: 5.0 mm,
Feed: 0.2 mm / rev. ,
Cutting time: 20 minutes,
(Continuous cutting speed and cutting are 200 m / min. And 1.3 mm, respectively)
Work material: JIS / SCMnH11 lengthwise equidistant four round grooved round bars,
Cutting speed: 400 m / min. ,
Cutting depth: 4.5 mm,
Feed: 0.3 mm / rev. ,
Cutting time: 25 minutes,
Of high manganese steel under the following conditions (referred to as cutting condition B) (intermittent cutting speed and cutting are 180 m / min. And 1.5 mm, respectively),
Work material: JIS / S10C round bar,
Cutting speed: 450 m / min. ,
Cutting depth: 1.7 mm,
Feed: 0.5 mm / rev. ,
Cutting time: 30 minutes,
Dry continuous high-speed high-feed cutting test of mild steel under the following conditions (referred to as cutting conditions C) (normal cutting speed and feed are 220 m / min. And 0.3 mm / rev., Respectively),
In each cutting test, the flank wear width of the cutting edge was measured. The measurement results are shown in Table 8.
この結果得られた本発明被覆超硬インサート1〜16および従来被覆超硬インサート1〜16の硬質被覆層を構成する各層について、その組成を、オージェ分光分析装置を用いて測定したところ、いずれのTi化合物層、(Al,Cr)2O3層も目標組成と実質的に同じ組成を示し、各層の層厚も目標平均層厚と実質的に同じ値を示した。さらに、本発明被覆超硬インサート1〜16の硬質被覆層の上部外周層の薄層Aを構成するバナジウム窒化物(VN)層についても、目標平均層厚と実質的に同じ値を示すバナジウム窒化物(VN)層が形成されていることが確認された。 About each layer which comprises the hard coating layer of this invention coated cemented carbide inserts 1-16 obtained as a result of this and the conventional coated cemented carbide inserts 1-16, when the composition was measured using the Auger spectroscopy analyzer, The Ti compound layer and the (Al, Cr) 2 O 3 layer also showed substantially the same composition as the target composition, and the layer thickness of each layer also showed substantially the same value as the target average layer thickness. Further, the vanadium nitride (VN) layer constituting the thin outer layer A of the hard coating layer of the coated carbide inserts 1 to 16 of the present invention also has a vanadium nitride value that is substantially the same as the target average layer thickness. It was confirmed that a material (VN) layer was formed.
表8に示される結果から、硬質被覆層の上部層が、上部内周層((Al,Cr)2O3層)と、薄層A(バナジウム窒化物(VN)層)及び薄層B((Al,Cr)2O3層)の交互多重積層からなる上部外周層とで構成されている本発明被覆超硬インサート1〜16は、いずれもステンレス鋼、高マンガン鋼や軟鋼などの難削材の切削加工を、高速重切削加工条件で行った場合にも、硬質被覆層がすぐれた表面滑り性・潤滑性を呈し、すぐれた耐チッピング性、耐摩耗性を長期に亘って発揮するのに対して、硬質被覆層の上部層が、(Al,Cr)2O3層のみからなる従来被覆超硬インサート1〜16においては、特に前記上部層の潤滑性不足が原因して、チッピングが発生し易く、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Table 8, the upper layer of the hard coating layer is divided into an upper inner peripheral layer ((Al, Cr) 2 O 3 layer), a thin layer A (vanadium nitride (VN) layer), and a thin layer B ( The coated carbide inserts 1 to 16 of the present invention, which are composed of upper outer peripheral layers made of (Al, Cr) 2 O 3 layers), are difficult to cut such as stainless steel, high manganese steel, and mild steel. Even when cutting materials under high-speed heavy cutting conditions, the hard coating layer exhibits excellent surface slipperiness and lubricity, and exhibits excellent chipping resistance and wear resistance over a long period of time. On the other hand, in the conventional coated carbide inserts 1 to 16 in which the upper layer of the hard coating layer is composed of only the (Al, Cr) 2 O 3 layer, chipping is caused by the lack of lubricity of the upper layer. It is easy to occur and it is clear that it will reach the service life in a relatively short time. That.
上述のように、この発明の被覆超硬工具は、通常の条件での切削加工(連続切削加工、断続切削加工)は勿論のこと、特にステンレス鋼、高マンガン鋼や軟鋼などの粘性の高い難削材を、高送り、高切込みの高速重切削条件下で切削加工を行なった場合にも、すぐれた耐チッピング性を発揮し、長期に亘ってすぐれた耐摩耗性を示すものであるから、切削装置のFA化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。 As described above, the coated cemented carbide tool of the present invention is not only difficult to cut under normal conditions (continuous cutting, interrupted cutting), but particularly difficult to have high viscosity such as stainless steel, high manganese steel, and mild steel. Even when the cutting material is machined under high feed, high cutting and high speed heavy cutting conditions, it exhibits excellent chipping resistance and exhibits excellent wear resistance over a long period of time. It is possible to satisfactorily respond to FA of cutting equipment, labor saving and energy saving of cutting, and cost reduction.
Claims (1)
(a)前記硬質被覆層は、基体の表面を被覆する下部層と、該下部層の表面を被覆する上部層からなり、
(b)上記下部層は、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2種以上で構成され、かつ0.5〜15μmの合計平均層厚を有するTi化合物層からなり、
(c)上記下部層の表面を被覆する上部層は、上部内周層と、該上部内周層を被覆する上部外周層とからなり、
(d)上記上部内周層は、
組成式:(Al1−XCrX)2O3(ただし、原子比で、Xは0.4〜0.65を示す)を満足し、かつ、1〜10μmの平均層厚を有するAlとCrの複合酸化物層からなり、
(e)上記上部内周層を被覆する上部外周層は、0.5〜1.2μmの平均層厚を有する薄層Aと、0.2〜0.5μmの平均層厚を有する薄層Bとを交互に積層して形成された、3〜5μmの合計平均層厚を有する交互多重積層からなり、
(f)上記薄層Aは、バナジウム窒化物(VN)層からなり、
(g)上記薄層Bは、
組成式:(Al1−XCrX)2O3(ただし、原子比で、Xは0.4〜0.65を示す)を満足するAlとCrの複合酸化物層からなり、
前記硬質被覆層を、炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された基体の表面に化学蒸着により形成してなる、難削材の高速重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆超硬切削工具。 In a surface-coated cemented carbide cutting tool in which a hard coating layer is formed on the surface of a substrate composed of a tungsten carbide-based cemented carbide alloy or a titanium carbonitride-based cermet,
(A) The hard coating layer comprises a lower layer covering the surface of the substrate and an upper layer covering the surface of the lower layer,
(B) The lower layer is composed of one or more of a Ti carbide layer, a nitride layer, a carbonitride layer, a carbonate layer, and a carbonitride layer, and 0.5 to Consisting of a Ti compound layer having a total average layer thickness of 15 μm,
(C) The upper layer covering the surface of the lower layer is composed of an upper inner peripheral layer and an upper outer peripheral layer covering the upper inner peripheral layer,
(D) The upper inner circumferential layer is
The compositional formula: (Al 1-X Cr X ) 2 O 3 (wherein X is 0.4 to 0.65 in atomic ratio) and Al having an average layer thickness of 1 to 10 μm A composite oxide layer of Cr,
(E) The upper outer peripheral layer covering the upper inner peripheral layer includes a thin layer A having an average layer thickness of 0.5 to 1.2 μm and a thin layer B having an average layer thickness of 0.2 to 0.5 μm. Consisting of alternating multiple layers having a total average layer thickness of 3-5 μm,
(F) The thin layer A is composed of a vanadium nitride (VN) layer,
(G) The thin layer B is
It consists of a composite oxide layer of Al and Cr that satisfies the composition formula: (Al 1-X Cr X ) 2 O 3 (wherein X is 0.4 to 0.65 in atomic ratio),
The hard coating layer is formed by chemical vapor deposition on the surface of a substrate made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet, and the hard coating layer has excellent resistance to high-speed heavy cutting of difficult-to-cut materials. Surface-coated carbide cutting tool that exhibits chipping properties.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005269381A JP2007075969A (en) | 2005-09-16 | 2005-09-16 | Surface coated cemented carbide cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting of hard-to-cut material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005269381A JP2007075969A (en) | 2005-09-16 | 2005-09-16 | Surface coated cemented carbide cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting of hard-to-cut material |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007075969A true JP2007075969A (en) | 2007-03-29 |
Family
ID=37936760
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005269381A Withdrawn JP2007075969A (en) | 2005-09-16 | 2005-09-16 | Surface coated cemented carbide cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting of hard-to-cut material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007075969A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008260099A (en) * | 2007-04-12 | 2008-10-30 | Mitsubishi Materials Corp | Surface-coated cutting tool having hard coating layer with excellent chipping resistance |
CN114231781A (en) * | 2021-11-12 | 2022-03-25 | 攀钢集团攀枝花钢铁研究院有限公司 | Preparation method of high-nitrogen vanadium-nitrogen alloy |
-
2005
- 2005-09-16 JP JP2005269381A patent/JP2007075969A/en not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008260099A (en) * | 2007-04-12 | 2008-10-30 | Mitsubishi Materials Corp | Surface-coated cutting tool having hard coating layer with excellent chipping resistance |
CN114231781A (en) * | 2021-11-12 | 2022-03-25 | 攀钢集团攀枝花钢铁研究院有限公司 | Preparation method of high-nitrogen vanadium-nitrogen alloy |
CN114231781B (en) * | 2021-11-12 | 2022-07-19 | 攀钢集团攀枝花钢铁研究院有限公司 | Preparation method of high-nitrogen vanadium-nitrogen alloy |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2009101491A (en) | Surface-coated cutting tool having hard coating layer exerting excellent lubricity and wear resistance in high-speed cutting | |
JP6015922B2 (en) | Surface coated cutting tool | |
JP2004122269A (en) | Surface coated cermet cutting tool exhibiting superior chipping resistance under high speed heavy duty cutting | |
JP2009101490A (en) | Surface-coated cutting tool having hard coating layer exerting excellent lubricity and wear resistance in high-speed cutting | |
JP2007075969A (en) | Surface coated cemented carbide cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting of hard-to-cut material | |
JP5975214B2 (en) | Surface coated cutting tool | |
JP4770387B2 (en) | Surface coated carbide cutting tool with excellent wear resistance due to hard coating layer in high speed heavy cutting | |
JP2007075968A (en) | Surface coated cemented carbide cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting | |
JP2007290090A (en) | Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting difficult-to-cut material | |
JP2007144555A (en) | Surface coated cutting tool having hard coated layer which can show excellent chipping resistance in high speed intermittent cutting | |
JP2007130741A (en) | Surface coated cemented carbide cutting tool having hard coating layer exhibiting superior chipping resistance in heavy cutting for material hard to cut | |
JP2007130708A (en) | Surface coated cemented carbide cutting tool having hard coating layer exhibiting superior chipping resistance in heavy cutting | |
JP2010274330A (en) | Surface coated cutting tool | |
JP2007054907A (en) | Cutting tool made of coated cemented carbide having hard coating layer exhibiting excellent chipping resistance in high speed cutting work for hard cutting material | |
JP2007313582A (en) | Surface-coated cutting tool having hard coating layer with excellent chipping resistance in heavy cutting difficult-to-cut material | |
JP2007111835A (en) | Surface-coated carbide cutting tool having carbide coating layer of excellent chipping resistance in heavy cutting | |
JP4682826B2 (en) | Surface coated cutting tool with excellent chipping resistance due to hard coating layer in heavy cutting of difficult-to-cut materials | |
JP4682827B2 (en) | Surface coated cutting tool with excellent chipping resistance due to hard coating layer in heavy cutting of difficult-to-cut materials | |
JP2007130709A (en) | Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed cutting of highly viscous workpiece | |
JP2008188737A (en) | Surface coated cutting tool having hard coating layer showing excellent chipping resistance in heavy cutting of difficult-to-cut material | |
JP2007144595A (en) | Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in heavy cutting of difficult-to-cut material | |
JP2005288639A (en) | Machining tool made of surface-covered thermet with its hard covering layer exerting excellent anti-chipping performance in high-speed intermittent machining of hard-to-machine material | |
JP4682825B2 (en) | Surface coated cutting tool with excellent chipping resistance due to hard coating layer in heavy cutting of difficult-to-cut materials | |
JP2007144557A (en) | Surface coated cutting tool having hard coated layer which can show excellent chipping resistance in high speed intermittent cutting | |
JP4789068B2 (en) | Surface coated cutting tool with excellent chipping resistance with hard coating layer in heavy cutting of difficult-to-cut materials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20081202 |