JP2007290090A - Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting difficult-to-cut material - Google Patents

Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting difficult-to-cut material Download PDF

Info

Publication number
JP2007290090A
JP2007290090A JP2006122624A JP2006122624A JP2007290090A JP 2007290090 A JP2007290090 A JP 2007290090A JP 2006122624 A JP2006122624 A JP 2006122624A JP 2006122624 A JP2006122624 A JP 2006122624A JP 2007290090 A JP2007290090 A JP 2007290090A
Authority
JP
Japan
Prior art keywords
layer
point
content point
hard coating
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006122624A
Other languages
Japanese (ja)
Inventor
Kazunori Sato
和則 佐藤
Shinichi Shikada
信一 鹿田
Yusuke Tanaka
裕介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Mitsubishi Materials Kobe Tools Corp
Original Assignee
Mitsubishi Materials Corp
Mitsubishi Materials Kobe Tools Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Mitsubishi Materials Kobe Tools Corp filed Critical Mitsubishi Materials Corp
Priority to JP2006122624A priority Critical patent/JP2007290090A/en
Publication of JP2007290090A publication Critical patent/JP2007290090A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface coated cutting tool having a hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting a difficult-to-cut material. <P>SOLUTION: In this surface coated cutting tool, the following hard coating layer is formed on the surface of a tool base made of WC-base cemented carbide alloy or titanium carbonitride base cermet. The hard coating layer includes: a lower layer; and an upper layer. The lower layer is formed of a composition change (Ti, Al, Si)N layer, wherein it has a component concentration distribution structure in which from the Al highest content point (hereinafter referred to as point A) to the Al lowest content point (hereinafter referred to as point B), and from the point B to the point A, Al and Ti contents respectively continuously change. The point A satisfies a specific composition formula (Ti<SB>1-X</SB>Al<SB>X</SB>Si<SB>Y</SB>)N, the point B satisfies a specific composition formula (Ti<SB>1-A-B</SB>Al<SB>A</SB>Si<SB>B</SB>)N, and the interval between the adjacent points A and B is 0.03 to 0.1μm. The upper layer has an alternately stacked structure of a vanadium nitride layer and a vanadium oxide layer respectively having a required average layer thickness per layer, in which an acidic nitride vanadium layer is interposed between the respective layers. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、特にステンレス鋼や高マンガン鋼、さらに軟鋼などの難削材の切削加工を、高い発熱を伴う高速下で、かつ、切刃部に局部的に高負荷がかかる高切り込みや高送りなどの高速重切削条件で行った場合にも、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆超硬合金製切削工具(以下、被覆工具という)に関するものである。   This invention is especially suitable for cutting difficult-to-cut materials such as stainless steel, high manganese steel, and even mild steel under high speed with high heat generation and high cutting depth and high feed that require a high load locally on the cutting edge. The present invention also relates to a surface-coated cemented carbide cutting tool (hereinafter referred to as a coated tool) that exhibits excellent chipping resistance even when performed under high-speed heavy cutting conditions.

一般に、被覆工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに前記被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。   In general, for coated tools, throwaway inserts that are detachably attached to the tip of the cutting tool for turning and planing of various steel and cast iron materials, drilling of the work material, etc. Drills and miniature drills, and solid type end mills used for chamfering, grooving and shouldering of the work material, etc. A slow-away end mill tool that performs cutting work in the same manner as an end mill is known.

また、被覆工具として、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された工具基体の表面に、
1〜5μmの平均層厚を有し、かつ、層厚方向にそって、Al最高含有点とAl最低含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAlおよびTi含有量がそれぞれ連続的に変化する成分濃度分布構造を有し、
さらに、上記Al最高含有点が、組成式:(Ti1−X−YAlSi)N(ただし、原子比で、Xは0.60〜0.85、Yは0.01〜0.1を示す)、
上記Al最低含有点が、組成式:(Ti1−A−BAlSi)N(ただし、原子比で、Aは0.40〜0.55、Bは0.01〜0.1を示す)、
を満足し、かつ、隣り合う上記Al最高含有点とAl最低含有点の間隔が、0.03〜0.1μmであるTiとAlとSiの複合窒化物層[以下、組成変化(Ti,Al,Si)N層という]からなる硬質被覆層を物理蒸着してなる被覆工具が知られており、そして、前記被覆工具の硬質被覆層である組成変化(Ti,Al,Si)N層が、成分濃度分布変化構造のAlによってすぐれた高温硬さと耐熱性、同Tiによってすぐれた高温強度を具備し、さらにSi成分含有による一段の耐熱性向上と相俟って、これを各種の一般鋼や普通鋳鉄などの連続切削や断続切削を通常の条件で行うのに用いた場合は勿論のこと、これを高速切削加工条件で行うのに用いた場合にもすぐれた切削性能を発揮することも知られている。
In addition, as a coated tool, on the surface of a tool base composed of tungsten carbide (hereinafter referred to as WC) based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) based cermet,
And having an average layer thickness of 1 to 5 μm, and along the layer thickness direction, Al highest content points and Al lowest content points are alternately present at predetermined intervals, and from the Al highest content point Al lowest content point, having a component concentration distribution structure in which the Al and Ti content continuously change from the Al lowest content point to the Al highest content point, respectively,
Furthermore, the Al highest content point is the composition formula: (Ti 1-XY Al X Si Y ) N (wherein the atomic ratio, X is 0.60 to 0.85, and Y is 0.01 to 0.00. 1),
The Al minimum content point is a composition formula: (Ti 1-A B Al A Si B ) N (where A is 0.40 to 0.55 and B is 0.01 to 0.1 in terms of atomic ratio). Show),
And a distance between the adjacent Al highest content point and Al minimum content point adjacent to each other is 0.03 to 0.1 μm, a composite nitride layer of Ti, Al, and Si [hereinafter, composition change (Ti, Al , Si) N layer] is known, and a coating tool formed by physical vapor deposition of a hard coating layer is known, and a composition change (Ti, Al, Si) N layer, which is a hard coating layer of the coating tool, It has excellent high-temperature hardness and heat resistance due to the Al of the component concentration distribution change structure, excellent high-temperature strength due to the Ti, and further combined with a further improvement in heat resistance due to the Si component content, It is known not only when it is used for continuous cutting and intermittent cutting of ordinary cast iron under normal conditions, but also when it is used for high speed cutting conditions. It has been.

さらに、上記の従来被覆工具は、例えば図2(a)に概略平面図で、同(b)に概略正面図で示される構造のアークイオンプレーティング装置、すなわち装置中央部に工具基体装着用回転テーブルを設け、前記回転テーブルを挟んで、一方側に相対的にAl含有量の高い(Ti含有量の低い)Ti−Al−Si合金、他方側に相対的にTi含有量の高い(Al含有量の低い)Ti−Al−Si合金をカソード電極(蒸発源)として対向配置したアークイオンプレーティング装置を用い、この装置の前記回転テーブル上に、これの中心軸から半径方向に所定距離離れた位置に複数の工具基体をリング状に装着し、この状態で装置内雰囲気を窒素雰囲気として前記回転テーブルを回転させると共に、蒸着形成される硬質被覆層の層厚均一化を図る目的で工具基体自体も自転させながら、前記の両側のカソード電極(蒸発源)とアノード電極との間にアーク放電を発生させて、前記工具基体の表面に組成変化(Ti,Al,Si)N層を形成することにより製造されるものであり、この結果形成された組成変化(Ti,Al,Si)N層において、回転テーブル上にリング状に配置された前記工具基体が上記の一方側の相対的にAl含有量の高い(Ti含有量の低い)Ti−Al−Si合金のカソード電極(蒸発源)に最も接近した時点で層中にAl最高含有点が形成され、また前記工具基体が上記の他方側の相対的にTi含有量の高い(Al含有量の低い)Ti−Al−Si合金のカソード電極に最も接近した時点で層中にAl最低含有点が形成され、上記回転テーブルの回転によって層中には層厚方向にそって前記Al最高含有点とAl最低含有点が所定間隔をもって交互に繰り返し現れると共に、前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAlおよびTi含有量がそれぞれ連続的に変化する成分濃度分布構造が形成されるものである。
特許第3669334号明細書
Further, the above conventional coated tool is, for example, an arc ion plating apparatus having a structure shown in a schematic plan view in FIG. 2A and a schematic front view in FIG. A Ti-Al-Si alloy with a relatively high Al content on one side (low Ti content) and a relatively high Ti content on the other side (Al-containing) Using an arc ion plating apparatus in which a Ti—Al—Si alloy (low amount) is disposed as a cathode electrode (evaporation source), a predetermined distance in the radial direction is separated from the central axis on the rotary table of the apparatus. At this position, a plurality of tool bases are mounted in a ring shape, and in this state, the rotary table is rotated with the atmosphere inside the apparatus being a nitrogen atmosphere, and the layer thickness of the hard coating layer formed by vapor deposition is made uniform. While rotating the tool base itself, an arc discharge is generated between the cathode electrode (evaporation source) and the anode electrode on both sides to change the composition (Ti, Al, Si) N on the surface of the tool base. In the composition change (Ti, Al, Si) N layer formed as a result, the tool base arranged in a ring shape on the rotary table is formed on the one side described above. At the point closest to the cathode electrode (evaporation source) of a Ti-Al-Si alloy having a relatively high Al content (low Ti content), the highest Al content point is formed in the layer. At the point of closest approach to the cathode electrode of the Ti—Al—Si alloy having a relatively high Ti content (low Al content) on the other side, an Al minimum content point is formed in the layer. By rotation In the layer thickness direction, the Al highest content point and the Al lowest content point appear alternately with a predetermined interval, and the Al highest content point to the Al lowest content point, the Al lowest content point to the Al highest content point. A component concentration distribution structure in which the content of Al and Ti continuously changes to the content point is formed.
Japanese Patent No. 3669334

近年の切削加工装置のFA化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、被覆工具には被削材の材種になるべく影響を受けない汎用性、すなわち、できるだけ多くの材種の被削材の切削加工が可能な被覆工具が求められる傾向にあるが、上記の従来被覆工具においては、これを低合金鋼や炭素鋼などの一般鋼や、ダクタイル鋳鉄やねずみ鋳鉄などの普通鋳鉄の高速切削加工に用いた場合には問題はないが、特に切粉の粘性が高く、かつ工具表面に溶着し易いステンレス鋼や高マンガン鋼、さらに軟鋼などの難削材の切削加工を高速で、しかも、切刃部に局部的に高負荷がかかる高切り込みや高送りなどの高速重切削条件行った場合には、切削時の高い発熱によって難削材からなる被削材およびその切粉は高温に加熱されて粘性度が一段と増大し、これに伴って硬質被覆層表面に対する粘着性および反応性が一段と増すようになり、この結果切刃部におけるチッピング(微少欠け)の発生が急激に増加し、これが原因で比較的短時間で使用寿命に至るのが現状である。   In recent years, the use of FA for cutting devices has been remarkable. On the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for cutting processing. As a result, coated tools are affected as much as possible by the grade of work material. There is a tendency not to be versatile, that is, there is a tendency to require a coated tool capable of cutting as many kinds of work materials as possible. However, in the conventional coated tools described above, this is generally applied to low alloy steel, carbon steel, etc. There is no problem when used for high-speed cutting of normal cast iron such as steel, ductile cast iron and gray cast iron, but stainless steel and high manganese steel, which have high chip viscosity and are easy to weld to the tool surface. When cutting difficult-to-cut materials such as mild steel at high speeds and high-speed heavy cutting conditions such as high cutting and high feed that apply a high load locally to the cutting edge, it is difficult due to high heat generated during cutting. From the cutting material The material to be cut and its chips are heated to a high temperature and the viscosity is further increased. As a result, the adhesiveness and reactivity to the surface of the hard coating layer are further increased. As a result, chipping ( The occurrence of minute chipping) has increased rapidly, and this is the reason why the service life is reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、特に難削材の高速重切削加工で、硬質被覆層がすぐれた耐チッピング性を発揮する被覆工具を開発すべく、上記の従来被覆工具に着目し、研究を行った結果、
(a)上記従来被覆工具の硬質被覆層である組成変化(Ti,Al,Si)N層を下部層として1〜5μmの平均層厚で形成し、これの上に上部層として酸化バナジウム(酸化バナジウムは、その酸化の程度によって、VO、VおよびVOなど種々の化合物形態をとり得るが、以下、これらを総称してVOで示す)層を形成すると、前記VO層は表面滑り性にすぐれ、この結果切削時の発熱で被削材(難削材)およびその切粉が高温加熱された状態でも切刃部(すくい面および逃げ面と、これら両面が交わる切刃稜線部)と被削材および切粉との間にはすぐれた滑り性が確保され、前記被削材および切粉の切刃部表面に対する粘着性および反応性が著しく低減され、前記下部層である組成変化(Ti,Al,Si)N層は十分に保護することから、組成変化(Ti,Al,Si)N層のもつすぐれた特性が長期に亘って十分に発揮されるようになること。
In view of the above, the present inventors have developed the above-mentioned conventional coated tool in order to develop a coated tool that exhibits excellent chipping resistance with a hard coating layer, particularly in high-speed heavy cutting of difficult-to-cut materials. As a result of conducting research with a focus on
(A) A composition change (Ti, Al, Si) N layer, which is a hard coating layer of the above-mentioned conventional coated tool, is formed as a lower layer with an average layer thickness of 1 to 5 μm, and an upper layer is made of vanadium oxide (oxidation) Vanadium can take various compound forms such as VO, V 2 O 3 and VO 2 depending on the degree of oxidation, but when these are collectively referred to as VO), the VO layer is surface slippery. As a result, even when the work material (difficult-to-cut material) and its swarf are heated at high temperature due to heat generated during cutting, the cutting edge (the rake face and flank face and the cutting edge ridge line where these two surfaces intersect) Excellent slipperiness is ensured between the workpiece and the cutting material, and the adhesiveness and reactivity of the cutting material and the cutting surface to the cutting edge surface are remarkably reduced, and the composition change of the lower layer (Ti, Al, Si) N layer is sufficiently preserved. Since the composition changes (Ti, Al, Si) having excellent characteristics N layer may become to be sufficiently exhibited for a long time.

(b)しかし、組成変化(Ti,Al,Si)N層からなる下部層上に、直接、上部層としてVO層を設けた場合には、下部層である組成変化(Ti,Al,Si)N層と上部層であるVO層との密着性は十分でなく、また、上部層であるVO層自体の高温強度も十分でないため、硬質被覆層の下部層と上部層の密着性不足、上部層の高温強度不足が原因でチッピング発生を十分防止することはできないこと。 (B) However, when a VO layer is provided directly on the lower layer composed of the composition change (Ti, Al, Si) N layer, the composition change (Ti, Al, Si) as the lower layer is provided. The adhesion between the N layer and the VO layer as the upper layer is not sufficient, and the high temperature strength of the VO layer itself as the upper layer is not sufficient, so that the adhesion between the lower layer and the upper layer of the hard coating layer is insufficient. Chipping cannot be sufficiently prevented due to insufficient high-temperature strength of the layer.

(c)上記上部層を、VO層とVN層の交互積層構造とし、かつ、VO層とVN層の各層間にVNO層を介在させた交互積層構造の上部層として構成すると、VN層は、VO層に不足する高温強度を補うとともに、VNO層が、VO層あるいはVN層の成膜時の成膜反応性を高めると同時に結晶粒微細化を促進するため、VO層とVN層の耐摩耗性を向上させる効果があり、さらに、VNO層はVN層およびVO層の双方に対する密着性に優れるので、VNO層を介在させたことによりVO層とVN層の各層間の接合強度も改善され、したがって、このような交互積層構造からなる上部層は、VO層の備えるすぐれた表面滑り性、VN層の有するすぐれた高温強度を備えるとともに、VNO層を介在させたことにより各層の接合強度と耐摩耗性がさらに改善されたものとなり、その結果として、硬質被覆層はすぐれた表面滑り性とより一段とすぐれた高温強度を具備し、すぐれた耐チッピング性、耐摩耗性を示すようになること。 (C) When the upper layer is configured as an alternate layered structure of VO layers and VN layers, and an upper layer of an alternate layered structure in which a VNO layer is interposed between the VO layer and VN layer, the VN layer is Wear resistance of the VO and VN layers to compensate for the high temperature strength that the VO layer lacks, and the VNO layer enhances film formation reactivity during film formation of the VO layer or VN layer and at the same time promotes grain refinement. In addition, since the VNO layer has excellent adhesion to both the VN layer and the VO layer, the intervening VNO layer also improves the bonding strength between the VO layer and the VN layer. Therefore, the upper layer composed of such an alternately laminated structure has excellent surface slipperiness provided by the VO layer and excellent high temperature strength possessed by the VN layer, and the intervening VNO layer provides the bonding strength and resistance to each layer. wear There will those further improved, as a result, the hard coating layer comprises more more excellent high-temperature strength and excellent surface slipperiness, excellent chipping resistance, it is shown the wear resistance.

(d)上記(c)の硬質被覆層は、例えば図1(a)に概略平面図で、同(b)に概略正面図で示される構造のアークイオンプレーティング装置、すなわち装置中央部に工具基体装着用回転テーブルを設け、前記回転テーブルを挟んでカソード電極(蒸発源)を設け、その一方にはカソード電極(蒸発源)として金属Vを配置し、また、前記回転テーブルに沿って、かつ前記金属Vのそれぞれから90度離れた位置の一方側にカソード電極(蒸発源)として相対的にAl含有量の高い(Ti含有量の低い)Ti−Al−Si合金、他方側に相対的にTi含有量の高い(Al含有量の低い)Ti−Al−Si合金をカソード電極(蒸発源)として対向配置した蒸着装置を用い、この装置の前記回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部に沿って複数の工具基体をリング状に装着し、この状態で装置内雰囲気を窒素雰囲気として前記回転テーブルを回転させると共に、蒸着形成される硬質被覆層の層厚均一化を図る目的で工具基体自体も自転させながら、基本的に、まず前記対向配置した両Ti−Al−Si合金のカソード電極(蒸発源)とアノード電極との間にそれぞれアーク放電を発生させて、前記工具基体の表面に下部層として組成変化(Ti,Al,Si)N層を1〜5μmの平均層厚で蒸着し、
ついで、前記両Ti−Al−Si合金のカソード電極(蒸発源)とアノード電極との間のアーク放電を停止し、同じく装置内雰囲気を窒素雰囲気に保持したままで、カソード電極(蒸発源)である金属Vとアノード電極との間にアーク放電を発生させて、VN層を0.4〜2μmの平均層厚で蒸着形成した後、前記金属Vとアノード電極との間のアーク放電を停止し、同時に装置内への窒素ガスの供給を停止し、装置内を約10秒間真空引きし、
その後装置内へ酸素ガスと窒素ガスの混合ガス(但し、O:N=1:2の容量組成比)の供給を開始して蒸着装置内の雰囲気を1.5Paの酸素−窒素混合ガス雰囲気に保持したままで、カソード電極(蒸発源)である金属Vとアノード電極との間に120Aの電流を流してアーク放電を発生させて0.02〜0.2μmのVNO層を蒸着形成した後、前記金属Vとアノード電極との間のアーク放電を停止し、同時に装置内へ酸素−窒素混合ガスの供給を停止し、装置内を約10秒間真空引きし、
その後装置内への酸素ガスの供給を開始して装置内雰囲気を酸素雰囲気に切り替え、その後、再びカソード電極(蒸発源)である金属Vとアノード電極との間にアーク放電を発生させて、前記VNO層に重ねて0.4〜2μmの平均層厚でVO層を蒸着形成した後、前記金属Vとアノード電極との間のアーク放電を停止し、装置内への酸素ガスの供給を停止し、装置内を約10秒間真空引きした後、
装置内への酸素−窒素混合ガス(O:N=1:2の容量組成比)の供給を開始して蒸着装置内の雰囲気を1.5Paの酸素−窒素混合ガス雰囲気に保持したままで、カソード電極(蒸発源)である金属Vとアノード電極との間に120Aの電流を流してアーク放電を発生させて0.02〜0.2μmのVNO層を蒸着形成した後、前記金属Vとアノード電極との間のアーク放電を停止し、同時に装置内へ酸素−窒素混合ガスの供給を停止し、装置内を約10秒間真空引きし、
その後装置内への窒素ガスの供給を開始して雰囲気を窒素雰囲気に切り替え、再びカソード電極(蒸発源)である金属Vとアノード電極との間にアーク放電を発生させて、前記VNO層に重ねて0.4〜2μmの平均層厚でVN層を蒸着形成し、
以降も、VNO層とVO層とVN層の蒸着形成とを、上記と同じ手順を繰り返し行うことにより、VN層とVO層の交互積層構造からなり、かつ、VN層とVO層の各層間にVNO層を介在させた積層構造の、目標全体層厚(1〜5μm)の上部層を蒸着により形成することができること。
(D) The hard coating layer of (c) is an arc ion plating apparatus having a structure shown in, for example, a schematic plan view in FIG. 1 (a) and a schematic front view in FIG. A substrate mounting turntable is provided, a cathode electrode (evaporation source) is provided across the turntable, and a metal V is disposed on one of them as a cathode electrode (evaporation source), along the turntable, and Ti-Al-Si alloy having a relatively high Al content (low Ti content) as a cathode electrode (evaporation source) on one side at a position 90 degrees away from each of the metals V, and relatively on the other side A vapor deposition apparatus in which a Ti-Al-Si alloy having a high Ti content (low Al content) is disposed as a cathode electrode (evaporation source) is used as a cathode electrode (evaporation source), and a predetermined distance in the radial direction from the central axis on the rotary table of the apparatus. Separation At this position, a plurality of tool bases are mounted in a ring shape along the outer periphery, and in this state, the rotary table is rotated with the atmosphere inside the apparatus as a nitrogen atmosphere, and the thickness of the hard coating layer formed by vapor deposition is made uniform. Basically, while rotating the tool base itself for the purpose, first, arc discharge is generated between the cathode electrode (evaporation source) and the anode electrode of both the Ti-Al-Si alloys arranged opposite to each other. A composition change (Ti, Al, Si) N layer is deposited on the surface of the tool base as an underlayer with an average layer thickness of 1 to 5 μm.
Next, the arc discharge between the cathode electrode (evaporation source) and the anode electrode of both the Ti—Al—Si alloys is stopped, and the cathode atmosphere (evaporation source) is maintained while maintaining the atmosphere in the apparatus in a nitrogen atmosphere. An arc discharge is generated between a certain metal V and an anode electrode, and a VN layer is deposited with an average thickness of 0.4 to 2 μm, and then the arc discharge between the metal V and the anode electrode is stopped. At the same time, the supply of nitrogen gas into the apparatus is stopped, the inside of the apparatus is evacuated for about 10 seconds,
Thereafter, the supply of a mixed gas of oxygen gas and nitrogen gas into the apparatus (however, the volume composition ratio of O 2 : N 2 = 1: 2) is started, and the atmosphere in the vapor deposition apparatus is changed to an oxygen-nitrogen mixed gas of 1.5 Pa. While maintaining the atmosphere, a current of 120 A was passed between the metal V, which is the cathode electrode (evaporation source), and the anode electrode to generate arc discharge to form a 0.02-0.2 μm VNO layer. Thereafter, the arc discharge between the metal V and the anode electrode is stopped, and at the same time, the supply of the oxygen-nitrogen mixed gas into the apparatus is stopped, and the inside of the apparatus is evacuated for about 10 seconds,
Thereafter, supply of oxygen gas into the apparatus is started to switch the atmosphere in the apparatus to an oxygen atmosphere, and then arc discharge is again generated between the metal V as the cathode electrode (evaporation source) and the anode electrode, After depositing a VO layer with an average thickness of 0.4-2 μm on the VNO layer, the arc discharge between the metal V and the anode electrode is stopped, and the supply of oxygen gas into the apparatus is stopped. After evacuating the device for about 10 seconds,
Supply of oxygen-nitrogen mixed gas (capacitance composition ratio of O 2 : N 2 = 1: 2) into the apparatus was started and the atmosphere in the vapor deposition apparatus was maintained in an oxygen-nitrogen mixed gas atmosphere of 1.5 Pa. Then, a current of 120 A is passed between the metal V as the cathode electrode (evaporation source) and the anode electrode to generate arc discharge to form a 0.02-0.2 μm VNO layer, and then the metal V The arc discharge between the anode electrode and the anode electrode is stopped, at the same time, the supply of the oxygen-nitrogen mixed gas into the apparatus is stopped, the inside of the apparatus is evacuated for about 10 seconds,
Thereafter, supply of nitrogen gas into the apparatus is started to switch the atmosphere to a nitrogen atmosphere, and arc discharge is generated again between the metal V, which is the cathode electrode (evaporation source), and the anode electrode, and is superimposed on the VNO layer. VN layer is vapor-deposited with an average layer thickness of 0.4-2 μm,
Thereafter, the VNO layer, the VO layer, and the VN layer are vapor-deposited by repeating the same procedure as described above, so that the VN layer and the VO layer are alternately stacked. An upper layer having a target total layer thickness (1 to 5 μm) having a laminated structure with a VNO layer interposed can be formed by vapor deposition.

(e)上記の下部層と積層構造の上部層で構成された硬質被覆層を蒸着形成してなる被覆工具は、特に粘性および粘着性の高いステンレス鋼や高マンガン鋼、さらに軟鋼などの難削材の切削加工を、高熱発生を伴う高速下で、かつ、高負荷のかかる高切り込みや高送りなどの高速重切削条件で行っても、下部層である組成変化(Ti,Al,Si)N層がすぐれた高温硬さと耐熱性、さらにすぐれた高温強度を有し、また、積層構造からなる上部層が、VO層の有するすぐれた表面滑り性とVN層の有する高温強度とを備えるとともに、VNO層の介在によりVO層及びVN層の耐摩耗性が改善され、また、層間の接合強度も向上し、結果として、上部層全体がすぐれた表面滑り性を有するばかりか、すぐれた高温強度と耐摩耗性とを相兼ね備えたものとなり、このような構造からなる硬質被覆層は、全体として、すぐれた表面滑り性とすぐれた高温強度、耐摩耗性とを具備したものとなり、そして、前記難削材および切粉との間にはすぐれた表面滑り性が確保され、難削材および切粉の切刃部表面に対する粘着性および反応性が著しく低減された状態で高速重切削加工が行われるようになることから、切刃部におけるチッピングの発生がなくなり、長期に亘ってすぐれた耐摩耗性を発揮するようになること。
以上(a)〜(e)に示される研究結果を得たのである。
(E) A coated tool formed by vapor-depositing a hard coating layer composed of the lower layer and the upper layer of a laminated structure is particularly difficult to cut stainless steel, high manganese steel, and mild steel with high viscosity and adhesion. Even if the material is machined under high speed with high heat generation, and under high speed heavy cutting conditions such as high cutting and high feed with high load, the composition change (Ti, Al, Si) N as the lower layer The layer has excellent high-temperature hardness and heat resistance, and excellent high-temperature strength, and the upper layer composed of the laminated structure has excellent surface slipperiness possessed by the VO layer and high-temperature strength possessed by the VN layer, By interposing the VNO layer, the wear resistance of the VO layer and the VN layer is improved, and the bonding strength between the layers is also improved. As a result, not only the entire upper layer has excellent surface slipperiness, but also excellent high temperature strength and Combines wear resistance The hard coating layer having such a structure as a whole has excellent surface slipperiness, excellent high-temperature strength, wear resistance, and the hard-to-cut materials and chips. In the meantime, excellent surface slipperiness is ensured, and high-speed heavy cutting processing is performed with the stickiness and reactivity of difficult-to-cut materials and chips to the cutting edge surface being significantly reduced. There is no chipping at the blade, and it has excellent wear resistance over a long period of time.
The research results shown in (a) to (e) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、工具基体の表面に、
(a)1〜5μmの平均層厚を有し、かつ、層厚方向にそって、Al最高含有点とAl最低含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAlおよびTi含有量がそれぞれ連続的に変化する成分濃度分布構造を有し、
さらに、上記Al最高含有点が、組成式:(Ti1−X−YAlSi)N(ただし、原子比で、Xは0.60〜0.85、Yは0.01〜0.10を示す)、
上記Al最低含有点が、組成式:(Ti1−A−BAlSi)N(ただし、原子比で、Aは0.40〜0.55、Bは0.01〜0.10を示す)、
を満足し、かつ隣り合う上記Al最高含有点とAl最低含有点の間隔が、0.03〜0.1μmである組成変化(Ti,Al,Si)N層からなる下部層、
(b)0.4〜2μmの一層平均層厚を有する窒化バナジウム層と0.4〜2μmの一層平均層厚を有する酸化バナジウム層の交互積層構造からなり、かつ、窒化バナジウム層と酸化バナジウム層の各層間には0.02〜0.2μmの一層平均層厚を有する酸窒化バナジウム層を介在させた、1〜5μmの全体平均層厚を有する上部層、
以上(a)、(b)で構成された硬質被覆層を形成してなる、難削材の高速重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する被覆工具に特徴を有するものである。
This invention was made based on the above research results, and on the surface of the tool base,
(A) It has an average layer thickness of 1 to 5 μm, and along the layer thickness direction, Al maximum content points and Al minimum content points are alternately present at predetermined intervals, and the Al maximum content A component concentration distribution structure in which the Al and Ti contents continuously change from the point to the Al minimum content point, from the Al minimum content point to the Al maximum content point,
Furthermore, the Al highest content point is the composition formula: (Ti 1-XY Al X Si Y ) N (wherein the atomic ratio, X is 0.60 to 0.85, and Y is 0.01 to 0.00. 10),
The Al minimum content point, composition formula: (Ti 1-A-B Al A Si B) N ( provided that an atomic ratio, A is from .40 to 0.55, B is a 0.01 to 0.10 Show),
A lower layer composed of a composition change (Ti, Al, Si) N layer in which the interval between the Al highest content point and the Al lowest content point adjacent to each other is 0.03 to 0.1 μm,
(B) a vanadium nitride layer having a single layer average layer thickness of 0.4 to 2 μm and a vanadium oxide layer having a single layer average layer thickness of 0.4 to 2 μm, and a vanadium nitride layer and a vanadium oxide layer; An upper layer having an overall average layer thickness of 1 to 5 μm, with a vanadium oxynitride layer having an average layer thickness of 0.02 to 0.2 μm interposed between each of the layers,
It is characterized by a coated tool that exhibits excellent chipping resistance in high-speed heavy cutting of difficult-to-cut materials, which is formed by forming a hard coating layer composed of (a) and (b) above. is there.

つぎに、この発明の被覆工具の硬質被覆層の構成層に関し、上記の通りに数値限定した理由を説明する。
(A)下部層
(a)Al最高含有点の組成
組成変化(Ti,Al,Si)N層におけるAlは、高温硬さおよび耐熱性を向上させ、同Tiは高温強度を向上させ、さらに同Si成分は一段と耐熱性を向上させる作用があり、したがって相対的にAl成分の含有割合が高いAl最高含有点では一段とすぐれた高温硬さと耐熱性を具備し、高速重切削で、すぐれた耐摩耗性を発揮するようになるが、Al最高含有点でのAlの割合(X値)がTiとSiの合量に占める割合(原子比)で0.85を超えると、Tiの割合が低くなり過ぎて、急激に高温強度が低下し、切刃にチッピング(微小欠け)などが発生し易くなり、一方その割合(X値)が同じく0.60未満であると、Alの割合が低くなり過ぎて、所望のすぐれた高温硬さおよび耐熱性を確保することができなくなり、またSi成分の割合を示すY値がAlとTiの合量に占める割合(原子比)で0.01未満では所望の耐熱性向上効果が得られず、さらに同Y値が0.10を超えると、高温強度が急激に低下するようになることから、X値を0.60〜0.85、Y値を0.01〜0.10とそれぞれ定めた。
Next, regarding the constituent layers of the hard coating layer of the coated tool of the present invention, the reason why the numerical values are limited as described above will be described.
(A) Lower layer (a) Composition of Al highest content point Al in composition change (Ti, Al, Si) N layer improves high temperature hardness and heat resistance, Ti improves high temperature strength, and further The Si component has the effect of further improving the heat resistance. Therefore, the Al highest content point, which has a relatively high Al component content, has excellent high temperature hardness and heat resistance, and high wear resistance with high speed heavy cutting. However, if the Al ratio (X value) at the highest Al content point exceeds 0.85 in terms of the total amount of Ti and Si (atomic ratio), the Ti ratio decreases. After that, the high temperature strength rapidly decreases, and chipping (small chipping) is likely to occur on the cutting edge. On the other hand, if the ratio (X value) is also less than 0.60, the Al ratio becomes too low. Excellent high temperature hardness and heat resistance desired If the Y value indicating the proportion of the Si component is less than 0.01 in terms of the total amount of Al and Ti (atomic ratio), the desired heat resistance improvement effect cannot be obtained. When the Y value exceeds 0.10, the high-temperature strength suddenly decreases, so the X value was set to 0.60 to 0.85, and the Y value was set to 0.01 to 0.10.

(b)Al最低含有点の組成
上記の通りAl最高含有点は高温硬さおよび耐熱性のすぐれたものであるが、反面高温強度の劣るものであるため、このAl最高含有点の高温強度不足を補う目的で、Ti含有割合が相対的に高く、これによって高い高温強度を有するようになるAl最低含有点を厚さ方向に交互に介在させるものであり、したがってAlの割合(A値)がTiとSiとの合量に占める割合(原子比)で0.55を超えると、所望のすぐれた高温強度を確保することができず、一方その割合(A値)が同じく0.40未満では、相対的にTiの割合が多くなり過ぎて、Al最低含有点に所望の高温硬さおよび耐熱性を具備せしめることができなくなることから、その割合を0.40〜0.55と定めたものであり、またSi成分の割合を示すB値は上記のAl最高含有点におけると同じ理由で0.01〜0.10と定めた。
(B) Composition of Al minimum content point As described above, the Al maximum content point is excellent in high-temperature hardness and heat resistance, but on the other hand, it is inferior in high-temperature strength. In order to compensate for this, the content of Ti is relatively high, and thereby the Al minimum content point that has a high high-temperature strength is alternately interposed in the thickness direction. Therefore, the proportion of Al (A value) is If the ratio (atomic ratio) in the total amount of Ti and Si exceeds 0.55, the desired excellent high-temperature strength cannot be ensured, while the ratio (A value) is also less than 0.40. The ratio of Ti is set to 0.40 to 0.55 because the ratio of Ti becomes relatively large and the Al minimum content point cannot be provided with desired high-temperature hardness and heat resistance. And the Si component The B value indicating the ratio was determined to be 0.01 to 0.10 for the same reason as in the above Al highest content point.

(c)Al最高含有点とAl最低含有点間の間隔
その間隔が0.03μm未満ではそれぞれの点を上記の組成で明確に形成することが困難であり、この結果それぞれの層に所望の高温特性および高温強度を確保することができなくなり、またその間隔が0.1μmを越えるとそれぞれの点がもつ欠点、すなわちAl最高含有点であれば高温強度不足、Al最低含有点であれば高温特性不足が層内に局部的に現れ、これが原因で切刃にチッピングが発生し易くなったり、摩耗進行が促進されるようになることから、その間隔を0.03〜0.1μmと定めた。
(C) Interval between the highest Al content point and the lowest Al content point If the distance is less than 0.03 μm, it is difficult to clearly form each point with the above composition. As a result, each layer has a desired high temperature. When it becomes impossible to secure the characteristics and high temperature strength and the interval exceeds 0.1 μm, the disadvantages of each point, that is, when the Al highest content point is insufficient high temperature strength, when the Al minimum content point is high temperature characteristics The shortage appears locally in the layer, which makes it easier for chipping to occur on the cutting edge and promotes the progress of wear. Therefore, the interval was set to 0.03 to 0.1 μm.

(d)平均層厚
その平均層厚が1μm未満では、所望の耐摩耗性を確保することができず、一方その平均層厚が5μmを越えると、切刃にチッピングが発生し易くなることから、その平均層厚を1〜5μmと定めた。
(D) Average layer thickness If the average layer thickness is less than 1 μm, the desired wear resistance cannot be ensured. On the other hand, if the average layer thickness exceeds 5 μm, chipping tends to occur on the cutting edge. The average layer thickness was determined to be 1 to 5 μm.

(B)上部層
(a)上部層の交互積層構造を構成する窒化バナジウム層(VN層)の一層平均層厚
硬質被覆層の上部層の交互積層構造を構成するVN層は、それ自体すぐれた高温強度を有し、VO層の高温強度不足を補うが、VN層の一層平均層厚が0.4μm未満では、上部層の高温強度の改善が十分ではなく、一方その平均層厚が2μmを越えると、難削材の重切削加工において硬質被覆層の上部層に必要とされる潤滑特性(表面滑り性)を十分発揮することができなくなり、また、硬質被覆層の高温硬さも低下することとなり、これが耐摩耗性低下の原因となることから、その平均層厚を0.4〜2μmと定めた。
(B) Upper layer (a) Single layer average layer thickness of vanadium nitride layer (VN layer) constituting alternate layered structure of upper layer VN layer constituting alternate layered structure of upper layer of hard coating layer itself was excellent It has high-temperature strength and compensates for the lack of high-temperature strength of the VO layer. However, if the average layer thickness of the VN layer is less than 0.4 μm, the improvement of the high-temperature strength of the upper layer is not sufficient, while the average layer thickness is 2 μm. If exceeded, the lubricating properties (surface slipperiness) required for the upper layer of the hard coating layer in heavy cutting of difficult-to-cut materials cannot be fully exhibited, and the high temperature hardness of the hard coating layer also decreases. Since this causes a decrease in wear resistance, the average layer thickness was determined to be 0.4 to 2 μm.

(b)上部層の交互積層構造を構成する酸化バナジウム層(VO層)の一層平均層厚
硬質被覆層の上部層の交互積層構造を構成するVO層は、すぐれた表面滑り性を有し、被削材(難削材)および切粉に対する粘着性および反応性がきわめて低く、これは切削時に前記被削材が高温加熱された状態でも変わることなく維持されることから、下部層である(Ti,Al,Si)N層を前記高温加熱された被削材および切粉から保護し、これのチッピング発生を抑制する作用を発揮するが、その平均層厚が0.4μm未満では、前記作用に所望の効果が得られず、一方その平均層厚が2μmを越えて厚くなり過ぎると、VN層との交互積層構造により高温強度を補強したとしてもチッピングが発生し易くなることから、その平均層厚を0.4〜2μmと定めた。
(B) Single layer average layer thickness of the vanadium oxide layer (VO layer) constituting the alternate layer structure of the upper layer The VO layer constituting the alternate layer structure of the upper layer of the hard coating layer has excellent surface slipperiness, The adhesion and reactivity to the work material (difficult-to-cut material) and swarf are extremely low, and this is the lower layer because the work material is maintained without change even when the work material is heated at the time of cutting. Protects the Ti, Al, Si) N layer from the work material and chips heated at high temperature and suppresses the occurrence of chipping. However, when the average layer thickness is less than 0.4 μm, On the other hand, if the average layer thickness exceeds 2 μm, the chipping is likely to occur even if the high temperature strength is reinforced by the alternately laminated structure with the VN layer. Layer thickness is 0.4-2μ m.

(c)上部層の積層構造を構成する酸窒化バナジウム層(VNO層)の一層平均層厚
VNO層は、VNO層上にVO層あるいはVN層を成膜した際に、VO層あるいはVN層の成膜反応性を高めるとともに、成膜時の結晶粒微細化を促進するので、VO層あるいはVN層の耐摩耗性を向上させる作用があり、しかも、VN層とVO層のいずれに対してもすぐれた密着性を有することから、VNO層を、VN層とVO層間に介在させることによって、積層構造の上部層の各層間の密着性・接合強度を改善し、結果として、上部層全体としての高温強度の向上・耐摩耗性の改善に寄与するが、VNO層の一層平均層厚が0.02μm未満では、接合強度・耐摩耗性の改善効果が十分ではなく、一方その平均層厚が0.2μmを越えると、硬質被覆層の上部層に必要とされる表面滑り性を十分発揮することができなくなることから、その平均層厚を0.02〜0.2μmと定めた。
(C) Single layer average layer thickness of vanadium oxynitride layer (VNO layer) constituting the laminated structure of the upper layer The VNO layer is formed by forming a VO layer or a VN layer on the VNO layer. It enhances film formation reactivity and promotes crystal grain refinement during film formation, thus improving the wear resistance of the VO layer or VN layer. In addition, both the VN layer and the VO layer are effective. Since it has excellent adhesion, by interposing the VNO layer between the VN layer and the VO layer, the adhesion / bonding strength between the layers of the upper layer of the laminated structure is improved. As a result, the upper layer as a whole is improved. Although it contributes to the improvement of high temperature strength and wear resistance, if the average layer thickness of the VNO layer is less than 0.02 μm, the effect of improving the bonding strength and wear resistance is not sufficient, while the average layer thickness is 0 Hard coating when exceeding 2μm Since the can not be sufficiently exhibited surface slip properties required for the upper layer, it was determined and the average layer thickness and 0.02~0.2Myuemu.

(d)上部層の全体平均層厚
上部層の全体平均層厚が1μm未満では、難削材の高速重切削加工において、硬質被覆層がすぐれた表面滑り性を十分発揮することができないため、被削材(難削材)および切粉の切刃部表面に対する粘着性・反応性低減効果を期待することはできず、一方、その全体平均層厚が5μmを超えると硬質被覆層の高温硬さが急激に低下し耐摩耗性が不十分になるため、その全体平均層厚を1〜5μmと定めた。
(D) Overall average layer thickness of the upper layer If the overall average layer thickness of the upper layer is less than 1 μm, the high-speed heavy cutting of difficult-to-cut materials cannot sufficiently exhibit the excellent surface slipperiness, It cannot be expected to reduce the adhesion and reactivity of the work material (difficult-to-cut material) and cutting chips to the surface of the cutting edge. On the other hand, if the overall average layer thickness exceeds 5 μm, the hard coating layer is hard Therefore, the overall average layer thickness was determined to be 1 to 5 μm.

この発明の被覆工具は、硬質被覆層を構成する下部層の組成変化(Ti,Al,Si)N層が、すぐれた高温硬さと耐熱性、さらにすぐれた高温強度を有し、かつ、VNO層を介在させた交互積層構造からなる上部層が、上部層全体としてすぐれた表面滑り性、高温強度、耐摩耗性を兼ね備えていることから、硬質被覆層は全体として、すぐれた高温硬さ、耐熱性、高温強度、耐摩耗性および表面滑り性を備え、その結果、特に粘性および粘着性の高いステンレス鋼や高マンガン鋼、さらに軟鋼などの難削材の大きな発熱を伴い、かつ、高負荷のかかる高速重切削加工であっても、すぐれた耐チッピング性を示し、長期に亘ってすぐれた耐摩耗性を発揮するものである。   In the coated tool of the present invention, the composition change (Ti, Al, Si) N layer of the lower layer constituting the hard coating layer has excellent high-temperature hardness and heat resistance, and excellent high-temperature strength, and a VNO layer The upper layer consisting of an alternating layer structure with intervening layers has excellent surface slipperiness, high temperature strength, and wear resistance as the entire upper layer, so the hard coating layer as a whole has excellent high temperature hardness and heat resistance. , High-temperature strength, wear resistance and surface slipperiness, which results in large heat generation of difficult-to-cut materials such as stainless steel, high manganese steel, and mild steel, which are particularly viscous and sticky. Even such high-speed heavy cutting shows excellent chipping resistance and exhibits excellent wear resistance over a long period of time.

つぎに、この発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の工具基体A−1〜A−10を形成した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders are blended in the composition shown in Table 1, wet mixed by a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. Medium, sintered at 1400 ° C for 1 hour, after sintering, WC-based carbide with honing of R: 0.03 on the cutting edge and chip shape of ISO standard CNMG120408 Alloy tool bases A-1 to A-10 were formed.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比で、TiC/TiN=50/50)粉末、MoC粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったTiCN基サーメット製の工具基体B−1〜B−6を形成した。 In addition, as raw material powders, TiCN (mass ratio, TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC, all having an average particle diameter of 0.5 to 2 μm. Prepare powder, Co powder, and Ni powder, mix these raw material powders into the composition shown in Table 2, wet mix for 24 hours with a ball mill, dry, and press-mold into green compact at 100 MPa pressure The green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour. After sintering, the cutting edge portion was subjected to a honing process of R: 0.03 to meet ISO standards / Tool bases B-1 to B-6 made of TiCN base cermet having a chip shape of CNMG120408 were formed.

(a)ついで、上記の工具基体A−1〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、前記回転テーブルを挟んでカソード電極(蒸発源)を設け、その一方にはカソード電極(蒸発源)として金属Vを配置し、また、前記回転テーブルに沿って、かつ前記金属Vのそれぞれから90度離れた位置の一方側にカソード電極(蒸発源)として相対的にAl含有量の高い(Ti含有量の低い)Ti−Al−Si合金、他方側に相対的にTi含有量の高い(Al含有量の低い)Ti−Al−Si合金をカソード電極(蒸発源)として対向配置し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する超硬基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記下部層形成用両Ti−Al−Si合金のうちのいずれか一方とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面を前記Ti−Al−Si合金によってボンバード洗浄し、
(c)ついで,装置内に反応ガスとして窒素ガスを導入して4Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−100Vの直流バイアス電圧を印加して、それぞれのカソード電極(前記Al最高含有点形成用Ti−Al−Si合金およびAl最低含有点形成用Ti−Al−Si合金)とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって前記工具基体の表面に、層厚方向に沿って表3,4に示される目標組成のAl最高含有点とAl最低含有点とが交互に同じく表3,4に示される目標間隔で繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAl(Ti)含有量が連続的に変化する成分濃度分布構造を有し、かつ同じく表3,4に示される目標層厚を有する組成変化(Ti,Al,Si)N層を硬質被覆層の下部層として蒸着形成し、
(d)上記の下部層形成用両Ti−Al−Si合金のカソード電極とアノード電極との間のアーク放電を停止し、装置内の雰囲気を同じく4Paの窒素雰囲気に保持すると共に、工具基体への直流バイアス電圧も同じく−100Vとした条件で、カソード電極の前記金属Vとアノード電極との間に120Aの電流を流してアーク放電を発生させ、もって同じく表3,4に示される目標層厚のVN層を蒸着形成した後、前記金属Vとアノード電極との間のアーク放電を停止し、同時に装置内への窒素ガスの供給を停止し、装置内を約10秒間真空引きし、
(e)その後装置内へ酸素ガスと窒素ガスの混合ガス(但し、O:N=1:2の容量組成比)の供給を開始して蒸着装置内の雰囲気を1.5Paの酸素−窒素混合ガス雰囲気に保持したままで、カソード電極(蒸発源)である金属Vとアノード電極との間に120Aの電流を流してアーク放電を発生させて、もって表3、表4に示される一層目標層厚のVNO層を蒸着形成した後、前記金属Vとアノード電極との間のアーク放電を停止し、同時に装置内へ酸素−窒素混合ガスの供給を停止し、装置内を約10秒間真空引きし、
(f)その後装置内への酸素ガスの供給を開始して蒸着装置内の雰囲気を0.2Paの酸素雰囲気に切り替え、再びカソード電極(蒸発源)である金属Vとアノード電極との間に120Aの電流を流してアーク放電を発生させ、前記VNO層上に、同じく表3、表4に示される一層目標層厚のVO層を蒸着形成した後、前記金属Vとアノード電極との間のアーク放電を停止し、装置内への酸素ガスの供給を停止し、装置内を約10秒間真空引きし
(g)その後装置内へ酸素−窒素混合ガス(O:N=1:2の容量組成比)の供給を開始して蒸着装置内の雰囲気を1.5Paの酸素−窒素混合ガス雰囲気に保持したままで、カソード電極(蒸発源)である金属Vとアノード電極との間に120Aの電流を流してアーク放電を発生させて、もって表3、表4に示される一層目標層厚のVNO層を蒸着形成した後、前記金属Vとアノード電極との間のアーク放電を停止し、同時に装置内へ酸素−窒素混合ガスの供給を停止し、装置内を約10秒間真空引きし、
(h)その後装置内への窒素ガスの供給を開始して蒸着装置内の雰囲気を2Paの窒素雰囲気に保持したままで、カソード電極(蒸発源)である金属Vとアノード電極との間に120Aの電流を流してアーク放電を発生させて、もって表3、表4に示される一層目標層厚のVN層を蒸着形成した後、前記金属Vとアノード電極との間のアーク放電を停止し、同時に装置内への窒素ガスの供給を停止し、装置内を約10秒間真空引きし、
(j)上記手順(e)〜(h)を繰り返し、表3、表4に示される、VNO層を介したVN層とVO層の交互積層構造からなる目標全体層厚の上部層を蒸着形成する。
上記(a)〜(j)により硬質被覆層を蒸着形成し、本発明被覆工具としての本発明表面被覆スローアウエイチップ(以下、本発明被覆チップと云う)1〜16をそれぞれ製造した。
(A) Next, each of the tool bases A-1 to A-10 and B-1 to B-6 is ultrasonically cleaned in acetone and dried, and then the arc ion plating shown in FIG. Attached along the outer periphery at a position that is a predetermined distance in the radial direction from the central axis on the rotary table in the apparatus, a cathode electrode (evaporation source) is provided across the rotary table, and one of the cathode electrodes (evaporation source) The metal V is arranged as a source), and the Al content is relatively high as a cathode electrode (evaporation source) on one side of the position along the rotary table and 90 degrees away from each of the metals V ( Ti-Al-Si alloy with low Ti content), Ti-Al-Si alloy with relatively high Ti content (low Al content) on the other side as a cathode electrode (evaporation source), facing each other,
(B) First, the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, and the inside of the apparatus is heated to 500 ° C. with a heater, and then the carbide substrate that rotates while rotating on the rotary table is set to −1000 V. And a 100 A current is passed between one of the two Ti-Al-Si alloys for forming the lower layer of the cathode electrode and the anode electrode to generate an arc discharge. The surface of the tool substrate is bombarded with the Ti-Al-Si alloy,
(C) Next, nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 4 Pa, and a DC bias voltage of −100 V is applied to the tool base that rotates while rotating on the rotary table. A current of 100 A was passed between the cathode electrode (Ti-Al-Si alloy for forming the highest Al content point and Ti-Al-Si alloy for forming the lowest Al content point) and the anode electrode to generate an arc discharge, Accordingly, the highest Al content point and the lowest Al content point of the target composition shown in Tables 3 and 4 are alternately repeated at the target intervals shown in Tables 3 and 4 along the layer thickness direction on the surface of the tool base. And a component concentration distribution structure in which the Al (Ti) content continuously changes from the Al highest content point to the Al lowest content point, from the Al lowest content point to the Al highest content point, One also change in composition with a target layer thickness shown in Table 3,4 (Ti, Al, Si) N layer were vapor deposited as the lower layer of the hard coating layer,
(D) The arc discharge between the cathode electrode and the anode electrode of the both Ti-Al-Si alloys for forming the lower layer is stopped, and the atmosphere in the apparatus is similarly maintained in a 4 Pa nitrogen atmosphere, and to the tool substrate. Similarly, under the condition that the DC bias voltage is -100 V, a current of 120 A is passed between the metal V of the cathode electrode and the anode electrode to generate arc discharge, and the target layer thicknesses shown in Tables 3 and 4 are also shown. After the VN layer was deposited, the arc discharge between the metal V and the anode electrode was stopped, and at the same time, the supply of nitrogen gas into the apparatus was stopped, and the inside of the apparatus was evacuated for about 10 seconds,
(E) Thereafter, supply of a mixed gas of oxygen gas and nitrogen gas (however, a volume composition ratio of O 2 : N 2 = 1: 2) into the apparatus was started, and the atmosphere in the vapor deposition apparatus was changed to 1.5 Pa of oxygen − While maintaining the nitrogen mixed gas atmosphere, a current of 120 A is passed between the cathode V (evaporation source) metal V and the anode electrode to generate arc discharge, and thus the single layer shown in Tables 3 and 4 After the VNO layer having the target layer thickness is formed by vapor deposition, the arc discharge between the metal V and the anode electrode is stopped. At the same time, the supply of the oxygen-nitrogen mixed gas is stopped into the apparatus, and the apparatus is evacuated for about 10 seconds. Pull,
(F) Thereafter, supply of oxygen gas into the apparatus is started to switch the atmosphere in the vapor deposition apparatus to an oxygen atmosphere of 0.2 Pa, and again 120 A between the metal V as the cathode electrode (evaporation source) and the anode electrode. Then, an arc discharge is generated by depositing a VO layer having a target layer thickness shown in Tables 3 and 4 on the VNO layer, and then an arc between the metal V and the anode electrode is formed. The discharge is stopped, the supply of oxygen gas into the apparatus is stopped, the inside of the apparatus is evacuated for about 10 seconds (g), and then the oxygen-nitrogen mixed gas (O 2 : N 2 = 1: 2 capacity) is entered into the apparatus. (Composition ratio) was started, and the atmosphere in the vapor deposition apparatus was maintained in a 1.5 Pa oxygen-nitrogen mixed gas atmosphere, while 120 A of the cathode V (evaporation source) was placed between the metal V and the anode electrode. An electric current is passed to generate an arc discharge, Thus, after the VNO layer having the target layer thickness shown in Tables 3 and 4 is formed by vapor deposition, the arc discharge between the metal V and the anode electrode is stopped, and at the same time, the oxygen-nitrogen mixed gas is supplied into the apparatus. Stop and evacuate the device for about 10 seconds,
(H) Thereafter, supply of nitrogen gas into the apparatus is started, and the atmosphere in the vapor deposition apparatus is kept at a nitrogen atmosphere of 2 Pa, and 120 A is provided between the metal V as the cathode electrode (evaporation source) and the anode electrode. Then, arc discharge is caused to flow, and after VN layer having a target layer thickness shown in Tables 3 and 4 is formed by vapor deposition, arc discharge between the metal V and the anode electrode is stopped, At the same time, the supply of nitrogen gas into the apparatus is stopped, the inside of the apparatus is evacuated for about 10 seconds,
(J) The above steps (e) to (h) are repeated, and an upper layer having a target total layer thickness consisting of an alternately laminated structure of VN layers and VO layers through VNO layers as shown in Tables 3 and 4 is formed by vapor deposition. To do.
Hard coating layers were formed by vapor deposition according to the above (a) to (j), and surface coating throwaway tips (hereinafter referred to as the present invention coated tips) 1 to 16 as the present invention coated tools were produced, respectively.

また、比較の目的で、
(a)上記の工具基体A1〜A10およびB1〜B6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図2に示されるアークイオンプレーティング装置内の回転テーブル上に外周部にそって装着し、一方側のカソード電極(蒸発源)として、種々の成分組成をもったAl最低含有点形成用Ti−Al−Si合金、他方側のカソード電極(蒸発源)として、種々の成分組成をもったAl最高含有点形成用Ti−Al−Si合金を前記回転テーブルを挟んで対向配置し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記工具基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記両Ti−Al−Si合金のうちのいずれか一方とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面を前記Ti−Al−Si合金でボンバード洗浄し、
(c)ついで、装置内に反応ガスとして窒素ガスを導入して4Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−100Vの直流バイアス電圧を印加して、それぞれのカソード電極(前記Al最低含有点形成用Ti−Al−Si合金およびAl最高含有点形成用Ti−Al−Si合金)とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって前記工具基体の表面に、層厚方向に沿って表5,6に示される目標組成のAl最低含有点とAl最高含有点とが交互に同じく表5,6に示される目標間隔で繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAl(Ti)含有量が連続的に変化する成分濃度分布構造を有し、かつ同じく表5,6に示される目標層厚の上記本発明被覆チップの下部層に相当する組成変化(Ti,Al,Si)N層を硬質被覆層として蒸着することにより、従来被覆工具としての従来表面被覆スローアウエイチップ(以下、従来被覆チップと云う)1〜16をそれぞれ製造した。
For comparison purposes,
(A) Each of the above-mentioned tool bases A1 to A10 and B1 to B6 is ultrasonically cleaned in acetone and dried, and on the rotating table in the arc ion plating apparatus shown in FIG. Therefore, as the cathode electrode (evaporation source) on one side, various components are used as the Ti-Al-Si alloy for forming the lowest Al content point with various component compositions and the cathode electrode (evaporation source) on the other side. A Ti-Al-Si alloy for forming the highest Al content point having a composition is disposed oppositely across the rotary table,
(B) First, the inside of the apparatus was heated to 500 ° C. with a heater while the inside of the apparatus was evacuated and maintained at a vacuum of 0.1 Pa or less, and then a −1000 V DC bias voltage was applied to the tool base, and the cathode An arc discharge is generated by passing a current of 100 A between one of the two Ti—Al—Si alloys of the electrode and the anode electrode, and the tool substrate surface is bombarded with the Ti—Al—Si alloy. And
(C) Next, nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 4 Pa, and a DC bias voltage of −100 V is applied to the tool base that rotates while rotating on the rotary table. A current of 100 A was passed between the cathode electrode (the Ti-Al-Si alloy for forming the lowest Al content point and the Ti-Al-Si alloy for forming the highest Al content point) and the anode electrode to generate an arc discharge, Therefore, the lowest Al content point and the highest Al content point of the target composition shown in Tables 5 and 6 are alternately repeated at the target intervals shown in Tables 5 and 6 along the layer thickness direction on the surface of the tool base. And a component concentration distribution structure in which the Al (Ti) content continuously changes from the Al highest content point to the Al lowest content point, from the Al lowest content point to the Al highest content point, Similarly, the composition change (Ti, Al, Si) N layer corresponding to the lower layer of the coated chip of the present invention having the target layer thickness shown in Tables 5 and 6 is vapor-deposited as a hard coating layer. Conventional surface-coated throwaway chips (hereinafter referred to as conventional coated chips) 1 to 16 were produced.

つぎに、上記の各種の被覆チップを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆チップ1〜16および従来被覆チップ1〜16について、
被削材:JIS・SUS316の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 320 m/min.、
切り込み: 4 mm、
送り: 0.25 mm/rev.、
切削時間: 5 分、
の条件(切削条件A)でステンレス鋼の乾式断続高切り込み切削加工試験(通常の切削速度および切り込み量は、それぞれ230m/min.、1.5mm)、
被削材:JIS・S15Cの丸棒、
切削速度: 300 m/min.、
切り込み: 4 mm、
送り: 0.3 mm/rev.、
切削時間: 10 分、
の条件(切削条件B)での軟鋼の乾式連続高切り込み切削加工試験(通常の切削速度および切り込み量は、それぞれ210m/min.、1.5mm)、
被削材:JIS・SCMnH1の丸棒、
切削速度: 350 m/min.、
切り込み: 1.5 mm、
送り: 0.50 mm/rev.、
切削時間: 5 分、
の条件(切削条件C)での高マンガン鋼の乾式連続高送り切削加工試験(通常の切削速度および送りは、それぞれ260m/min.、0.25mm/rev.)、を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表7に示した。
Next, in the state where each of the above various coated chips is screwed to the tip of the tool steel tool with a fixing jig, the present coated chips 1 to 16 and the conventional coated chips 1 to 16 are as follows.
Work material: JIS / SUS316 lengthwise equidistant 4 round grooved round bars,
Cutting speed: 320 m / min. ,
Cutting depth: 4 mm,
Feed: 0.25 mm / rev. ,
Cutting time: 5 minutes,
In the above condition (cutting condition A), a stainless steel dry interrupted high cutting test (normal cutting speed and cutting amount are 230 m / min. And 1.5 mm, respectively),
Work material: JIS / S15C round bar,
Cutting speed: 300 m / min. ,
Cutting depth: 4 mm,
Feed: 0.3 mm / rev. ,
Cutting time: 10 minutes,
Dry continuous high-cut cutting test of mild steel under the above conditions (cutting condition B) (normal cutting speed and cutting amount are 210 m / min. And 1.5 mm, respectively),
Work material: JIS / SCMnH1 round bar,
Cutting speed: 350 m / min. ,
Cutting depth: 1.5 mm,
Feed: 0.50 mm / rev. ,
Cutting time: 5 minutes,
The dry continuous high-feed cutting test (normal cutting speed and feed are 260 m / min. And 0.25 mm / rev., Respectively) of high manganese steel under the above conditions (cutting condition C). In the test, the flank wear width of the cutting edge was also measured. The measurement results are shown in Table 7.

Figure 2007290090
Figure 2007290090

Figure 2007290090
Figure 2007290090

Figure 2007290090
Figure 2007290090

Figure 2007290090
Figure 2007290090

Figure 2007290090
Figure 2007290090

Figure 2007290090
Figure 2007290090

Figure 2007290090
Figure 2007290090

原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C[質量比で、TiC/WC=50/50]粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表8に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mm、13mm、および26mmの3種の工具基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表7に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角30度の4枚刃スクエア形状をもったWC基超硬合金製の工具基体(エンドミル)C−1〜C−8をそれぞれ製造した。 As raw material powders, medium coarse WC powder having an average particle diameter of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, ZrC of 1.2 μm Powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C [by mass ratio, TiC / WC = 50/50] powder, and 1 Prepare 8 μm Co powder, mix these raw material powders with the composition shown in Table 8, add wax, ball mill in acetone for 24 hours, dry under reduced pressure, and press at a pressure of 100 MPa. The green compacts were press-molded, and these green compacts were heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a rate of temperature increase of 7 ° C./min in a 6 Pa vacuum atmosphere. After holding at temperature for 1 hour, sintering under furnace cooling conditions Then, three types of round rod sintered bodies for forming a tool base having diameters of 8 mm, 13 mm, and 26 mm are formed, and further, the three types of round bar sintered bodies are ground and are shown in Table 7. Made of WC-base cemented carbide with a combination of 4 blade square shape with diameter and length of 6mm × 13mm, 10mm × 22mm, and 20mm × 45mm respectively, and a twist angle of 30 degrees. Tool bases (end mills) C-1 to C-8 were produced.

ついで、これらの工具基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、層厚方向に沿って表9に示される目標組成のAl最低含有点とAl最高含有点とが交互に同じく表9に示される目標間隔で繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAl(Ti)含有量が連続的に変化する成分濃度分布構造を有し、かつ同じく表9に示される目標層厚の組成変化(Ti,Al,Si)N層からなる下部層、および、同じく表9に示される一層目標層厚のVN層とVNO層とVO層との交互積層構造からなる(目標全体層厚の)上部層で構成された硬質被覆層を蒸着形成することにより、本発明被覆工具としての本発明表面被覆超硬製エンドミル(以下、本発明被覆エンドミルと云う)1〜8をそれぞれ製造した。   Subsequently, the surfaces of these tool bases (end mills) C-1 to C-8 were ultrasonically cleaned in acetone and dried, and then charged into the arc ion plating apparatus shown in FIG. Under the same conditions as in Example 1, the Al lowest content point and the Al highest content point of the target composition shown in Table 9 along the layer thickness direction are alternately repeated at the target interval shown in Table 9, and It has a component concentration distribution structure in which the Al (Ti) content continuously changes from the highest Al content point to the lowest Al content point, from the lowest Al content point to the highest Al content point, and is also shown in Table 9 Composition of target layer thickness (Ti, Al, Si) It is composed of a lower layer composed of an N layer, and an alternately laminated structure of a VN layer, a VNO layer and a VO layer having a target layer thickness shown in Table 9 (target) Consists of upper layer (total thickness) By depositing form a hard coating layer, the present invention surface-coated cemented carbide end mills of the present invention coated tool (hereinafter, the present invention refers to the coating end mill) 1-8 were prepared, respectively.

また、比較の目的で、上記の工具基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、層厚方向に沿って表10に示される目標組成のAl最低含有点とAl最高含有点とが交互に同じく表10に示される目標間隔で繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAl(Ti)含有量が連続的に変化する成分濃度分布構造を有し、かつ同じく表10に示される目標層厚の上記本発明被覆エンドミルの下部層に相当する組成変化(Ti,Al,Si)N層を硬質被覆層として蒸着することにより、従来被覆工具としての従来表面被覆超硬製エンドミル(以下、従来被覆エンドミルと云う)1〜8をそれぞれ製造した。   For the purpose of comparison, the surfaces of the tool bases (end mills) C-1 to C-8 are ultrasonically cleaned in acetone and dried, and then mounted on the arc ion plating apparatus shown in FIG. Then, under the same conditions as in Example 1, the lowest Al content point and the highest Al content point of the target composition shown in Table 10 along the layer thickness direction are alternately repeated at the target interval shown in Table 10 as well. And having a component concentration distribution structure in which the Al (Ti) content continuously changes from the Al highest content point to the Al lowest content point, from the Al lowest content point to the Al highest content point, and The composition change (Ti, Al, Si) N layer corresponding to the lower layer of the above-described coated end mill of the present invention having the target layer thickness shown in Table 10 is deposited as a hard coating layer, thereby allowing a conventional surface coating tool as a conventional coating tool. Hard made Mills (hereinafter, conventional coating end mill called) was 1-8 were prepared, respectively.

つぎに、上記本発明被覆エンドミル1〜8および従来被覆エンドミル1〜8のうち、
本発明被覆エンドミル1〜3および従来被覆エンドミル1〜3については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SUS316の板材、
切削速度: 120 m/min.、
溝深さ(切り込み): 5 mm、
テーブル送り: 200 mm/分、
の条件でのステンレス鋼の乾式高切り込み溝切削加工試験(通常の切削速度および溝深さは、それぞれ60m/min.、3mm)、
本発明被覆エンドミル4〜6および従来被覆エンドミル4〜6については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・S15Cの板材、
切削速度: 120 m/min.、
溝深さ(切り込み): 4 mm、
テーブル送り: 240 mm/分、
の条件での軟鋼の乾式高送り溝切削加工試験(通常の切削速度およびテーブル送りは、それぞれ70m/min.、120mm/分)、
本発明被覆エンドミル7,8および従来被覆エンドミル7,8については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SCMnH1の板材、
切削速度: 120 m/min.、
溝深さ(切り込み): 15 mm、
テーブル送り: 200 mm/分、
の条件での高マンガン鋼の乾式高切り込み溝切削加工試験(通常の切削速度および溝深さは、それぞれ60m/min.、10mm)をそれぞれ行い、いずれの溝切削加工試験でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。この測定結果を表9,10にそれぞれ示した。
Next, of the present invention coated end mills 1-8 and the conventional coated end mills 1-8,
About this invention coated end mills 1-3 and conventional coated end mills 1-3,
Work material-Plane dimensions: 100 mm x 250 mm, thickness: 50 mm JIS / SUS316 plate material,
Cutting speed: 120 m / min. ,
Groove depth (cut): 5 mm,
Table feed: 200 mm / min,
Stainless steel dry-type high-groove grooving test (normal cutting speed and groove depth are 60 m / min. And 3 mm, respectively),
About this invention coated end mills 4-6 and conventional coated end mills 4-6,
Work material-planar dimensions: 100 mm x 250 mm, thickness: 50 mm JIS / S15C plate,
Cutting speed: 120 m / min. ,
Groove depth (cut): 4 mm,
Table feed: 240 mm / min,
Dry high-grooving groove cutting test of mild steel under the conditions (normal cutting speed and table feed are 70 m / min. And 120 mm / min, respectively)
For the coated end mills 7 and 8 of the present invention and the conventional coated end mills 7 and 8,
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SCMnH1 plate material,
Cutting speed: 120 m / min. ,
Groove depth (cut): 15 mm,
Table feed: 200 mm / min,
A high-manganese steel dry high-groove grooving test (normal cutting speed and groove depth is 60 m / min., 10 mm, respectively) under the conditions described above. The cutting groove length was measured until the flank wear width of the blade reached 0.1 mm, which is a guide for the service life. The measurement results are shown in Tables 9 and 10, respectively.

Figure 2007290090
Figure 2007290090

Figure 2007290090
Figure 2007290090

Figure 2007290090
Figure 2007290090

上記の実施例2で製造した直径が8mm(工具基体C−1〜C−3形成用)、13mm(工具基体C−4〜C−6形成用)、および26mm(工具基体C−7、C−8形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ4mm×13mm(工具基体D−1〜D−3)、8mm×22mm(工具基体D−4〜D−6)、および16mm×45mm(工具基体D−7、D−8)の寸法、並びにいずれもねじれ角30度の2枚刃形状をもったWC基超硬合金製の工具基体(ドリル)D−1〜D−8をそれぞれ製造した。   The diameters produced in Example 2 above were 8 mm (for forming the tool bases C-1 to C-3), 13 mm (for forming the tool bases C-4 to C-6), and 26 mm (tool bases C-7 and C). -8 for forming), and from these three types of round bar sintered bodies, the diameter x length of the groove forming part is 4 mm x 13 mm (tool base D) by grinding. −1 to D-3), 8 mm × 22 mm (tool base D-4 to D-6), and 16 mm × 45 mm (tool bases D-7 and D-8), and all having a twist angle of 30 degrees 2 WC-base cemented carbide tool bases (drills) D-1 to D-8 having a single-blade shape were produced, respectively.

ついで、これらの超硬基体(ドリル)D−1〜D−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、層厚方向に沿って表11に示される目標組成のAl最低含有点とAl最高含有点とが交互に同じく表11に示される目標間隔で繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAl(Ti)含有量が連続的に変化する成分濃度分布構造を有し、かつ同じく表11に示される目標層厚の組成変化(Ti,Al,Si)N層からなる下部層、および、同じく表11に示される一層目標層厚の、VNO層を介したVN層およびVO層の交互積層構造からなる(目標全体層厚の)上部層で構成された硬質被覆層を蒸着形成することにより、本発明被覆工具としての本発明表面被覆超硬製ドリル(以下、本発明被覆ドリルと云う)1〜8をそれぞれ製造した。   Next, the cutting edges of these carbide substrates (drills) D-1 to D-8 are subjected to honing, ultrasonically cleaned in acetone and dried, and the arc ion plating apparatus shown in FIG. 1 is also used. In the same conditions as in Example 1 above, the target minimum distance between the Al minimum content point and the Al maximum content point of the target composition shown in Table 11 along the layer thickness direction is also shown in Table 11 alternately. And having a component concentration distribution structure in which the Al (Ti) content continuously changes from the Al highest content point to the Al lowest content point, from the Al lowest content point to the Al highest content point, And the composition change (Ti, Al, Si) N layer of the target layer thickness also shown in Table 11 and the VN layer and VO through the VNO layer of the single target layer thickness also shown in Table 11 From the alternating layered structure of layers The surface-coated carbide drill of the present invention (hereinafter referred to as the present invention-coated drill) 1 to 1 as the present invention-coated tool is formed by vapor-depositing a hard coating layer composed of an upper layer (with a target total layer thickness). 8 were produced respectively.

また、比較の目的で、上記の工具基体(ドリル)D−1〜D−8の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、層厚方向に沿って表12に示される目標組成のAl最低含有点とAl最高含有点とが交互に同じく表12に示される目標間隔で繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAl(Ti)含有量が連続的に変化する成分濃度分布構造を有し、かつ同じく表12に示される目標層厚の上記本発明被覆ドリルの下部層に相当する組成変化(Ti,Al,Si)N層を硬質被覆層として蒸着形成することにより、従来被覆工具としての従来表面被覆超硬製ドリル(以下、従来被覆ドリルと云う)1〜8をそれぞれ製造した。   For the purpose of comparison, the surface of the tool base (drill) D-1 to D-8 is subjected to honing, ultrasonically cleaned in acetone and dried, and the arc ions shown in FIG. In the plating apparatus, under the same conditions as in Example 1 above, the Al minimum content point and the Al maximum content point of the target composition shown in Table 12 along the layer thickness direction are also shown in Table 12 alternately. And a component concentration distribution structure in which the Al (Ti) content continuously changes from the highest Al content point to the lowest Al content point and from the lowest Al content point to the highest Al content point. And a conventional coated tool by depositing a composition change (Ti, Al, Si) N layer corresponding to the lower layer of the above-described coated drill of the present invention having the target layer thickness shown in Table 12 as a hard coating layer. As conventional Surface coated cemented carbide drills (hereinafter, conventional coating drill called) was 1-8 were prepared, respectively.

つぎに、上記本発明被覆ドリル1〜8および従来被覆ドリル1〜8のうち、
本発明被覆ドリル1〜3および従来被覆ドリル1〜3については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SUS316の板材、
切削速度: 100 m/min.、
送り: 0.40 mm/rev、
穴深さ: 8 mm、
の条件でのステンレス鋼の湿式高速穴あけ切削加工試験(通常の切削速度および送りは、それぞれ60m/min.、0.25mm/rev)、
本発明被覆ドリル4〜6および従来被覆ドリル4〜6については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・S15Cの板材、
切削速度: 160 m/min.、
送り: 0.40 mm/rev、
穴深さ: 20 mm、
の条件での軟鋼の湿式高速穴あけ切削加工試験(通常の切削速度および送りは、それぞれ90m/min.、0.25mm/rev)、
本発明被覆ドリル7,8および従来被覆ドリル7,8については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SCMnH1の板材、
切削速度: 200 m/min.、
送り: 0.40 mm/rev、
穴深さ: 28 mm、
の条件でのマンガン鋼の湿式高速穴あけ切削加工試験(通常の切削速度および送りは、それぞれ110m/min.、0.20mm/rev)、
をそれぞれ行い、いずれの湿式高速穴あけ切削加工試験(水溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表11,12にそれぞれ示した。
Next, among the above-mentioned present invention coated drills 1-8 and conventional coated drills 1-8,
About this invention coated drill 1-3 and conventional coated drill 1-3,
Work material-Plane dimensions: 100 mm x 250 mm, thickness: 50 mm JIS / SUS316 plate material,
Cutting speed: 100 m / min. ,
Feed: 0.40 mm / rev,
Hole depth: 8 mm,
Wet high-speed drilling test of stainless steel under the following conditions (normal cutting speed and feed are 60 m / min. And 0.25 mm / rev, respectively)
About this invention coated drill 4-6 and conventional coated drills 4-6,
Work material-planar dimensions: 100 mm x 250 mm, thickness: 50 mm JIS / S15C plate,
Cutting speed: 160 m / min. ,
Feed: 0.40 mm / rev,
Hole depth: 20 mm,
Wet high-speed drilling test of mild steel under the following conditions (normal cutting speed and feed are 90 m / min. And 0.25 mm / rev, respectively)
About this invention covering drills 7 and 8 and conventional covering drills 7 and 8,
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SCMnH1 plate material,
Cutting speed: 200 m / min. ,
Feed: 0.40 mm / rev,
Hole depth: 28 mm,
Wet high-speed drilling test of manganese steel under the conditions (normal cutting speed and feed are 110 m / min. And 0.20 mm / rev, respectively)
In each wet high-speed drilling test (using water-soluble cutting oil), the number of drilling processes until the flank wear width of the tip cutting edge surface reached 0.3 mm was measured. The measurement results are shown in Tables 11 and 12, respectively.

Figure 2007290090
Figure 2007290090

Figure 2007290090
Figure 2007290090

この結果得られた本発明被覆工具としての本発明被覆チップ1〜16、本発明被覆エンドミル1〜8、および本発明被覆ドリル1〜8の硬質被覆層を構成する組成変化(Ti,Al,Si)N層(下部層)、並びに従来被覆超硬工具としての従来被覆チップ1〜16、従来被覆エンドミル1〜8、および従来被覆ドリル1〜8の硬質被覆層である組成変化(Ti,Al,Si)N層のAl最低含有点およびAl最高含有点の組成を、透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、それぞれ目標組成のAl最低含有点およびAl最高含有点と実質的に同じ組成を示した。
さらに、本発明被覆工具の硬質被覆層の上部層を構成する窒化バナジウム層、酸窒化バナジウム層、酸化バナジウム層の組成を同じく透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、窒化バナジウム層はVNを主体とする組織、酸窒化バナジウム層はVNOを主体とする組織、また、酸化バナジウム層は、VOを主体とし、これにVおよびVOなどを含有する混合組織を示した。
As a result, the composition change (Ti, Al, Si) constituting the hard coating layers of the present coated chips 1 to 16, the present coated end mills 1 to 8, and the present coated drills 1 to 8 as the present coated tool obtained as a result. ) N layer (lower layer), as well as composition changes (Ti, Al, conventional coating tip 1 to 16 as conventional coated carbide tool, conventional coated end mills 1 to 8 and conventional coated drills 1 to 8 as hard coated layers) The composition of the Al minimum content point and the Al maximum content point of the Si) N layer was measured by energy dispersive X-ray analysis using a transmission electron microscope. And substantially the same composition.
Furthermore, when the composition of the vanadium nitride layer, vanadium oxynitride layer, and vanadium oxide layer constituting the upper layer of the hard coating layer of the coated tool of the present invention was measured by energy dispersive X-ray analysis using a transmission electron microscope, The vanadium nitride layer is composed mainly of VN, the vanadium oxynitride layer is composed mainly of VNO, and the vanadium oxide layer is composed mainly of VO, which contains V 2 O 3 and VO 2. Showed the organization.

また、上記の硬質被覆層の下部層の平均層厚、交互積層構造の上部層を構成する窒化バナジウム層、酸窒化バナジウム層および酸化バナジウム層の一層平均層厚、上部層の全体層厚を走査型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。   In addition, the average layer thickness of the lower layer of the hard coating layer, the average layer thickness of the vanadium nitride layer, vanadium oxynitride layer and vanadium oxide layer constituting the upper layer of the alternately laminated structure, and the total thickness of the upper layer are scanned. When a cross-section was measured using a scanning electron microscope, all showed an average value (average value of five locations) substantially the same as the target layer thickness.

表3〜7、8〜12に示される結果から、本発明被覆工具は、いずれも特に粘性および粘着性の高いステンレス鋼や高マンガン鋼、さらに軟鋼などの難削材の高熱発生を伴う高速条件下、かつ、高切り込みや高送りなどの重切削条件下での高速重切削加工でも、硬質被覆層の下部層である組成変化(Ti,Al,Si)N層が、すぐれた高温硬さと耐熱性、さらにすぐれた高温強度を有し、かつ、酸窒化バナジウム層を介在した窒化バナジウム層と酸化バナジウム層の交互積層構造からなる上部層によって、前記被削材および切粉との間のすぐれた表面滑り性が確保されると同時に上部層全体としてすぐれた高温強度、耐摩耗性が保持されていることによって、チッピングの発生なく、長期に亘ってすぐれた耐摩耗性を発揮する。これに対して、硬質被覆層が組成変化(Ti,Al,Si)N層で構成された従来被覆工具においては、いずれも前記難削材の高速重切削加工では、高熱発生を伴うことにより、被削材(難削材)および切粉と前記硬質被覆層との粘着性および反応性がより一段と高くなり、これが原因で切刃部にチッピングが発生するようになり、比較的短時間で使用寿命に至ることが明らかである。   From the results shown in Tables 3 to 7 and 8 to 12, the coated tools of the present invention are all high speed conditions accompanied by high heat generation of difficult-to-cut materials such as stainless steel, high manganese steel, and mild steel, which are particularly highly viscous and sticky. The composition change (Ti, Al, Si) N layer, which is the lower layer of the hard coating layer, has excellent high-temperature hardness and heat resistance even in high-speed heavy cutting under heavy cutting conditions such as high cutting and high feed. In addition, it has excellent high-temperature strength, and is superior between the work material and the chips by the upper layer composed of an alternately laminated structure of vanadium nitride layers and vanadium oxide layers with vanadium oxynitride layers interposed therebetween. Since the surface slipperiness is ensured and at the same time the high temperature strength and wear resistance of the entire upper layer are maintained, excellent wear resistance is exhibited over a long period of time without occurrence of chipping. On the other hand, in the conventional coated tool in which the hard coating layer is composed of a composition change (Ti, Al, Si) N layer, both are accompanied by high heat generation in the high-speed heavy cutting of the difficult-to-cut material. The adhesiveness and reactivity between the work material (difficult-to-cut material) and chips and the hard coating layer are further increased, and this causes chipping at the cutting edge, which can be used in a relatively short time. It is clear that it will reach the end of its life.

上述のように、この発明の被覆工具は、一般鋼や普通鋳鉄などの切削加工は勿論のこと、高い発熱を伴い、かつ、切刃部に局部的に高負荷がかかる難削材の高速重切削加工に用いた場合でも、すぐれた耐チッピング性を発揮し、長期に亘ってすぐれた切削性能を示すものであるから、切削加工装置のFA化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention is not only for cutting of general steel and ordinary cast iron, but also has high heat generation, and the high-speed heavy load of difficult-to-cut materials in which a high load is locally applied to the cutting edge. Even when used for cutting, it exhibits excellent chipping resistance and exhibits excellent cutting performance over a long period of time. It can cope with cost reductions with sufficient satisfaction.

本発明被覆工具を構成する硬質被覆層を形成するのに用いたアークイオンプレーティング装置を示し、(a)は概略平面図、(b)は概略正面図である。The arc ion plating apparatus used for forming the hard coating layer which comprises this invention coated tool is shown, (a) is a schematic plan view, (b) is a schematic front view. 従来被覆工具を構成する硬質被覆層を形成するのに用いたアークイオンプレーティング装置を示し、(a)は概略平面図、(b)は概略正面図である。The arc ion plating apparatus used for forming the hard coating layer which comprises a conventional coating tool is shown, (a) is a schematic plan view, (b) is a schematic front view.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a)1〜5μmの平均層厚を有し、かつ、層厚方向にそって、Al最高含有点とAl最低含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAlおよびTi含有量がそれぞれ連続的に変化する成分濃度分布構造を有し、
さらに、上記Al最高含有点が、組成式:(Ti1−X−YAlSi)N(ただし、原子比で、Xは0.60〜0.85、Yは0.01〜0.1を示す)、
上記Al最低含有点が、組成式:(Ti1−A−BAlSi)N(ただし、原子比で、Aは0.40〜0.55、Bは0.01〜0.1を示す)、
を満足し、かつ隣り合う上記Al最高含有点とAl最低含有点の間隔が、0.03〜0.1μmであるTiとAlとSiの複合窒化物層からなる下部層、
(b)0.4〜2μmの一層平均層厚を有する窒化バナジウム層と0.4〜2μmの一層平均層厚を有する酸化バナジウム層の交互積層構造からなり、かつ、窒化バナジウム層と酸化バナジウム層の各層間には0.02〜0.2μmの一層平均層厚を有する酸窒化バナジウム層を介在させた、1〜5μmの全体平均層厚を有する上部層、
以上(a)、(b)で構成された硬質被覆層を形成してなる、難削材の高速重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具。

On the surface of the tool base composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(A) It has an average layer thickness of 1 to 5 μm, and along the layer thickness direction, Al maximum content points and Al minimum content points are alternately present at predetermined intervals, and the Al maximum content A component concentration distribution structure in which the Al and Ti contents continuously change from the point to the Al minimum content point, from the Al minimum content point to the Al maximum content point,
Furthermore, the Al highest content point is the composition formula: (Ti 1-XY Al X Si Y ) N (wherein the atomic ratio, X is 0.60 to 0.85, and Y is 0.01 to 0.00. 1),
The Al minimum content point is a composition formula: (Ti 1-A B Al A Si B ) N (where A is 0.40 to 0.55 and B is 0.01 to 0.1 in terms of atomic ratio). Show),
A lower layer composed of a composite nitride layer of Ti, Al, and Si, in which the interval between the Al highest content point and the Al lowest content point adjacent to each other is 0.03 to 0.1 μm,
(B) a vanadium nitride layer having a single layer average layer thickness of 0.4 to 2 μm and a vanadium oxide layer having a single layer average layer thickness of 0.4 to 2 μm, and a vanadium nitride layer and a vanadium oxide layer; An upper layer having an overall average layer thickness of 1 to 5 μm, with a vanadium oxynitride layer having an average layer thickness of 0.02 to 0.2 μm interposed between each of the layers,
A surface-coated cutting tool that exhibits a chipping resistance with excellent hard coating layer in high-speed heavy cutting of difficult-to-cut materials, formed by forming the hard coating layer composed of (a) and (b) above.

JP2006122624A 2006-04-26 2006-04-26 Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting difficult-to-cut material Withdrawn JP2007290090A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006122624A JP2007290090A (en) 2006-04-26 2006-04-26 Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting difficult-to-cut material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006122624A JP2007290090A (en) 2006-04-26 2006-04-26 Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting difficult-to-cut material

Publications (1)

Publication Number Publication Date
JP2007290090A true JP2007290090A (en) 2007-11-08

Family

ID=38761213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006122624A Withdrawn JP2007290090A (en) 2006-04-26 2006-04-26 Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting difficult-to-cut material

Country Status (1)

Country Link
JP (1) JP2007290090A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT505759B1 (en) * 2007-11-22 2009-04-15 Boehlerit Gmbh & Co Kg ROTATING CUTTING TOOL FOR EDITING WOOD
JP2015016512A (en) * 2013-07-09 2015-01-29 三菱マテリアル株式会社 Surface-coated cutting tool with hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting
JPWO2015186503A1 (en) * 2014-06-06 2017-04-20 住友電工ハードメタル株式会社 Surface coating tool and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT505759B1 (en) * 2007-11-22 2009-04-15 Boehlerit Gmbh & Co Kg ROTATING CUTTING TOOL FOR EDITING WOOD
JP2015016512A (en) * 2013-07-09 2015-01-29 三菱マテリアル株式会社 Surface-coated cutting tool with hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting
JPWO2015186503A1 (en) * 2014-06-06 2017-04-20 住友電工ハードメタル株式会社 Surface coating tool and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2009101491A (en) Surface-coated cutting tool having hard coating layer exerting excellent lubricity and wear resistance in high-speed cutting
JP2007290090A (en) Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting difficult-to-cut material
JP2007038378A (en) Surface-coated cemented-carbide cutting tool with hard coating layer capable of showing excellent chipping resistance in high speed cutting of difficult-to-cut material
JP2007290091A (en) Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting difficult-to-cut material
JP2007021650A (en) Cutting tool made of surface coated cemented carbide having coated layer exhibiting excellent chipping resistance in heavy cutting work of hard-to-cut material
JP2007030100A (en) Cutting tool made of surface coated cemented carbide having hard coated layer exhibiting excellent chipping resistance in hard cutting of material hard to cut
JP4849221B2 (en) Surface coated cutting tool with excellent chipping resistance with hard coating layer in heavy cutting of difficult-to-cut materials
JP4682826B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer in heavy cutting of difficult-to-cut materials
JP2007313582A (en) Surface-coated cutting tool having hard coating layer with excellent chipping resistance in heavy cutting difficult-to-cut material
JP4682827B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer in heavy cutting of difficult-to-cut materials
JP2008188739A (en) Surface-coated cutting tool in which hard coating layer shows excellent chipping resistance in heavy cutting of difficult-to-cut material
JP2007144595A (en) Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in heavy cutting of difficult-to-cut material
JP2008188738A (en) Surface-coated cutting tool provided with hard coated layer achieving excellent chipping resistance in heavy cutting of hard-to-cut material
JP2007030098A (en) Cutting tool made of surface coated cemented carbide having hard coarted layer exhibiting excellent chipping resistance in high-speed cutting material hard to cut
JP2008260098A (en) Surface-coated cutting tool
JP4789068B2 (en) Surface coated cutting tool with excellent chipping resistance with hard coating layer in heavy cutting of difficult-to-cut materials
JP5077743B2 (en) Surface coated cutting tool with excellent chipping resistance and wear resistance due to hard coating layer
JP4789069B2 (en) Surface coated cutting tool with excellent chipping resistance with hard coating layer in heavy cutting of difficult-to-cut materials
JP2007038343A (en) Surface coated cemented carbide cutting tool having hard coating layer exerting superior chipping resistance under high speed heavy cutting of hard-to-cut material
JP4682825B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer in heavy cutting of difficult-to-cut materials
JP4244378B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting
JP4771197B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP2007290089A (en) Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting difficult-to-cut material
JP2007290081A (en) Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting difficult-to-cut material
JP2008188735A (en) Surface-coated cutting tool in which hard coating layer shows excellent chipping resistance in heavy cutting of difficult-to-cut material

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071226

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090707