JP2008188738A - Surface-coated cutting tool provided with hard coated layer achieving excellent chipping resistance in heavy cutting of hard-to-cut material - Google Patents
Surface-coated cutting tool provided with hard coated layer achieving excellent chipping resistance in heavy cutting of hard-to-cut material Download PDFInfo
- Publication number
- JP2008188738A JP2008188738A JP2007027399A JP2007027399A JP2008188738A JP 2008188738 A JP2008188738 A JP 2008188738A JP 2007027399 A JP2007027399 A JP 2007027399A JP 2007027399 A JP2007027399 A JP 2007027399A JP 2008188738 A JP2008188738 A JP 2008188738A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- content
- content point
- cutting
- highest
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Drilling Tools (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
この発明は、特にステンレス鋼や高マンガン鋼、さらに軟鋼などの難削材の切削加工を高切り込みや高送りなどの重切削条件で行った場合に、硬質被覆層がすぐれた耐チッピング性と潤滑性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。 This invention has excellent chipping resistance and lubrication with an excellent hard coating layer, especially when cutting difficult-to-cut materials such as stainless steel, high manganese steel, and mild steel under heavy cutting conditions such as high cutting and high feed. The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits the properties.
一般に、被覆工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに前記被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。 In general, for coated tools, throwaway inserts that are detachably attached to the tip of the cutting tool for turning and planing of various steel and cast iron materials, drilling of the work material, etc. Drills and miniature drills, and solid type end mills used for chamfering, grooving, shouldering, etc. of the work material, etc. A slow-away end mill tool that performs cutting work in the same manner as an end mill is known.
また、被覆工具として、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された工具基体の表面に、
組成式:(Cr1−PAlP)Nまたは組成式:((Cr1−QMQ)1−PAlP)N(ここで、Mは、Crを除く周期律表4a,5a,6a族の元素、Si、B、Yのうちから選ばれた1種又は2種以上の添加成分であり、また、P、Qは原子比によるAl成分、M成分の含有割合を示す)
を満足するCrとAlの複合窒化物層あるいはCrとAlとMの複合窒化物層(以下、これらを総称して、(Cr,Al,M)Nで示す)からなる硬質被覆層を物理蒸着してなる被覆工具が知られており、かつ前記被覆工具の硬質被覆層である(Cr,Al,M)N層が、構成成分であるAlによって高温硬さ、同Crによって高温強度、また、CrとAlの共存含有によって耐熱性が向上すること、さらに、M成分として、Crを除く周期律表4a,5a,6a族の元素、Si、B、Yのうちから選ばれた1種又は2種以上を含有させた場合には、硬質被覆層の耐摩耗性、高温耐酸化性等の特性が向上することから、これを各種の一般鋼や普通鋳鉄などの連続切削や断続切削加工に用いた場合にすぐれた切削性能を発揮することも知られている。
In addition, as a coated tool, on the surface of a tool base composed of tungsten carbide (hereinafter referred to as WC) based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) based cermet,
Composition formula: (Cr 1-P Al P ) N or composition formula: ((Cr 1-Q M Q ) 1-P Al P ) N (where M is a periodic table 4a, 5a, 6a excluding Cr 1 or 2 or more kinds of additive components selected from group elements, Si, B, and Y, and P and Q indicate the content ratio of Al component and M component by atomic ratio)
Physical vapor deposition of a hard coating layer composed of a composite nitride layer of Cr and Al or a composite nitride layer of Cr, Al and M (hereinafter collectively referred to as (Cr, Al, M) N) And the (Cr, Al, M) N layer, which is a hard coating layer of the coated tool, has a high-temperature hardness due to Al as a constituent component, a high-temperature strength due to the Cr, The heat resistance is improved by the coexistence of Cr and Al. Furthermore, as the M component, one or two elements selected from the elements of groups 4a, 5a, and 6a of the periodic table excluding Cr, Si, B, and Y When containing more than seeds, the hard coating layer has improved wear resistance, high temperature oxidation resistance, and other characteristics, so it can be used for continuous cutting and intermittent cutting of various general steels and ordinary cast iron. It is also known to show excellent cutting performance when That.
さらに、上記の被覆工具が、例えば図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に上記の工具基体を装入し、ヒータで装置内を、例えば500℃の温度に加熱した状態で、硬質被覆層の目標組成に対応した所定組成を有するCr−Al合金あるいはCr−Al−M合金(以下、これらを総称して、Cr−Al−M合金で示す)がセットされたカソード電極(蒸発源)とアノード電極との間に、例えば電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば2Paの反応雰囲気とし、一方上記工具基体には、例えば−100Vのバイアス電圧を印加した条件で、前記工具基体の表面に、目標組成の(Cr,Al,M)N層からなる硬質被覆層をそれぞれ蒸着することにより製造されることも知られている。
近年の切削加工装置のFA化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削工具には被削材の材種にできるだけ影響を受けない汎用性、すなわち、できるだけ多くの材種の切削加工が可能な切削工具が求められる傾向にあるが、上記の従来被覆工具においては、これを低合金鋼や炭素鋼などの一般鋼や、ダクタイル鋳鉄やねずみ鋳鉄などの普通鋳鉄の切削加工に用いた場合には問題はないが、特に切粉の粘性が高く、かつ工具表面に溶着し易いステンレス鋼や高マンガン鋼、さらに軟鋼などの難削材(被削材)の切削加工を、切刃部に局部的に高負荷がかかる高切り込みや高送りなどの重切削条件で行った場合には、切削時の発熱によって被削材および切粉は高温に加熱されて粘性度が一段と増大し、これに伴って硬質被覆層表面に対する粘着性および反応性が一段と増すようになり、この結果切刃部におけるチッピング(微少欠け)の発生が急激に増加し、これが原因で比較的短時間で使用寿命に至るのが現状である。 In recent years, the use of FA for cutting devices has been remarkable. On the other hand, there is a strong demand for labor saving, energy saving, and cost reduction for cutting processing. As a result, cutting tools are affected as much as possible by the material type of the work material. There is a tendency to demand a cutting tool that can cut as many grades as possible, but in the above-mentioned conventional coated tools, this is applied to general steel such as low alloy steel and carbon steel, and ductile There is no problem when it is used for cutting of ordinary cast iron such as cast iron and gray cast iron, but it is difficult to cut stainless steel, high manganese steel, and mild steel, etc., which have high chip viscosity and are easy to weld to the tool surface. If cutting of the material (work material) is performed under heavy cutting conditions such as high cutting and high feed that locally apply a high load to the cutting edge, the work material and chips are generated by the heat generated during cutting. Is heated to high temperature As a result, the viscosity increases further, and the adhesiveness and reactivity to the hard coating layer surface further increase. As a result, the occurrence of chipping (slight chipping) at the cutting edge increases rapidly, which is the cause of this. At present, the service life is reached in a relatively short time.
そこで、本発明者等は、上述のような観点から、特にステンレス鋼や高マンガン鋼や軟鋼などの難削材の切削加工を、高切り込みや高送りなどの重切削条件で行った場合に、硬質被覆層がすぐれた耐チッピング性を発揮する被覆工具を開発すべく、上記の従来被覆工具に着目し、研究を行った結果、
(a)図2に示されるような従来のアークイオンプレーティング装置を用いて形成された従来被覆工具の硬質被覆層の各層を構成する(Cr,Al,M)N層は、層厚全体に亘って実質的に均一な組成を有し、したがって均質な強度および高温硬さと耐熱性を有するが、例えば図1(a)に概略平面図で、同(b)に概略正面図で示される構造のアークイオンプレーティング装置、すなわち装置中央部に基体装着用回転テーブルを設け、前記回転テーブルを挟んで、一方側に相対的にAl含有量の高いCr−Al−M合金、他方側に相対的にAl含有量の低いCr−Al−M合金をカソード電極(蒸発源)として対向配置したアークイオンプレーティング装置を用い、この装置の前記回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部に沿って複数の基体をリング状に装着し、この状態で装置内雰囲気を窒素雰囲気として前記回転テーブルを回転させると共に、蒸着形成される硬質被覆層の層厚均一化を図る目的で基体自体も自転させながら、前記の両側のカソード電極(蒸発源)とアノード電極との間にアーク放電を発生させて、前記基体の表面に(Cr,Al,M)N層を形成すると、この結果の(Cr,Al,M)N層においては、回転テーブル上にリング状に配置された前記基体が上記の一方側の相対的にAl含有量の高いCr−Al−M合金のカソード電極(蒸発源)に最も接近した時点で層中にAl最高含有点が形成され、また前記基体が上記の他方側の相対的にAl含有量の低いCr−Al−M合金のカソード電極に最も接近した時点で層中にAl最低含有点が形成され、上記回転テーブルの回転によって層中には層厚方向にそって前記Al最高含有点とAl最低含有点が所定間隔をもって交互に繰り返し現れると共に、前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAl含有量が連続的に変化する成分濃度分布構造をもつようになること。
Therefore, the present inventors, from the above viewpoint, especially when cutting difficult-to-cut materials such as stainless steel, high manganese steel and mild steel under heavy cutting conditions such as high cutting and high feed, As a result of conducting research while focusing on the above conventional coated tools in order to develop a coated tool that exhibits excellent chipping resistance with a hard coating layer,
(A) The (Cr, Al, M) N layers constituting the hard coating layers of the conventional coated tool formed using a conventional arc ion plating apparatus as shown in FIG. The structure shown in FIG. 1 (a) is a schematic plan view and FIG. 1 (b) is a schematic front view. Arc ion plating apparatus, that is, a base mounting rotary table is provided at the center of the apparatus, and a Cr-Al-M alloy having a relatively high Al content is provided on one side and the other side is provided with the rotary table interposed therebetween. An arc ion plating apparatus in which a Cr—Al—M alloy having a low Al content is used as a cathode electrode (evaporation source) and is opposed to the central axis on the rotary table of the apparatus at a predetermined distance in the radial direction. A plurality of substrates are attached in a ring shape along the outer periphery of the substrate, and in this state, the atmosphere inside the apparatus is set as a nitrogen atmosphere, the rotary table is rotated, and the thickness of the hard coating layer formed by vapor deposition is made uniform. When the substrate itself rotates, arc discharge is generated between the cathode electrode (evaporation source) and the anode electrode on both sides to form a (Cr, Al, M) N layer on the surface of the substrate. In the resultant (Cr, Al, M) N layer, the base body arranged in a ring shape on the rotary table is a cathode electrode of a Cr—Al—M alloy having a relatively high Al content on the one side. When the closest point to the evaporation source), the highest Al content point was formed in the layer, and the substrate was closest to the cathode electrode of the above-mentioned relatively low Al content Cr-Al-M alloy. Al in the layer at the time A low content point is formed, and by rotation of the rotary table, the highest Al content point and the lowest Al content point appear alternately in the layer thickness direction along the layer thickness direction, and the Al highest content point is The lowest Al content point, and the component concentration distribution structure in which the Al content continuously changes from the lowest Al content point to the highest Al content point.
(b)上記(a)の繰り返し連続変化成分濃度分布構造の(Cr,Al,M)N層(以下、組成変化(Cr,Al,M)N層という)において、上記の基体を炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットからなる基体(以下、これらを総称して超硬基体と云う)に特定した上で、対向配置の一方側のカソード電極(蒸発源)であるCr−Al−M合金におけるAl含有量をCrとMの合量に占める割合で、原子比で、0.70〜0.95とし、かつ同他方側のカソード電極(蒸発源)であるCr−Al−M合金におけるAl含有量を相対的に低くして、同じくCrとMの合量に占める割合で、原子比で、0.50〜0.65とする共に、前記超硬基体が装着されている回転テーブルの回転速度を制御して、
上記Al最高含有点が、組成式:(Cr1−X AlX)Nまたは組成式:((Cr1−ZMZ) 1−XAlX)N(ここで、Mは、Crを除く周期律表4a,5a,6a族の元素、Si、B、Yのうちから選ばれた1種又は2種以上の添加成分を示し、また、XはAlの含有割合、ZはMの含有割合をそれぞれ示し、原子比で、0.70≦X≦0.95、0<Z≦0.30である)、
上記Al最低含有点が、組成式:(Cr1−αAlα)Nまたは組成式:((Cr1−γMγ)1−αAlα)N(但し、αはAlの含有割合、γはMの含有割合をそれぞれ示し、原子比で、0.50≦α≦0.65、0<γ≦0.30である)、
をそれぞれ満足し、かつ隣り合う上記Al最高含有点とAl最低含有点の厚さ方向の間隔を0.03〜0.1μmとすると、
上記Al最高含有点部分では、相対的にAl含有量が高くなることから、高温硬さが高いものとなり、一方上記Al最低含有点部分では、前記Al最高含有点部分に比してAl含有量が低く、Cr含有量の高いものとなるので、相対的に一段と高い強度を示すようになり、かつAl最高含有点とAl最低含有点の間隔をきわめて小さくしたことから、層全体の特性として高強度を保持した上で、高温硬さと耐熱性も具備するようになり、さらに、層中にM成分として、Crを除く周期律表4a,5a,6a族の元素、Si、B、Yのうちから選ばれた1種又は2種以上の添加成分が含有されている場合には、耐摩耗性、高温耐酸化性等がさらに向上し、耐チッピング性が改善されること。
(B) In the (Cr, Al, M) N layer (hereinafter referred to as composition change (Cr, Al, M) N layer) having the repeated continuous change component concentration distribution structure of (a), the above substrate is made of tungsten carbide ( In the following, after specifying a substrate made of a cemented carbide alloy or titanium carbonitride (hereinafter referred to as TiCN) based cermet (hereinafter collectively referred to as a cemented carbide substrate). The ratio of the Al content in the Cr-Al-M alloy that is the cathode electrode (evaporation source) on the side to the total amount of Cr and M is 0.70 to 0.95 in atomic ratio, and the other side The Al content in the Cr—Al—M alloy, which is the cathode electrode (evaporation source), is relatively low, and is also the ratio of the total amount of Cr and M, and the atomic ratio is 0.50 to 0.65. At the same time, the rotating tape on which the carbide substrate is mounted. By controlling the rotational speed of the cable,
The Al highest content point, the composition formula: (Cr 1-X Al X ) N or composition formula: ((Cr 1-Z M Z) 1-X Al X) N ( where, M is the period except for the Cr Table 4a, 5a, 6a group elements, Si, B, Y one or more additive components selected from among them, X represents Al content, Z represents M content Respectively, and the atomic ratio is 0.70 ≦ X ≦ 0.95, 0 <Z ≦ 0.30),
The Al minimum content point is the composition formula: (Cr 1−α Al α ) N or the composition formula: ((Cr 1−γ M γ ) 1−α Al α ) N (where α is the Al content, γ Represents the content ratio of M, and the atomic ratio is 0.50 ≦ α ≦ 0.65, 0 <γ ≦ 0.30),
And the distance in the thickness direction between the adjacent Al highest content point and Al lowest content point adjacent to each other is 0.03 to 0.1 μm,
In the Al highest content point portion, the Al content is relatively high, so the high-temperature hardness is high. On the other hand, in the Al minimum content point portion, the Al content is higher than the Al highest content point portion. Since the Cr content is low and the Cr content is high, the strength becomes relatively higher, and the distance between the Al highest content point and the Al lowest content point is extremely small. While maintaining strength, it also has high temperature hardness and heat resistance, and further, among the elements of the periodic table 4a, 5a, 6a group excluding Cr, Si, B, Y as M component in the layer When one or more additive components selected from the above are contained, wear resistance, high-temperature oxidation resistance, etc. are further improved, and chipping resistance is improved.
(c)上記組成変化(Cr,Al,M)N層を下部層として1〜5μmの平均層厚で形成し、これの上に上部層として酸化バナジウム(酸化バナジウムは、その酸化の程度によって、VO、V2O3およびVO2など種々の化合物形態をとり得るが、以下、これらを総称してVOで示す)層を形成すると、前記VO層は潤滑性にすぐれ、この結果切削時の発熱で被削材(難削材)およびその切粉が高温加熱された状態でも切刃部(すくい面および逃げ面と、これら両面が交わる切刃稜線部)と被削材および切粉との間には常にすぐれた潤滑性、耐溶着性が確保され、前記被削材および切粉の切刃部表面に対する粘着性および反応性が著しく低減され、前記下部層である(Cr,Al,M)N層は十分に保護されるようになること。 (C) The above composition change (Cr, Al, M) N layer is formed as a lower layer with an average layer thickness of 1 to 5 μm, and an upper layer is formed thereon with vanadium oxide (vanadium oxide, depending on the degree of oxidation, Various compound forms such as VO, V 2 O 3 and VO 2 can be used. However, when these layers are collectively referred to as VO), the VO layer has excellent lubricity, and as a result, heat is generated during cutting. Even when the work material (difficult-to-cut material) and its chips are heated at a high temperature, the cutting edge (the rake face and flank face and the cutting edge ridge line where these two surfaces intersect), the work material and the chip Always has excellent lubricity and welding resistance, the adhesiveness and reactivity of the work material and chips to the cutting edge surface are significantly reduced, and the lower layer (Cr, Al, M) N layer should be well protected.
(d)しかし、組成変化(Cr,Al,M)N層からなる下部層上に、直接、上部層としてVO層を設けた場合には、下部層である組成変化(Cr,Al,M)N層と上部層であるVO層との密着性は十分でなく、また、上部層であるVO層自体の高温強度も十分でないため、硬質被覆層の下部層と上部層の密着性不足、上部層の高温強度不足が原因でチッピング発生を十分防止することはできないこと。 (D) However, when a VO layer is provided directly on the lower layer composed of the composition change (Cr, Al, M) N layer, the composition change (Cr, Al, M) as the lower layer is provided. The adhesion between the N layer and the VO layer as the upper layer is not sufficient, and the high temperature strength of the VO layer itself as the upper layer is not sufficient, so that the adhesion between the lower layer and the upper layer of the hard coating layer is insufficient. Chipping cannot be sufficiently prevented due to insufficient high-temperature strength of the layer.
(e)上記組成変化(Cr,Al,M)N層からなる下部層の上に、上記VO層を設けるにあたり、上記組成変化(Cr,Al,M)N層の表面には、実質的に酸素を含有しない窒化バナジウム(以下、VNで示す)を蒸着形成し、蒸着を継続し、上部層の層厚が大になるにしたがって、蒸着形成される層の酸素含有割合を徐々に高くしていき(窒素含有割合を徐々に減少させていき)、上部層表面では、実質的に窒素を含有しない酸化バナジウムが形成されるように蒸着すると、上部層は全体としては酸窒化バナジウム層であるが、層厚方向の組成変化からみれば、上部層の層厚方向に沿って、酸素含有割合が徐々に高くなり、一方、窒素含有割合が徐々に小さくなる酸素(窒素)濃度分布を有する組成傾斜型の上部層が形成されること。 (E) When the VO layer is provided on the lower layer composed of the composition change (Cr, Al, M) N layer, the surface of the composition change (Cr, Al, M) N layer is substantially Vanadium nitride that does not contain oxygen (hereinafter referred to as VN) is formed by vapor deposition, and the vapor deposition is continued. As the thickness of the upper layer increases, the oxygen content of the vapor deposited layer is gradually increased. When the vapor deposition was performed so that vanadium oxide containing substantially no nitrogen was formed on the upper layer surface, the upper layer was a vanadium oxynitride layer as a whole. In view of the composition change in the layer thickness direction, the composition gradient having an oxygen (nitrogen) concentration distribution in which the oxygen content rate gradually increases along the layer thickness direction of the upper layer, while the nitrogen content rate gradually decreases. The upper layer of the mold is formed.
(f)そして、該組成傾斜型の酸窒化バナジウムからなる上部層は、組成変化(Cr,Al,M)N層からなる下部層近傍においては実質的に酸素を含有しない窒化バナジウムであって、下部層との密着強度は大であり、一方、組成傾斜型上部層の表面領域では、実質的に窒素を含有しない酸化バナジウムであることから、潤滑性にすぐれ、切削時の発熱で被削材(難削材)およびその切粉が高温加熱された状態でも切刃部と被削材および切粉との間には常にすぐれた潤滑性、耐溶着性が確保され、さらに、組成傾斜型酸窒化バナジウム層の層厚方向に沿った酸素(或いは窒素)の組成変化は連続的なものであるため、層内での機械的・化学的特性変化も連続的であって、異種の層の積層構造のように機械的・化学的特性の不連続変化が生じることがないため、組成傾斜型の酸窒化バナジウムからなる上部層は、全体として、すぐれた高温強度を有すると共に、被削材および切粉の切刃部表面に対する粘着性および反応性が著しく低減され、高い発熱を伴いかつ切刃部に局部的な高負荷がかかる難削材の重切削加工において、すぐれた耐チッピング性を示すこと。 (F) And the upper layer made of the composition gradient type vanadium oxynitride is vanadium nitride substantially free of oxygen in the vicinity of the lower layer made of the composition change (Cr, Al, M) N layer, The adhesion strength with the lower layer is high, while the surface region of the composition gradient type upper layer is vanadium oxide that does not substantially contain nitrogen, so it has excellent lubricity and generates heat during cutting. (Hard-to-cut material) and its chips are heated at high temperature, ensuring excellent lubricity and welding resistance between the cutting edge and the work material and chips, and the composition graded acid Since the compositional change of oxygen (or nitrogen) along the layer thickness direction of the vanadium nitride layer is continuous, the mechanical and chemical property changes within the layer are also continuous. Discontinuous changes in mechanical and chemical properties occur like structures Therefore, the upper layer composed of the composition-gradient type vanadium oxynitride as a whole has excellent high-temperature strength, and the adhesiveness and reactivity of the work material and chips to the cutting edge surface are significantly reduced. Excellent chipping resistance in heavy cutting of difficult-to-cut materials with high heat generation and local high load on the cutting edge.
(g)上記硬質被覆層は、例えば、図1(a)に概略平面図で、同(b)に概略正面図で示される構造のアークイオンプレーティング装置、すなわち装置中央部に工具基体装着用回転テーブルを設け、前記回転テーブルを挟んでカソード電極(蒸発源)を設け、その一方にはカソード電極(蒸発源)として金属Vを配置し、また前記回転テーブルに沿って、かつ前記金属Vからそれぞれ90度離れた位置の一方側に相対的にAl含有量の高いCr−Al−M合金のカソード電極(蒸発源)を、また、他方側に相対的にAl含有量の低いCr−Al−M合金をカソード電極(蒸発源)として対向配置した蒸着装置を用い、この装置の前記回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部に沿って複数の工具基体をリング状に装着し、この状態で装置内雰囲気を窒素雰囲気として前記回転テーブルを回転させると共に、蒸着形成される硬質被覆層の層厚均一化を図る目的で工具基体自体も自転させながら、まず、前記対向した各Cr−Al−M合金のカソード電極(蒸発源)とアノード電極との間にアーク放電を発生させて、前記工具基体の表面に、下部層として組成変化(Cr,Al,M)N層を1〜5μmの平均層厚で蒸着形成した後、
前記Cr−Al−M合金のカソード電極(蒸発源)とアノード電極との間のアーク放電を停止し、その後、装置内雰囲気を窒素ガス雰囲気としたままで、カソード電極(蒸発源)である金属Vとアノード電極との間にアーク放電を発生させて、まず、窒化バナジウムを蒸着形成し、
その後、前記金属Vのカソード電極(蒸発源)とアノード電極との間のアーク放電を継続したまま、装置内雰囲気を酸素−窒素混合ガス雰囲気に変更し、また、蒸着の進行につれ次第に酸素ガス含有割合を高くしつつ蒸着を継続し、組成傾斜型の酸窒化バナジウム層を蒸着し、
蒸着層の層厚が所定の目標層厚に近づいた時点で、酸素−窒素混合ガス雰囲気の酸素ガス含有割合をさらに高くして蒸着し、目標層厚の酸窒化バナジウムの最表面において、実質的に窒素を含有しない酸化バナジウム層を形成することにより、
下部層としての組成変化(Cr,Al,M)N層、上部層としての組成傾斜型の酸窒化バナジウム層からなる硬質被覆層を蒸着により形成することができること。
(G) The hard coating layer is, for example, an arc ion plating apparatus having a structure shown in a schematic plan view in FIG. 1A and a schematic front view in FIG. A rotary table is provided, a cathode electrode (evaporation source) is provided across the rotary table, and a metal V is disposed on one side as a cathode electrode (evaporation source), and along the rotary table and from the metal V A cathode electrode (evaporation source) of a Cr—Al—M alloy having a relatively high Al content is disposed on one side at a position 90 degrees apart, and a Cr—Al— layer having a relatively low Al content is disposed on the other side. Using a vapor deposition apparatus in which an M alloy is disposed as a cathode electrode (evaporation source) opposite to each other, a plurality of tool bases are ring-shaped along the outer peripheral portion at a predetermined distance in the radial direction from the central axis on the rotary table of the apparatus. In In this state, the rotating table is rotated by setting the atmosphere inside the apparatus as a nitrogen atmosphere, and the tool base itself is rotated for the purpose of uniformizing the thickness of the hard coating layer to be deposited, and firstly opposed to the surface. An arc discharge is generated between the cathode electrode (evaporation source) and the anode electrode of each Cr—Al—M alloy, and a composition change (Cr, Al, M) N layer is formed as a lower layer on the surface of the tool base. After vapor deposition with an average layer thickness of 1-5 μm,
Arc discharge between the cathode electrode (evaporation source) and the anode electrode of the Cr—Al—M alloy is stopped, and then the metal as the cathode electrode (evaporation source) with the atmosphere inside the apparatus kept in a nitrogen gas atmosphere An arc discharge is generated between V and the anode electrode. First, vanadium nitride is deposited and formed.
After that, while the arc discharge between the cathode electrode (evaporation source) and the anode electrode of the metal V is continued, the atmosphere in the apparatus is changed to an oxygen-nitrogen mixed gas atmosphere, and gradually contains oxygen gas as the deposition proceeds. Vapor deposition is continued while increasing the ratio, and a composition gradient type vanadium oxynitride layer is deposited,
When the thickness of the vapor deposition layer approaches the predetermined target layer thickness, the oxygen gas content in the oxygen-nitrogen mixed gas atmosphere is further increased, and the vapor deposition layer is substantially formed on the outermost surface of the target layer thickness of vanadium oxynitride. By forming a vanadium oxide layer that does not contain nitrogen in
A hard coating layer composed of a composition change (Cr, Al, M) N layer as a lower layer and a composition gradient type vanadium oxynitride layer as an upper layer can be formed by vapor deposition.
(h)上記の下部層および上部層で構成された硬質被覆層を蒸着形成してなる被覆工具は、特に粘性および粘着性の高いステンレス鋼や高マンガン鋼、さらに軟鋼などの難削材の切削加工を、高負荷のかかる高切り込みや高送りなどの重切削条件で行っても、下部層である組成変化(Cr,Al,M)N層がすぐれた高温硬さ、耐熱性、高温強度を備え、あるいは層中にM成分が含有されている場合には、耐摩耗性、高温耐酸化性等がさらに向上し、また、上部層が、層厚方向に沿って酸素含有割合が次第に高くなる酸素濃度分布構造を有する組成傾斜型酸窒化バナジウム層で構成され、この上部層における酸素濃度分布構造によって、上部層が下部層に対するすぐれた密着性、接合強度を備えるとともに、被削材(難削材)に対するすぐれた潤滑性、耐溶着性を備えることから、このような下部層と上部層からなる硬質被覆層は、全体として、すぐれた潤滑性、耐溶着性とすぐれた高温強度、耐摩耗性、耐熱性等の優れた特性を具備したものとなり、難削材および切粉の切刃部表面に対する粘着性および反応性が著しく低減された状態で重切削加工が行われるようになることから、切刃部におけるチッピングの発生がなくなり、長期に亘ってすぐれた耐摩耗性を発揮するようになること。
以上(a)〜(h)に示される研究結果を得たのである。
(H) The coated tool formed by vapor-depositing the hard coating layer composed of the lower layer and the upper layer described above is particularly capable of cutting difficult-to-cut materials such as stainless steel, high manganese steel, and mild steel with high viscosity and adhesion. Even when processing is performed under heavy cutting conditions such as high cutting and high feed with high load, the composition change (Cr, Al, M) N layer as the lower layer has excellent high temperature hardness, heat resistance, and high temperature strength. Or when the layer contains an M component, the wear resistance, high-temperature oxidation resistance, etc. are further improved, and the oxygen content of the upper layer gradually increases along the layer thickness direction. It is composed of a composition-graded vanadium oxynitride layer having an oxygen concentration distribution structure. The upper layer has excellent adhesion to the lower layer and bonding strength, and the work material (difficult to cut) Material) Since it has lubricity and welding resistance, the hard coating layer consisting of such lower layer and upper layer as a whole has excellent lubricity, welding resistance and excellent high-temperature strength, wear resistance, heat resistance, etc. Because it is equipped with the excellent characteristics of, and the heavy cutting will be performed in a state where the adhesiveness and reactivity of the difficult-to-cut material and chips to the cutting blade surface are significantly reduced, The generation of chipping is eliminated and excellent wear resistance is exhibited over a long period of time.
The research results shown in (a) to (h) above were obtained.
この発明は、上記の研究結果に基づいてなされたものであって、
「(1) 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a)下部層として、1〜5μmの平均層厚を有し、かつ、層厚方向にそって、Al最高含有点とAl最低含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAlおよびCr含有量がそれぞれ連続的に変化する成分濃度分布構造を有し、
さらに、上記Al最高含有点が、組成式:(Cr1−XAlX)N(但し、XはAlの含有割合を示し、原子比で、0.70≦X≦0.95である)、
上記Al最低含有点が、組成式:(Cr1−αAlα)N(但し、αはAlの含有割合を示し、原子比で、0.50≦α≦0.65である)、
を満足し、かつ隣り合う上記Al最高含有点とAl最低含有点の間隔が、0.03〜0.1μmであるCrとAlの複合窒化物層、
(b)上部層として、1〜5μmの平均層厚を有し、上記(a)の下部層側から層厚方向の表面へ向かって酸素含有割合が高くなるような酸素濃度分布構造を有する酸窒化バナジウム層であって、かつ、該酸窒化バナジウム層の最下面では酸素を実質的に含有せず、また、該酸窒化バナジウム層の最表面では窒素を実質的に含有しない酸窒化バナジウム層、
以上(a)、(b)で構成された硬質被覆層を形成してなる、難削材の重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具。
(2) 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a)下部層として、1〜5μmの平均層厚を有し、かつ、層厚方向にそって、Al最高含有点とAl最低含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAlおよびCr含有量がそれぞれ連続的に変化する成分濃度分布構造を有し、
さらに、上記Al最高含有点が、組成式:((Cr1−ZMZ)1−XAlX)N(ここで、Mは、Crを除く周期律表4a,5a,6a族の元素、Si、B、Yのうちから選ばれた1種又は2種以上の添加成分を示し、また、XはAlの含有割合、ZはMの含有割合をそれぞれ示し、原子比で、0.70≦X≦0.95、0<Z≦0.30である)、
上記Al最低含有点が、組成式:((Cr1−γMγ)1−αAlα)N(但し、αはAlの含有割合、γはMの含有割合をそれぞれ示し、原子比で、0.50≦α≦0.65、0<γ≦0.30である)、
を満足し、かつ隣り合う上記Al最高含有点とAl最低含有点の間隔が、0.03〜0.1μmであるCrとAlとMの複合窒化物層、
(b)上部層として、1〜5μmの平均層厚を有し、上記(a)の下部層側から層厚方向の表面へ向かって酸素含有割合が高くなるような酸素濃度分布構造を有する酸窒化バナジウム層であって、かつ、該酸窒化バナジウム層の最下面では酸素を実質的に含有せず、また、該酸窒化バナジウム層の最表面では窒素を実質的に含有しない酸窒化バナジウム層、
以上(a)、(b)で構成された硬質被覆層を形成してなる、難削材の重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具。
(3) 添加成分Mが、Si、B、Yのうちから選ばれた1種又は2種以上であることを特徴とする、請求項2記載の難削材の重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具。」
に特徴を有するものである。
This invention was made based on the above research results,
“(1) On the surface of a tool base made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
(A) The lower layer has an average layer thickness of 1 to 5 μm, and along the layer thickness direction, Al highest content points and Al lowest content points are alternately present at predetermined intervals, and From the Al highest content point to the Al lowest content point, from the Al lowest content point to the Al highest content point has a component concentration distribution structure in which Al and Cr contents continuously change, respectively,
Furthermore, the Al highest content point is the composition formula: (Cr 1-X Al X ) N (where X represents the content ratio of Al, and the atomic ratio is 0.70 ≦ X ≦ 0.95),
The Al minimum content point is a composition formula: (Cr 1−α Al α ) N (where α represents the Al content ratio, and is an atomic ratio of 0.50 ≦ α ≦ 0.65),
And a composite nitride layer of Cr and Al in which the interval between the Al highest content point and the Al lowest content point adjacent to each other is 0.03 to 0.1 μm,
(B) As an upper layer, an acid having an average layer thickness of 1 to 5 μm and having an oxygen concentration distribution structure in which the oxygen content increases from the lower layer side of (a) toward the surface in the layer thickness direction. A vanadium oxynitride layer that is substantially free of oxygen at the lowermost surface of the vanadium oxynitride layer and substantially free of nitrogen at the outermost surface of the vanadium oxynitride layer;
A surface-coated cutting tool that exhibits a chipping resistance in which the hard coating layer is excellent in heavy cutting of difficult-to-cut materials, which is formed by forming the hard coating layer configured as described above in (a) and (b).
(2) On the surface of the tool base made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
(A) The lower layer has an average layer thickness of 1 to 5 μm, and along the layer thickness direction, Al highest content points and Al lowest content points are alternately present at predetermined intervals, and From the Al highest content point to the Al lowest content point, from the Al lowest content point to the Al highest content point has a component concentration distribution structure in which Al and Cr contents continuously change, respectively,
Further, the highest Al content point is the composition formula: ((Cr 1−Z M Z ) 1−X Al X ) N (where M is an element of groups 4a, 5a and 6a of the periodic table excluding Cr, One or more additive components selected from Si, B, and Y are shown, X is the Al content, Z is the M content, and the atomic ratio is 0.70 ≦ X ≦ 0.95, 0 <Z ≦ 0.30),
The Al minimum content point is the composition formula: ((Cr 1-γ M γ ) 1-α Al α ) N (where α represents the Al content rate, γ represents the M content rate, and the atomic ratio, 0.50 ≦ α ≦ 0.65, 0 <γ ≦ 0.30),
And a composite nitride layer of Cr, Al, and M, in which the interval between the Al highest content point and the Al lowest content point adjacent to each other is 0.03 to 0.1 μm,
(B) As an upper layer, an acid having an average layer thickness of 1 to 5 μm and having an oxygen concentration distribution structure in which the oxygen content increases from the lower layer side of (a) toward the surface in the layer thickness direction. A vanadium oxynitride layer that is substantially free of oxygen at the lowermost surface of the vanadium oxynitride layer and substantially free of nitrogen at the outermost surface of the vanadium oxynitride layer;
A surface-coated cutting tool that exhibits a chipping resistance in which the hard coating layer is excellent in heavy cutting of difficult-to-cut materials, which is formed by forming the hard coating layer configured as described above in (a) and (b).
(3) The additive component M is one or more selected from Si, B, and Y, and the hard coating layer is formed by heavy cutting of a difficult-to-cut material according to claim 2. A surface-coated cutting tool with excellent chipping resistance. "
It has the characteristics.
つぎに、この発明の被覆工具の硬質被覆層の構成層に関し、上記の通りに数値限定した理由を説明する。 Next, regarding the constituent layers of the hard coating layer of the coated tool of the present invention, the reason why the numerical values are limited as described above will be described.
組成変化(Cr,Al,M)N層からなる下部層;
(a)Al最高含有点の組成
下部層を構成する組成変化(Cr,Al,M)N層の構成成分であるAl成分には硬質被覆層における高温硬さを向上させ、同Cr成分には高温強度を向上させ、また、CrとAlの共存含有によって耐熱性を向上させる作用があり、さらに、M成分のうちの、Crを除く周期律表4a,5a,6a族の元素、Si、B、には硬質被覆層の耐摩耗性を向上させる作用があり、また、Yには硬質被覆層の高温耐酸化性を向上させる作用があるが、Al最高含有点でのAlの割合(X値)がCrとMの合量に占める割合(原子比)で0.95を超えると、Crの割合が少なくなりすぎて急激に高温強度が低下し、切刃にチッピング(微小欠け)などが発生し易くなり、一方その割合(X値)が同じく0.70未満であると、Alの割合が低くなり過ぎて、所望のすぐれた高温硬さおよび耐熱性を確保することができず、また、Mの含有割合を示すZ値がCrとの合量に占める割合(原子比)で0.30を超えるとその耐摩耗性、高温耐酸化性等は向上するものの、難削材の重切削加工で必要とされる高温強度を確保することができず、チッピングの発生を防止することが困難になることから、X値を0.70〜0.95、また、Z値を0.30以下に定めた。
A lower layer composed of a composition change (Cr, Al, M) N layer;
(A) Composition of the highest Al content point The composition component of the lower layer (Cr, Al, M) The Al component, which is a constituent component of the N layer, improves the high-temperature hardness of the hard coating layer. It has the effect of improving the high temperature strength and improving the heat resistance by coexistence of Cr and Al. Further, among the M components, elements of the periodic table 4a, 5a, 6a group excluding Cr, Si, B Has the effect of improving the wear resistance of the hard coating layer, and Y has the effect of improving the high temperature oxidation resistance of the hard coating layer, but the ratio of Al at the highest Al content point (X value) ) Exceeds 0.95 in the total amount of Cr and M (atomic ratio), the ratio of Cr becomes too small and the high-temperature strength decreases sharply, and chipping (small chipping) occurs on the cutting edge. On the other hand, the ratio (X value) is also less than 0.70 Then, the proportion of Al becomes too low, and the desired excellent high-temperature hardness and heat resistance cannot be ensured, and the proportion of the Z value indicating the M content in the total amount with Cr ( If the atomic ratio exceeds 0.30, the wear resistance and high-temperature oxidation resistance are improved, but the high-temperature strength required for heavy cutting of difficult-to-cut materials cannot be ensured and chipping occurs. Therefore, the X value is set to 0.70 to 0.95, and the Z value is set to 0.30 or less.
(b)Al最低含有点の組成
上記の通り、Al最高含有点は高温硬さのすぐれたものであるが、反面高温強度が劣るものであるため、このAl最高含有点の高温強度不足を補う目的で、Cr含有割合が相対的に高く、これによって高い高温強度を有するようになるAl最低含有点を厚さ方向に交互に介在させるものであり、したがって、Alの含有割合(α値)がCrとMの合量に占める割合(原子比)で0.65を超えると、所望のすぐれた高温強度を確保することができなくなり、一方、その含有割合(α値)が0.50未満では相対的にCrの割合が多くなりすぎて、Al最低含有点に所望の高温硬さを具備せしめることができなくなることから、α値を0.50〜0.65と定めたものであり、また、M成分の含有割合(γ値)については、上記Al最高含有点におけると同じ理由でγ値を0.30以下と定めた。
(B) Composition of the lowest Al content point As described above, the highest Al content point is excellent in high-temperature hardness, but on the other hand, the high-temperature strength is inferior. For this purpose, the Al content is relatively high, and the Al minimum content points that have high high-temperature strength are alternately interposed in the thickness direction. Therefore, the Al content (α value) is If the ratio (atomic ratio) in the total amount of Cr and M exceeds 0.65, the desired excellent high-temperature strength cannot be ensured, while the content ratio (α value) is less than 0.50. Since the ratio of Cr is relatively large and the Al minimum content point cannot be provided with a desired high temperature hardness, the α value is set to 0.50 to 0.65, and About the content ratio (γ value) of M component Is a γ value for the same reasons specified to 0.30 as in the Al highest containing point.
(c)Al最高含有点とAl最低含有点間の間隔
その間隔が、0.03μm未満ではそれぞれの点を上記の組成で明確に形成することが困難であり、この結果それぞれの層に所望の高温特性および高温強度を確保することができなくなり、またその間隔が0.1μmを超えるとそれぞれの点がもつ欠点、すなわちAl最高含有点であれば高温強度不足、Al最低含有点であれば高温特性不足が層内に局部的に現れ、これが原因で切刃部にチッピングが発生し易くなったり、摩耗進行が促進されるようになることから、その間隔を0.03〜0.1μmと定めた。
(C) Interval between the highest Al content point and the lowest Al content point If the distance is less than 0.03 μm, it is difficult to clearly form each point with the above composition. High temperature characteristics and high temperature strength cannot be ensured, and if the distance exceeds 0.1 μm, each point has a defect, that is, the highest Al content point is insufficient high temperature strength, and the lowest Al content point is high temperature. Insufficient characteristics appear locally in the layer, which makes it easier for chipping to occur at the cutting edge and promotes the progress of wear. Therefore, the interval is set to 0.03 to 0.1 μm. It was.
(d)平均層厚
その平均層厚が1μm未満では、所望の耐摩耗性を確保することができず、一方その平均層厚が5μmを越えると、切刃にチッピングが発生し易くなることから、その平均層厚を1〜5μmと定めた。
(D) Average layer thickness If the average layer thickness is less than 1 μm, the desired wear resistance cannot be ensured. On the other hand, if the average layer thickness exceeds 5 μm, chipping tends to occur on the cutting edge. The average layer thickness was determined to be 1 to 5 μm.
酸窒化バナジウム層(VNO層)からなる組成傾斜型の上部層;
硬質被覆層の上部層を構成する組成傾斜型の酸窒化バナジウム層(VNO層)は、酸素(窒素)の含有割合が層厚方向に沿って異なるため、その特性も酸素(窒素)の含有割合に応じて異なるが、下部層の表面近傍(上部層の最下面)においては、実質的に酸素を含有していない窒化バナジウムが形成されるため、すぐれた高温強度を有し、下部層との密着強度も高く、一方、上部層の表面(近傍)においては、実質的に窒素を含有しない酸化バナジウム(即ち、Oとの合量に占めるNの含有割合N/(N+O)が、原子比で0.1以下の酸化バナジウム)が形成されているため、すぐれた潤滑性、耐溶着性を有し、被削材(難削材)および切粉に対する粘着性および反応性がきわめて低く、これは切削時に前記被削材が高温加熱された状態でも変わることなく維持されることから、下部層である(Cr,Y)N層を前記高温加熱された被削材および切粉から保護し、これのチッピング発生を抑制する作用を発揮する。
なお、この発明でいう、“酸窒化バナジウム層の最下面では酸素を実質的に含有せず”あるいは“下部層の表面近傍(上部層の最下面)においては、実質的に酸素を含有していない窒化バナジウム”とは、下部層に隣接する上部層の最下面の領域について、上部層と下部層の界面より上部層側の、測定幅0.1〜0.2μmの領域で酸素含有量を測定した際に、該領域において検出された酸素含有量(即ち、N含有量との合量に対するO含有量の割合(=O/(N+O)、但し、原子比)が0.1以下であることを意味し、また、“酸窒化バナジウム層の最表面では、窒素を実質的に含有せず”あるいは“上部層の表面(近傍)においては、実質的に窒素を含有しない酸化バナジウム”とは、上部層表面の酸素含有量を測定した際に、測定された酸素含有量(即ち、N含有量との合量に対するO含有量の割合(=O/(N+O)、但し、原子比)が0.9以上であることを意味する。
また、上部層の平均層厚が1μm未満では、上部層を設けたとしても潤滑性、耐溶着性の向上を期待することはできず、一方その平均層厚が5μmを越えて厚くなり過ぎると、チッピングを発生しやすくなることから、その平均層厚を1〜5μmと定めた。
A compositionally graded upper layer comprising a vanadium oxynitride layer (VNO layer);
The composition-graded vanadium oxynitride layer (VNO layer) that forms the upper layer of the hard coating layer has different oxygen (nitrogen) content along the layer thickness direction, so its characteristics are also oxygen (nitrogen) content. Vanadium nitride that does not substantially contain oxygen is formed near the surface of the lower layer (the lowermost surface of the upper layer). The adhesion strength is also high. On the other hand, on the surface (near) of the upper layer, the vanadium oxide substantially containing no nitrogen (that is, the N content ratio N / (N + O) in the total amount with O is an atomic ratio). (Less than 0.1 vanadium oxide), it has excellent lubricity and welding resistance, and has extremely low adhesion and reactivity to work materials (hard-to-cut materials) and chips. State where the work material is heated at high temperature during cutting From being maintained without also changes, which is the lower layer (Cr, Y) to protect the N layer from the high temperature heated workpiece and chips, it exerts an action to suppress this chipping occurred.
In the present invention, “the lowermost surface of the vanadium oxynitride layer does not substantially contain oxygen” or “near the surface of the lower layer (the lowermost surface of the upper layer) substantially contains oxygen. `` No vanadium nitride '' means that the oxygen content is measured in a region having a measurement width of 0.1 to 0.2 μm on the upper layer side from the interface between the upper layer and the lower layer in the lowermost region of the upper layer adjacent to the lower layer. When measured, the oxygen content detected in the region (that is, the ratio of O content to the total content with N content (= O / (N + O), where the atomic ratio) is 0.1 or less. In addition, “the vanadium oxynitride layer is substantially free of nitrogen” or “the vanadium oxide substantially free of nitrogen is present on the surface of the upper layer (nearly)” Measured when measuring the oxygen content of the upper layer surface. Oxygen content (i.e., the ratio of O content relative to the total amount of the N content (= O / (N + O), provided that means that atomic ratio) is 0.9 or more.
Also, if the average layer thickness of the upper layer is less than 1 μm, even if the upper layer is provided, improvement in lubricity and welding resistance cannot be expected, while if the average layer thickness exceeds 5 μm and becomes too thick. Since the chipping tends to occur, the average layer thickness is set to 1 to 5 μm.
この発明の被覆工具は、硬質被覆層を構成する下部層の組成変化(Cr,Al,M)N層が、すぐれた高温硬さ、耐熱性、高温強度を有し、あるいは、さらにすぐれた耐摩耗性、高温耐酸化性を有し、また、組成傾斜型の酸窒化バナジウム層からなる上部層が、すぐれた潤滑性(表面滑り性)、耐溶着性、高温強度を兼ね備えていることから、硬質被覆層は全体として、すぐれた高温硬さ、耐熱性、高温強度等に加え、すぐれた潤滑性、耐溶着性を備えたものとなり、その結果、特に粘性および粘着性の高いステンレス鋼や高マンガン鋼、さらに軟鋼などの難削材の大きな発熱を伴い、かつ、高負荷のかかる重切削加工であっても、すぐれた耐チッピング性を示し、長期に亘ってすぐれた耐摩耗性を発揮するものである。 In the coated tool of the present invention, the composition change (Cr, Al, M) N layer of the lower layer constituting the hard coating layer has excellent high temperature hardness, heat resistance, high temperature strength, or even better resistance. Since the upper layer composed of the vanadium oxynitride layer of the composition gradient type has excellent lubricity (surface slipperiness), welding resistance, and high temperature strength, it has wear resistance and high temperature oxidation resistance. The hard coating layer as a whole has excellent high-temperature hardness, heat resistance, high-temperature strength, etc., as well as excellent lubricity and welding resistance. Manganese steel and even mild steel such as mild steel are accompanied by a large heat generation, and show excellent chipping resistance even during heavy-duty machining with high load, and exhibit excellent wear resistance over a long period of time. Is.
つぎに、この発明の被覆工具を実施例により具体的に説明する。 Next, the coated tool of the present invention will be specifically described with reference to examples.
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr3C2粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、ISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の工具基体A−1〜A−10を形成した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders are blended in the composition shown in Table 1, wet mixed by a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. Medium, sintered at 1400 ° C. for 1 hour, and after sintering, tool bases A-1 to A-10 made of WC-based cemented carbide with ISO standard / CNMG120408 chip shape were formed. .
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比で、TiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、ISO規格・CNMG120408のチップ形状をもったTiCN基サーメット製の工具基体B−1〜B−6を形成した。 In addition, as raw material powders, TiCN (mass ratio, TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC, all having an average particle diameter of 0.5 to 2 μm. Prepare powder, Co powder, and Ni powder, mix these raw material powders into the composition shown in Table 2, wet mix for 24 hours with a ball mill, dry, and press-mold into green compact at 100 MPa pressure Then, the green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, a tool base B made of TiCN-based cermet having an ISO standard / CNMG120408 chip shape was obtained. -1 to B-6 were formed.
(a)ついで、上記の工具基体A−1〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、前記回転テーブルを挟んで相対向する両側にカソード電極(蒸発源)を設け、その一方にはカソード電極(蒸発源)として金属Vを配置し、また前記回転テーブルに沿って、かつ前記金属Vからそれぞれ90度離れた位置の一方側に相対的にAl含有量の高いCr−Al−M合金のカソード電極(蒸発源)を、また、他方側に相対的にAl含有量の低いCr−Al−M合金をカソード電極(蒸発源)として対向配置し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する工具基体に−1000Vの直流バイアス電圧を印加し、かつ前記各Cr−Al−M合金のいずれかのカソード電極とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面を前記Cr−Al−M合金によってボンバード洗浄し、
(c)次に、装置内に反応ガスとして窒素ガスを導入して4Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−100Vの直流バイアス電圧を印加し、かつカソード電極の前記各Cr−Al−M合金とアノード電極との間に120Aの電流を流してアーク放電を発生させ、もって、前記工具基体の表面に、層厚方向に沿って表3、表4に示される目標組成のAl最高含有点とAl最低含有点とが交互に同じく表3,4に示される目標間隔で繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAl(Cr)含有量が連続的に変化する成分濃度分布構造を有し、かつ同じく表3,4に示される目標層厚を有する組成変化(Cr,Al,M)N層を1〜5μmの平均層厚で硬質被覆層の下部層として蒸着形成し、前記各Cr−Al−M合金のカソード電極(蒸発源)とアノード電極との間のアーク放電を停止し、
(d)その後、装置内雰囲気を窒素ガス雰囲気としたままで、カソード電極(蒸発源)である金属Vとアノード電極との間にアーク放電を発生させて、まず、窒化バナジウムを蒸着形成し、
(e)その後、前記金属Vのカソード電極(蒸発源)とアノード電極との間のアーク放電を継続したまま、装置内雰囲気を酸素−窒素混合ガス雰囲気に変更し、また、蒸着の進行につれ次第に酸素ガス含有割合を高くしながら蒸着を継続し、組成傾斜型の酸窒化バナジウム層を蒸着し、
(f)蒸着層の層厚が所定の目標層厚に近づいた時点で、酸素−窒素混合ガス雰囲気の酸素ガス含有割合をさらに高くして蒸着し、目標層厚の酸窒化バナジウムの最表面において、実質的に窒素を含有しない酸化バナジウム層(層表面における原子比によるO/(N+O)の値は、0.9以上)を形成し、表3、表4に示される目標層厚の酸窒化バナジウム層を蒸着形成した後、前記金属Vとアノード電極との間のアーク放電を停止し、
上記(a)〜(f)により、本発明被覆工具としての本発明表面被覆スローアウエイチップ(以下、本発明被覆チップと云う)1〜39をそれぞれ製造した。
(A) Next, each of the tool bases A-1 to A-10 and B-1 to B-6 is ultrasonically cleaned in acetone and dried, and then the arc ion plating shown in FIG. Attached along the outer periphery at a predetermined distance in the radial direction from the central axis on the rotary table in the apparatus, and provided with cathode electrodes (evaporation sources) on opposite sides across the rotary table. Has a metal V as a cathode electrode (evaporation source), and has a relatively high Al content on the one side of the position along the rotary table and 90 degrees away from the metal V. The cathode electrode (evaporation source) of the alloy is disposed opposite to the other side as a cathode electrode (evaporation source) of a Cr-Al-M alloy having a relatively low Al content,
(B) First, the inside of the apparatus is heated to 500 ° C. with a heater while the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, and then the tool base that rotates while rotating on the rotary table is −1000 V. A DC bias voltage is applied, and an arc discharge is generated by flowing a current of 100 A between the cathode electrode and the anode electrode of each of the Cr—Al—M alloys. -Bombarded with M alloy,
(C) Next, nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 4 Pa, a DC bias voltage of −100 V is applied to the tool base that rotates while rotating on the rotary table, and An arc discharge is generated by passing a current of 120 A between each of the Cr—Al—M alloys of the cathode electrode and the anode electrode, so that Table 3 and Table 4 are formed on the surface of the tool base along the layer thickness direction. The highest Al content point and the lowest Al content point of the target composition shown in FIG. 3 are alternately repeated at the target intervals shown in Tables 3 and 4, and from the highest Al content point to the lowest Al content point, the lowest Al content point. The composition change (Cr, Al, having a component concentration distribution structure in which the Al (Cr) content continuously changes from the content point to the Al maximum content point and having the target layer thicknesses also shown in Tables 3 and 4 M) N Was vapor deposited as the lower layer of the hard coating layer with an average layer thickness of 1 to 5 [mu] m, the stop arc discharge between the cathode electrode (vapor source) and the anode electrode of each Cr-Al-M alloy,
(D) Then, with the atmosphere in the apparatus kept in a nitrogen gas atmosphere, an arc discharge was generated between the metal V as the cathode electrode (evaporation source) and the anode electrode, and first, vanadium nitride was deposited and formed.
(E) Thereafter, the arc atmosphere between the cathode electrode (evaporation source) of the metal V and the anode electrode is continued, the atmosphere in the apparatus is changed to an oxygen-nitrogen mixed gas atmosphere, and gradually, as the deposition proceeds. Vapor deposition is continued while increasing the oxygen gas content ratio, and a composition gradient type vanadium oxynitride layer is deposited,
(F) When the thickness of the vapor deposition layer approaches the predetermined target layer thickness, the oxygen gas content in the oxygen-nitrogen mixed gas atmosphere is further increased, and vapor deposition is performed on the outermost surface of the target layer thickness of vanadium oxynitride. And forming a vanadium oxide layer substantially free of nitrogen (the value of O / (N + O) by the atomic ratio on the layer surface is 0.9 or more), and oxynitriding with the target layer thicknesses shown in Tables 3 and 4 After vapor deposition of the vanadium layer, the arc discharge between the metal V and the anode electrode is stopped,
By the said (a)-(f), this invention surface covering throwaway tip (henceforth this invention coating tip) 1-39 as this invention coating tool was manufactured, respectively.
また、比較の目的で、これら工具基体A−1〜A−10およびB−1〜B−6を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図2に示されるアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として所定組成のCr−Al−M合金を装着し、まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記工具基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極のCr−Al−M合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面を前記Cr−Al−M合金でボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記工具基体に印加するバイアス電圧を−100Vに下げて、前記所定組成の各カソード電極とアノード電極との間にアーク放電を発生させ、もって前記工具基体A−1〜A−10およびB−1〜B−6のそれぞれの表面に、表5、表6に示される目標組成および目標層厚の(Cr,Al,M)N層からなる硬質被覆層を蒸着形成することにより、比較被覆工具としての表面被覆スローアウエイチップ(以下、比較被覆チップと云う)1〜16をそれぞれ製造した。 For comparison purposes, these tool bases A-1 to A-10 and B-1 to B-6 were ultrasonically cleaned in acetone and dried, respectively, and the arc ion plating shown in FIG. The device is charged and a Cr-Al-M alloy having a predetermined composition is attached as a cathode electrode (evaporation source). First, the inside of the device is evacuated and kept at a vacuum of 0.1 Pa or less, and the inside of the device is heated with a heater. After heating to 500 ° C., a DC bias voltage of −1000 V is applied to the tool base, and a current of 100 A is passed between the cathode electrode Cr—Al—M alloy and the anode electrode to generate arc discharge, Thus, the surface of the tool base is bombarded with the Cr—Al—M alloy, then nitrogen gas is introduced into the apparatus as a reaction gas to form a reaction atmosphere of 3 Pa, and a via applied to the tool base. The voltage is lowered to -100 V to generate an arc discharge between each cathode electrode and anode electrode having the predetermined composition, whereby each of the tool bases A-1 to A-10 and B-1 to B-6 is generated. A surface-coated throwaway tip as a comparative coating tool (by coating a hard coating layer comprising (Cr, Al, M) N layers having the target compositions and target layer thicknesses shown in Tables 5 and 6 on the surface) (Hereinafter referred to as comparative coated chips) 1 to 16 were produced.
つぎに、上記の各種の被覆チップを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆チップ1〜32および比較被覆チップ1〜16について、
被削材:JIS・SCMnH1の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 240 m/min.、
切り込み: 4 mm、
送り: 0.55 mm/rev.、
切削時間: 5 分、
の条件(切削条件A)での高マンガン鋼の乾式断続高切り込み切削加工試験(通常の切り込みは1.5mm)、
被削材:JIS・SUS304の丸棒、
切削速度: 250 m/min.、
切り込み: 2.7 mm、
送り: 0.52 mm/rev.、
切削時間: 10 分、
の条件(切削条件B)でのステンレス鋼の乾式連続高切り込み切削加工試験(通常の切り込みは1.5mm)、
被削材:JIS・S11Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度: 250 m/min.、
切り込み: 3.6 mm、
送り: 0.63 mm/rev.、
切削時間: 5 分、
の条件(切削条件C)での軟鋼の乾式断続高送り切削加工試験(通常の送りは0.25mm/rev.)、を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表7、表8に示した。
Next, with the various coated chips described above, the present coated chips 1 to 32 and the comparative coated chips 1 to 16 are all screwed to the tip of the tool steel tool with a fixing jig.
Work material: JIS · SCMnH1 lengthwise equidistant four round grooved round bars,
Cutting speed: 240 m / min. ,
Cutting depth: 4 mm,
Feed: 0.55 mm / rev. ,
Cutting time: 5 minutes,
Of high manganese steel under the above conditions (cutting condition A), a dry intermittent high cutting test (normal cutting is 1.5 mm),
Work material: JIS / SUS304 round bar,
Cutting speed: 250 m / min. ,
Incision: 2.7 mm,
Feed: 0.52 mm / rev. ,
Cutting time: 10 minutes,
Stainless steel dry continuous high-cut cutting test under normal conditions (cutting condition B) (normal cutting is 1.5 mm),
Work material: JIS-S11C lengthwise equal 4 round grooved round bars,
Cutting speed: 250 m / min. ,
Infeed: 3.6 mm,
Feed: 0.63 mm / rev. ,
Cutting time: 5 minutes,
Was performed in a dry interrupted high feed cutting test (normal feed is 0.25 mm / rev.), And the flank wear width of the cutting edge was measured in any cutting test. . The measurement results are shown in Tables 7 and 8.
原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr3C2粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C[質量比で、TiC/WC=50/50]粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表9に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mm、13mm、および26mmの3種の工具基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表9に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角30度の4枚刃スクエア形状をもったWC基超硬合金製の工具基体(エンドミル)C−1〜C−8をそれぞれ製造した。 As raw material powders, medium coarse WC powder having an average particle diameter of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, ZrC of 1.2 μm Powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C [by mass ratio, TiC / WC = 50/50] powder, and 1 .8 μm Co powder was prepared, each of these raw material powders was blended in the blending composition shown in Table 9, and then added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and then pressed into a predetermined shape at a pressure of 100 MPa. The green compacts were press-molded, and these green compacts were heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a rate of temperature increase of 7 ° C./min in a 6 Pa vacuum atmosphere. After holding at temperature for 1 hour, sintering under furnace cooling conditions Then, three types of round rod sintered bodies for forming a tool base having diameters of 8 mm, 13 mm, and 26 mm were formed, and further, the three types of round rod sintered bodies were ground by grinding as shown in Table 9. In combination, the diameter x length of the cutting edge is 6 mm x 13 mm, 10 mm x 22 mm, and 20 mm x 45 mm, respectively, and each is made of a WC-based cemented carbide with a 4-flute square shape with a twist angle of 30 degrees Tool bases (end mills) C-1 to C-8 were produced.
ついで、これらの工具基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、層厚方向に沿って表10に示される目標組成のAl最低含有点とAl最高含有点とが交互に同じく表10に示される目標間隔で繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAl(Cr)含有量が連続的に変化する成分濃度分布構造を有し、かつ同じく表10に示される目標層厚の組成変化(Cr,Al,M)N層からなる下部層、および、同じく表10に示される目標層厚で、かつ、層表面における原子比によるO/(N+O)の値が0.9以上である組成傾斜型酸窒化バナジウム層からなる硬質被覆層を蒸着形成することにより、本発明被覆工具としての本発明表面被覆超硬製エンドミル(以下、本発明被覆エンドミルと云う)1〜27をそれぞれ製造した。 Subsequently, the surfaces of these tool bases (end mills) C-1 to C-8 were ultrasonically cleaned in acetone and dried, and then charged into the arc ion plating apparatus shown in FIG. Under the same conditions as in Example 1, the Al minimum content point and the Al maximum content point of the target composition shown in Table 10 along the layer thickness direction alternately and repeatedly exist at the target interval shown in Table 10, and It has a component concentration distribution structure in which the Al (Cr) content continuously changes from the highest Al content point to the lowest Al content point, from the lowest Al content point to the highest Al content point, and is also shown in Table 10 Change in composition of target layer thickness (Cr, Al, M) The lower layer composed of N layer, and the target layer thickness also shown in Table 10, and the value of O / (N + O) by the atomic ratio on the layer surface is 0 .9 or more composition gradient By depositing form a hard coat layer of the mold Vanadium nitride layer, the present invention present invention surface coating cemented carbide end mills of the coated tool (hereinafter, referred to as the present invention coated end mill) 1-27 were prepared, respectively.
また、比較の目的で、上記の工具基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、表12に示される目標組成および目標層厚の(Cr,Al,M)N層からなる硬質被覆層を蒸着することにより、比較被覆工具としての表面被覆超硬製エンドミル(以下、比較被覆エンドミルと云う)1〜10をそれぞれ製造した。 For the purpose of comparison, the surfaces of the tool bases (end mills) C-1 to C-8 are ultrasonically cleaned in acetone and dried, and then mounted on the arc ion plating apparatus shown in FIG. Then, under the same conditions as in Example 1, the hard coating layer composed of the (Cr, Al, M) N layer having the target composition and the target layer thickness shown in Table 12 is vapor-deposited. Surface-coated carbide end mills (hereinafter referred to as comparative coated end mills) 1 to 10 were produced.
つぎに、上記本発明被覆エンドミル1〜27および比較被覆エンドミル1〜10について、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SCMnH1の板材、
切削速度: 65 m/min.、
溝深さ(切り込み): 4.8 mm、
テーブル送り: 260 mm/分、
の条件(切削条件D)での高マンガン鋼の乾式高切り込み溝切削加工試験(通常の溝深さは3mm)、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SUS304の板材、
切削速度: 70 m/min.、
溝深さ(切り込み): 4 mm、
テーブル送り: 250 mm/分、
の条件(切削条件E)でのステンレス鋼の乾式高送り溝切削加工試験(通常のテーブル送りは120mm/分)、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・S11Cの板材、
切削速度: 60 m/min.、
溝深さ(切り込み): 9 mm、
テーブル送り: 160 mm/分、
の条件(切削条件F)での軟鋼の乾式高切り込み溝切削加工試験(通常の溝深さは5mm)、
をそれぞれ行い、いずれの溝切削加工試験でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。この測定結果を表11、表12にそれぞれ示した。
Next, with respect to the present invention coated end mills 1 to 27 and comparative coated end mills 1 to 10,
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SCMnH1 plate material,
Cutting speed: 65 m / min. ,
Groove depth (cut): 4.8 mm,
Table feed: 260 mm / min,
High-manganese steel dry-type high-grooving groove cutting test under normal conditions (cutting condition D) (normal groove depth is 3 mm),
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SUS304 plate,
Cutting speed: 70 m / min. ,
Groove depth (cut): 4 mm,
Table feed: 250 mm / min,
Stainless steel dry high feed groove cutting test under normal conditions (cutting condition E) (normal table feed is 120 mm / min),
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / S11C plate,
Cutting speed: 60 m / min. ,
Groove depth (cut): 9 mm,
Table feed: 160 mm / min,
Dry high-cut groove cutting test of mild steel under normal conditions (cutting condition F) (normal groove depth is 5 mm),
In each groove cutting test, the cutting groove length was measured until the flank wear width of the outer peripheral edge of the cutting edge reached 0.1 mm, which is a guide for the service life. The measurement results are shown in Tables 11 and 12, respectively.
上記の実施例2で製造した直径が8mm(工具基体C−1〜C−3形成用)、13mm(工具基体C−4〜C−6形成用)、および26mm(工具基体C−7、C−8形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ4mm×13mm(工具基体D−1〜D−3)、8mm×22mm(工具基体D−4〜D−6)、および16mm×45mm(工具基体D−7、D−8)の寸法、並びにいずれもねじれ角30度の2枚刃形状をもったWC基超硬合金製の工具基体(ドリル)D−1〜D−8をそれぞれ製造した。 The diameters produced in Example 2 above were 8 mm (for forming the tool bases C-1 to C-3), 13 mm (for forming the tool bases C-4 to C-6), and 26 mm (tool bases C-7 and C). -8 for forming), and from these three types of round bar sintered bodies, the diameter x length of the groove forming part is 4 mm x 13 mm (tool base D) by grinding. −1 to D-3), 8 mm × 22 mm (tool base D-4 to D-6), and 16 mm × 45 mm (tool bases D-7 and D-8), and all having a twist angle of 30 degrees 2 WC-base cemented carbide tool bases (drills) D-1 to D-8 having a single-blade shape were produced, respectively.
ついで、これらの工具基体(ドリル)D−1〜D−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、層厚方向に沿って表13に示される目標組成のAl最低含有点とAl最高含有点とが交互に同じく表13に示される目標間隔で繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAl(Cr)含有量が連続的に変化する成分濃度分布構造を有し、かつ同じく表13に示される目標層厚の組成変化(Cr,Al,M)N層からなる下部層、および、同じく表13に示される目標層厚、かつ、層表面における原子比によるO/(N+O)の値が0.9以上の組成傾斜型の酸窒化バナジウム層からなる硬質被覆層を蒸着形成することにより、本発明被覆工具としての本発明表面被覆超硬製ドリル(以下、本発明被覆ドリルと云う)1〜27をそれぞれ製造した。 Next, the cutting edges of these tool bases (drills) D-1 to D-8 are subjected to honing, ultrasonically cleaned in acetone, and dried to the arc ion plating apparatus shown in FIG. In the same condition as in Example 1 above, the lowest Al content point and the highest Al content point of the target composition shown in Table 13 along the layer thickness direction are alternately set at the target interval shown in Table 13. It has a component concentration distribution structure that repeatedly exists and the Al (Cr) content continuously changes from the Al highest content point to the Al lowest content point, from the Al lowest content point to the Al highest content point, and The composition change (Cr, Al, M) N layer of the target layer thickness also shown in Table 13 and the target layer thickness also shown in Table 13 and O / (N + O depending on the atomic ratio on the layer surface) ) Value is 0.9 or more The surface-coated carbide drills (hereinafter referred to as the present invention-coated drills) 1 to 27 as the present invention-coated tools are respectively formed by vapor-depositing a hard coating layer composed of a composition-gradient type vanadium oxynitride layer. Manufactured.
また、比較の目的で、上記の工具基体(ドリル)D−1〜D−8の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、表15に示される目標組成および目標層厚を有する(Cr,Al,M)N層からなる硬質被覆層を蒸着形成することにより、比較被覆工具としての表面被覆超硬製ドリル(以下、比較被覆ドリルと云う)1〜10をそれぞれ製造した。 For the purpose of comparison, the surface of the tool base (drill) D-1 to D-8 is subjected to honing, ultrasonically cleaned in acetone and dried, and the arc ions shown in FIG. A hard coating layer composed of a (Cr, Al, M) N layer having the target composition and target layer thickness shown in Table 15 is formed by vapor deposition under the same conditions as in Example 1 above. Thus, surface coated carbide drills (hereinafter referred to as comparative coated drills) 1 to 10 as comparative coated tools were manufactured, respectively.
つぎに、上記本発明被覆ドリル1〜27および比較被覆ドリル1〜10について、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SCMnH1の板材、
切削速度: 80 m/min.、
送り: 0.52 mm/rev、
穴深さ: 10 mm、
の条件(切削条件G)での高マンガン鋼の湿式高送り穴あけ切削加工試験(通常の送りは0.2mm/rev)、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SUS304の板材、
切削速度: 110 m/min.、
送り: 0.5 mm/rev、
穴深さ: 10 mm、
の条件(切削条件H)でのステンレス鋼の湿式高送り穴あけ切削加工試験(通常の送りは0.2mm/rev)、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・S11Cの板材、
切削速度: 60 m/min.、
送り: 0.5 mm/rev、
穴深さ: 7 mm、
の条件(切削条件I)での軟鋼の湿式高送り穴あけ切削加工試験(通常の送りは0.2mm/rev)、
をそれぞれ行い、いずれの湿式高速穴あけ切削加工試験(水溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表14、表15にそれぞれ示した。
Next, about the said invention coated drill 1-27 and the comparative coated drill 1-10,
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SCMnH1 plate material,
Cutting speed: 80 m / min. ,
Feed: 0.52 mm / rev,
Hole depth: 10 mm,
Wet high feed drilling test of high manganese steel under the above conditions (cutting condition G) (normal feed is 0.2 mm / rev),
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SUS304 plate,
Cutting speed: 110 m / min. ,
Feed: 0.5 mm / rev,
Hole depth: 10 mm,
Stainless steel wet high feed drilling test under normal conditions (cutting condition H) (normal feed is 0.2 mm / rev),
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / S11C plate,
Cutting speed: 60 m / min. ,
Feed: 0.5 mm / rev,
Hole depth: 7 mm,
Wet high feed drilling test of mild steel under normal conditions (cutting condition I) (normal feed is 0.2 mm / rev),
In each wet high-speed drilling test (using water-soluble cutting oil), the number of drilling processes until the flank wear width of the tip cutting edge surface reached 0.3 mm was measured. The measurement results are shown in Tables 14 and 15, respectively.
この結果得られた本発明被覆工具としての本発明被覆チップ1〜39、本発明被覆エンドミル1〜27、および本発明被覆ドリル1〜27の硬質被覆層を構成する組成変化(Cr,Al,M)N層(下部層)のAl最低含有点およびAl最高含有点の組成を、透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、それぞれ目標組成のAl最低含有点およびAl最高含有点と実質的に同じ組成を示した。
また、比較被覆工具としての比較被覆チップ1〜16、比較被覆エンドミル1〜10、および比較被覆ドリル1〜10の(Cr,Al,M)N層からなる硬質被覆層の組成を、透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。
As a result, the composition change (Cr, Al, M) constituting the hard coating layers of the present coated chips 1 to 39, the present coated end mills 1 to 27, and the present coated drills 1 to 27 as the present coated tools obtained. ) The composition of the lowest Al content point and the highest Al content point of the N layer (lower layer) was measured by energy dispersive X-ray analysis using a transmission electron microscope. The composition was substantially the same as the highest content point.
Further, the composition of the hard coating layer composed of the (Cr, Al, M) N layers of the comparative coating tips 1 to 16, the comparative coating end mills 1 to 10 and the comparative coating drills 1 to 10 as the comparative coating tool is changed to transmission electron. When measured by an energy dispersive X-ray analysis method using a microscope, each showed substantially the same composition as the target composition.
さらに、本発明被覆工具の硬質被覆層の上部層を構成する組成傾斜型酸窒化バナジウム層について、オージェ電子分光分析法により、硬質被覆層の断面研磨面において、上部層最下面の領域を測定幅0.1〜0.2μmで酸素含有量を測定したところ、該領域において検出された酸素含有量(即ち、原子比による、N含有量との合量に対するO含有量の割合(=O/(N+O))はいずれも0.1以下であり、上部層の最下面は、実質的に酸素を含有しない窒化バナジウムで構成されていることを確認した。さらに、硬質被覆層の表面側から、上部層最表面の酸素含有量を測定したところ、原子比による、N含有量との合量に対するO含有量の割合(=O/(N+O))は、いずれも0.9以上であり、上部層の最表面は、実質的に窒素を含有しない酸化バナジウムで形成されていることを確認した。 Further, for the composition gradient type vanadium oxynitride layer constituting the upper layer of the hard coating layer of the coated tool of the present invention, the area of the lowermost surface of the upper layer is measured by the Auger electron spectroscopic analysis on the cross-section polished surface of the hard coating layer. When the oxygen content was measured at 0.1 to 0.2 μm, the oxygen content detected in the region (that is, the ratio of O content to the total content with N content by atomic ratio (= O / ( N + O)) was 0.1 or less, and it was confirmed that the lowermost surface of the upper layer was composed of substantially vanadium nitride containing no oxygen. When the oxygen content on the outermost surface of the layer was measured, the ratio of O content to the total content with N content by atomic ratio (= O / (N + O)) was 0.9 or more in all cases, and the upper layer The outermost surface of the substrate substantially contains nitrogen. It was confirmed that are formed in the vanadium oxide does not.
また、上記の硬質被覆層を構成する各層の平均層厚を走査型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。 Moreover, when the average layer thickness of each layer which comprises said hard coating layer was cross-sectional measured using the scanning electron microscope, all showed the substantially same average value (average value of five places) as target layer thickness. .
表7〜15に示される結果から、本発明被覆工具は、いずれも特に粘性および粘着性の高いステンレス鋼や高マンガン鋼、さらに軟鋼などの難削材の高切り込みや高送りなどの重切削条件での切削加工でも、硬質被覆層の下部層である組成変化(Cr,Al,M)N層が工具基体表面に強固に密着接合した状態で、すぐれた高温硬さ、耐熱性、高温強度、あるいは、これに加えてさらにすぐれた耐摩耗性、高温耐酸化性を有し、かつ、組成傾斜型の酸窒化バナジウム層からなる上部層によって、上部層自体の強度および下部層との接合強度が維持されるとともに、前記被削材および切粉との間のすぐれた潤滑性、耐溶着性が確保されていることによって、チッピングの発生なく、長期に亘ってすぐれた耐摩耗性を発揮するのに対して、硬質被覆層が(Cr,Al,M)N層で構成され、組成傾斜型の酸窒化バナジウム層を有さない比較被覆工具においては、いずれも前記難削材の重切削加工では被削材(難削材)および切粉と前記硬質被覆層との粘着性および反応性が一段と高くなるために、切刃部にチッピングが発生するようになり、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 7 to 15, the coated tools of the present invention are all heavy cutting conditions such as high cutting and high feed of difficult-to-cut materials such as stainless steel, high manganese steel, and mild steel, which are particularly highly viscous and sticky. Even in the cutting process, the composition change (Cr, Al, M) N layer, which is the lower layer of the hard coating layer, is firmly adhered and bonded to the surface of the tool base, and has excellent high temperature hardness, heat resistance, high temperature strength, Or, in addition to this, the upper layer having a superior wear resistance and high-temperature oxidation resistance and having a composition-gradient type vanadium oxynitride layer provides the strength of the upper layer itself and the bonding strength to the lower layer. As well as being maintained, excellent lubricity and welding resistance between the work material and the chips are secured, so that excellent wear resistance is exhibited over a long period of time without occurrence of chipping. Hard cover In the comparative coated tool in which the layer is composed of a (Cr, Al, M) N layer and does not have a composition-gradient type vanadium oxynitride layer, the work material (difficult to cut) is difficult in heavy cutting of the difficult-to-cut material. It is clear that chipping occurs at the cutting edge and the service life is reached in a relatively short time because the adhesiveness and reactivity between the material) and the chips and the hard coating layer are further increased. .
上述のように、この発明の被覆工具は、一般鋼や普通鋳鉄などの切削加工は勿論のこと、特に上記の難削材の重切削加工でもすぐれた耐チッピング性を発揮し、長期に亘ってすぐれた切削性能を示すものであるから、切削加工装置のFA化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。 As described above, the coated tool of the present invention exhibits excellent chipping resistance not only for cutting of general steel and ordinary cast iron, but particularly for heavy cutting of the above difficult-to-cut materials, and for a long time. Since it shows excellent cutting performance, it can fully satisfactorily cope with the FA of the cutting apparatus, labor saving and energy saving of cutting, and cost reduction.
Claims (3)
(a)下部層として、1〜5μmの平均層厚を有し、かつ、層厚方向にそって、Al最高含有点とAl最低含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAlおよびCr含有量がそれぞれ連続的に変化する成分濃度分布構造を有し、
さらに、上記Al最高含有点が、組成式:(Cr1−XAlX)N(但し、XはAlの含有割合を示し、原子比で、0.70≦X≦0.95である)、
上記Al最低含有点が、組成式:(Cr1−αAlα)N(但し、αはAlの含有割合を示し、原子比で、0.50≦α≦0.65である)、
を満足し、かつ隣り合う上記Al最高含有点とAl最低含有点の間隔が、0.03〜0.1μmであるCrとAlの複合窒化物層、
(b)上部層として、1〜5μmの平均層厚を有し、上記(a)の下部層側から層厚方向の表面へ向かって酸素含有割合が高くなるような酸素濃度分布構造を有する酸窒化バナジウム層であって、かつ、該酸窒化バナジウム層の最下面では酸素を実質的に含有せず、また、該酸窒化バナジウム層の最表面では窒素を実質的に含有しない酸窒化バナジウム層、
以上(a)、(b)で構成された硬質被覆層を形成してなる、難削材の重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具。 On the surface of the tool base composed of tungsten carbide base cemented carbide or titanium carbonitride base cermet,
(A) The lower layer has an average layer thickness of 1 to 5 μm, and along the layer thickness direction, Al highest content points and Al lowest content points are alternately present at predetermined intervals, and From the Al highest content point to the Al lowest content point, from the Al lowest content point to the Al highest content point has a component concentration distribution structure in which Al and Cr contents continuously change, respectively,
Furthermore, the Al highest content point is the composition formula: (Cr 1-X Al X ) N (where X represents the content ratio of Al, and the atomic ratio is 0.70 ≦ X ≦ 0.95),
The Al minimum content point is a composition formula: (Cr 1−α Al α ) N (where α represents the Al content ratio, and is an atomic ratio of 0.50 ≦ α ≦ 0.65),
And a composite nitride layer of Cr and Al in which the interval between the Al highest content point and the Al lowest content point adjacent to each other is 0.03 to 0.1 μm,
(B) As an upper layer, an acid having an average layer thickness of 1 to 5 μm and having an oxygen concentration distribution structure in which the oxygen content increases from the lower layer side of (a) toward the surface in the layer thickness direction. A vanadium oxynitride layer that is substantially free of oxygen at the lowermost surface of the vanadium oxynitride layer and substantially free of nitrogen at the outermost surface of the vanadium oxynitride layer;
A surface-coated cutting tool that exhibits a chipping resistance in which the hard coating layer is excellent in heavy cutting of difficult-to-cut materials, which is formed by forming the hard coating layer configured as described above in (a) and (b).
(a)下部層として、1〜5μmの平均層厚を有し、かつ、層厚方向にそって、Al最高含有点とAl最低含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAlおよびCr含有量がそれぞれ連続的に変化する成分濃度分布構造を有し、
さらに、上記Al最高含有点が、組成式:((Cr1−ZMZ)1−XAlX)N(ここで、Mは、Crを除く周期律表4a,5a,6a族の元素、Si、B、Yのうちから選ばれた1種又は2種以上の添加成分を示し、また、XはAlの含有割合、ZはMの含有割合をそれぞれ示し、原子比で、0.70≦X≦0.95、0<Z≦0.30である)、
上記Al最低含有点が、組成式:((Cr1−γMγ)1−αAlα)N(但し、αはAlの含有割合、γはMの含有割合をそれぞれ示し、原子比で、0.50≦α≦0.65、0<γ≦0.30である)、
を満足し、かつ隣り合う上記Al最高含有点とAl最低含有点の間隔が、0.03〜0.1μmであるCrとAlとMの複合窒化物層、
(b)上部層として、1〜5μmの平均層厚を有し、上記(a)の下部層側から層厚方向の表面へ向かって酸素含有割合が高くなるような酸素濃度分布構造を有する酸窒化バナジウム層であって、かつ、該酸窒化バナジウム層の最下面では酸素を実質的に含有せず、また、該酸窒化バナジウム層の最表面では窒素を実質的に含有しない酸窒化バナジウム層、
以上(a)、(b)で構成された硬質被覆層を形成してなる、難削材の重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具。 On the surface of the tool base composed of tungsten carbide base cemented carbide or titanium carbonitride base cermet,
(A) The lower layer has an average layer thickness of 1 to 5 μm, and along the layer thickness direction, Al highest content points and Al lowest content points are alternately present at predetermined intervals, and From the Al highest content point to the Al lowest content point, from the Al lowest content point to the Al highest content point has a component concentration distribution structure in which Al and Cr contents continuously change, respectively,
Further, the highest Al content point is the composition formula: ((Cr 1−Z M Z ) 1−X Al X ) N (where M is an element of groups 4a, 5a and 6a of the periodic table excluding Cr, One or more additive components selected from Si, B, and Y are shown, X is the Al content, Z is the M content, and the atomic ratio is 0.70 ≦ X ≦ 0.95, 0 <Z ≦ 0.30),
The Al minimum content point is the composition formula: ((Cr 1-γ M γ ) 1-α Al α ) N (where α represents the Al content rate, γ represents the M content rate, and the atomic ratio, 0.50 ≦ α ≦ 0.65, 0 <γ ≦ 0.30),
And a composite nitride layer of Cr, Al, and M, in which the interval between the Al highest content point and the Al lowest content point adjacent to each other is 0.03 to 0.1 μm,
(B) As an upper layer, an acid having an average layer thickness of 1 to 5 μm and having an oxygen concentration distribution structure in which the oxygen content increases from the lower layer side of (a) toward the surface in the layer thickness direction. A vanadium oxynitride layer that is substantially free of oxygen at the lowermost surface of the vanadium oxynitride layer and substantially free of nitrogen at the outermost surface of the vanadium oxynitride layer;
A surface-coated cutting tool that exhibits a chipping resistance in which the hard coating layer is excellent in heavy cutting of difficult-to-cut materials, which is formed by forming the hard coating layer configured as described above in (a) and (b).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007027399A JP2008188738A (en) | 2007-02-06 | 2007-02-06 | Surface-coated cutting tool provided with hard coated layer achieving excellent chipping resistance in heavy cutting of hard-to-cut material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007027399A JP2008188738A (en) | 2007-02-06 | 2007-02-06 | Surface-coated cutting tool provided with hard coated layer achieving excellent chipping resistance in heavy cutting of hard-to-cut material |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008188738A true JP2008188738A (en) | 2008-08-21 |
Family
ID=39749331
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007027399A Withdrawn JP2008188738A (en) | 2007-02-06 | 2007-02-06 | Surface-coated cutting tool provided with hard coated layer achieving excellent chipping resistance in heavy cutting of hard-to-cut material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008188738A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013047548A1 (en) * | 2011-09-28 | 2013-04-04 | 日立ツール株式会社 | Covering member with excellent sliding properties |
CN115138230A (en) * | 2022-07-29 | 2022-10-04 | 江苏艾森半导体材料股份有限公司 | Thick film negative photoresist and its preparing process |
-
2007
- 2007-02-06 JP JP2007027399A patent/JP2008188738A/en not_active Withdrawn
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013047548A1 (en) * | 2011-09-28 | 2013-04-04 | 日立ツール株式会社 | Covering member with excellent sliding properties |
CN103826773A (en) * | 2011-09-28 | 2014-05-28 | 日立工具股份有限公司 | Covering member with excellent sliding properties |
JPWO2013047548A1 (en) * | 2011-09-28 | 2015-03-26 | 日立金属株式会社 | Covering material with excellent sliding characteristics |
US9604275B2 (en) | 2011-09-28 | 2017-03-28 | Hitachi Metals, Ltd. | Covering member with excellent sliding properties |
CN115138230A (en) * | 2022-07-29 | 2022-10-04 | 江苏艾森半导体材料股份有限公司 | Thick film negative photoresist and its preparing process |
CN115138230B (en) * | 2022-07-29 | 2023-06-13 | 江苏艾森半导体材料股份有限公司 | Thick film negative photoresist and photoresist preparation method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5041222B2 (en) | Surface coated cutting tool | |
JP5196122B2 (en) | Surface coated cutting tool | |
JP5088480B2 (en) | Surface coated cutting tool | |
JP2007030098A (en) | Cutting tool made of surface coated cemented carbide having hard coarted layer exhibiting excellent chipping resistance in high-speed cutting material hard to cut | |
JP4900874B2 (en) | Surface coated cutting tool with excellent chipping resistance with hard coating layer in heavy cutting of difficult-to-cut materials | |
JP2007030100A (en) | Cutting tool made of surface coated cemented carbide having hard coated layer exhibiting excellent chipping resistance in hard cutting of material hard to cut | |
JP2008188738A (en) | Surface-coated cutting tool provided with hard coated layer achieving excellent chipping resistance in heavy cutting of hard-to-cut material | |
JP2007290090A (en) | Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting difficult-to-cut material | |
JP4747719B2 (en) | Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer in heavy cutting of difficult-to-cut materials | |
JP2007290091A (en) | Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting difficult-to-cut material | |
JP4711059B2 (en) | Cutting tool made of surface coated cemented carbide with excellent chipping resistance with hard coating layer in difficult-to-cut materials | |
JP2008188739A (en) | Surface-coated cutting tool in which hard coating layer shows excellent chipping resistance in heavy cutting of difficult-to-cut material | |
JP5099495B2 (en) | Surface coated cutting tool | |
JP4682826B2 (en) | Surface coated cutting tool with excellent chipping resistance due to hard coating layer in heavy cutting of difficult-to-cut materials | |
JP4849221B2 (en) | Surface coated cutting tool with excellent chipping resistance with hard coating layer in heavy cutting of difficult-to-cut materials | |
JP2007038341A (en) | Surface coated cemented carbide cutting tool having hard coating layer exerting superior chipping resistance under high speed heavy cutting of hard-to-cut material | |
JP2007313582A (en) | Surface-coated cutting tool having hard coating layer with excellent chipping resistance in heavy cutting difficult-to-cut material | |
JP2007144595A (en) | Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in heavy cutting of difficult-to-cut material | |
JP2008188735A (en) | Surface-coated cutting tool in which hard coating layer shows excellent chipping resistance in heavy cutting of difficult-to-cut material | |
JP4244378B2 (en) | Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting | |
JP4789068B2 (en) | Surface coated cutting tool with excellent chipping resistance with hard coating layer in heavy cutting of difficult-to-cut materials | |
JP4789069B2 (en) | Surface coated cutting tool with excellent chipping resistance with hard coating layer in heavy cutting of difficult-to-cut materials | |
JP4682825B2 (en) | Surface coated cutting tool with excellent chipping resistance due to hard coating layer in heavy cutting of difficult-to-cut materials | |
JP2007030067A (en) | Cutting tool made of surface coated cemented carbide having hard coated layer exhibiting excellent chipping resistance in cutting material hard to cut | |
JP2008188736A (en) | Surface coated cutting tool having hard coating layer showing excellent chipping resistance in heavy cutting of difficult-to-cut material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20100406 |