JP2010214557A - Surface coated cutting tool with hard coating layer exerting excellent chipping resistance - Google Patents

Surface coated cutting tool with hard coating layer exerting excellent chipping resistance Download PDF

Info

Publication number
JP2010214557A
JP2010214557A JP2009065814A JP2009065814A JP2010214557A JP 2010214557 A JP2010214557 A JP 2010214557A JP 2009065814 A JP2009065814 A JP 2009065814A JP 2009065814 A JP2009065814 A JP 2009065814A JP 2010214557 A JP2010214557 A JP 2010214557A
Authority
JP
Japan
Prior art keywords
layer
crystal
degrees
plane
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009065814A
Other languages
Japanese (ja)
Other versions
JP5326707B2 (en
Inventor
Keiji Nakamura
惠滋 中村
Kohei Tomita
興平 冨田
Makoto Igarashi
誠 五十嵐
Akira Osada
晃 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2009065814A priority Critical patent/JP5326707B2/en
Priority to US13/256,867 priority patent/US8828527B2/en
Priority to PCT/JP2010/001973 priority patent/WO2010106811A1/en
Priority to CN201080012240.3A priority patent/CN102355968B/en
Priority to EP10753306.9A priority patent/EP2409798B1/en
Publication of JP2010214557A publication Critical patent/JP2010214557A/en
Application granted granted Critical
Publication of JP5326707B2 publication Critical patent/JP5326707B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface coated cutting tool with a hard coating layer exerting excellent chipping resistance in high speed heavy cutting of a difficult-to-cut material such as stainless steel and tag tile cast iron. <P>SOLUTION: In this surface coated cutting tool, (a) a Ti compound layer as a lower layer, (b) a α type Al<SB>2</SB>O<SB>3</SB>layer as an intermediate layer, and (c) a α type Al<SB>2</SB>O<SB>3</SB>layer containing Cr having a planar polygon-shaped and vertically long shaped crystal grain structure as an upper layer are formed by vapor deposition on a surface of a tool base body. The intermediate layer and the upper layer are composed of the α type Al<SB>2</SB>O<SB>3</SB>layer having a high (0001) plane orientation rate and the α type Al<SB>2</SB>O<SB>3</SB>layer containing Cr, respectively. The inside of the crystal grains of ≥60% in area rate, of the crystal grains of the upper layer, is divided by a crystal lattice interface made of an organized atom common lattice-point form expressed by at least one or more of Σ3. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、例えば、ステンレス鋼やダクタイル鋳鉄等の難削材の切削加工を、高熱発生を伴うとともに、切刃に対して、高送り、高切込みによる高負荷が作用する高速重切削条件で行った場合でも、硬質被覆層がチッピングを発生することなく、長期の使用に亘ってすぐれた耐摩耗性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   For example, the present invention performs cutting of difficult-to-cut materials such as stainless steel and ductile cast iron under high-speed heavy cutting conditions in which high heat is generated and high load is applied to the cutting blade due to high feed and high cutting. Even in this case, the present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent wear resistance over a long period of use without causing chipping of the hard coating layer.

従来、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)下部層が、いずれも化学蒸着形成された、TiC層、TiN層、TiCN層、TiCO層、およびTiCNO層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、
(b)上部層が、1〜15μmの平均層厚、および化学蒸着した状態でα型の結晶構造を有し、さらに、
電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示すCr含有酸化アルミニウム層、
以上(a)および(b)で構成された硬質被覆層を蒸着形成してなる、硬質被覆層が高速断続切削加工ですぐれた耐チッピング性を発揮する被覆工具(以下、従来被覆工具という)が知られており、この従来被覆工具は、Cr含有酸化アルミニウム層がすぐれた高温強度を有することから、高速断続切削加工ですぐれた耐チッピング性を発揮することが知られている。
特開2006−289586号公報
Conventionally, on the surface of a base composed of tungsten carbide (hereinafter referred to as WC) base cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) base cermet (hereinafter collectively referred to as a tool base),
(A) The lower layer is formed of one or more of TiC layer, TiN layer, TiCN layer, TiCO layer, and TiCNO layer, all formed by chemical vapor deposition, and an overall average layer of 3 to 20 μm A Ti compound layer having a thickness;
(B) the upper layer has an average layer thickness of 1 to 15 μm and an α-type crystal structure in the state of chemical vapor deposition;
Using a field emission scanning electron microscope, each crystal grain having a hexagonal crystal lattice existing within the measurement range of the surface polishing surface is irradiated with an electron beam, and the crystal grain is compared with the normal line of the surface polishing surface. The tilt angle formed by the normal line of the (0001) plane, which is the crystal plane, is measured, and among the measured tilt angles, the measured tilt angles within the range of 0 to 45 degrees are classified for each pitch of 0.25 degrees. In addition, in the inclination angle number distribution graph obtained by summing up the frequencies existing in each section, the highest peak exists in the inclination angle section within the range of 0 to 10 degrees and also exists within the range of 0 to 10 degrees. A Cr-containing aluminum oxide layer showing an inclination angle distribution graph in which the total frequency to be occupied accounts for 45% or more of the entire frequency in the inclination angle distribution graph,
A coated tool (hereinafter referred to as a conventional coated tool) in which the hard coating layer formed by vapor deposition of the hard coating layer composed of the above (a) and (b) exhibits excellent chipping resistance in high-speed intermittent cutting processing is provided. This conventional coated tool is known to exhibit excellent chipping resistance in high-speed intermittent cutting because the Cr-containing aluminum oxide layer has excellent high-temperature strength.
JP 2006-289586 A

近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は一段と高速化、高能率化する傾向にあるが、上記従来被覆工具においては、これを低合金鋼や炭素鋼などの一般鋼、さらにねずみ鋳鉄などの普通鋳鉄の高速切削加工、高速断続切削加工に用いた場合には特に問題はないが、特にこれを、ステンレス鋼やダクタイル鋳鉄等の難削材の、高熱発生を伴うとともに、切刃に対して、高送り、高切込みの高負荷が作用する高速重切削加工に用いた場合には、硬質被覆層の高温強度および表面性状が満足できるものでないため、切刃部にチッピング(微少欠け)を発生しやすくなり、その結果、比較的短時間で使用寿命に至るのが現状である。   In recent years, the performance of cutting machines has been remarkable. On the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for cutting, and along with this, cutting tends to become even faster and more efficient. In the above-mentioned conventional coated tool, there is no particular problem when it is used for high-speed cutting and high-speed interrupted cutting of general steel such as low alloy steel and carbon steel, and further cast iron such as gray cast iron. When this is used for high-speed heavy cutting that is accompanied by high heat generation of difficult-to-cut materials such as stainless steel and ductile cast iron, and high feed and high cutting loads are applied to the cutting blade, it is hard. Since the high-temperature strength and surface properties of the coating layer are not satisfactory, chipping (slight chipping) is likely to occur at the cutting edge, and as a result, the service life is reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、高熱発生を伴い、かつ、切刃に対して、高送り、高切込みの高負荷が作用する高速重切削加工に用いた場合にも、長期の使用に亘ってすぐれた耐チッピング性、耐摩耗性を発揮する被覆工具を開発すべく、鋭意研究を行った結果、以下の知見を得た。   Therefore, the present inventors, from the viewpoint as described above, accompanied by high heat generation, and also when used for high-speed heavy cutting with high feed and high cutting acting on the cutting blade, As a result of diligent research to develop a coated tool that exhibits excellent chipping resistance and wear resistance over a long period of use, the following knowledge was obtained.

(a)上記の従来被覆工具におけるCr含有酸化アルミニウム層(以下、従来Cr含有Al23層で示す)は、下部層であるTi化合物層の表面に、例えば、通常の化学蒸着装置にて、
まず、
反応ガス組成:容量%で、AlCl:2.3〜4%、CrCl:0.04〜0.26%、CO:6〜8%、HCl:1.5〜3%、H2S:0.05〜0.2%、H2:残り、
反応雰囲気温度:750〜900℃、
反応雰囲気圧力:6〜10kPa、
の条件で、Cr含有Al23核を形成し、この場合、前記Cr含有Al23核は20〜200nm(0.02〜0.2μm)の平均層厚を有する核薄膜であること、また、Alとの合量に占めるCrの含有割合(Cr/(Al+Cr))は、0.01〜0.1(ただし、原子比)を満足することが望ましく、
引き続いて、6〜10kPaの水素雰囲気中で、加熱雰囲気温度を1100〜1200℃に昇温した条件で前記Cr含有Al23核薄膜に加熱処理を施した状態で、
次いで、
反応ガス組成:容量%で、AlCl:2.3〜4%、CrCl:0.04〜0.26%、CO:6〜8%、HCl:1.5〜3%、H2S:0.05〜0.2%、H2:残り、
反応雰囲気温度:1020〜1050℃、
反応雰囲気圧力:6〜10kPa、
の条件で、同じくCr含有Al23層(Alとの合量に占めるCrの含有割合(Cr/(Al+Cr))は、原子比で、0.01〜0.1を満足することが望ましい)を蒸着することにより、従来Cr含有Al23層を蒸着形成していた。
(A) The Cr-containing aluminum oxide layer (hereinafter referred to as the conventional Cr-containing Al 2 O 3 layer) in the above-described conventional coated tool is formed on the surface of the Ti compound layer as the lower layer, for example, with a normal chemical vapor deposition apparatus ,
First,
Reaction gas composition: by volume%, AlCl 3: 2.3~4%, CrCl 3: 0.04~0.26%, CO 2: 6~8%, HCl: 1.5~3%, H 2 S : 0.05~0.2%, H 2: remainder,
Reaction atmosphere temperature: 750 to 900 ° C.
Reaction atmosphere pressure: 6 to 10 kPa,
In this case, Cr-containing Al 2 O 3 nuclei are formed, and in this case, the Cr-containing Al 2 O 3 nuclei are nuclear thin films having an average layer thickness of 20 to 200 nm (0.02 to 0.2 μm). In addition, the content ratio of Cr in the total amount with Al (Cr / (Al + Cr)) desirably satisfies 0.01 to 0.1 (however, the atomic ratio),
Subsequently, in a state where the Cr-containing Al 2 O 3 core thin film was subjected to a heat treatment in a hydrogen atmosphere of 6 to 10 kPa under a condition where the heating atmosphere temperature was raised to 1100 to 1200 ° C.,
Then
Reaction gas composition: by volume%, AlCl 3: 2.3~4%, CrCl 3: 0.04~0.26%, CO 2: 6~8%, HCl: 1.5~3%, H 2 S : 0.05~0.2%, H 2: remainder,
Reaction atmosphere temperature: 1020 to 1050 ° C.
Reaction atmosphere pressure: 6 to 10 kPa,
Similarly, it is desirable that the Cr-containing Al 2 O 3 layer (Cr content ratio (Cr / (Al + Cr)) in the total amount with Al) satisfies the atomic ratio of 0.01 to 0.1. In the past, a Cr-containing Al 2 O 3 layer was formed by vapor deposition.

そして、上記の従来Cr含有Al23層について、
電界放出型走査電子顕微鏡を用い、図1(a),(b)に概略説明図で示される通り、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフを作成した場合、前記従来Cr含有Al23層は、図2に例示される通り、0〜10度の範囲内にシャープな最高ピークが現れ、前記0〜10度の範囲内に存在する度数の合計(この度数合計と前記最高ピークの高さは比例関係にある)が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示すようになり、
そして、上記の従来Cr含有Al23層は、すぐれた高温硬さ、耐熱性、高温強度を備え、機械的熱的な耐衝撃性にすぐれることから、これを硬質被覆層の上部層として蒸着形成した場合、機械的熱的衝撃を伴う高速断続切削加工でも、すぐれた耐チッピング性を発揮していた。
Then, a conventional Cr-containing the Al 2 O 3 layer described above,
Using a field emission scanning electron microscope, as shown in the schematic explanatory diagrams in FIGS. 1A and 1B, an electron beam is individually applied to each crystal grain having a hexagonal crystal lattice existing within the measurement range of the surface polished surface. Irradiation is performed to measure the inclination angle formed by the normal line of the (0001) plane that is the crystal plane of the crystal grain with respect to the normal line of the surface-polished surface. When the measured inclination angle within the range is divided for each pitch of 0.25 degrees and the inclination angle number distribution graph obtained by summing up the frequencies existing in each division is created, the conventional Cr-containing Al 2 O 3 is used. As illustrated in FIG. 2, the layer has a sharp maximum peak in the range of 0 to 10 degrees, and the total number of frequencies existing in the range of 0 to 10 degrees (the total of the frequency and the height of the maximum peak). Is proportional), but the overall frequency in the slope angle distribution graph Accounts for 5% or more will indicate the inclination angle frequency distribution graph,
The above conventional Cr-containing Al 2 O 3 layer has excellent high-temperature hardness, heat resistance, and high-temperature strength, and is excellent in mechanical and thermal shock resistance. In the case of vapor deposition, the chipping resistance was excellent even in high-speed intermittent cutting with mechanical thermal shock.

しかし、発明が解決しようとする課題の欄でも述べたように、上記従来Cr含有Al23層を硬質被覆層の上部層として形成した従来被覆工具を、例えば、ステンレス鋼やダクタイル鋳鉄等の難削材の高速重切削加工、即ち、高熱発生を伴うとともに、切刃に対して、高送り、高切込みの高負荷が作用する高速重切削加工に用いた場合には、硬質被覆層の高温強度および表面性状が十分に満足できるものでないために、切刃部にチッピング(微少欠け)が発生しやすいという問題があった。 However, as described in the section of the problem to be solved by the invention, the conventional coated tool in which the conventional Cr-containing Al 2 O 3 layer is formed as an upper layer of the hard coating layer, such as stainless steel and ductile cast iron, is used. When used for high-speed heavy cutting of difficult-to-cut materials, that is, high-heat generation and high-speed heavy cutting with high feed and high cutting force applied to the cutting edge, the high temperature of the hard coating layer Since the strength and surface properties are not sufficiently satisfactory, there is a problem that chipping (small chipping) tends to occur at the cutting edge portion.

そこで、本発明者等は、従来被覆工具の下部層の上に、傾斜角度数分布グラフにおいて、0〜10度の範囲内にシャープな最高ピークが現れ、かつ、0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める(0001)面配向率の高いα型の結晶構造を有する酸化アルミニウム層(以下、改質Al23層という)を中間層として蒸着形成し、この改質Al23層の上に、さらに、結晶粒界強度が高められたCr含有Al23層(以下、改質Cr含有Al23層という)を上部層として、硬質被覆層の構造を、上記下部層、中間層及び上部層の三層構造として形成することにより、高温強度および表面性状に優れた硬質被覆層を形成し得ること、さらに、この高温強度および表面性状に優れた硬質被覆層を備える被覆工具は、ステンレス鋼やダクタイル鋳鉄等の難削材の高速重切削加工に用いた場合でも、切刃部にチッピング(微少欠け)の発生がなく、長期の使用に亘って、すぐれた工具特性を発揮することを見出した。 Therefore, the inventors of the present invention have a sharp maximum peak in the range of 0 to 10 degrees in the inclination angle number distribution graph on the lower layer of the conventional coated tool, and in the range of 0 to 10 degrees. An aluminum oxide layer (hereinafter referred to as modified Al 2 O 3 ) having an α-type crystal structure with a high (0001) plane orientation ratio, in which the total of the existing frequencies occupies a ratio of 45% or more of the entire frequencies in the inclination angle distribution graph. the) that layers were vapor deposited as an intermediate layer, on top of this modified the Al 2 O 3 layer, further, the Cr content the Al 2 O 3 layer grain boundary strength is enhanced (hereinafter, the modified Cr-containing Al 2 O the) of 3-layer as an upper layer, the structure of the hard coating layer, the lower layer, by forming a three-layer structure of the intermediate layer and the upper layer, to form an excellent hard coating layer high-temperature strength and surface properties That, even this high temperature strength and surface Even when used for high-speed heavy cutting of difficult-to-cut materials such as stainless steel and ductile cast iron, the coated tool with a hard coating layer with excellent properties does not cause chipping (small chipping) at the cutting edge, and is long-term It has been found that it exhibits excellent tool properties over use.

この発明は、上記知見に基づいてなされたものであって、
「(1) 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a)下部層が、いずれも化学蒸着形成された、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、かつ、3〜20μmの合計平均層厚を有するTi化合物層、
(b)中間層が、1〜5μmの平均層厚を有し、化学蒸着した状態でα型の結晶構造を有する酸化アルミニウム層、
(c)上部層が、2〜15μmの平均層厚を有し、化学蒸着した状態でα型の結晶構造を有するCr含有酸化アルミニウム層、
上記(a)〜(c)からなる硬質被覆層を蒸着形成した表面被覆切削工具において、
(d)上記(b)の中間層は、電界放出型走査電子顕微鏡を用い、上記工具基体の表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうちの0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで現した場合、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示し、
(e)上記(c)の上部層は、電界放出型走査電子顕微鏡で組織観察した場合に、層厚方向に垂直な面内で平板多角形状、また、層厚方向に平行な面内で層厚方向にたて長形状を有する結晶粒からなる組織構造を有するCr含有酸化アルミニウム層であり、
また、上記(c)の上部層について、電界放出型走査電子顕微鏡を用い、上記工具基体の表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうちの0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで現した場合、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の60%以上の割合を占める傾斜角度数分布グラフを示し、
さらに、上記(c)の上部層について、電界放出型走査電子顕微鏡と電子後方散乱回折像装置を用い、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、六方晶結晶格子からなる結晶格子面のそれぞれの法線が基体表面の法線と交わる角度を測定し、この測定結果から、隣接する結晶格子相互の結晶方位関係を算出し、結晶格子界面を構成する構成原子のそれぞれが前記結晶格子相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(但し、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で表した場合に、上記(c)の上部層を構成する結晶粒の内、面積比率で60%以上の結晶粒の内部は、少なくとも一つ以上のΣ3で表される構成原子共有格子点形態からなる結晶格子界面により分断されているCr含有酸化アルミニウム層である、
ことを特徴とする表面被覆切削工具。
(2) 前記(c)の上部層を電界放出型走査電子顕微鏡で組織観察した場合に、層厚方向に垂直な面内で平坦六角形状、また、層厚方向に平行な面内で層厚方向にたて長形状を有する結晶粒が、層厚方向に垂直な面内において全体の35%以上の面積割合を占める前記(1)に記載の表面被覆切削工具。
(3) 前記(c)の上部層は、0.05〜0.3μmの範囲内の表面粗さ(Ra)を有する前記(1)又は(2)のいずれかに記載の表面被覆切削工具。」
に特徴を有するものである。
This invention has been made based on the above findings,
“(1) On the surface of a tool base made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
(A) the lower layer is formed of one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride oxide layer, all formed by chemical vapor deposition; And a Ti compound layer having a total average layer thickness of 3 to 20 μm,
(B) the intermediate layer has an average layer thickness of 1 to 5 μm, and an aluminum oxide layer having an α-type crystal structure in the state of chemical vapor deposition;
(C) the upper layer has an average layer thickness of 2 to 15 μm, and a Cr-containing aluminum oxide layer having an α-type crystal structure in the state of chemical vapor deposition;
In the surface-coated cutting tool in which the hard coating layer composed of the above (a) to (c) is formed by vapor deposition,
(D) The intermediate layer of (b) is irradiated with an electron beam on each crystal grain having a hexagonal crystal lattice existing within the measurement range of the surface polished surface of the tool base using a field emission scanning electron microscope. Then, the inclination angle formed by the normal line of the (0001) plane that is the crystal plane of the crystal grain is measured with respect to the normal line of the surface polished surface, and is within a range of 0 to 45 degrees of the measurement inclination angle. When the measured tilt angle is divided into pitches of 0.25 degrees and the frequency existing in each section is tabulated, the tilt angle is within a range of 0 to 10 degrees. A slope angle distribution graph in which the highest peak exists in the section and the total of the frequencies existing in the range of 0 to 10 degrees occupies a ratio of 45% or more of the entire frequencies in the slope angle distribution graph,
(E) The upper layer of (c) is a flat polygonal shape in a plane perpendicular to the layer thickness direction and a layer in a plane parallel to the layer thickness direction when the structure is observed with a field emission scanning electron microscope. A Cr-containing aluminum oxide layer having a structure composed of crystal grains having a long shape in the thickness direction,
Further, with respect to the upper layer of (c), an electron beam is irradiated to each crystal grain having a hexagonal crystal lattice existing within the measurement range of the surface polished surface of the tool base using a field emission scanning electron microscope. The inclination angle formed by the normal line of the (0001) plane, which is the crystal plane of the crystal grain, is measured with respect to the normal line of the surface polished surface, and is within a range of 0 to 45 degrees of the measured inclination angle. When a certain tilt angle is divided into pitches of 0.25 degrees, and the tilt angle distribution graph is formed by summing up the frequencies existing in each section, the tilt angle sections within the range of 0 to 10 degrees An inclination angle number distribution graph in which the highest peak is present and the total frequency within the range of 0 to 10 degrees occupies a ratio of 60% or more of the entire frequency in the inclination angle distribution graph,
Further, the upper layer of the above (c) is irradiated with an electron beam on each crystal grain existing within the measurement range of the surface polished surface using a field emission scanning electron microscope and an electron backscatter diffraction image apparatus, thereby obtaining a hexagonal crystal. Measures the angle at which each normal of the crystal lattice plane consisting of crystal lattices intersects the normal of the substrate surface, and calculates the crystal orientation relationship between adjacent crystal lattices from this measurement result, and configures the crystal lattice interface The distribution of lattice points (constituent atom shared lattice points) in which each atom shares one constituent atom between the crystal lattices is calculated, and N lattice points that do not share constituent atoms between the constituent atom shared lattice points are calculated. (However, N is an even number of 2 or more due to the crystal structure of the corundum hexagonal close-packed crystal. However, when the upper limit of N is 28 from the point of distribution frequency, even numbers of 4, 8, 14, 24 and 26 exist. Without) sharing existing constituent atoms When the child dot form is represented by ΣN + 1, the crystal grains having an area ratio of 60% or more among the crystal grains constituting the upper layer of the above (c) are represented by at least one Σ3 It is a Cr-containing aluminum oxide layer divided by a crystal lattice interface composed of atomic shared lattice point form,
A surface-coated cutting tool characterized by that.
(2) When the upper layer of (c) is observed with a field emission scanning electron microscope, a flat hexagonal shape in a plane perpendicular to the layer thickness direction and a layer thickness in a plane parallel to the layer thickness direction The surface-coated cutting tool according to (1), wherein the crystal grains having a long shape in the direction occupy an area ratio of 35% or more of the whole in a plane perpendicular to the layer thickness direction.
(3) The surface-coated cutting tool according to either (1) or (2), wherein the upper layer of (c) has a surface roughness (Ra) in a range of 0.05 to 0.3 μm. "
It has the characteristics.

以下に、この発明の被覆工具の硬質被覆層の構成層について、より詳細に説明する。
(a)Ti化合物層(下部層)
Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなるTi化合物層は、基本的には中間層である改質Al23層の下部層として存在し、自身の具備するすぐれた靭性及び耐摩耗性によって硬質被覆層の高温強度向上に寄与するほか、工具基体と改質Al23層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性向上にも寄与する作用を有するが、その合計平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方その合計平均層厚が20μmを越えると、高熱発生したで切刃に高負荷が作用する高速重切削条件では熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その合計平均層厚を3〜20μmと定めた。
Below, the constituent layer of the hard coating layer of the coated tool of this invention is demonstrated in detail.
(A) Ti compound layer (lower layer)
Ti carbide (hereinafter referred to as TiC) layer, nitride (hereinafter also referred to as TiN) layer, carbonitride (hereinafter referred to as TiCN) layer, carbonate (hereinafter referred to as TiCO) layer and carbonitriding The Ti compound layer composed of one or more of the material layers (hereinafter referred to as TiCNO) is basically present as a lower layer of the modified Al 2 O 3 layer as an intermediate layer. Excellent toughness and wear resistance contribute to improving the high-temperature strength of the hard coating layer, and also firmly adheres to both the tool substrate and the modified Al 2 O 3 layer, and thus the adhesion of the hard coating layer to the tool substrate Although it has an effect that contributes to improvement, if the total average layer thickness is less than 3 μm, the above-mentioned effect cannot be sufficiently exhibited. On the other hand, if the total average layer thickness exceeds 20 μm, high heat is generated and the cutting edge High speed heavy load In cutting conditions easily cause thermal plastic deformation, which is because the cause of the uneven wear, defining a total average layer thickness thereof and 3 to 20 [mu] m.

(b)改質Al23層(中間層)
中間層を構成する改質Al23層は、
通常の化学蒸着装置を用い、
反応ガス組成:容量%で、AlCl3:3〜10%、CO2:0.5〜3%、C24:0.01〜0.3%、H2:残り、
反応雰囲気温度:750〜900℃、
反応雰囲気圧力:3〜13kPa、
の低温条件で、下部層であるTi化合物層の表面にAl23核を形成し、この場合前記Al23核は20〜200nmの平均層厚を有するAl23核薄膜であるのが望ましく、引き続いて、反応雰囲気を圧力:3〜13kPaの水素雰囲気に変え、反応雰囲気温度を1100〜1200℃に昇温した条件で前記Al23核薄膜に加熱処理を施した状態で、硬質被覆層としてのα型Al23層を通常の条件で形成し、前記加熱処理Al23核薄膜上にα型Al23層を蒸着することによって形成することができる。
(B) Modified Al 2 O 3 layer (intermediate layer)
The modified Al 2 O 3 layer constituting the intermediate layer is
Using normal chemical vapor deposition equipment,
Reaction gas composition:% by volume, AlCl 3 : 3 to 10%, CO 2 : 0.5 to 3%, C 2 H 4 : 0.01 to 0.3%, H 2 : remaining,
Reaction atmosphere temperature: 750 to 900 ° C.
Reaction atmosphere pressure: 3 to 13 kPa,
Under these low temperature conditions, Al 2 O 3 nuclei are formed on the surface of the lower Ti compound layer. In this case, the Al 2 O 3 nuclei are Al 2 O 3 nuclei thin films having an average layer thickness of 20 to 200 nm. desirable that, subsequently, the reaction atmosphere pressure: changed to a hydrogen atmosphere of 3~13KPa, while subjected to heat treatment to the Al 2 O 3 nuclei film under conditions by elevating the temperature of the reaction atmosphere temperature to 1100 to 1200 ° C. The α-type Al 2 O 3 layer as a hard coating layer can be formed under normal conditions, and the α-type Al 2 O 3 layer can be deposited on the heat-treated Al 2 O 3 core thin film.

そして、下部層の上に化学蒸着された上記改質Al23層について、電界放出型走査電子顕微鏡を用い、図1(a),(b)に示される通り、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで表した場合、図2に例示される通り、傾斜角区分0〜10度の範囲内にシャープな最高ピークが現れ、そして、傾斜角区分0〜10度の範囲内に存在する度数の合計は、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示し、この改質Al23層は、(0001)面配向率の高いことがわかる。
そして、この改質Al23層は、すぐれた高温硬さと耐熱性に加えて、すぐれた高温強度を有するが、中間層として形成した改質Al23層を、(0001)面配向率の高い中間層として構成しておくことにより、この上に蒸着形成される改質Cr含有Al23層の(0001)面配向率を高めることができ、その結果として、改質Cr含有Al23層からなる上部層の表面性状の改善を図るとともに高温強度の向上を図ることができる。
ただ、改質Al23層からなる中間層の平均層厚が1μm未満では改質Al23層の有する前記の特性を硬質被覆層に十分に具備せしめることができず、一方、その平均層厚が5μmを越えると、切削時に発生する高熱と切刃に作用する高負荷によって、偏摩耗の原因となる熱塑性変形が発生し易くなり、摩耗が加速するようになることから、その平均層厚は1〜5μmと定めた。
Then, for the above reforming the Al 2 O 3 layer which is chemically deposited on the lower layer, using a field emission scanning electron microscope, FIG. 1 (a), the measurement range of the street, surface polishing surface shown in (b) The crystal grains having a hexagonal crystal lattice existing therein are irradiated with electron beams, and the normal of the (0001) plane, which is the crystal plane of the crystal grains, is inclined with respect to the normal of the surface polished surface The angle is measured, and the measured inclination angle within the range of 0 to 45 degrees is divided into 0.25 degree pitches among the measured inclination angles, and the degrees existing in the respective sections are totaled. When represented by an angle distribution graph, as illustrated in FIG. 2, a sharp maximum peak appears in the range of the tilt angle section 0 to 10 degrees, and exists in the range of the tilt angle section 0 to 10 degrees. The total frequency is 45% or more of the total frequency in the slope angle distribution graph. Shows an inclination angle frequency distribution graph occupying case, the modified Al 2 O 3 layer is seen that a high (0001) plane orientation ratio.
This modified Al 2 O 3 layer has excellent high temperature hardness and heat resistance, as well as excellent high temperature strength. However, the modified Al 2 O 3 layer formed as an intermediate layer has a (0001) plane orientation. By configuring as an intermediate layer having a high rate, the (0001) plane orientation rate of the modified Cr-containing Al 2 O 3 layer deposited on this can be increased, and as a result, the modified Cr-containing It is possible to improve the surface properties of the upper layer made of the Al 2 O 3 layer and improve the high temperature strength.
However, it is impossible to allowed to sufficiently equipped with the properties possessed by the modified Al 2 O 3 layer to the hard coating layer has an average layer thickness of the intermediate layer made of reforming the Al 2 O 3 layer is less than 1 [mu] m, while its If the average layer thickness exceeds 5 μm, the high heat generated during cutting and the high load acting on the cutting edge will tend to cause thermoplastic deformation that causes uneven wear, and the wear will accelerate. The layer thickness was determined to be 1 to 5 μm.

(c)改質Cr含有Al23層(上部層)
中間層の上に化学蒸着された改質Cr含有Al23層からなる上部層は、その構成成分であるAl成分が、層の高温硬さおよび耐熱性を向上させ、また、層中に微量(Alとの合量に占める割合で、Cr/(Al+Cr)が0.01〜0.1(但し、原子比))含有されたCr成分が、改質Cr含有Al23層の結晶粒界面強度を向上させ、高温強度の向上に寄与するが、Cr成分の含有割合が0.01未満では、上記作用を期待することはできず、一方、Cr成分の含有割合が0.1を超えた場合には、層中にCr酸化物粒子が析出することによって粒界面強度が低下するため、Al成分との合量に占めるCr成分の含有割合(Cr/(Al+Cr)の比の値)は0.01〜0.1(但し、原子比)であることが望ましい。
(C) Modified Cr-containing Al 2 O 3 layer (upper layer)
The upper layer composed of the modified Cr-containing Al 2 O 3 layer chemically vapor-deposited on the intermediate layer has an Al component that is a constituent component to improve the high-temperature hardness and heat resistance of the layer. Cr component containing a trace amount (Cr / (Al + Cr) in the proportion of the total amount with Al 0.01 to 0.1 (however, atomic ratio)) is a crystal of the modified Cr-containing Al 2 O 3 layer. Although the grain boundary strength is improved and it contributes to the improvement of the high temperature strength, when the content ratio of the Cr component is less than 0.01, the above effect cannot be expected, while the content ratio of the Cr component is 0.1. If exceeded, the grain interface strength decreases due to the precipitation of Cr oxide particles in the layer, so the content ratio of the Cr component in the total amount with the Al component (value of Cr / (Al + Cr) ratio) Is preferably 0.01 to 0.1 (however, atomic ratio).

上記改質Cr含有Al23層は、蒸着時の反応ガス組成、反応雰囲気温度および反応雰囲気圧力の各化学蒸着条件を、例えば、以下のとおり調整することによって蒸着形成することができる。
即ち、まず、
(イ)反応ガス組成(容量%):
AlCl: 2.3〜4 %、
CrCl: 0.04〜0.26 %、
CO2: 6〜8 %、
HCl: 1.5〜3 %、
S: 0.05〜0.2 %、
2:残り、
(ロ)反応雰囲気温度; 930〜970 ℃、
(ハ)反応雰囲気圧力; 6〜10 kPa、
の条件(以下、初期条件という)で約1時間蒸着を行った後、
次に、
(イ)反応ガス組成(容量%):
AlCl: 2.3〜4 %、
CrCl: 0.04〜0.26 %、
CO2: 6〜8 %、
HCl: 1.5〜3 %、
S: 0.05〜0.2 %、
2:残り、
(ロ)反応雰囲気温度; 1020〜1050 ℃、
(ハ)反応雰囲気圧力; 6〜10 kPa、
の条件(以下、成膜条件という)で蒸着を行うことによって、2〜15μmの平均層厚の蒸着層を成膜すると、Cr/(Al+Cr)の比の値が原子比で0.01〜0.1である改質Cr含有Al23層を形成することができる。
The modified Cr-containing Al 2 O 3 layer can be formed by vapor deposition by adjusting the chemical vapor deposition conditions of the reaction gas composition, reaction atmosphere temperature, and reaction atmosphere pressure at the time of vapor deposition, for example.
First of all,
(B) Reaction gas composition (volume%):
AlCl 3 : 2.3 to 4%,
CrCl 3 : 0.04 to 0.26%,
CO 2 : 6-8%,
HCl: 1.5-3%,
H 2 S: 0.05~0.2%,
H 2 : Remaining
(B) Reaction atmosphere temperature; 930-970 ° C.,
(C) Reaction atmosphere pressure; 6 to 10 kPa,
After performing deposition for about 1 hour under the above conditions (hereinafter referred to as initial conditions),
next,
(B) Reaction gas composition (volume%):
AlCl 3 : 2.3 to 4%,
CrCl 3 : 0.04 to 0.26%,
CO 2 : 6-8%,
HCl: 1.5-3%,
H 2 S: 0.05~0.2%,
H 2 : Remaining
(B) Reaction atmosphere temperature; 1020 to 1050 ° C.,
(C) Reaction atmosphere pressure; 6 to 10 kPa,
When the vapor deposition layer having an average layer thickness of 2 to 15 μm is formed by performing vapor deposition under the following conditions (hereinafter referred to as film formation conditions), the value of the ratio of Cr / (Al + Cr) is 0.01 to 0 in atomic ratio. A modified Cr-containing Al 2 O 3 layer that is .1 can be formed.

そして、上記改質Cr含有Al23層について、電界放出型走査電子顕微鏡で組織観察すると、図3(a)に示されるように、層厚方向に垂直な面内で見た場合に、結晶粒径の大きい平板多角形状であり、また、図3(b)に示されるように、層厚方向に平行な面内で見た場合に、層表面はほぼ平坦であって、しかも、層厚方向にたて長形状を有する結晶粒(平板多角形たて長形状結晶粒)からなる組織構造が形成される。 When the microstructure of the modified Cr-containing Al 2 O 3 layer is observed with a field emission scanning electron microscope, as shown in FIG. 3A, when viewed in a plane perpendicular to the layer thickness direction, It has a flat plate polygonal shape with a large crystal grain size, and as shown in FIG. 3 (b), the layer surface is substantially flat when viewed in a plane parallel to the layer thickness direction. A texture structure composed of crystal grains having a long shape in the thickness direction (flat plate-shaped long crystal grains) is formed.

上記改質Cr含有Al23層について、中間層を構成する改質Al23層の場合と同様に、その表面研磨面の法線に対して、(0001)面の法線がなす傾斜角を測定することにより傾斜角度数分布グラフを作成すると、傾斜角区分0〜10度の範囲内にピーク存在するとともに、0〜10度の範囲内の度数の合計が、傾斜角度数分布グラフにおける度数全体の60%以上の割合を占める傾斜角度数分布グラフを示し、上部層を構成する改質Cr含有Al23層の(0001)面配向率が高いことがわかる。
即ち、改質Cr含有Al23層は、中間層である改質Al23層の(0001)面配向率が45%以上のものとして形成されていることから、改質Cr含有Al23層も(0001)面配向率の高い層((0001)面配向率は60%以上)として形成される。
そして、上記上部層を層厚方向に平行な面内で見た場合、層表面はほぼ平坦な平板状に形成され、すぐれた表面性状を呈し、その結果として、従来Cr含有Al23層に比して、一段とすぐれた耐チッピング性を示す。
In the modified Cr-containing Al 2 O 3 layer, the normal line of the (0001) plane is formed with respect to the normal line of the surface polished surface, as in the case of the modified Al 2 O 3 layer constituting the intermediate layer. When an inclination angle number distribution graph is created by measuring the inclination angle, a peak exists in the inclination angle range of 0 to 10 degrees, and the sum of the frequencies in the range of 0 to 10 degrees is the inclination angle number distribution graph. The inclination angle distribution graph which occupies the ratio of 60% or more of the whole frequency in is shown, and it can be seen that the (0001) plane orientation rate of the modified Cr-containing Al 2 O 3 layer constituting the upper layer is high.
That is, the reforming Cr containing the Al 2 O 3 layer, since an intermediate layer of reforming the Al 2 O 3 layer (0001) plane orientation ratio is formed as more than 45%, modified Cr-containing Al The 2 O 3 layer is also formed as a layer having a high (0001) plane orientation ratio (the (0001) plane orientation ratio is 60% or more).
When the upper layer is viewed in a plane parallel to the layer thickness direction, the layer surface is formed in a substantially flat plate shape and exhibits excellent surface properties. As a result, the conventional Cr-containing Al 2 O 3 layer Compared to the above, it shows excellent chipping resistance.

また、上記改質Cr含有Al23層の蒸着において、より限定した条件
(例えば、前記初期条件および成膜条件で、(相対的に)HClガスおよびHSガスの割合を高くし、更に、反応雰囲気圧力を低くした条件)で蒸着を行うと、図3(c)に示されるように、層厚方向に垂直な面内で見た場合に、大粒径の平坦六角形状であり、かつ、層厚方向に平行な面内で見た場合に、図3(b)に示されるのと同様、層表面はほぼ平坦であり、層厚方向にたて長形状を有する結晶粒が、層厚方向に垂直な面内において全体の35%以上の面積割合を占める組織構造が形成される。
Further, in the vapor deposition of the modified Cr-containing Al 2 O 3 layer, a more limited condition (for example, (relatively) the ratio of HCl gas and H 2 S gas is increased in the initial condition and film forming condition, Further, when the vapor deposition is performed under the condition that the reaction atmosphere pressure is lowered, as shown in FIG. 3C, when viewed in a plane perpendicular to the layer thickness direction, a flat hexagonal shape with a large particle size is obtained. When viewed in a plane parallel to the layer thickness direction, the layer surface is substantially flat, as shown in FIG. 3B, and the crystal grains having a long shape in the layer thickness direction are formed. Thus, a tissue structure occupying an area ratio of 35% or more of the whole in a plane perpendicular to the layer thickness direction is formed.

さらに、上記改質Cr含有Al23層について、電界放出型走査電子顕微鏡と電子後方散乱回折像装置を用い、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、六方晶結晶格子からなる結晶格子面のそれぞれの法線が前記表面研磨面の法線と交わる角度を測定し、
この測定結果から、隣接する結晶格子相互の結晶方位関係を算出し、結晶格子界面を構成する構成原子のそれぞれが前記結晶格子相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(但し、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で表すと、
図4に示すように、電界放出型走査電子顕微鏡で観察される改質AlZrO層を構成する平板多角形たて長形状の結晶粒の内、上記平板多角形(平坦六角形を含む)たて長形状結晶粒の内、面積比率で60%以上の結晶粒の内部は、少なくとも一つ以上の、Σ3対応界面で分断されていることがわかる。
そして、改質Cr含有Al23層の平板多角形(平坦六角形を含む)たて長形状結晶粒の内部に、上記のΣ3対応界面が存在することによって、結晶粒内強度の向上が図られ、その結果として、高温条件下で切刃部に高負荷が作用する難削材の高速重切削加工時に、改質Cr含有Al23層中にクラックが発生することが抑えられ、また、仮にクラックが発生したとしても、クラックの成長・伝播が妨げられ、耐チッピング性、耐欠損性、耐剥離性の向上が図られる。
Further, with respect to the modified Cr-containing Al 2 O 3 layer, a field emission scanning electron microscope and an electron backscatter diffraction image apparatus were used to irradiate each crystal grain existing within the measurement range of the surface polished surface with an electron beam. Measuring the angle at which each normal of the crystal lattice plane consisting of hexagonal crystal lattice intersects the normal of the surface polished surface,
From this measurement result, the crystal orientation relationship between adjacent crystal lattices is calculated, and each of the constituent atoms constituting the crystal lattice interface shares one constituent atom between the crystal lattices (constituent atom shared lattice point). ) And the number of lattice points that do not share constituent atoms between the constituent atomic shared lattice points (where N is an even number of 2 or more on the crystal structure of the corundum hexagonal close-packed crystal, but the distribution frequency) When the upper limit of N is 28 from this point, the even number of 4, 8, 14, 24 and 26 does not exist.)
As shown in FIG. 4, among the flat polygonal long crystal grains constituting the modified AlZrO layer observed with a field emission scanning electron microscope, the above flat plate polygons (including flat hexagons) are formed. It can be seen that among the long crystal grains, the interior of the crystal grains having an area ratio of 60% or more is divided by at least one Σ3-compatible interface.
Further, the presence of the above-described Σ3-corresponding interface in the long-sided crystal grains (including flat hexagons) of the modified Cr-containing Al 2 O 3 layer improves the intra-grain strength. As a result, during high-speed heavy cutting of difficult-to-cut materials with high load acting on the cutting edge under high temperature conditions, it is possible to suppress the occurrence of cracks in the modified Cr-containing Al 2 O 3 layer, Even if a crack occurs, the growth and propagation of the crack is hindered, and the chipping resistance, chipping resistance, and peel resistance are improved.

したがって、(0001)面配向率が高く表面平坦な表面性状を備え、かつ、平板多角形(平坦六角形を含む)たて長形状の結晶粒の内部にΣ3対応界面が存在する改質Cr含有Al23層からなる本発明の上部層は、高熱発生を伴うとともに、切刃に対して高負荷が作用するステンレス鋼、ダクタイル鋳鉄等の難削材の高送り、高切込みの高速重切削加工においても、チッピング、欠損、剥離等を発生することなく、また、熱塑性変形、偏摩耗等の発生もなく、すぐれた耐チッピング性及び耐摩耗性を長期に亘って発揮する。
ただ、改質Cr含有Al23層からなる上部層の層厚が2μm未満では、上記上部層のすぐれた特性を十分に発揮することができず、一方、上部層の層厚が15μmを超えると偏摩耗の原因となる熱塑性変形が発生しやすくなり、また、チッピングも発生しやすくなることから、上部層の平均層厚を2〜15μmと定めた。
Therefore, the modified Cr-containing material has a high (0001) plane orientation ratio and a flat surface property, and a sigma-compatible interface exists inside a long plate crystal polygon (including a flat hexagon). The upper layer of the present invention consisting of an Al 2 O 3 layer is accompanied by high heat generation, high feed of difficult-to-cut materials such as stainless steel, ductile cast iron, etc., where high load acts on the cutting blade, high cutting, high speed heavy cutting Even during processing, chipping, chipping, peeling, etc. do not occur, and there is no occurrence of thermoplastic deformation, uneven wear, etc., and excellent chipping resistance and wear resistance are exhibited over a long period of time.
However, if the thickness of the upper layer composed of the modified Cr-containing Al 2 O 3 layer is less than 2 μm, the excellent characteristics of the upper layer cannot be fully exhibited, while the thickness of the upper layer is 15 μm. If it exceeds, thermoplastic deformation that causes uneven wear is likely to occur, and chipping is also likely to occur. Therefore, the average layer thickness of the upper layer is set to 2 to 15 μm.

参考のため、従来Cr含有Al23層(前記特許文献1に記載のもの)について、電界放出型走査電子顕微鏡、電子後方散乱回折像装置を用い、上部層の結晶粒の組織構造および構成原子共有格子点形態を調べたところ、結晶粒の組織構造については、図5(a)、(b)に示されるような角錐状の凹凸を有し、多角形たて長形状の結晶粒からなる組織構造を有しているため、改質Cr含有Al23層に比して、耐摩耗性は不十分であった。
また、結晶粒の構成原子共有格子点形態については、従来Cr含有Al23層を構成する凹凸多角形たて長形状の結晶粒の内部にΣ3対応界面が存在する結晶粒の面積比率は40%以下と少なく、結晶粒内強度の向上が図られているとはいえなかった。
したがって、硬質被覆層の上部層が従来Cr含有Al23層で構成された従来被覆工具は、高熱発生を伴うとともに、切刃に対して高負荷が作用するステンレス鋼、ダクタイル鋳鉄等の難削材の高速重切削加工において、チッピング、欠損、剥離等の発生を防止することはできず、また、熱塑性変形、偏摩耗等も発生し、工具性能は劣るものであった。
For reference, with respect to a conventional Cr-containing Al 2 O 3 layer (described in Patent Document 1), a field emission scanning electron microscope and an electron backscatter diffraction image apparatus were used, and the crystal structure and structure of the upper layer crystal grains. As a result of investigating the atomic shared lattice point form, the structure of the crystal grain has a pyramidal asperity as shown in FIGS. 5 (a) and 5 (b). Therefore, the wear resistance was insufficient as compared with the modified Cr-containing Al 2 O 3 layer.
In addition, regarding the constituent atomic shared lattice point form of the crystal grain, the area ratio of the crystal grain in which the Σ3-corresponding interface exists in the concave and convex polygonal long crystal grain that conventionally constitutes the Cr-containing Al 2 O 3 layer is It was as low as 40% or less, and it could not be said that improvement in the strength within the crystal grains was achieved.
Therefore, the conventional coated tool in which the upper layer of the hard coating layer is composed of the conventional Cr-containing Al 2 O 3 layer is difficult to produce such as stainless steel or ductile cast iron that is accompanied by high heat generation and high load acting on the cutting edge. In the high-speed heavy cutting of the cutting material, generation of chipping, chipping, peeling, etc. cannot be prevented, and thermoplastic deformation, partial wear, etc. occur, and the tool performance is inferior.

また、本発明の被覆工具においては、上部層の改質Cr含有Al23層を形成した後、その表面に対して、砥石による研磨処理あるいはウエットブラストによる研磨処理等を施し、改質Cr含有Al23層の表面粗さをさらに調整することができる。例えば、改質Cr含有Al23層の表面粗さを、Ra0.05〜0.3μmに調整することにより、切削時の表面被覆工具への溶着発生を抑制することができる。
なお、本発明でいう表面粗さRaとは、JIS B0601(1994)で規定される算術平均粗さRaの値をいい、また、その測定法については特段限定されるものではない。
Further, in the coated tool of the present invention, after forming the modified Cr-containing Al 2 O 3 layer of the upper layer, the surface thereof is subjected to polishing treatment with a grindstone or polishing treatment with wet blasting, etc. The surface roughness of the contained Al 2 O 3 layer can be further adjusted. For example, by adjusting the surface roughness of the modified Cr-containing Al 2 O 3 layer to Ra 0.05 to 0.3 μm, it is possible to suppress the occurrence of welding to the surface-coated tool during cutting.
In addition, surface roughness Ra as used in the field of this invention means the value of arithmetic mean roughness Ra prescribed | regulated by JISB0601 (1994), and the measuring method is not specifically limited.

上記のとおり、この発明の被覆工具は、(0001)面配向率が高く、すぐれた高温硬さ、耐熱性に加えて、すぐれた高温強度を有する改質Al23層を中間層とするとともに、上部層を構成する改質Cr含有Al23層の(0001)面配向率を高くすることにより、表面平坦性を備えた平板多角形(平坦六角形を含む)たて長形状の結晶粒からなる組織構造とし、さらに、上記結晶粒の内部にΣ3対応界面を形成し、結晶粒内強度を強化したことにより、凹凸多角形たて長形状の結晶粒からなり、結晶粒内に、Σ3対応界面の少ない従来Cr含有Al23層に比して、一段とすぐれた表面性状、高温強度を具備し、その結果、高熱発生を伴い、切刃に対して高送り、高切込みによる高負荷が作用するステンレス鋼、ダクタイル鋳鉄等の難削材の高速重切削加工においても、硬質被覆層がすぐれた耐チッピング性、耐欠損性、耐剥離性とすぐれた耐摩耗性を発揮し、使用寿命の一層の延命化が可能となる。 As described above, the coated tool of the present invention has a high (0001) plane orientation ratio, and has a modified Al 2 O 3 layer having an excellent high-temperature strength in addition to excellent high-temperature hardness and heat resistance as an intermediate layer. At the same time, by increasing the (0001) plane orientation ratio of the modified Cr-containing Al 2 O 3 layer constituting the upper layer, a flat plate polygon (including a flat hexagon) having a long shape with surface flatness It has a structure composed of crystal grains, and further, by forming a Σ3-compatible interface inside the crystal grains and strengthening the strength within the crystal grains, Compared with the conventional Cr-containing Al 2 O 3 layer with few Σ3 interfaces, it has superior surface properties and high-temperature strength, resulting in high heat generation, high feed to the cutting edge, and high cutting depth Stainless steel, ductile cast iron, etc. Even in high-speed heavy cutting of difficult-to-cut materials, the hard coating layer exhibits excellent chipping resistance, chipping resistance, and peeling resistance, and excellent wear resistance, and the service life can be further extended.

つぎに、この発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも2〜4μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、105MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG120408に規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体A〜Eをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder and Co powder each having an average particle diameter of 2 to 4 μm are prepared. The powder was blended into the blending composition shown in Table 1, further added with wax, ball mill mixed in acetone for 24 hours, dried under reduced pressure, and then pressed into a green compact of a predetermined shape at a pressure of 105 MPa. The powder is sintered in a vacuum of 5 Pa at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour, and after sintering, the cutting edge is subjected to a honing process of R: 0.07 mm. Thus, tool bases A to E made of a WC-based cemented carbide having a throwaway tip shape specified in ISO / CNMG120408 were produced.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG120408のチップ形状をもったTiCN基サーメット製の工具基体a〜eを形成した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after the sintering, the cutting edge portion was subjected to a honing process of R: 0.07 mm. Tool bases a to e made of TiCN base cermet having a standard / CNMG120408 chip shape were formed.

ついで、これらの工具基体A〜Eおよび工具基体a〜eのそれぞれを、通常の化学蒸着装置に装入し、
(a)まず、表3(表3中のl−TiCNは特開平6−8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)に示される条件にて、表7に示される目標層厚のTi化合物層を硬質被覆層の下部層として蒸着形成し、
(b)ついで、表4に示される条件にて、表8に示される目標層厚の改質Al23層を硬質被覆層の中間層として蒸着形成し、
(c)次に、表5に示される蒸着条件(初期条件及び成膜条件)により、同じく表8に示される目標層厚の改質Cr含有Al23層を硬質被覆層の上部層として蒸着形成することにより、本発明被覆工具1〜15をそれぞれ製造した。
Then, each of these tool bases A to E and tool bases a to e is charged into a normal chemical vapor deposition apparatus,
(A) First, Table 3 (l-TiCN in Table 3 indicates the conditions for forming a TiCN layer having a vertically elongated crystal structure described in JP-A-6-8010, and the other conditions are ordinary granularity. Under the conditions shown in Table 7), the Ti compound layer having the target layer thickness shown in Table 7 is deposited as the lower layer of the hard coating layer.
(B) Next, under the conditions shown in Table 4, the modified Al 2 O 3 layer having the target layer thickness shown in Table 8 is vapor-deposited as an intermediate layer of the hard coating layer,
(C) Next, according to the vapor deposition conditions (initial conditions and film formation conditions) shown in Table 5, the modified Cr-containing Al 2 O 3 layer having the target layer thickness shown in Table 8 is used as the upper layer of the hard coating layer. The coated tools 1 to 15 of the present invention were manufactured by vapor deposition.

また、比較の目的で、表3に示される条件にて、表7に示される目標層厚のTi化合物層を硬質被覆層の下部層として蒸着形成し、ついで、表6に示される条件(核形成条件及び成膜条件。特許文献1に開示された従来Cr含有Al23層の蒸着条件に相当)にて、表9に示される目標層厚の従来Cr含有Al23層を硬質被覆層の上部層として蒸着形成することにより、従来被覆工具1〜15をそれぞれ製造した。
なお、従来被覆工具1〜15の工具基体種別、下部層種別及び下部層厚は、それぞれ、本発明被覆工具1〜15のそれと同じである。
For comparison purposes, a Ti compound layer having a target layer thickness shown in Table 7 was deposited as a lower layer of the hard coating layer under the conditions shown in Table 3, and then the conditions shown in Table 6 (cores) Forming conditions and film forming conditions (corresponding to the deposition conditions of the conventional Cr-containing Al 2 O 3 layer disclosed in Patent Document 1), the conventional Cr-containing Al 2 O 3 layer having the target layer thickness shown in Table 9 is hard Conventionally, the conventional coated tools 1 to 15 were produced by vapor deposition as the upper layer of the coating layer.
The tool base type, the lower layer type, and the lower layer thickness of the conventional coated tools 1 to 15 are the same as those of the present coated tools 1 to 15, respectively.

また、本発明被覆工具のうちのいくつかの改質Cr含有Al23層、従来被覆工具のうちのいくつかの従来Cr含有Al23層の表面には、投射圧0.15MPa,200メッシュのAl23粒子でウエットブラスト処理からなる後処理を施した。なお、後処理としては、弾性砥石による研磨処理でも構わない。
表8、表9には、後処理を施した上記本発明被覆工具の改質Cr含有Al23層(表8中で、*印を付したもの)、従来被覆工具の従来Cr含有Al23層(表9中で、*印を付したもの)の表面粗さ(Ra(μm))の値を示す。
(参考のために、後処理を施していない本発明被覆工具、従来被覆工具についてのRaの値も表8、表9に示す。)
Moreover, some modification Cr containing the Al 2 O 3 layer of the present invention coated tool, some of the surface of the conventional Cr-containing the Al 2 O 3 layer of the conventional coated tools, the projection pressure 0.15 MPa, A post-treatment consisting of a wet blast treatment was performed with 200 mesh Al 2 O 3 particles. Note that the post-processing may be a polishing process using an elastic grindstone.
Tables 8 and 9 show the modified Cr-containing Al 2 O 3 layer of the present invention-coated tool subjected to post-treatment (marked with * in Table 8), the conventional Cr-containing Al of the conventional coated tool. The value of the surface roughness (Ra (μm)) of the 2 O 3 layer (indicated by * in Table 9) is shown.
(For reference, the Ra values for the present coated tool and the conventional coated tool that have not been post-processed are also shown in Tables 8 and 9.)

ついで、上記の本発明被覆工具1〜15の硬質被覆層の中間層を構成する改質Al23層、同上部層を構成する改質Cr含有Al23層、および、従来被覆工具1〜15の従来Cr含有Al23層について、電界放出型走査電子顕微鏡を用いて、傾斜角度数分布グラフをそれぞれ作成した。
すなわち、上記傾斜角度数分布グラフは、上記の本発明被覆工具1〜15、従来被覆工具1〜15の各層について、それぞれの表面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、それぞれの前記表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、この測定結果に基づいて、前記測定傾斜角のうちの0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより、傾斜角度数分布グラフ作成した。
傾斜角度数分布グラフの一例として、図2に、本発明被覆工具14の硬質被覆層の中間層を構成する改質Al23層について作成した(0001)面の傾斜角度数分布グラフを示す。
なお、この発明でいう“表面”とは、基体表面に平行な面ばかりでなく、基体表面に対して傾斜する面、例えば、層の切断面、をも含む。
Subsequently, the modified Al 2 O 3 layer constituting the intermediate layer of the hard coating layer of the above-described coated tools 1 to 15 of the present invention, the modified Cr-containing Al 2 O 3 layer constituting the upper layer, and the conventional coated tool With respect to 1 to 15 conventional Cr-containing Al 2 O 3 layers, inclination angle number distribution graphs were respectively created using a field emission scanning electron microscope.
In other words, the inclination angle number distribution graph is shown in the column of the field emission scanning electron microscope with the respective surfaces of the present invention coated tools 1 to 15 and the conventional coated tools 1 to 15 being polished surfaces. A crystal grain having a hexagonal crystal lattice existing in the measurement range of each surface polished surface with an electron beam with an acceleration voltage of 15 kV and an irradiation current of 1 nA at an incident angle of 70 degrees on the polished surface. Individually irradiated, using an electron backscatter diffraction image apparatus, a region of 30 × 50 μm at a spacing of 0.1 μm / step is a crystal plane of the crystal grain with respect to the normal of the polished surface (0001 ) The inclination angle formed by the normal of the surface is measured, and based on the measurement result, the measurement inclination angle within the range of 0 to 45 degrees of the measurement inclination angles is divided for each pitch of 0.25 degrees. As well as the frequencies present in each category By aggregate was prepared inclination angle frequency distribution graph.
As an example of the inclination angle number distribution graph, FIG. 2 shows an inclination angle number distribution graph of the (0001) plane prepared for the modified Al 2 O 3 layer constituting the intermediate layer of the hard coating layer of the present coated tool 14. .
The “surface” in the present invention includes not only a surface parallel to the substrate surface but also a surface inclined with respect to the substrate surface, for example, a cut surface of a layer.

この結果得られた本発明被覆工具の改質Al23層、改質Cr含有Al23層、および、従来被覆工具1〜15の従来Cr含有Al23層の傾斜角度数分布グラフにおいて、表8、表9にそれぞれ示される通り、本発明被覆工具の改質Al23層、改質Cr含有Al23層は、(0001)面の測定傾斜角の分布が、それぞれ0〜10度の範囲内の傾斜角区分に最高ピークが現れる傾斜角度数分布グラフを示すものであった。
また、従来被覆工具1〜15の従来Cr含有Al23層も同様に、(0001)面の測定傾斜角の分布が0〜10度の範囲内の傾斜角区分に最高ピークが現れる傾斜角度数分布グラフを示すものであった。
表8、表9には、0〜10度の範囲内の傾斜角区分に存在する度数の、傾斜角度数分布グラフ全体に占める割合を示した。
Reforming the Al 2 O 3 layer of the resulting present invention coated tool, reforming Cr containing the Al 2 O 3 layer, and the inclination angle frequency distribution of the conventional Cr-containing the Al 2 O 3 layer prior coated tools 1 to 15 In the graph, as shown in Table 8 and Table 9, respectively, the modified Al 2 O 3 layer and the modified Cr-containing Al 2 O 3 layer of the coated tool of the present invention have a distribution of measured inclination angles on the (0001) plane, An inclination angle number distribution graph in which the highest peak appears in each inclination angle section within the range of 0 to 10 degrees is shown.
Similarly, the conventional Cr-containing Al 2 O 3 layers of the conventional coated tools 1 to 15 similarly have an inclination angle at which the highest peak appears in the inclination angle section where the distribution of measured inclination angles on the (0001) plane is in the range of 0 to 10 degrees. A number distribution graph was shown.
Tables 8 and 9 show the ratio of the frequency existing in the tilt angle section within the range of 0 to 10 degrees to the entire tilt angle number distribution graph.

ついで、上記の本発明被覆工具1〜15の上部層を構成する改質Cr含有Al23層および従来被覆工具1〜15の従来Cr含有Al23層について、電界放出型走査電子顕微鏡、電子後方散乱回折像装置を用いて、結晶粒組織構造および構成原子共有格子点形態を調査した。
すなわち、まず、上記の本発明被覆工具1〜15の改質Cr含有Al23層および従来被覆工具1〜15の従来Cr含有Al23層について、電界放出型走査電子顕微鏡を用いて観察したところ、本発明被覆工具1〜15では、図3(a)、(b)で代表的に示される平板多角形(平坦六角形を含む)状かつたて長形状の大きな粒径の結晶粒組織構造が観察された(なお、図3(a)は、層厚方向に垂直な面内で見た本発明被覆工具1の組織構造模式図、また、図3(c)は、層厚方向に垂直な面内で見た本発明被覆工具11の、平坦六角形状かつたて長形状の大きな粒径の結晶粒からなる組織構造模式図)。
一方、従来被覆工具1〜15では、図5(a)、(b)で代表的に示されるように、多角形状かつたて長形状の結晶粒組織が観察されたが、各結晶粒の粒径は本発明のものに比して小さく、かつ、図5(b)からも明らかなように、層表面には角錐状の凹凸が形成されていた(なお、図5(a)、(b)は、従来被覆工具1の組織構造模式図)。
Next, a conventional Cr-containing the Al 2 O 3 layer of reforming Cr containing the Al 2 O 3 layer and the conventional coated tool 15 constituting the upper layer of the present invention described above coated tools 1 to 15, the field emission scanning electron microscope Using an electron backscatter diffraction image apparatus, the grain structure and the constituent atomic shared lattice point morphology were investigated.
That is, first, a conventional Cr-containing the Al 2 O 3 layer of reforming Cr containing the Al 2 O 3 layer and the conventional coated tools 1 to 15 of the present invention described above coated tools 1 to 15, using a field emission scanning electron microscope As a result of the observation, in the coated tools 1 to 15 according to the present invention, crystals of a flat plate polygon (including a flat hexagon) and a long shape, which are representatively shown in FIGS. A grain structure was observed (note that FIG. 3 (a) is a schematic diagram of the structure of the coated tool 1 of the present invention viewed in a plane perpendicular to the layer thickness direction, and FIG. FIG. 2 is a schematic diagram of the structure of the coated tool 11 of the present invention as viewed in a plane perpendicular to the direction and composed of crystal grains having a large hexagonal shape and a long shape with a large particle size).
On the other hand, in the conventional coated tools 1 to 15, as typically shown in FIGS. 5 (a) and 5 (b), a polygonal and elongated crystal grain structure was observed. The diameter was smaller than that of the present invention, and as is clear from FIG. 5B, pyramidal irregularities were formed on the surface of the layer (note that FIGS. 5A and 5B). ) Is a schematic diagram of the structure of the conventional coated tool 1).

つぎに、上記の本発明被覆工具1〜15の改質Cr含有Al23層、従来被覆工具1〜15の従来Cr含有Al23層について、それぞれの層を構成する結晶粒の内部にΣ3対応界面が存在する結晶粒の面積割合を測定した。
まず、上記の本発明被覆工具1〜15の改質Cr含有Al23層について、その表面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記表面研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、それぞれの前記表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記結晶粒の各結晶格子面のそれぞれの法線が基体表面の法線と交わる角度を測定し、この測定結果から、隣接する結晶格子相互の結晶方位関係を算出し、結晶格子界面を構成する構成原子のそれぞれが前記結晶格子相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(但し、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で表した場合に、改質Cr含有Al23層の測定範囲内に存在する全結晶粒のうちで、結晶粒の内部に、少なくとも一つ以上のΣ3対応界面が存在する結晶粒の面積比率を求め、その値を、Σ3対応界面割合(%)として表8に示した。
次に、従来被覆工具1〜15の従来Cr含有Al23層についても、本発明被覆工具の場合と同様な方法により、従来Cr含有Al23層の測定範囲内に存在する全結晶粒のうちで、結晶粒の内部に、少なくとも一つ以上のΣ3対応界面が存在する結晶粒の面積比率を求め、その値を、Σ3対応界面割合(%)として表9に示した。
Next, with respect to the modified Cr-containing Al 2 O 3 layer of the present invention-coated tools 1 to 15 and the conventional Cr-containing Al 2 O 3 layer of the conventional coated tools 1 to 15, the inside of the crystal grains constituting each layer The area ratio of the crystal grains where the Σ3-corresponding interface exists was measured.
First, the modified Cr-containing Al 2 O 3 layers of the above-described coated tools 1 to 15 of the present invention are set in a lens barrel of a field emission scanning electron microscope in a state where the surface is a polished surface, and the surface polishing is performed. An electron beam with an acceleration voltage of 15 kV at an incident angle of 70 degrees on the surface is irradiated with an electron beam to each crystal grain having a hexagonal crystal lattice existing within the measurement range of each polished surface with an irradiation current of 1 nA. Then, using an electron backscatter diffraction image apparatus, the angle at which each normal line of each crystal lattice plane of the crystal grain intersects the normal line on the substrate surface is measured in a 30 × 50 μm region at an interval of 0.1 μm / step. From this measurement result, the crystal orientation relationship between adjacent crystal lattices is calculated, and each of the constituent atoms constituting the crystal lattice interface shares one constituent atom between the crystal lattices (constituent atom sharing). Distribution of grid points) N lattice points that do not share constituent atoms between the constituent atomic shared lattice points (where N is an even number of 2 or more on the crystal structure of the corundum hexagonal close-packed crystal, When the upper limit is 28, there is no even number of 4, 8, 14, 24, and 26) Measurement of the modified Cr-containing Al 2 O 3 layer in the case where the existing constituent atomic lattice point form is represented by ΣN + 1 Among all the crystal grains existing in the range, the area ratio of crystal grains in which at least one Σ3 corresponding interface is present inside the crystal grain is obtained, and the value is expressed as a Σ3 corresponding interface ratio (%). This is shown in FIG.
Next, with respect to the conventional Cr-containing Al 2 O 3 layers of the conventional coated tools 1 to 15, all the crystals existing within the measurement range of the conventional Cr-containing Al 2 O 3 layer are obtained by the same method as in the case of the coated tool of the present invention. Among the grains, the area ratio of the crystal grains in which at least one Σ3-corresponding interface exists inside the crystal grains was determined, and the value is shown in Table 9 as the Σ3-compatible interface ratio (%).

表8、9に示される通り、本発明被覆工具1〜15の改質Cr含有Al23層において、結晶粒の内部に少なくとも一つ以上のΣ3対応界面が存在する結晶粒の面積比率は60%以上であるのに対して、従来被覆工具1〜15の従来Cr含有Al23層において、結晶粒の内部に少なくとも一つ以上のΣ3対応界面が存在する結晶粒の面積比率は40%以下であって、結晶粒の内部にΣ3対応界面が存在する率は非常に小さいことがわかる。 As shown in Tables 8 and 9, in the modified Cr-containing Al 2 O 3 layer of the coated tools 1 to 15 of the present invention, the area ratio of the crystal grains in which at least one Σ3 corresponding interface exists in the crystal grains is Whereas it is 60% or more, in the conventional Cr-containing Al 2 O 3 layer of the conventional coated tools 1 to 15, the area ratio of crystal grains in which at least one Σ3 corresponding interface exists inside the crystal grains is 40 It can be seen that the ratio of the interface corresponding to Σ3 in the crystal grains is very small.

また、本発明被覆工具11〜15の改質Cr含有Al23層および従来被覆工具1〜15の従来Cr含有Al23層について、電界放出型走査電子顕微鏡を用いて、層厚方向に垂直な面内に存在する、大粒径の平坦六角形状の結晶粒の面積割合を求めた。この値を表8、表9に示す。
なお、ここで言う「大粒径の平坦六角形状」の結晶粒とは、
「電界放出型走査電子顕微鏡により観察される層厚方向に垂直な面内に存在する粒子の直径を計測し、10粒子の平均値が3〜8μmであり、頂点の角度が100〜140°である頂角を6個有する多角形状である。」
と定義する。
Further, the conventional Cr-containing the Al 2 O 3 layer of reforming Cr containing the Al 2 O 3 layer and the conventional coated tools 1 to 15 of the present invention coated tools 11 to 15, using a field emission scanning electron microscope, the layer thickness direction The area ratio of large hexagonal crystal grains having a large particle diameter in a plane perpendicular to the surface area was determined. These values are shown in Tables 8 and 9.
In addition, the crystal grains of the “large hexagonal flat hexagonal shape” mentioned here are:
“The diameter of particles existing in a plane perpendicular to the layer thickness direction observed by a field emission scanning electron microscope is measured, the average value of 10 particles is 3 to 8 μm, and the vertex angle is 100 to 140 °. It is a polygonal shape with six apex angles. "
It is defined as

ついで、本発明被覆工具1〜15、従来被覆工具1〜15の硬質被覆層の各構成層の厚さを、走査型電子顕微鏡を用いて測定(縦断面測定)したが、いずれもの場合も、目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。   Subsequently, the thickness of each constituent layer of the hard coating layer of the present coated tool 1-15, conventional coated tool 1-15 was measured using a scanning electron microscope (longitudinal cross section measurement), in either case, The average layer thickness (average value of 5-point measurement) substantially the same as the target layer thickness was shown.

つぎに、上記の本発明被覆工具1〜15、従来被覆工具1〜15について、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・SUS316の丸棒、
切削速度: 240 m/min.、
切り込み: 1.0 mm、
送り: 0.45 mm/rev.、
切削時間: 5 分、
の条件(切削条件Aという)でのステンレス鋼の湿式高速高送り切削試験(通常の切削速度および送りは、それぞれ、120m/min.、0.3mm/rev.)、
被削材:JIS・FCD700の丸棒、
切削速度: 240 m/min.、
切り込み: 1.0 mm、
送り: 0.7 mm/rev.、
切削時間: 5 分、
の条件(切削条件Bという)でのダクタイル鋳鉄の湿式高速高送り切削試験(通常の切削速度および送りは、それぞれ、150m/min.、0.4mm/rev. )、
被削材:JIS・SMn438の丸棒、
切削速度: 120 m/min.、
切り込み: 5.5 mm、
送り: 0.3 mm/rev.、
切削時間: 5 分、
の条件(切削条件Cという)での高マンガン鋼の湿式高速高切込み切削試験(通常の切削速度および切込みは、それぞれ、80m/min.、2.5mm)、
を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表10に示した。
Next, for the above-mentioned coated tools 1-15 of the present invention and the conventional coated tools 1-15, both are screwed to the tip of the tool steel tool with a fixing jig,
Work material: JIS / SUS316 round bar,
Cutting speed: 240 m / min. ,
Cutting depth: 1.0 mm,
Feed: 0.45 mm / rev. ,
Cutting time: 5 minutes,
Wet high-speed high-feed cutting test of stainless steel under the following conditions (referred to as cutting condition A) (normal cutting speed and feed are 120 m / min. And 0.3 mm / rev., Respectively),
Work material: JIS / FCD700 round bar,
Cutting speed: 240 m / min. ,
Cutting depth: 1.0 mm,
Feed: 0.7 mm / rev. ,
Cutting time: 5 minutes,
Wet high-speed high-feed cutting test of normal cast iron under the following conditions (referred to as cutting condition B) (normal cutting speed and feed are 150 m / min. And 0.4 mm / rev., Respectively),
Work material: JIS / SMn438 round bar,
Cutting speed: 120 m / min. ,
Cutting depth: 5.5 mm,
Feed: 0.3 mm / rev. ,
Cutting time: 5 minutes,
Wet high-speed high-cut cutting test of high manganese steel under the following conditions (referred to as cutting condition C) (normal cutting speed and cutting are 80 m / min. And 2.5 mm, respectively),
In each cutting test, the flank wear width of the cutting edge was measured. The measurement results are shown in Table 10.

Figure 2010214557
Figure 2010214557

Figure 2010214557
Figure 2010214557

Figure 2010214557
Figure 2010214557

Figure 2010214557
Figure 2010214557

Figure 2010214557
Figure 2010214557

Figure 2010214557
Figure 2010214557

Figure 2010214557
Figure 2010214557

Figure 2010214557
Figure 2010214557

Figure 2010214557
Figure 2010214557

Figure 2010214557
Figure 2010214557

表8〜10に示される結果から、本発明被覆工具1〜15は、硬質被覆層の中間層である改質Al23層の(0001)面配向率が45%以上の高い比率を示し、すぐれた高温強度を有することに加えて、上部層を構成する改質Cr含有Al23層が、平板多角形(平坦六角形)たて長形状の結晶粒の組織構造を有し、(0001)面配向率が60%以上の高い比率を示し、また、結晶粒の内部に少なくとも一つ以上のΣ3対応界面が存在する結晶粒の面積比率が60%以上と高いことによって、あるいは、さらに、改質Cr含有Al23層に後処理が施され、その表面平滑性が向上されていることによって、改質Cr含有Al23層が一段とすぐれた高温強度と結晶粒内強度を有し、また、一段とすぐれた表面平坦性とを兼備する結果、高熱発生を伴い、かつ、切刃に高送り、高切込みによる高負荷が作用するステンレス鋼、ダクタイル鋳鉄等の難削材の高速重切削加工で、硬質被覆層が一段とすぐれた耐チッピング性を発揮するとともに、長期の使用にわたってすぐれた耐摩耗性を示し、使用寿命の一層の延命化を可能とするものである。
これに対して、硬質被覆層がTi化合物層と従来Cr含有Al23層からなる従来被覆工具1〜15においては、チッピング発生等によって、比較的短時間で使用寿命に至ることが明らかである。
From the results shown in Tables 8 to 10, the inventive coated tools 1 to 15 show a high ratio in which the (0001) plane orientation ratio of the modified Al 2 O 3 layer, which is an intermediate layer of the hard coating layer, is 45% or more. In addition to having excellent high-temperature strength, the modified Cr-containing Al 2 O 3 layer constituting the upper layer has a structure of a flat plate polygonal (flat hexagonal) elongated crystal grain, The (0001) plane orientation ratio is a high ratio of 60% or more, and the crystal grain area ratio in which at least one Σ3-compatible interface exists in the crystal grains is as high as 60% or more, or In addition, the modified Cr-containing Al 2 O 3 layer is post-treated and its surface smoothness is improved, so that the modified Cr-containing Al 2 O 3 layer is further improved in high-temperature strength and in-grain strength. And also has excellent surface flatness High-speed heavy cutting of difficult-to-cut materials such as stainless steel, ductile cast iron, etc. with high heat generation, high feed to the cutting edge, and high load due to high depth of cut. In addition to exhibiting excellent wear resistance over a long period of use, it is possible to further extend the service life.
On the other hand, in the conventional coated tools 1 to 15 in which the hard coating layer is composed of a Ti compound layer and a conventional Cr-containing Al 2 O 3 layer, it is clear that the service life is reached in a relatively short time due to chipping and the like. is there.

上述のように、この発明の被覆工具は、各種の鋼や鋳鉄などの通常条件の切削加工は勿論のこと、高熱発生を伴うとともに切刃に対して高送り、高切込みによる高負荷が作用するステンレス鋼、ダクタイル鋳鉄等の難削材の高速重切削加工でも、チッピングの発生なく、すぐれた耐摩耗性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention is not only for cutting under normal conditions such as various types of steel and cast iron, but also involves high heat generation, high feed to the cutting edge, and high load due to high cutting. Even in high-speed heavy cutting of difficult-to-cut materials such as stainless steel and ductile cast iron, it exhibits excellent wear resistance without occurrence of chipping and exhibits excellent cutting performance over a long period of time. It can fully satisfy the performance, labor saving and energy saving of cutting, and cost reduction.

硬質被覆層を構成するα型Al23層の結晶粒の(0001)面を測定する場合の傾斜角の測定範囲を示す概略説明図である。It is a schematic diagram illustrating a measurement range of the inclination angle in the case of measuring the (0001) plane crystal grains of the α-type the Al 2 O 3 layer constituting the hard coating layer. 本発明被覆工具6の硬質被覆層の中間層を構成する改質Al23層の(0001)面の傾斜角度数分布グラフである。It is an inclination angle number distribution graph of the (0001) plane of the modified Al 2 O 3 layer constituting the intermediate layer of the hard coating layer of the coated tool 6 of the present invention. (a)は、本発明被覆工具1の改質Cr含有Al23層からなる上部層について、層厚方向に垂直な面内での電界放出型走査電子顕微鏡による観察で得られた、平板多角形状の結晶粒組織構造を示す模式図であり、(b)は、同じく、層厚方向に平行な面内での電界放出型走査電子顕微鏡による観察で得られた、層表面がほぼ平坦であり、層厚方向にたて長形状を有する結晶粒組織構造を示す模式図であり、(c)は、本発明被覆工具11の改質Cr含有Al23層からなる上部層について、層厚方向に垂直な面内での電界放出型走査電子顕微鏡による観察で得られた、平坦六角形状の結晶粒組織構造を示す模式図である。(A) is a flat plate obtained by observing the upper layer of the modified Cr-containing Al 2 O 3 layer of the coated tool 1 of the present invention with a field emission scanning electron microscope in a plane perpendicular to the layer thickness direction. It is a schematic diagram which shows a polygonal-shaped crystal grain structure structure, (b) is a layer surface obtained by observation with a field emission scanning electron microscope in a plane parallel to the layer thickness direction. FIG. 4 is a schematic diagram showing a crystal grain structure having a long shape in the layer thickness direction, and (c) shows a layer for an upper layer made of the modified Cr-containing Al 2 O 3 layer of the coated tool 11 of the present invention. It is a schematic diagram showing a flat hexagonal crystal grain structure structure obtained by observation with a field emission scanning electron microscope in a plane perpendicular to the thickness direction. 本発明被覆工具1の改質Cr含有Al23層からなる上部層について、電界放出型走査電子顕微鏡および電子後方散乱回折像装置を用いて測定した、層厚方向に垂直な面における粒界解析図であり、実線は、電界放出型走査電子顕微鏡で観察される平板多角形状の結晶粒界を示し、破線は、電子後方散乱回折像装置により測定された結晶粒内のΣ3対応界面を示す。Grain boundaries in a plane perpendicular to the layer thickness direction of the upper layer composed of the modified Cr-containing Al 2 O 3 layer of the coated tool 1 of the present invention, measured using a field emission scanning electron microscope and an electron backscatter diffraction image apparatus It is an analysis figure, a solid line shows the tabular polygonal crystal grain boundary observed with a field emission scanning electron microscope, and a broken line shows a Σ3-corresponding interface in the crystal grain measured by an electron backscatter diffraction image apparatus . (a)は、従来被覆工具1の従来Cr含有Al23層からなる上部層について、層厚方向に垂直な面内での電界放出型走査電子顕微鏡による観察で得られた、多角形状の結晶粒組織構造を示す模式図であり、(b)は、同じく、層厚方向に平行な面内での電界放出型走査電子顕微鏡による観察で得られた、層表面で角錐状の凹凸を有し、層厚方向にたて長形状を有する結晶粒組織構造を示す模式図である。(A) is a conventional coating an upper layer made of a conventional Cr-containing the Al 2 O 3 layer of the tool 1, obtained by observation with a field emission scanning electron microscope in a plane perpendicular to the thickness direction, of the polygonal FIG. 4B is a schematic diagram showing a crystal grain structure, and FIG. 5B shows pyramidal irregularities on the layer surface obtained by observation with a field emission scanning electron microscope in a plane parallel to the layer thickness direction. FIG. 6 is a schematic diagram showing a crystal grain structure having a long shape in the layer thickness direction.

Claims (3)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a)下部層が、いずれも化学蒸着形成された、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、かつ、3〜20μmの合計平均層厚を有するTi化合物層、
(b)中間層が、1〜5μmの平均層厚を有し、化学蒸着した状態でα型の結晶構造を有する酸化アルミニウム層、
(c)上部層が、2〜15μmの平均層厚を有し、化学蒸着した状態でα型の結晶構造を有するCr含有酸化アルミニウム層、
上記(a)〜(c)からなる硬質被覆層を蒸着形成した表面被覆切削工具において、
(d)上記(b)の中間層は、電界放出型走査電子顕微鏡を用い、上記工具基体の表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうちの0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで現した場合、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示し、
(e)上記(c)の上部層は、電界放出型走査電子顕微鏡で組織観察した場合に、層厚方向に垂直な面内で平板多角形状、また、層厚方向に平行な面内で層厚方向にたて長形状を有する結晶粒からなる組織構造を有するCr含有酸化アルミニウム層であり、
また、上記(c)の上部層について、電界放出型走査電子顕微鏡を用い、上記工具基体の表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうちの0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで現した場合、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の60%以上の割合を占める傾斜角度数分布グラフを示し、
さらに、上記(c)の上部層について、電界放出型走査電子顕微鏡と電子後方散乱回折像装置を用い、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、六方晶結晶格子からなる結晶格子面のそれぞれの法線が基体表面の法線と交わる角度を測定し、この測定結果から、隣接する結晶格子相互の結晶方位関係を算出し、結晶格子界面を構成する構成原子のそれぞれが前記結晶格子相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(但し、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で表した場合に、上記(c)の上部層を構成する結晶粒の内、面積比率で60%以上の結晶粒の内部は、少なくとも一つ以上のΣ3で表される構成原子共有格子点形態からなる結晶格子界面により分断されているCr含有酸化アルミニウム層である、
ことを特徴とする表面被覆切削工具。
On the surface of the tool base composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(A) the lower layer is formed of one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride oxide layer, all formed by chemical vapor deposition; And a Ti compound layer having a total average layer thickness of 3 to 20 μm,
(B) the intermediate layer has an average layer thickness of 1 to 5 μm, and an aluminum oxide layer having an α-type crystal structure in the state of chemical vapor deposition;
(C) the upper layer has an average layer thickness of 2 to 15 μm, and a Cr-containing aluminum oxide layer having an α-type crystal structure in the state of chemical vapor deposition;
In the surface-coated cutting tool in which the hard coating layer composed of the above (a) to (c) is formed by vapor deposition,
(D) The intermediate layer of (b) is irradiated with an electron beam on each crystal grain having a hexagonal crystal lattice existing within the measurement range of the surface polished surface of the tool base using a field emission scanning electron microscope. Then, the inclination angle formed by the normal line of the (0001) plane that is the crystal plane of the crystal grain is measured with respect to the normal line of the surface polished surface, and is within a range of 0 to 45 degrees of the measurement inclination angle. When the measured tilt angle is divided into pitches of 0.25 degrees and the frequency existing in each section is tabulated, the tilt angle is within a range of 0 to 10 degrees. A slope angle distribution graph in which the highest peak exists in the section and the total of the frequencies existing in the range of 0 to 10 degrees occupies a ratio of 45% or more of the entire frequencies in the slope angle distribution graph,
(E) The upper layer of (c) is a flat polygonal shape in a plane perpendicular to the layer thickness direction and a layer in a plane parallel to the layer thickness direction when the structure is observed with a field emission scanning electron microscope. A Cr-containing aluminum oxide layer having a structure composed of crystal grains having a long shape in the thickness direction,
Further, with respect to the upper layer of (c), an electron beam is irradiated to each crystal grain having a hexagonal crystal lattice existing within the measurement range of the surface polished surface of the tool base using a field emission scanning electron microscope. The inclination angle formed by the normal line of the (0001) plane, which is the crystal plane of the crystal grain, is measured with respect to the normal line of the surface polished surface, and is within a range of 0 to 45 degrees of the measured inclination angle. When a certain tilt angle is divided into pitches of 0.25 degrees, and the tilt angle distribution graph is formed by summing up the frequencies existing in each section, the tilt angle sections within the range of 0 to 10 degrees An inclination angle number distribution graph in which the highest peak is present and the total frequency within the range of 0 to 10 degrees occupies a ratio of 60% or more of the entire frequency in the inclination angle distribution graph,
Further, the upper layer of the above (c) is irradiated with an electron beam on each crystal grain existing within the measurement range of the surface polished surface using a field emission scanning electron microscope and an electron backscatter diffraction image apparatus, thereby obtaining a hexagonal crystal. Measures the angle at which each normal of the crystal lattice plane consisting of crystal lattices intersects the normal of the substrate surface, and calculates the crystal orientation relationship between adjacent crystal lattices from this measurement result, and configures the crystal lattice interface The distribution of lattice points (constituent atom shared lattice points) in which each atom shares one constituent atom between the crystal lattices is calculated, and N lattice points that do not share constituent atoms between the constituent atom shared lattice points are calculated. (However, N is an even number of 2 or more due to the crystal structure of the corundum hexagonal close-packed crystal. However, when the upper limit of N is 28 from the point of distribution frequency, even numbers of 4, 8, 14, 24 and 26 exist. Without) sharing existing constituent atoms When the child dot form is represented by ΣN + 1, the crystal grains having an area ratio of 60% or more among the crystal grains constituting the upper layer of the above (c) are represented by at least one Σ3 It is a Cr-containing aluminum oxide layer divided by a crystal lattice interface composed of atomic shared lattice point form,
A surface-coated cutting tool characterized by that.
前記(c)の上部層を電界放出型走査電子顕微鏡で組織観察した場合に、層厚方向に垂直な面内で平坦六角形状、また、層厚方向に平行な面内で層厚方向にたて長形状を有する結晶粒が、層厚方向に垂直な面内において全体の35%以上の面積割合を占める請求項1に記載の表面被覆切削工具。   When the upper layer of (c) was observed with a field emission scanning electron microscope, it was flat hexagonal in a plane perpendicular to the layer thickness direction, and in the layer thickness direction in a plane parallel to the layer thickness direction. The surface-coated cutting tool according to claim 1, wherein the crystal grains having a long shape occupy an area ratio of 35% or more of the whole in a plane perpendicular to the layer thickness direction. 前記(c)の上部層は、0.05〜0.3μmの範囲内の表面粗さ(Ra)を有する請求項1又は2のいずれか一項に記載の表面被覆切削工具。   The surface-coated cutting tool according to claim 1, wherein the upper layer of (c) has a surface roughness (Ra) in a range of 0.05 to 0.3 μm.
JP2009065814A 2009-03-18 2009-03-18 Surface coated cutting tool with excellent chipping resistance due to hard coating layer Expired - Fee Related JP5326707B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2009065814A JP5326707B2 (en) 2009-03-18 2009-03-18 Surface coated cutting tool with excellent chipping resistance due to hard coating layer
US13/256,867 US8828527B2 (en) 2009-03-18 2010-03-18 Surface-coated cutting tool
PCT/JP2010/001973 WO2010106811A1 (en) 2009-03-18 2010-03-18 Surface-coated cutting tool
CN201080012240.3A CN102355968B (en) 2009-03-18 2010-03-18 Surface-coated cutting tool
EP10753306.9A EP2409798B1 (en) 2009-03-18 2010-03-18 Surface-coated cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009065814A JP5326707B2 (en) 2009-03-18 2009-03-18 Surface coated cutting tool with excellent chipping resistance due to hard coating layer

Publications (2)

Publication Number Publication Date
JP2010214557A true JP2010214557A (en) 2010-09-30
JP5326707B2 JP5326707B2 (en) 2013-10-30

Family

ID=42973949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009065814A Expired - Fee Related JP5326707B2 (en) 2009-03-18 2009-03-18 Surface coated cutting tool with excellent chipping resistance due to hard coating layer

Country Status (1)

Country Link
JP (1) JP5326707B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014018886A (en) * 2012-07-13 2014-02-03 Mitsubishi Materials Corp Surface coated cutting tool with hard coating layer exhibiting superior initial conformability and chipping resistance
CN103658707A (en) * 2012-09-13 2014-03-26 三菱综合材料株式会社 Surface-coated cutting tool
JP2014054712A (en) * 2012-09-13 2014-03-27 Mitsubishi Materials Corp Surface-coated cutting tool having hard coating layer exhibiting excellent exfoliation resistance and chipping resistance in high-speed intermittent cutting
JP2014526391A (en) * 2011-09-16 2014-10-06 バルター アクチェンゲゼルシャフト Cutting tools coated with alpha-alumina with manipulated grain boundaries
JP2016087709A (en) * 2014-10-30 2016-05-23 三菱マテリアル株式会社 Surface-coated cutting tool exerting excellent chipping resistance in high-speed intermittent cutting
JP2017019096A (en) * 2015-11-25 2017-01-26 住友電工ハードメタル株式会社 Surface-coated cutting tool

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007075968A (en) * 2005-09-16 2007-03-29 Mitsubishi Materials Corp Surface coated cemented carbide cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007075968A (en) * 2005-09-16 2007-03-29 Mitsubishi Materials Corp Surface coated cemented carbide cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6010026244; S. Ruppi: '「Enhanced performance of alpha-Al2O3 coatings by control of crystal orientation」' Surface and Coatings Technology Vol.202, No.17, 20080525, p4257-4269, Elsevier *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014526391A (en) * 2011-09-16 2014-10-06 バルター アクチェンゲゼルシャフト Cutting tools coated with alpha-alumina with manipulated grain boundaries
JP2014018886A (en) * 2012-07-13 2014-02-03 Mitsubishi Materials Corp Surface coated cutting tool with hard coating layer exhibiting superior initial conformability and chipping resistance
CN103658707A (en) * 2012-09-13 2014-03-26 三菱综合材料株式会社 Surface-coated cutting tool
JP2014054711A (en) * 2012-09-13 2014-03-27 Mitsubishi Materials Corp Surface-coated cutting tool having hard coating layer exhibiting excellent exfoliation resistance and chipping resistance in high-speed intermittent cutting
JP2014054712A (en) * 2012-09-13 2014-03-27 Mitsubishi Materials Corp Surface-coated cutting tool having hard coating layer exhibiting excellent exfoliation resistance and chipping resistance in high-speed intermittent cutting
JP2016087709A (en) * 2014-10-30 2016-05-23 三菱マテリアル株式会社 Surface-coated cutting tool exerting excellent chipping resistance in high-speed intermittent cutting
JP2017019096A (en) * 2015-11-25 2017-01-26 住友電工ハードメタル株式会社 Surface-coated cutting tool

Also Published As

Publication number Publication date
JP5326707B2 (en) 2013-10-30

Similar Documents

Publication Publication Date Title
JP5187570B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
WO2010106811A1 (en) Surface-coated cutting tool
JP6198176B2 (en) Surface coated cutting tool
JP5326707B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5440311B2 (en) Surface-coated cutting tool with excellent peeling resistance and wear resistance due to its hard coating layer
JP5187571B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP5240668B2 (en) Surface-coated cutting tool with excellent chipping resistance in high-speed intermittent cutting of hard alloy steel
JP5440269B2 (en) Surface-coated cutting tool with excellent peeling resistance and wear resistance due to its hard coating layer
JP5739086B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5454924B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5594572B2 (en) Surface-coated cutting tool with excellent peel resistance, chipping resistance, and wear resistance with excellent hard coating layer
JP5428569B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP2007210066A (en) SURFACE COATED CERMET CUTTING TOOL INCLUDING REFORMED k-TYPE ALUMINUM OXIDE LAYER OF HARD COATING LAYER HAVING EXCELLENT GRAIN BOUNDARY SURFACE STRENGTH
JP5424097B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5594574B2 (en) Surface-coated cutting tool with excellent peeling resistance and wear resistance due to its hard coating layer
JP5594571B2 (en) Surface-coated cutting tool with excellent peeling resistance and wear resistance due to its hard coating layer
JP5370919B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5176798B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5440268B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5176797B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5454923B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5594573B2 (en) Surface-coated cutting tool with excellent peeling resistance and wear resistance due to its hard coating layer
JP5440270B2 (en) Surface-coated cutting tool with excellent peeling resistance and wear resistance due to its hard coating layer
JP5370920B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5594570B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130708

R150 Certificate of patent or registration of utility model

Ref document number: 5326707

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees