JP2014018886A - Surface coated cutting tool with hard coating layer exhibiting superior initial conformability and chipping resistance - Google Patents

Surface coated cutting tool with hard coating layer exhibiting superior initial conformability and chipping resistance Download PDF

Info

Publication number
JP2014018886A
JP2014018886A JP2012157630A JP2012157630A JP2014018886A JP 2014018886 A JP2014018886 A JP 2014018886A JP 2012157630 A JP2012157630 A JP 2012157630A JP 2012157630 A JP2012157630 A JP 2012157630A JP 2014018886 A JP2014018886 A JP 2014018886A
Authority
JP
Japan
Prior art keywords
layer
average
region
phase
hard coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012157630A
Other languages
Japanese (ja)
Other versions
JP5935562B2 (en
Inventor
Sho Tatsuoka
翔 龍岡
Naoyuki Iwasaki
直之 岩崎
Kenji Yamaguchi
健志 山口
Akira Osada
晃 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2012157630A priority Critical patent/JP5935562B2/en
Publication of JP2014018886A publication Critical patent/JP2014018886A/en
Application granted granted Critical
Publication of JP5935562B2 publication Critical patent/JP5935562B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a coated tool with a hard coating layer having superior initial conformability in high-speed intermittent cutting work, and consequently exhibiting excellent chipping resistance and breakage resistance over a long period of use.SOLUTION: A hard coating layer consists of a lower layer and an upper layer that are chemically vapor-deposited. In the hard coating layer, (a) the lower layer consists of one layer or two or more layers out of a Ti carbide layer, a nitride layer, a carbonitride layer, a carbonate layer, and a carbonitroxide layer, and is a Ti compound layer having a total average layer thickness of 3-20 μm; and (b) the upper layer is an aluminium oxide layer including an α type crystalline structure having an average layer thickness of 3-25 μm, and the upper layer includes a flat surface composition having a carbon content of 0.1-5 at% in a region at a depth equivalent to an average layer thickness of 5-10% from a surface side, a chlorine content of 0.05 at% or less, and surface roughness Ra within a range of 0.05-0.2 μm.

Description

本発明は、高熱発生を伴うとともに、切れ刃に断続的・衝撃的負荷が作用する各種の鋼や鋳鉄の高速断続切削加工において、硬質被覆層が初期なじみ性にすぐれ、これによって刃先にチッピング(微小欠け)が発生するのが防止され、長期の使用に亘ってすぐれた切削性能を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   In the present invention, in the high-speed intermittent cutting of various steels and cast irons that are accompanied by high heat generation and intermittent / impact loads are applied to the cutting edge, the hard coating layer has excellent initial conformability, thereby enabling chipping ( The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that prevents occurrence of microchips and exhibits excellent cutting performance over a long period of use.

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された工具基体(以下、これらを総称して工具基体という)の表面に、
(a)下部層が、いずれも化学蒸着形成された、Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなるTi化合物層、
(b)上部層が、化学蒸着形成された酸化アルミニウム層、
以上(a)および(b)で構成された硬質被覆層を形成してなる被覆工具が知られており、この被覆工具は、各種の鋼や鋳鉄などの連続切削や断続切削に好適に用いられることが知られている。
ただ、前記被覆工具は、切れ刃に大きな負荷がかかる高速断続切削条件では、チッピング等を発生しやすく、工具寿命が短命であるという問題があるため、これを解消するために、従来からいくつかの提案がなされている。
Conventionally, the surface of a tool substrate (hereinafter collectively referred to as a tool substrate) generally composed of tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet. In addition,
(A) Ti carbide (hereinafter referred to as TiC) layer, nitride (hereinafter also referred to as TiN) layer, carbonitride (hereinafter referred to as TiCN) layer formed by chemical vapor deposition of the lower layers. A Ti compound layer consisting of one or more of a carbon oxide (hereinafter referred to as TiCO) layer and a carbonitride oxide (hereinafter referred to as TiCNO) layer,
(B) the upper layer is an aluminum oxide layer formed by chemical vapor deposition;
A coated tool formed by forming a hard coating layer composed of the above (a) and (b) is known, and this coated tool is suitably used for continuous cutting and intermittent cutting of various types of steel and cast iron. It is known.
However, the above-described coated tool has a problem that chipping is likely to occur under high-speed intermittent cutting conditions in which a heavy load is applied to the cutting edge, and there is a problem that the tool life is short. Proposals have been made.

例えば、特許文献1には、工具基体の表面に、(a)下部層としてTi化合物層、(b)中間層としてα型Al層、(c)上部層として平板多角形状かつ縦長形状の結晶粒組織構造を有するZr含有α型Al層とからなる硬質被覆層を蒸着形成した表面被覆切削工具において、中間層および上部層は、それぞれ、(0001)面配向率の高いα型Al層、Zr含有α型Al層からなり、また、上部層の結晶粒の内、面積比率で60%以上の結晶粒の内部は、少なくとも一つ以上のΣ3で表される構成原子共有格子点形態からなる結晶格子界面により分断されていることによって、硬質被覆層が高速断続切削加工においてもすぐれた耐チッピング性を発揮することが開示されている。 For example, Patent Document 1 discloses that on the surface of a tool base, (a) a Ti compound layer as a lower layer, (b) an α-type Al 2 O 3 layer as an intermediate layer, and (c) a flat plate polygonal and vertically long shape as an upper layer. In the surface-coated cutting tool formed by vapor-depositing a hard coating layer composed of a Zr-containing α-type Al 2 O 3 layer having a crystal grain structure of the above, the intermediate layer and the upper layer are each α having a high (0001) plane orientation ratio. Type Al 2 O 3 layer and Zr-containing α-type Al 2 O 3 layer, and the inside of the crystal grains having an area ratio of 60% or more among the crystal grains of the upper layer is represented by at least one Σ3. It is disclosed that the hard coating layer exhibits excellent chipping resistance even in high-speed intermittent cutting by being divided by a crystal lattice interface composed of the constituent atomic shared lattice points.

また、特許文献2には、表面被覆超硬合金製切削チップが、WC基超硬合金基体の表面に、(a)1.5〜20μmの平均層厚を有し、かつTiC層、TiN層、TiCN層、Ti層、TiCO層、TiNO層、およびTiCNO層のうちの1種または2種以上からなるTi化合物層の内層と、(b)1〜20μmの平均層厚を有し、かつ表面側に、表面から平均層厚の10〜40%に相当する深さに亘って、Alの素地に、Alとの合量に占める割合で、1〜15重量%のZrOと同じく1〜15重量%の遊離炭素(ただし、ZrOと遊離炭素の合量で20重量%以下)が分散分布した組織を有する靭性化潤滑化帯域が存在し、残りの基体側が実質的にAlからなる外層と、(c)必要に応じて0.1〜5μmの平均層厚を有するTiN層の最外層と、で構成された硬質被覆層を3〜35μmの全体平均層厚で化学蒸着および/または物理蒸着してなることによって、すぐれた初期なじみ性が発揮され、高切り込みおよび高送りなどの重切削条件で行っても、切刃にチッピングの発生がなく、すぐれた切削性能を長期に亘って発揮することが開示されている。 Further, in Patent Document 2, a surface-coated cemented carbide cutting tip has (a) an average layer thickness of 1.5 to 20 μm on the surface of a WC-based cemented carbide substrate, and a TiC layer and a TiN layer. An inner layer of a Ti compound layer composed of one or more of TiCN layer, Ti 2 O 3 layer, TiCO layer, TiNO layer, and TiCNO layer, and (b) having an average layer thickness of 1 to 20 μm And, on the surface side, from the surface to the depth corresponding to 10 to 40% of the average layer thickness, the Al 2 O 3 substrate accounts for 1 to 15 wt% in the total amount with Al 2 O 3 % Of ZrO 2 as well as a toughened lubrication zone having a structure in which 1 to 15% by weight of free carbon (however, the total amount of ZrO 2 and free carbon is 20% by weight or less) is dispersed and distributed. an outer layer side consists essentially of Al 2 O 3, optionally (c) 0. Excellent initial conformability by chemical vapor deposition and / or physical vapor deposition of a hard coating layer composed of an outermost layer of TiN layer having an average layer thickness of ˜5 μm and an overall average layer thickness of 3 to 35 μm It is disclosed that even if the cutting is performed under heavy cutting conditions such as high cutting and high feed, chipping does not occur on the cutting edge and excellent cutting performance is exhibited over a long period of time.

さらに、特許文献3には、基材上に形成され、金属窒化物からなる表層を備えた耐摩耗性皮膜であって、表層上には、表層を被覆する最表層が設けられ、最表層は炭素が固溶されているアルミナであることによって、高温となっても耐摩耗性を発揮することが開示されている。   Further, Patent Document 3 is a wear-resistant film that is formed on a substrate and has a surface layer made of a metal nitride, and on the surface layer, an outermost layer that covers the surface layer is provided, and the outermost layer is It is disclosed that by using alumina in which carbon is dissolved, wear resistance is exhibited even at high temperatures.

特開2010−110833号公報JP 2010-110833 A 特開2000−246508号公報JP 2000-246508 A 特開2008−126334号公報JP 2008-126334 A

近年の切削加工における省力化および省エネ化の要求は強く、これに伴い、被覆工具は一段と過酷な条件下で使用されるようになってきているが、例えば、前記特許文献1乃至3に示される被覆工具においても、高熱発生を伴うとともに、より一段と切れ刃に断続的・衝撃的負荷が作用する高速断続切削加工に用いられた場合には、上部層の表面平坦度が悪く、切削時の初期なじみ性が十分でないために、切削加工時の高負荷によって切れ刃にチッピング、欠損が発生しやすく、その結果、比較的短時間で使用寿命に至るのが現状である。   In recent years, there is a strong demand for energy saving and energy saving in cutting, and along with this, coated tools have come to be used under severer conditions. For example, Patent Documents 1 to 3 show the above. Even when a coated tool is used for high-speed intermittent cutting, which involves high heat generation and more intermittent and impact loads on the cutting edge, the surface flatness of the upper layer is poor and the initial cutting time is low. Since the conformability is not sufficient, chipping and chipping are likely to occur at the cutting edge due to a high load during cutting, and as a result, the service life is reached in a relatively short time.

そこで、本発明者らは、前述のような観点から、高熱発生を伴い、かつ、切れ刃に断続的・衝撃的負荷が作用する高速断続切削加工に用いられた場合でも、硬質被覆層がすぐれた初期なじみ性を備え、その結果、長期の使用に亘ってすぐれた耐チッピング性、耐欠損性を発揮する被覆工具について鋭意研究を行った結果、以下の知見を得た。   In view of the above, the inventors of the present invention have an excellent hard coating layer even when used in high-speed intermittent cutting with high heat generation and intermittent and impact loads acting on the cutting edge. As a result of earnest research on a coated tool that has initial conformability and, as a result, excellent chipping resistance and fracture resistance over a long period of use, the following knowledge was obtained.

即ち、硬質被覆層として、前記従来の酸化アルミニウムからなる上部層を形成したものにおいては、酸化アルミニウムが基体的に垂直方向に柱状をなして形成されている。そのため、耐摩耗性は向上するが、その反面、酸化アルミニウムの表面部の平坦性が低下する。その結果、耐チッピング性、耐欠損性を発揮することができず、また、工具寿命も満足できるものであるとはいえなかった。   That is, in the case where the conventional upper layer made of aluminum oxide is formed as the hard coating layer, the aluminum oxide is formed in a columnar shape in the vertical direction as a base. Therefore, although the wear resistance is improved, on the other hand, the flatness of the surface portion of the aluminum oxide is lowered. As a result, the chipping resistance and fracture resistance could not be exhibited, and the tool life could not be satisfied.

そこで、本発明者らは、硬質被覆層の上部層を構成する酸化アルミニウム層について鋭意研究したところ、α型の結晶構造を有するAl結晶を成膜する際に、従来と同様、AlClを用いてCVD法で成膜するのであるが、表面部のみをトリメチルアルミニウム(Al(CH)(以下、TMAで示す)を用いて成膜することで、表面平坦組織が得られるという知見を得た。 Therefore, the present inventors have conducted intensive research on the aluminum oxide layer that constitutes the upper layer of the hard coating layer, and when forming an Al 2 O 3 crystal having an α-type crystal structure, as in the conventional case, AlCl 2 is used. 3 is formed by a CVD method, but a flat surface structure can be obtained by forming a film using only trimethylaluminum (Al (CH 3 ) 3 ) (hereinafter referred to as TMA). I got the knowledge.

さらに、表面部をTMAを用いて成膜することで、表面部にはAlClに由来するClがほとんど含有されておらず、TMAに由来するCが含有されていることを見出した。そして、この表面部におけるCl含有量およびC含有量を規定することにより、初期なじみ性にすぐれた硬質被覆層を得ることができるという知見を得た。 Further, it was found that the surface portion was formed using TMA, so that the surface portion contained almost no Cl derived from AlCl 3 and contained C derived from TMA. And the knowledge that the hard coating layer excellent in initial conformability was obtained by prescribing | regulating Cl content and C content in this surface part was acquired.

また、上部層の上にアモルファス酸化アルミニウム層からなる最外層を形成することによって、初期なじみ性の一層の向上が図れることを見出した。   It has also been found that the initial conformability can be further improved by forming an outermost layer made of an amorphous aluminum oxide layer on the upper layer.

そして、前述のような構成の酸化アルミニウム層は、例えば、以下の化学蒸着法によって成膜することができる。
工具基体表面に、通常の蒸着法を用いて、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうち1層または2層以上からなる、所定の合計平均層厚のTi化合物層からなる下部層を形成した後、反応ガス組成(容量%)を、AlCl:2.0〜3.0%、CO:4.0〜6.0%、HCl:2.0〜3.0%、HS:0.1〜0.5%、H:残、として、反応雰囲気圧力を、6〜8kPaとして、反応雰囲気温度を、900〜1000℃として、所定時間、化学蒸着法を行うことにより所定の平均層厚のα型の結晶構造を有する酸化アルミニウム層を形成する。その後、反応ガス組成(容量%)を、TMA:0.1〜0.5%、O:5.0〜10.0%、Ar:残、として、反応雰囲気圧力を、2〜5kPaとして、反応雰囲気温度を、820〜950℃として、所定時間、化学蒸着法を行うことにより前記α型の結晶構造を有する酸化アルミニウム層の表面側に平均層厚の5〜10%に相当する深さ領域において、炭素の含有量が0.1〜5at%であり、塩素の含有量が0.05at%以下である表面粗さRaが0.05〜0.2μmの範囲内の表面粗さを有する表面平坦組織を有する領域を構成した上部層を形成する。これにより、硬質被覆層の初期なじみ性が向上し、その結果、耐チッピング性、耐欠損性を向上させることができることを確認した。
The aluminum oxide layer having the above-described configuration can be formed by, for example, the following chemical vapor deposition method.
A predetermined total consisting of one or more of a Ti carbide layer, a nitride layer, a carbonitride layer, a carbonate layer and a carbonitride oxide layer on the surface of the tool substrate using a normal vapor deposition method. After forming a lower layer composed of a Ti compound layer having an average layer thickness, the reaction gas composition (volume%) was changed to AlCl 3 : 2.0 to 3.0%, CO 2 : 4.0 to 6.0%, HCl : 2.0~3.0%, H 2 S: 0.1~0.5%, H 2: remainder, as the reaction atmosphere pressure, as 6~8KPa, the reaction atmosphere temperature, a 900 to 1000 ° C. Then, an aluminum oxide layer having an α-type crystal structure having a predetermined average layer thickness is formed by performing chemical vapor deposition for a predetermined time. Thereafter, the reaction gas composition (volume%) is set to TMA: 0.1 to 0.5%, O 2 : 5.0 to 10.0%, Ar: remaining, and the reaction atmosphere pressure is set to 2 to 5 kPa. A depth region corresponding to 5 to 10% of the average layer thickness on the surface side of the aluminum oxide layer having the α-type crystal structure by performing a chemical vapor deposition method at a reaction atmosphere temperature of 820 to 950 ° C. for a predetermined time. Surface having a surface roughness Ra in the range of 0.05 to 0.2 μm, with a carbon content of 0.1 to 5 at% and a chlorine content of 0.05 at% or less An upper layer constituting a region having a flat structure is formed. Thereby, it was confirmed that the initial conformability of the hard coating layer was improved, and as a result, chipping resistance and chipping resistance could be improved.

さらに、本発明者らは、上部層の上に所定の平均層厚のアモルファス酸化アルミニウム層からなる最外層を設けることによって、一層、初期なじみ性を向上させることを確認した。   Furthermore, the present inventors have confirmed that initial conformability is further improved by providing an outermost layer made of an amorphous aluminum oxide layer having a predetermined average layer thickness on the upper layer.

本発明は、前記知見に基づいてなされたものであって、
「(1) 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に硬質被覆層を設けた表面被覆切削工具において、
前記硬質被覆層が化学蒸着された下部層と上部層とからなるとともに、
(a)前記下部層は、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、かつ、3〜20μmの合計平均層厚を有するTi化合物層、
(b)前記上部層は、2〜25μmの平均層厚を有するα型の結晶構造を有する酸化アルミニウム層であり、
前記(b)の上部層は、表面側より前記上部層の平均層厚の5〜10%に相当する深さ領域で炭素の含有量が0.1〜5at%であり、塩素の含有量が0.05at%以下であり、表面粗さRaが0.05〜0.2μmの範囲内の表面平坦組織を有することを特徴とする表面被覆切削工具。
(2) 前記(b)の上部層は、表面側より平均層厚の5〜10%に相当する深さ領域において、炭素と塩素の含有量が異なる二つの相が存在し、その二つの相を領域A相及び領域B相とすると、領域A相の平均炭素含有量αと領域B相の平均炭素含有量βとの比であるα/βが5以上であり、領域B相の平均塩素含有量βClと領域A相の平均塩素含有量αClとの比であるβCl/αClが5以上であることを特徴とする(1)に記載の表面被覆切削工具。
(3) 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に硬質被覆層を設けた表面被覆切削工具において、
前記硬質被覆層が化学蒸着された下部層と上部層と最外層からなるとともに、
(c)前記下部層は、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、かつ、3〜20μmの合計平均層厚を有するTi化合物層、
(d)前記上部層は、2〜25μmの平均層厚を有するα型の結晶構造を有する酸化アルミニウム層であり、
(e)前記最外層は、0.5〜5μmの平均層厚を有するアモルファス酸化アルミニウム層であり、
前記(d)の上部層は、前記上部層と前記最外層の界面から、前記上部層の平均層厚の5〜10%に相当する深さ領域で炭素の含有量が0.1〜5at%であり、塩素の含有量が0.05at%以下であり、前記(e)の最外層は、表面粗さRaが0.05〜0.2μmの範囲内の表面平坦組織を有することを特徴とする表面被覆切削工具。
(4)前記(d)の上部層は、前記上部層と前記最外層の界面から、前記上部層の平均層厚の5〜10%に相当する深さ領域において、炭素と塩素の含有量が異なる二つの相が存在し、その二つの相を領域A相及び領域B相とすると、領域A相の平均炭素含有量αと領域B相の平均炭素含有量βとの比であるα/βが5以上であり、領域B相の平均塩素含有量βClと領域A相の平均塩素含有量αClとの比であるβCl/αClが5以上であることを特徴とする(3)に記載の表面被覆切削工具。」
に特徴を有するものである。
The present invention has been made based on the above findings,
“(1) In a surface-coated cutting tool in which a hard coating layer is provided on the surface of a tool base composed of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
The hard coating layer is composed of a lower layer and an upper layer chemically vapor-deposited,
(A) The lower layer is composed of one or more of a Ti carbide layer, a nitride layer, a carbonitride layer, a carbonate layer, and a carbonitride layer, and a total of 3 to 20 μm. A Ti compound layer having an average layer thickness;
(B) The upper layer is an aluminum oxide layer having an α-type crystal structure having an average layer thickness of 2 to 25 μm,
The upper layer (b) has a carbon content of 0.1 to 5 at% in a depth region corresponding to 5 to 10% of the average layer thickness of the upper layer from the surface side, and a chlorine content. A surface-coated cutting tool having a surface flat structure having a surface roughness Ra in a range of 0.05 to 0.2 μm and having a surface roughness Ra of 0.05 at% or less.
(2) The upper layer of (b) has two phases having different carbon and chlorine contents in a depth region corresponding to 5 to 10% of the average layer thickness from the surface side. Is the region A phase and the region B phase, α C / β C which is the ratio of the average carbon content α C of the region A phase and the average carbon content β C of the region B phase is 5 or more, and the region B The surface-coated cutting tool according to (1), wherein β Cl / α Cl, which is a ratio of the average chlorine content β Cl of the phase and the average chlorine content α Cl of the region A phase, is 5 or more.
(3) In a surface-coated cutting tool in which a hard coating layer is provided on the surface of a tool base made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
The hard coating layer comprises a lower layer, an upper layer and an outermost layer, which are chemically vapor-deposited,
(C) The lower layer is composed of one or more of a Ti carbide layer, a nitride layer, a carbonitride layer, a carbonate layer and a carbonitride layer, and a total of 3 to 20 μm. A Ti compound layer having an average layer thickness;
(D) The upper layer is an aluminum oxide layer having an α-type crystal structure having an average layer thickness of 2 to 25 μm,
(E) the outermost layer is an amorphous aluminum oxide layer having an average layer thickness of 0.5 to 5 μm;
The upper layer (d) has a carbon content of 0.1 to 5 at% in a depth region corresponding to 5 to 10% of the average layer thickness of the upper layer from the interface between the upper layer and the outermost layer. The content of chlorine is 0.05 at% or less, and the outermost layer of (e) has a surface flat structure having a surface roughness Ra in the range of 0.05 to 0.2 μm. A surface-coated cutting tool.
(4) The upper layer of (d) has a carbon and chlorine content in a depth region corresponding to 5 to 10% of the average layer thickness of the upper layer from the interface between the upper layer and the outermost layer. When two different phases exist, and these two phases are the region A phase and the region B phase, α is a ratio of the average carbon content α C of the region A phase and the average carbon content β C of the region B phase. C / beta C is 5 or more, and wherein the ratio a is beta Cl / alpha Cl with an average chlorine content alpha Cl average area B phase chlorine content beta Cl and region a phase is 5 or more The surface-coated cutting tool according to (3). "
It has the characteristics.

本発明について、以下に詳細に説明する。   The present invention will be described in detail below.

下部層のTi化合物層:
Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、かつ、3〜20μmの合計平均層厚を有するTi化合物層からなる下部層は、通常の化学蒸着条件で形成することができる。下部層を構成するTi化合物層は、それ自体が高温強度を有し、これの存在によって硬質被覆層が高温強度を具備するようになるほか、工具基体と酸化アルミニウムからなる上部層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性向上に寄与する作用をもつが、その合計平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方、その合計平均層厚が20μmを越えると、チッピングを発生しやすくなることから、その合計平均層厚を3〜20μmと定めた。
Lower Ti compound layer:
Ti compound layer composed of one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride oxide layer, and having a total average layer thickness of 3 to 20 μm The lower layer can be formed under normal chemical vapor deposition conditions. The Ti compound layer constituting the lower layer itself has a high temperature strength, and the presence of the Ti compound layer makes the hard coating layer have a high temperature strength, as well as both the tool base and the upper layer made of aluminum oxide. It has an effect of firmly adhering, and thus contributing to an improvement in the adhesion of the hard coating layer to the tool substrate. However, when the total average layer thickness is less than 3 μm, the above-mentioned effect cannot be exhibited sufficiently, while the total When the average layer thickness exceeds 20 μm, chipping tends to occur. Therefore, the total average layer thickness is set to 3 to 20 μm.

上部層のα型の結晶構造を有する酸化アルミニウム層:
上部層を構成するα型の結晶構造を有する酸化アルミニウム層が、高温硬さと耐熱性を備えることは既に良く知られているが、その平均層厚が2μm未満では、長期の使用に亘っての耐摩耗性を確保することができず、一方、その平均層厚が25μmを越えると酸化アルミニウム結晶粒が粗大化し易くなり、その結果、高温硬さ、高温強度の低下に加え、高速断続切削加工時の耐チッピング性、耐欠損性が低下するようになることから、その平均層厚を2〜25μmと定めた。
Aluminum oxide layer having an α-type crystal structure in the upper layer:
It is well known that the aluminum oxide layer having an α-type crystal structure constituting the upper layer has high-temperature hardness and heat resistance. However, if the average layer thickness is less than 2 μm, the aluminum oxide layer has a long-term use. Wear resistance cannot be ensured. On the other hand, if the average layer thickness exceeds 25 μm, the aluminum oxide crystal grains are likely to be coarsened. As a result, in addition to the decrease in high-temperature hardness and strength, high-speed intermittent cutting Since the chipping resistance and chipping resistance at the time are lowered, the average layer thickness is set to 2 to 25 μm.

更に本発明は、前記の構成に加えて、以下の条件を併せ持つとき、より一層、すぐれた効果を発揮する。   Furthermore, in addition to the above-described configuration, the present invention exhibits a further excellent effect when it has the following conditions.

すなわち、上部層の酸化アルミニウム層は、表面側より平均層厚の5〜10%に相当する深さ領域で炭素の含有量が0.1〜5at%であり、塩素の含有量が0.05at%以下であり、表面粗さRaが0.05〜0.2μmの範囲内の表面平坦組織を有する組織構造であることにより、初期なじみ性が向上し、チッピングの発生が防止される。該深さ領域が5%未満では、所望のすぐれた初期なじみ性を確保することができず、10%を越えると、酸化アルミニウム層の特徴である長期の使用に亘っての耐摩耗性を確保することができない。また、表面側の該深さ領域で炭素の含有量が0.1at%以下であると炭素の有する潤滑化効果が発揮されないため十分な初期なじみ性向上が得られず、5at%を越えると該深さ領域の硬さが低下し、局部的な摩耗進行が促進され、所望の耐摩耗性を確保することができなくなる。また、表面側の該深さ領域で塩素の含有量が0.05at%を越えると該深さ領域で脆化が起こり、チッピングが発生し易くなる。また、表面粗さRaが0.05〜0.2μmの範囲を外れると、切削開始直後に切削時の表面被覆工具への溶着発生を抑制する効果が発揮されないため、十分な耐チッピング性が発揮されない。
さらに、上部層は、表面側より平均層厚の5〜10%に相当する深さ領域において、炭素と塩素の含有量が異なる二つの相が存在し、その二つの相を領域A相及び領域B相とすると、領域A相の平均炭素含有量αと領域B相の平均炭素含有量βとの比であるα/βが5以上であり、領域B相の平均塩素含有量βClと領域A相の平均塩素含有量αClとの比であるβCl/αClが5以上であることにより、炭素の含有量が相対的に高く、塩素の含有量が相対的に低い領域を形成することにより、炭素の有する潤滑化効果を発揮しつつ、硬さの低下を防ぎ、その結果、初期なじみ性が向上しつつ、優れた耐摩耗性を発揮する。しかし、領域A相の平均炭素含有量αと領域B相の平均炭素含有量βとの比であるα/βが5未満であり、領域B相の平均塩素含有量βClと領域A相の平均塩素含有量αClとの比であるβCl/αClが5未満であると上記の特性が得られない。
That is, the aluminum oxide layer of the upper layer has a carbon content of 0.1 to 5 at% and a chlorine content of 0.05 at in a depth region corresponding to 5 to 10% of the average layer thickness from the surface side. %, And the surface roughness Ra is a structure having a flat surface structure in the range of 0.05 to 0.2 μm, the initial conformability is improved and the occurrence of chipping is prevented. If the depth region is less than 5%, the desired excellent initial conformability cannot be ensured. If the depth region exceeds 10%, the wear resistance over a long period of use, which is a feature of the aluminum oxide layer, is secured. Can not do it. Further, if the carbon content is 0.1 at% or less in the depth region on the surface side, the lubrication effect of carbon is not exhibited, so that sufficient initial conformability cannot be obtained, and if it exceeds 5 at%, The hardness in the depth region is lowered, the progress of local wear is promoted, and the desired wear resistance cannot be ensured. Further, if the chlorine content exceeds 0.05 at% in the depth region on the surface side, embrittlement occurs in the depth region, and chipping is likely to occur. Further, if the surface roughness Ra is out of the range of 0.05 to 0.2 μm, the effect of suppressing the occurrence of welding to the surface-coated tool at the time of cutting is not exhibited immediately after the start of cutting, so that sufficient chipping resistance is exhibited. Not.
Further, the upper layer has two phases having different carbon and chlorine contents in a depth region corresponding to 5 to 10% of the average layer thickness from the surface side, and the two phases are divided into a region A phase and a region. Assuming that it is the B phase, α C / β C which is the ratio of the average carbon content α C of the region A phase and the average carbon content β C of the region B phase is 5 or more, and the average chlorine content of the region B phase When β Cl / α Cl, which is a ratio of β Cl to the average chlorine content α Cl of the region A phase, is 5 or more, the carbon content is relatively high and the chlorine content is relatively low. By forming the region, the reduction in hardness is prevented while exhibiting the lubrication effect of carbon, and as a result, the initial conformability is improved and excellent wear resistance is exhibited. However, α C / β C, which is the ratio of the average carbon content α C of the region A phase and the average carbon content β C of the region B phase, is less than 5, and the average chlorine content β Cl of the region B phase is If β Cl / α Cl, which is a ratio to the average chlorine content α Cl in the region A phase, is less than 5, the above characteristics cannot be obtained.

最外層のアモルファス酸化アルミニウム層:
本発明は、前述した下部層と上部層とからなる硬質被覆層により、所望の効果を発揮するが、さらに上部層の上に最外層としてアモルファス酸化アルミニウム層を形成することにより、より一層、初期なじみ性が向上し、チッピングの発生がさらに防止される。
前記最外層は、アモルファス酸化アルミニウム層からなりその平均層厚が0.5μm未満では、アモルファス酸化アルミニウムの有する高い靭性による耐チッピング性向上効果を発揮できず、5μmを越えると、相対的に上部層を構成するα型の結晶構造を有する酸化アルミニウム層の層厚が薄くなり過ぎてしまい、十分な耐摩耗性を維持できなくなることから、その平均層厚を0.5〜5μmと定めた。
このとき、最外層の表面を表面粗さRaが0.05〜0.2μmの範囲内の表面平坦組織を有する組織構造とすることにより、初期なじみ性を一層向上させ、チッピングの発生がさらに防止される。
Outermost amorphous aluminum oxide layer:
The present invention exerts a desired effect by the above-described hard coating layer composed of the lower layer and the upper layer, but by further forming an amorphous aluminum oxide layer as the outermost layer on the upper layer, the initial stage is further improved. The conformability is improved and the occurrence of chipping is further prevented.
The outermost layer is made of an amorphous aluminum oxide layer, and if the average layer thickness is less than 0.5 μm, the effect of improving chipping resistance due to the high toughness of amorphous aluminum oxide cannot be exhibited. Since the layer thickness of the aluminum oxide layer having the α-type crystal structure constituting the film becomes too thin and sufficient wear resistance cannot be maintained, the average layer thickness is determined to be 0.5 to 5 μm.
At this time, the surface of the outermost layer has a structure having a flat surface structure with a surface roughness Ra in the range of 0.05 to 0.2 μm, thereby further improving the initial conformability and further preventing the occurrence of chipping. Is done.

上部層の酸化アルミニウムの形成:
本発明の上部層の酸化アルミニウムは、次の条件による化学蒸着法を行うことによって形成することができる。
工具基体表面に、通常の蒸着法を用いて、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうち1層または2層以上からなる、所定の合計平均層厚のTi化合物層からなる下部層を形成した後、
反応ガス組成(容量%):
AlCl:2.0〜3.0%、
CO:4.0〜6.0%、
HCl:2.0〜3.0%、
S:0.1〜0.5%、H:残、
反応雰囲気圧力:6〜8kPa、
反応雰囲気温度:900〜1000℃
として、化学蒸着法を行うことにより所定の平均層厚の90〜95%に相当するα型の結晶構造を有する酸化アルミニウム層を形成する。
Formation of top layer aluminum oxide:
The upper layer aluminum oxide of the present invention can be formed by performing chemical vapor deposition under the following conditions.
A predetermined total consisting of one or more of a Ti carbide layer, a nitride layer, a carbonitride layer, a carbonate layer and a carbonitride oxide layer on the surface of the tool substrate using a normal vapor deposition method. After forming a lower layer composed of a Ti compound layer having an average layer thickness,
Reaction gas composition (volume%):
AlCl 3 : 2.0 to 3.0%,
CO 2: 4.0~6.0%,
HCl: 2.0-3.0%
H 2 S: 0.1 to 0.5%, H 2 : remaining,
Reaction atmosphere pressure: 6-8 kPa,
Reaction atmosphere temperature: 900-1000 ° C
Then, an aluminum oxide layer having an α-type crystal structure corresponding to 90 to 95% of a predetermined average layer thickness is formed by performing chemical vapor deposition.

その後、
反応ガス組成(容量%):
TMA:0.1〜0.5%、
:5.0〜10.0%、
Ar:残、
反応雰囲気圧力:2〜5kPa、
反応雰囲気温度を:820〜950℃
として、化学蒸着法を行うことにより前記α型の結晶構造を有する酸化アルミニウム層の表面側に前記平均層厚の5〜10%に相当する深さ領域において、炭素の含有量が0.1〜5at%であり、塩素の含有量が0.05at%以下であり、表面粗さRaが0.05〜0.2μmの範囲内の表面粗さを有する表面平坦組織を有する表面領域を形成した上部層を形成する。
after that,
Reaction gas composition (volume%):
TMA: 0.1-0.5%
O 2: 5.0~10.0%,
Ar: remaining,
Reaction atmosphere pressure: 2 to 5 kPa,
Reaction atmosphere temperature: 820-950 ° C
In the depth region corresponding to 5 to 10% of the average layer thickness on the surface side of the aluminum oxide layer having the α-type crystal structure by performing chemical vapor deposition, the carbon content is 0.1 to An upper portion in which a surface region having a surface flat structure having a surface roughness of 5 at%, a chlorine content of 0.05 at% or less, and a surface roughness Ra in the range of 0.05 to 0.2 μm is formed. Form a layer.

最外層のアモルファス酸化アルミニウム層の形成:
反応ガス組成(容量%):
TMA:2.0〜5.0%、
:15.0〜20.0%、
Ar:残、
反応雰囲気圧力:5〜8kPa、
反応雰囲気温度:780〜800℃
として、反応雰囲気温度を相対的に低い温度にして、化学蒸着法を行うことにより所定の平均層厚のアモルファス酸化アルミニウム層を形成する。
Formation of the outermost amorphous aluminum oxide layer:
Reaction gas composition (volume%):
TMA: 2.0-5.0%,
O 2: 15.0~20.0%,
Ar: remaining,
Reaction atmosphere pressure: 5 to 8 kPa,
Reaction atmosphere temperature: 780-800 ° C
As described above, an amorphous aluminum oxide layer having a predetermined average layer thickness is formed by performing a chemical vapor deposition method at a relatively low reaction atmosphere temperature.

本発明の被覆工具は、硬質被覆層が、化学蒸着された下部層と上部層とからなり、(a)下部層は、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、かつ、3〜20μmの合計平均層厚を有するTi化合物層、(b)上部層は、2〜25μmの平均層厚を有するα型の結晶構造を有する酸化アルミニウム層であり、(b)の上部層は、表面側より平均層厚の5〜10%に相当する深さ領域で炭素の含有量が0.1〜5at%であり、塩素の含有量が0.05at%以下であり、表面粗さRaが0.05〜0.2μmの範囲内である表面平坦組織を有することにより、硬質被覆層がすぐれた初期なじみ性を発揮するので、切れ刃に断続的・衝撃的高負荷が作用する高速断続切削加工に用いた場合でも、耐チッピング性、耐欠損性にすぐれ、その結果、長期の使用に亘ってすぐれた切削性能を維持し、被覆工具の長寿命化が達成されるものである。 The coated tool of the present invention comprises a lower layer and an upper layer in which a hard coating layer is chemically vapor-deposited. (A) The lower layer includes a Ti carbide layer, a nitride layer, a carbonitride layer, a carbonate layer, and Ti compound layer comprising one or more of carbonitride oxide layers and having a total average layer thickness of 3 to 20 μm, (b) the upper layer has an average layer thickness of 2 to 25 μm The upper layer of (b) is a depth region corresponding to 5 to 10% of the average layer thickness from the surface side, and the carbon content is 0.1 to 5 at%. And having a flat surface structure with a chlorine content of 0.05 at% or less and a surface roughness Ra in the range of 0.05 to 0.2 μm, the hard coating layer has excellent initial conformability. High-speed intermittent cutting with intermittent and shocking high loads acting on the cutting edge Even with chipping resistance, excellent breakage resistance, resulting in maintaining a good cutting performance over a long period of use, in which the life of the coated tool is achieved.

本発明の膜構成を示す膜構成模式図である。It is a film | membrane structure schematic diagram which shows the film | membrane structure of this invention.

つぎに、本発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG120412に規定するインサート形状をもったWC基超硬合金製の工具基体A〜Eをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, and Co powder each having an average particle diameter of 1 to 3 μm are prepared. The raw material powder is blended in the blending composition shown in Table 1, added with wax, ball mill mixed in acetone for 24 hours, dried under reduced pressure, and press-molded into a green compact of a predetermined shape at a pressure of 98 MPa. The green compact is vacuum-sintered in a vacuum of 5 Pa at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour. After sintering, the cutting edge is subjected to a honing process of R: 0.07 mm. Thus, tool bases A to E made of a WC-base cemented carbide having an insert shape specified in ISO · CNMG120212 were manufactured.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.09mmのホーニング加工を施すことによりISO規格・CNMG120412のインサート形状をもったTiCN基サーメット製の工具基体a〜eを形成した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour. After sintering, the cutting edge portion was subjected to a honing process of R: 0.09 mm. Tool bases a to e made of TiCN-based cermet having an insert shape of standard / CNMG12041 were formed.

つぎに、これらの工具基体A〜Eおよび工具基体a〜eの表面に、通常の化学蒸着装置を用い、
(a)硬質被覆層の下部層として、表3に示される条件かつ表7に示される層構成および目標合計層厚のTi化合物層を蒸着形成する。
(b)次いで、表4に示される条件かつ表7に示される目標層厚のα型酸化アルミニウム層からなる上部層を蒸着形成する。
(c)この時、表5に示されるA〜O条件でα型酸化アルミニウム層の表面側を成膜する際に、TMAを用いることにより、表面領域における炭素の含有量を所定量とし、塩素の含有量を所定量以下に抑えることができる。これにより、本発明被覆工具1〜10を作製した。
(d)さらに、本発明被覆工具11〜15については、前記上部層の上に、表6に示される条件かつ表7に示される目標層厚のアモルファス酸化アルミニウム層からなる最外層を蒸着形成することにより作製した。
Next, a normal chemical vapor deposition apparatus is used on the surfaces of these tool bases A to E and tool bases a to e,
(A) As a lower layer of the hard coating layer, a Ti compound layer having the conditions shown in Table 3 and the layer configuration and target total layer thickness shown in Table 7 is formed by vapor deposition.
(B) Next, an upper layer made of an α-type aluminum oxide layer having the conditions shown in Table 4 and the target layer thickness shown in Table 7 is formed by vapor deposition.
(C) At this time, when the surface side of the α-type aluminum oxide layer is formed under the conditions A to O shown in Table 5, the content of carbon in the surface region is set to a predetermined amount by using TMA, and chlorine is used. The content of can be suppressed to a predetermined amount or less. Thereby, this invention coated tools 1-10 were produced.
(D) Further, for the coated tools 11 to 15 of the present invention, the outermost layer made of an amorphous aluminum oxide layer having the conditions shown in Table 6 and the target layer thickness shown in Table 7 is formed on the upper layer by vapor deposition. This was produced.

また、比較の目的で、工具基体A〜Eおよび工具基体a〜eの表面に、表3に示される条件かつ表8に示される層構成および目標層厚で本発明被覆工具1〜15と同様に、硬質被覆層の下部層としてのTi化合物層を蒸着形成した。次いで、上部層として、表4に示される条件かつ表8に示される目標層厚でα型酸化アルミニウム層からなる上部層を蒸着形成した。この時には、上部層を成膜中、TMAを用いず、α型酸化アルミニウム結晶組織を形成する。これにより、表8の比較被覆工具1〜10を作製した。さらに、比較被覆工具11〜15については、前記上部層の上に、表6に示される条件かつ表8に示される目標層厚のアモルファス酸化アルミニウム層からなる最外層を蒸着形成することにより作製した。   For comparison purposes, the surfaces of the tool bases A to E and the tool bases a to e are the same as the coated tools 1 to 15 of the present invention under the conditions shown in Table 3 and the layer configuration and target layer thickness shown in Table 8. Then, a Ti compound layer as a lower layer of the hard coating layer was formed by vapor deposition. Next, as the upper layer, an upper layer made of an α-type aluminum oxide layer was formed by vapor deposition under the conditions shown in Table 4 and the target layer thickness shown in Table 8. At this time, the α-type aluminum oxide crystal structure is formed without using TMA during the formation of the upper layer. Thereby, the comparative coated tools 1-10 of Table 8 were produced. Further, the comparative coated tools 11 to 15 were prepared by vapor-depositing an outermost layer made of an amorphous aluminum oxide layer having the conditions shown in Table 6 and the target layer thickness shown in Table 8 on the upper layer. .

また、本発明被覆工具1〜15および比較被覆工具1〜15の各構成層の断面を、走査型電子顕微鏡(倍率5000倍)を用いて複数視野(5点)に亘って観察し、平均層厚を求めたところ、いずれも表7および表8に示される目標層厚と実質的に同じ平均層厚を示した。
また、硬質被覆層の上部層における炭素の含有量、及び塩素の含有量は二次イオン質量分析(SIMS,Secondary−Ion−Mass−Spectroscopy)により求めた。Csイオンビーム (Cs)を試料表面側から70μm×70μmの範囲に照射し、スパッタリング作用によって放出された成分について深さ方向の濃度測定を行い、標準試料を用いて、校正した。その結果、本発明被覆工具1〜15については、硬質被覆層の上部層における塩素の含有量が0.05at%以下である領域が存在し、該領域の深さは平均層厚の5〜10%に相当した。表7に本発明被覆工具1〜15の該領域の平均層厚に対する割合を示す。また、表7に本発明被覆工具1〜15の該領域の炭素の含有量及び塩素の含有量の深さ方向の平均値を示す。比較被覆工具1〜15については塩素の含有量が0.05at%以下である領域が存在しなかった。表8に比較被覆工具1〜15の分析を行った深さの平均層厚に対する割合、及び分析を行った表面領域の炭素の含有量及び塩素の含有量の深さ方向の平均値を示す。
また、本発明被覆工具1〜15および比較被覆工具1〜15の最表面について、レーザー顕微鏡を用いて、JIS B−0601(2001)に準じて測定し、表面粗さRa(算術平均粗さ)を求めた。表7および表8に求めた表面粗さRaを示す。
さらに、本発明被覆工具1〜15の断面について、透過型電子顕微鏡(倍率200000倍)を用いて微小領域の観察を行い、上部層の表面側の平均層厚の5〜10%に相当する深さ領域について、エネルギー分散型X線分光法(EDS)を用いて、断面側から面分析を行ったところ、本発明被覆工具1、3、4、6〜14において、炭素と塩素の含有量が異なる二つの相が観察された。その二つの相を領域A相及び領域B相として、二つの相について、各相内の5点において、ビーム径1nm領域の定量分析を行い、5点の平均をとることで、領域A相の平均炭素含有量α及び平均塩素含有量αCl、領域B相の平均炭素含有量β及び平均塩素含有量βClを測定した。二次イオン質量分析により求めた炭素及び塩素の含有量は、二次イオン質量分析の空間分解能では領域A相及び領域B相の区別が出来ないため、領域A相及び領域B相の双方の情報を含んでいると考えられる。透過型電子顕微鏡のエネルギー分散型X線分光法を用いた場合、空間分解能が高く微小領域の組成分析が出来るため、領域A相及び領域B相の区別が出来る。ただし、透過型電子顕微鏡のエネルギー分散型X線分光法の場合、透過型電子顕微鏡の鏡体内の試料汚染(コンタミネーション)による影響で絶対値に誤差を含むものとなる。そのため、本発明被覆工具1〜15について、領域A相の平均炭素含有量αと領域B相の平均炭素含有量βとの比であるα/β、領域B相の平均塩素含有量βClと領域A相の平均塩素含有量αClとの比であるβCl/αClを求め、同一試料内の領域A相と領域B相の相対値とすることで、試料間の比較をした。
Moreover, the cross section of each component layer of this invention coated tool 1-15 and comparative coated tool 1-15 was observed over multiple visual fields (5 points) using a scanning electron microscope (magnification 5000 times), and the average layer When the thickness was determined, all showed the average layer thickness substantially the same as the target layer thickness shown in Table 7 and Table 8.
In addition, the carbon content and the chlorine content in the upper layer of the hard coating layer were determined by secondary ion mass spectrometry (SIMS, Secondary-Ion-Mass-Spectroscopy). A Cs ion beam (Cs + ) was irradiated in a range of 70 μm × 70 μm from the sample surface side, the concentration of the component emitted by the sputtering action was measured in the depth direction, and calibrated using a standard sample. As a result, about this invention coated tool 1-15, the area | region whose chlorine content in the upper layer of a hard coating layer is 0.05 at% or less exists, and the depth of this area | region is 5-10 of average layer thickness. %. Table 7 shows the ratio of the region of the coated tools 1 to 15 of the present invention to the average layer thickness. Table 7 shows the average values in the depth direction of the carbon content and chlorine content in the regions of the coated tools 1 to 15 of the present invention. For the comparative coated tools 1 to 15, there was no region where the chlorine content was 0.05 at% or less. Table 8 shows the ratio of the depth of the analysis of the comparative coated tools 1 to 15 to the average layer thickness, and the average value in the depth direction of the carbon content and chlorine content of the analyzed surface region.
Moreover, about the outermost surface of this invention coated tool 1-15 and comparative coated tool 1-15, it measured according to JIS B-0601 (2001) using a laser microscope, and surface roughness Ra (arithmetic mean roughness) Asked. Tables 7 and 8 show the obtained surface roughness Ra.
Furthermore, about the cross section of this invention coated tool 1-15, a micro area | region is observed using a transmission electron microscope (magnification 200000 times), and the depth equivalent to 5-10% of the average layer thickness of the surface side of an upper layer When the surface area was analyzed from the cross-section side using energy dispersive X-ray spectroscopy (EDS), the content of carbon and chlorine in the present coated tools 1, 3, 4, 6 to 14 was Two different phases were observed. The two phases are defined as a region A phase and a region B phase, and for the two phases, quantitative analysis of the beam diameter 1 nm region is performed at five points in each phase, and the average of the five points is obtained. the average carbon content alpha C and an average chlorine content alpha Cl, the average carbon content beta C and an average chlorine content beta Cl regions B phase was measured. The content of carbon and chlorine determined by secondary ion mass spectrometry cannot be distinguished from the region A phase and the region B phase by the spatial resolution of secondary ion mass spectrometry. It is thought that it contains. When the energy dispersive X-ray spectroscopy of the transmission electron microscope is used, the composition of a minute region can be analyzed with high spatial resolution, so that the region A phase and the region B phase can be distinguished. However, in the case of energy dispersive X-ray spectroscopy of a transmission electron microscope, the absolute value includes an error due to the influence of sample contamination (contamination) in the body of the transmission electron microscope. Therefore, the present invention coated tools 1 to 15, the area A phase average carbon content alpha C and the region B-phase average carbon content beta C and which is the ratio alpha C / beta C of an average chlorine content of the region B phase Comparison between samples is obtained by obtaining β Cl / α Cl which is a ratio of the amount β Cl to the average chlorine content α Cl of the region A phase, and using the relative value of the region A phase and the region B phase in the same sample. Did.

さらに、最外層を形成した本発明被覆工具11〜15および比較被覆工具11〜15の最外層について、透過型電子顕微鏡(倍率200000倍)を用いて複数の視野に亘って観察し、最外層の酸化アルミニウムについて電子線回折を行った結果、酸化アルミニウム結晶の回折像が観察されず、アモルファス酸化アルミニウムであることが確認された。 Furthermore, about the outermost layer of this invention coated tool 11-15 which formed outermost layer, and comparative coated tool 11-15, it observed over a some visual field using a transmission electron microscope (magnification 200000 times), and outermost layer of As a result of performing electron beam diffraction on aluminum oxide, a diffraction image of the aluminum oxide crystal was not observed, and it was confirmed that the aluminum oxide was amorphous aluminum oxide.


つぎに、本発明被覆工具1〜15および比較被覆工具1〜15について、表9に示す条件で切削加工試験を実施し、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。
表10に、この測定結果を示した。
Next, the cutting test was performed on the present coated tools 1 to 15 and the comparative coated tools 1 to 15 under the conditions shown in Table 9, and the flank wear width of the cutting edge was measured in any cutting test.
Table 10 shows the measurement results.

表7および表10に示される結果から、本発明の被覆工具は、硬質被覆層の上部層を構成する酸化アルミニウム層が、α型結晶構造を有しており、上部層の表面側より平均層厚の5〜10%に相当する深さ領域における炭素の含有量が0.1〜5at%であり、塩素の含有量が0.05at%以下であり、しかも、表面の表面粗さRaが0.05〜0.2μmの範囲内であることにより、初期なじみ性が向上し、高熱発生を伴い、しかも、切れ刃に断続的・衝撃的高負荷が作用する高速断続切削加工に用いた場合でも、耐チッピング性、耐欠損性にすぐれ、その結果、長期の使用に亘ってすぐれた切削性能を発揮することが明らかである。   From the results shown in Table 7 and Table 10, in the coated tool of the present invention, the aluminum oxide layer constituting the upper layer of the hard coating layer has an α-type crystal structure, and the average layer from the surface side of the upper layer The carbon content in the depth region corresponding to 5 to 10% of the thickness is 0.1 to 5 at%, the chlorine content is 0.05 at% or less, and the surface roughness Ra of the surface is 0. Even if it is used for high-speed intermittent cutting with high heat generation and intermittent / impact high load acting on the cutting edge, it is within the range of 0.05 to 0.2 μm. It is clear that it has excellent chipping resistance and chipping resistance, and as a result, exhibits excellent cutting performance over a long period of use.

さらに、上部層の上に最外層として0.5〜5μmの平均層厚を有するアモルファス酸化アルミニウム層を設けた場合には、一層、すぐれた切削性能を発揮することが確認された。   Furthermore, when an amorphous aluminum oxide layer having an average layer thickness of 0.5 to 5 μm was provided as the outermost layer on the upper layer, it was confirmed that the cutting performance was further improved.

これに対して、硬質被覆層の上部層の表面側より平均層厚の5〜10%に相当する深さ領域における炭素の含有量が0.1〜5at%の範囲外であり、塩素の含有量が0.05at%を超える比較被覆工具1〜15については、高熱発生を伴い、しかも、切れ刃に断続的・衝撃的高負荷が作用する高速断続切削加工に用いた場合、チッピング、欠損等の発生により短時間で寿命にいたることが明らかである。   On the other hand, the carbon content in the depth region corresponding to 5 to 10% of the average layer thickness from the surface side of the upper layer of the hard coating layer is outside the range of 0.1 to 5 at%, and the chlorine content For the comparative coated tools 1 to 15 whose amount exceeds 0.05 at%, chipping, chipping, etc. when used for high-speed intermittent cutting with high heat generation and intermittent / impact high load acting on the cutting edge It is clear that the occurrence of a short life span.

前述のように、本発明の被覆工具は、例えば、鋼や鋳鉄等の高熱発生を伴い、かつ、切れ刃に断続的・衝撃的高負荷が作用する高速断続切削加工において、すぐれた耐チッピング性、耐欠損性を発揮し、使用寿命の延命化を可能とするものであるが、高速断続切削加工条件ばかりでなく、高速切削加工条件、高切込み、高送りの高速重切削加工条件等で使用することも勿論可能である。   As described above, the coated tool of the present invention has excellent chipping resistance in high-speed intermittent cutting with high heat generation such as steel and cast iron and intermittent and impact high load acting on the cutting edge. Demonstrate fracture resistance and extend the service life, but not only for high-speed interrupted cutting conditions, but also for high-speed cutting conditions, high cutting depth, high-feed, high-speed heavy cutting conditions, etc. Of course, it is also possible.

Claims (4)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に硬質被覆層を設けた表面被覆切削工具において、
前記硬質被覆層が化学蒸着された下部層と上部層とからなるとともに、
(a)前記下部層は、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、かつ、3〜20μmの合計平均層厚を有するTi化合物層、
(b)前記上部層は、2〜25μmの平均層厚を有するα型の結晶構造を有する酸化アルミニウム層であり、
前記(b)の上部層は、表面側より前記上部層の平均層厚の5〜10%に相当する深さ領域で炭素の含有量が0.1〜5at%であり、塩素の含有量が0.05at%以下であり、表面粗さRaが0.05〜0.2μmの範囲内の表面平坦組織を有することを特徴とする表面被覆切削工具。
In a surface-coated cutting tool in which a hard coating layer is provided on the surface of a tool base composed of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
The hard coating layer is composed of a lower layer and an upper layer chemically vapor-deposited,
(A) The lower layer is composed of one or more of a Ti carbide layer, a nitride layer, a carbonitride layer, a carbonate layer, and a carbonitride layer, and a total of 3 to 20 μm. A Ti compound layer having an average layer thickness;
(B) The upper layer is an aluminum oxide layer having an α-type crystal structure having an average layer thickness of 2 to 25 μm,
The upper layer (b) has a carbon content of 0.1 to 5 at% in a depth region corresponding to 5 to 10% of the average layer thickness of the upper layer from the surface side, and a chlorine content. A surface-coated cutting tool having a surface flat structure having a surface roughness Ra in a range of 0.05 to 0.2 μm and having a surface roughness Ra of 0.05 at% or less.
前記(b)の上部層は、表面側より平均層厚の5〜10%に相当する深さ領域において、炭素と塩素の含有量が異なる二つの相が存在し、その二つの相を領域A相及び領域B相とすると、領域A相の平均炭素含有量αと領域B相の平均炭素含有量βとの比であるα/βが5以上であり、領域B相の平均塩素含有量βClと領域A相の平均塩素含有量αClとの比であるβCl/αClが5以上であることを特徴とする請求項1に記載の表面被覆切削工具。 The upper layer (b) has two phases having different carbon and chlorine contents in the depth region corresponding to 5 to 10% of the average layer thickness from the surface side. When the phase and the region B phase are set, the ratio of the average carbon content α C of the region A phase and the average carbon content β C of the region B phase is α C / β C is 5 or more, and the average of the region B phase the surface-coated cutting tool according to claim 1, characterized in that the ratio between the average chlorine content alpha Cl chlorine content beta Cl and the region a-phase beta Cl / alpha Cl is 5 or more. 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に硬質被覆層を設けた表面被覆切削工具において、
前記硬質被覆層が化学蒸着された下部層と上部層と最外層からなるとともに、
(c)前記下部層は、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、かつ、3〜20μmの合計平均層厚を有するTi化合物層、
(d)前記上部層は、2〜25μmの平均層厚を有するα型の結晶構造を有する酸化アルミニウム層であり、
(e)前記最外層は、0.5〜5μmの平均層厚を有するアモルファス酸化アルミニウム層であり、
前記(d)の上部層は、前記上部層と前記最外層の界面から、前記上部層の平均層厚の5〜10%に相当する深さ領域で炭素の含有量が0.1〜5at%であり、塩素の含有量が0.05at%以下であり、前記(e)の最外層は、表面粗さRaが0.05〜0.2μmの範囲内の表面平坦組織を有することを特徴とする表面被覆切削工具。
In a surface-coated cutting tool in which a hard coating layer is provided on the surface of a tool base composed of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
The hard coating layer comprises a lower layer, an upper layer and an outermost layer, which are chemically vapor-deposited,
(C) The lower layer is composed of one or more of a Ti carbide layer, a nitride layer, a carbonitride layer, a carbonate layer and a carbonitride layer, and a total of 3 to 20 μm. A Ti compound layer having an average layer thickness;
(D) The upper layer is an aluminum oxide layer having an α-type crystal structure having an average layer thickness of 2 to 25 μm,
(E) the outermost layer is an amorphous aluminum oxide layer having an average layer thickness of 0.5 to 5 μm;
The upper layer (d) has a carbon content of 0.1 to 5 at% in a depth region corresponding to 5 to 10% of the average layer thickness of the upper layer from the interface between the upper layer and the outermost layer. The content of chlorine is 0.05 at% or less, and the outermost layer of (e) has a surface flat structure having a surface roughness Ra in the range of 0.05 to 0.2 μm. A surface-coated cutting tool.
前記(d)の上部層は、前記上部層と前記最外層の界面から、前記上部層の平均層厚の5〜10%に相当する深さ領域において、炭素と塩素の含有量が異なる二つの相が存在し、その二つの相を領域A相及び領域B相とすると、領域A相の平均炭素含有量αと領域B相の平均炭素含有量βとの比であるα/βが5以上であり、領域B相の平均塩素含有量βClと領域A相の平均塩素含有量αClとの比であるβCl/αClが5以上であることを特徴とする請求項3に記載の表面被覆切削工具。
The upper layer (d) has two different carbon and chlorine contents in a depth region corresponding to 5 to 10% of the average layer thickness of the upper layer from the interface between the upper layer and the outermost layer. If the two phases are the region A phase and the region B phase, α C / β which is the ratio of the average carbon content α C of the region A phase and the average carbon content β C of the region B phase C is 5 or more, and β Cl / α Cl which is a ratio of the average chlorine content β Cl of the region B phase and the average chlorine content α Cl of the region A phase is 5 or more. 3. The surface-coated cutting tool according to 3.
JP2012157630A 2012-07-13 2012-07-13 Surface-coated cutting tool with excellent initial coating and chipping resistance with excellent hard coating layer Active JP5935562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012157630A JP5935562B2 (en) 2012-07-13 2012-07-13 Surface-coated cutting tool with excellent initial coating and chipping resistance with excellent hard coating layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012157630A JP5935562B2 (en) 2012-07-13 2012-07-13 Surface-coated cutting tool with excellent initial coating and chipping resistance with excellent hard coating layer

Publications (2)

Publication Number Publication Date
JP2014018886A true JP2014018886A (en) 2014-02-03
JP5935562B2 JP5935562B2 (en) 2016-06-15

Family

ID=50194363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012157630A Active JP5935562B2 (en) 2012-07-13 2012-07-13 Surface-coated cutting tool with excellent initial coating and chipping resistance with excellent hard coating layer

Country Status (1)

Country Link
JP (1) JP5935562B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5871353B1 (en) * 2015-07-13 2016-03-01 住友電工ハードメタル株式会社 Surface coated cutting tool
JP5871355B1 (en) * 2015-07-13 2016-03-01 住友電工ハードメタル株式会社 Surface coated cutting tool
JP5871354B1 (en) * 2015-07-13 2016-03-01 住友電工ハードメタル株式会社 Surface coated cutting tool
WO2018037625A1 (en) * 2016-08-24 2018-03-01 住友電工ハードメタル株式会社 Surface-coated cutting tool and manufacturing method therefor
WO2020241533A1 (en) * 2019-05-29 2020-12-03 京セラ株式会社 Coated tool and cutting tool

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS586971A (en) * 1981-07-06 1983-01-14 Sumitomo Electric Ind Ltd Coated sintered hard alloy tool
JPS5858273A (en) * 1981-10-01 1983-04-06 Sumitomo Electric Ind Ltd Coated sintered hard alloy
JPS5925971A (en) * 1982-08-02 1984-02-10 Sumitomo Electric Ind Ltd Coated sintered hard alloy and its manufacture
JPH09277103A (en) * 1996-04-16 1997-10-28 Mitsubishi Materials Corp Cutting tool made of surface-coated cemented carbide excellent in chipping resistance
US5851687A (en) * 1993-12-23 1998-12-22 Sandvik Ab Alumina coated cutting tool
JP2000117511A (en) * 1998-10-19 2000-04-25 Mitsubishi Materials Corp Throw away cut tip made of surface covering cemented carbide having rigid covering layer providing excellent initial drape
JP2000117508A (en) * 1998-10-13 2000-04-25 Mitsubishi Materials Corp Throw away cut tip made of surface covering cemented carbide to provide rigid covering layer with excellent wear resistance
JP2006082207A (en) * 2004-09-17 2006-03-30 Sumitomo Electric Hardmetal Corp Surface coated cutting tool
JP2010110833A (en) * 2008-11-04 2010-05-20 Mitsubishi Materials Corp Surface-coated cutting tool with hard coating layer exhibiting excellent chipping resistance
JP2010214557A (en) * 2009-03-18 2010-09-30 Mitsubishi Materials Corp Surface coated cutting tool with hard coating layer exerting excellent chipping resistance
JP2011194519A (en) * 2010-03-19 2011-10-06 Tokyo Institute Of Technology Surface-coated cutting tool for turning work superior in wear resistance and method of manufacturing the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS586971A (en) * 1981-07-06 1983-01-14 Sumitomo Electric Ind Ltd Coated sintered hard alloy tool
JPS5858273A (en) * 1981-10-01 1983-04-06 Sumitomo Electric Ind Ltd Coated sintered hard alloy
JPS5925971A (en) * 1982-08-02 1984-02-10 Sumitomo Electric Ind Ltd Coated sintered hard alloy and its manufacture
US5851687A (en) * 1993-12-23 1998-12-22 Sandvik Ab Alumina coated cutting tool
JPH09277103A (en) * 1996-04-16 1997-10-28 Mitsubishi Materials Corp Cutting tool made of surface-coated cemented carbide excellent in chipping resistance
JP2000117508A (en) * 1998-10-13 2000-04-25 Mitsubishi Materials Corp Throw away cut tip made of surface covering cemented carbide to provide rigid covering layer with excellent wear resistance
JP2000117511A (en) * 1998-10-19 2000-04-25 Mitsubishi Materials Corp Throw away cut tip made of surface covering cemented carbide having rigid covering layer providing excellent initial drape
JP2006082207A (en) * 2004-09-17 2006-03-30 Sumitomo Electric Hardmetal Corp Surface coated cutting tool
JP2010110833A (en) * 2008-11-04 2010-05-20 Mitsubishi Materials Corp Surface-coated cutting tool with hard coating layer exhibiting excellent chipping resistance
JP2010214557A (en) * 2009-03-18 2010-09-30 Mitsubishi Materials Corp Surface coated cutting tool with hard coating layer exerting excellent chipping resistance
JP2011194519A (en) * 2010-03-19 2011-10-06 Tokyo Institute Of Technology Surface-coated cutting tool for turning work superior in wear resistance and method of manufacturing the same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5871353B1 (en) * 2015-07-13 2016-03-01 住友電工ハードメタル株式会社 Surface coated cutting tool
JP5871355B1 (en) * 2015-07-13 2016-03-01 住友電工ハードメタル株式会社 Surface coated cutting tool
JP5871354B1 (en) * 2015-07-13 2016-03-01 住友電工ハードメタル株式会社 Surface coated cutting tool
WO2017009927A1 (en) * 2015-07-13 2017-01-19 住友電工ハードメタル株式会社 Surface-coated cutting tool
WO2017009928A1 (en) * 2015-07-13 2017-01-19 住友電工ハードメタル株式会社 Surface-coated cutting tool
WO2017009929A1 (en) * 2015-07-13 2017-01-19 住友電工ハードメタル株式会社 Surface-coated cutting tool
US9878373B2 (en) 2015-07-13 2018-01-30 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool
US9878374B2 (en) 2015-07-13 2018-01-30 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool
US9879350B2 (en) 2015-07-13 2018-01-30 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool
WO2018037625A1 (en) * 2016-08-24 2018-03-01 住友電工ハードメタル株式会社 Surface-coated cutting tool and manufacturing method therefor
JP2018030193A (en) * 2016-08-24 2018-03-01 住友電工ハードメタル株式会社 Surface coated cutting tool and method for manufacturing the same
CN107980013A (en) * 2016-08-24 2018-05-01 住友电工硬质合金株式会社 Surface-coated cutting tool and its manufacture method
CN107980013B (en) * 2016-08-24 2019-07-05 住友电工硬质合金株式会社 Surface-coated cutting tool and its manufacturing method
WO2020241533A1 (en) * 2019-05-29 2020-12-03 京セラ株式会社 Coated tool and cutting tool
JPWO2020241533A1 (en) * 2019-05-29 2020-12-03
JP7308938B2 (en) 2019-05-29 2023-07-14 京セラ株式会社 coated and cutting tools

Also Published As

Publication number Publication date
JP5935562B2 (en) 2016-06-15

Similar Documents

Publication Publication Date Title
JP5924507B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6478100B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6620482B2 (en) Surface coated cutting tool with excellent chipping resistance
JP6296294B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6417959B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5831707B2 (en) Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP6284034B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6044336B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6296298B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5935562B2 (en) Surface-coated cutting tool with excellent initial coating and chipping resistance with excellent hard coating layer
JP2012143825A (en) Surface-coated cutting tool in which hard coating layer demonstrates excellent chipping resistance
JP4888771B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6709526B2 (en) Surface coated cutting tool
JP5402516B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP2017144549A (en) Surface-coated cutting tool
JP5170828B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP2016221672A (en) Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance
JP2006198740A (en) Cutting tool made of surface coated cermet with hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting
JP2017144548A (en) Surface-coated cutting tool
JP6270131B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP2018051674A (en) Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance and peeling resistance
JP2020055041A (en) Surface cutting tool with hard coating layer exhibiting excellent chipping resistance
JP5686294B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP2018149668A (en) Surface coated cutting tool with hard coating layer exhibiting superior chipping resistance and abrasion resistance
JP2019063900A (en) Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance and wear resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160425

R150 Certificate of patent or registration of utility model

Ref document number: 5935562

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150