JP2007210066A - SURFACE COATED CERMET CUTTING TOOL INCLUDING REFORMED k-TYPE ALUMINUM OXIDE LAYER OF HARD COATING LAYER HAVING EXCELLENT GRAIN BOUNDARY SURFACE STRENGTH - Google Patents

SURFACE COATED CERMET CUTTING TOOL INCLUDING REFORMED k-TYPE ALUMINUM OXIDE LAYER OF HARD COATING LAYER HAVING EXCELLENT GRAIN BOUNDARY SURFACE STRENGTH Download PDF

Info

Publication number
JP2007210066A
JP2007210066A JP2006032430A JP2006032430A JP2007210066A JP 2007210066 A JP2007210066 A JP 2007210066A JP 2006032430 A JP2006032430 A JP 2006032430A JP 2006032430 A JP2006032430 A JP 2006032430A JP 2007210066 A JP2007210066 A JP 2007210066A
Authority
JP
Japan
Prior art keywords
layer
hard coating
crystal
crystal grain
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006032430A
Other languages
Japanese (ja)
Other versions
JP4811787B2 (en
Inventor
Hisashi Honma
尚志 本間
Keiji Nakamura
惠滋 中村
Akira Osada
晃 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2006032430A priority Critical patent/JP4811787B2/en
Publication of JP2007210066A publication Critical patent/JP2007210066A/en
Application granted granted Critical
Publication of JP4811787B2 publication Critical patent/JP4811787B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface coated cermet-made cutting tool including a reformed κ(Kappa)-type aluminum oxide layer of a hard coating layer having excellent grain boundary surface strength. <P>SOLUTION: The hard coating layer is formed on the surface of a tool base formed of WC-base cemented carbide or TiCN-base cermet by vapor deposition. The hard coating layer includes a lower layer, which is a Ti compound layer having the total average layer thickness ranging from 3 to 20 μm; and an upper layer. The upper layer is a reformed κ(Kappa)-type Al<SB>2</SB>O<SB>3</SB>layer having the average layer thickness ranging from 1 to 15 μm, having κ(Kappa)-type crystal structure in the chemically deposited state, and showing a crystal grain boundary surface array in which the crystal grain boundary surface unit having the angle made by crossing normals of the (001) faces in the boundary surface (crystal grain boundary surface unit) of the adjacent crystal grains of 1° or less, having the angle made by crossing normals of the (010) faces ranging from 55 to 65° occupies 40% or more of the total crystal grain surface units. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、特に各種の鋼や鋳鉄などの被削材の断続切削加工を、高切り込みや高送りなどの重切削条件で行った場合にも、硬質被覆層の改質κ(カッパ−)型酸化アルミニウム層が優れた粒界面強度を有する表面被覆サーメット製切削工具(以下、被覆サーメット工具という)に関するものである。   This invention is a modified κ (kappa) type of hard coating layer even when intermittent cutting of various materials such as steel and cast iron is performed under heavy cutting conditions such as high cutting and high feed. The present invention relates to a surface-coated cermet cutting tool (hereinafter referred to as a coated cermet tool) in which the aluminum oxide layer has excellent grain interface strength.

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)下部層が、Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、
(b)上部層が、1〜15μmの平均層厚を有し、かつ化学蒸着した状態でκ(カッパ−)型の結晶構造を有する酸化アルミニウム(以下、κ型Al23層で示す)層、
以上(a)および(b)で構成された硬質被覆層を蒸着形成してなる被覆サーメット工具が知られており、この被覆サーメット工具は、硬質被覆層を構成する上部層のκ型Al23層がすぐれた高温強度を有することから、例えば各種の鋼や鋳鉄などの連続切削は勿論のこと、特に断続切削に用いた場合にすぐれた耐チッピング性を発揮することも知られている。
Conventionally, generally on the surface of a substrate (hereinafter collectively referred to as a tool substrate) composed of a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet. ,
(A) The lower layer is a Ti carbide (hereinafter referred to as TiC) layer, a nitride (hereinafter also referred to as TiN) layer, a carbonitride (hereinafter referred to as TiCN) layer, a carbon oxide (hereinafter referred to as TiCO). A Ti compound layer consisting of one or two or more layers of carbonitride oxide (hereinafter referred to as TiCNO) layers and having an overall average layer thickness of 3 to 20 μm,
(B) Aluminum oxide having an upper layer having an average layer thickness of 1 to 15 μm and having a κ (kappa) type crystal structure in a state of chemical vapor deposition (hereinafter referred to as κ type Al 2 O 3 layer) layer,
There is known a coated cermet tool formed by vapor-depositing a hard coating layer composed of the above (a) and (b), and this coated cermet tool is an upper layer κ-type Al 2 O constituting the hard coating layer. Since the three layers have excellent high-temperature strength, it is also known to exhibit excellent chipping resistance particularly when used for intermittent cutting, as well as continuous cutting of various steels and cast iron, for example.

また、上記の被覆サーメット工具において、これの硬質被覆層の構成層は、一般に粒状結晶組織を有し、さらに、下部層である上記Ti化合物層を構成するTiCN層を、層自身の強度向上を目的として、通常の化学蒸着装置にて、反応ガスとして有機炭窒化物を含む混合ガスを使用し、700〜950℃の中温温度域で化学蒸着することにより形成して縦長成長結晶組織をもつようにすることも知られている。   Moreover, in the above-mentioned coated cermet tool, the constituent layer of the hard coating layer generally has a granular crystal structure, and further, the TiCN layer constituting the Ti compound layer as the lower layer is improved in strength of the layer itself. The purpose is to use a gas mixture containing organic carbonitrides as a reaction gas in a normal chemical vapor deposition apparatus, and to form a vertically grown crystal structure formed by chemical vapor deposition at a medium temperature range of 700 to 950 ° C. It is also known to do.

さらに、上記Al23層には、結晶構造が上記のκ型の他に、α型やθ型などがあり、前記κ型Al23層は前記α型Al23層に比して、相対的に高温硬さは低いが、高温強度が高い性質を持つことも知られている。
特開平6−31503号公報 特開平6−8010号公報
Furthermore, the Al 2 O 3 layer has an α type, θ type, etc. in addition to the κ type crystal structure described above, and the κ type Al 2 O 3 layer is different from the α type Al 2 O 3 layer. It is also known that the high temperature hardness is relatively low but the high temperature strength is high.
Japanese Unexamined Patent Publication No. 6-31503 Japanese Patent Laid-Open No. 6-8010

近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は切削条件のうちの切り込みや送りなどを高くした重切削条件で行われる傾向にあるが、上記の従来被覆サーメット工具においては、これを鋼や鋳鉄などの通常の条件での連続切削や断続切削に用いた場合には問題はないが、特にこれを強い機械的衝撃が繰り返し付加される前記の重切削条件で断続切削加工を行うのに用いた場合には、硬質被覆層を構成するκ型Al23層が前記断続重切削条件に十分に耐え得るに足る高い高温強度を具備するものでないために、前記硬質被覆層にチッピング(微少欠け)が発生し易く、この結果比較的短時間で使用寿命に至るのが現状である。 In recent years, the performance of cutting equipment has been remarkable, while on the other hand, there has been a strong demand for labor saving and energy saving and further cost reduction for cutting, and with this, cutting has increased cutting and feeding among cutting conditions. Although there is a tendency to be performed under heavy cutting conditions, the above conventional coated cermet tool has no problem when used for continuous cutting or intermittent cutting under normal conditions such as steel or cast iron. Is used for interrupted cutting under the above-mentioned heavy cutting conditions to which a strong mechanical impact is repeatedly applied, the κ-type Al 2 O 3 layer constituting the hard coating layer is sufficient for the intermittent heavy cutting conditions. Therefore, the hard coating layer is likely to be chipped (small chipping), and as a result, the service life is reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、上記のκ型Al23層が硬質被覆層の上部層を構成する被覆サーメット工具に着目し、特に前記κ型Al23層の一段の高温強度向上を図るべく研究を行った結果、
(a)従来被覆サーメット工具の硬質被覆層を構成する上部層としてのκ型Al23層は、例えば、通常の化学蒸着装置にて、
反応ガス組成:容量%で、AlCl3 3〜10%、CO2 3〜6%、HCl 1〜4%、H2S 0.1〜0.5%、H2 残り、
反応雰囲気温度:920〜1020℃、
反応雰囲気圧力:5〜10kPa、
の条件(通常条件という)で蒸着形成されるが、これを、
反応ガス組成:容量%で、AlCl3 3〜6%、CO2 0.5〜3%、HCl1〜3%、CHCN 0.1〜0.3%、H2S 0.1〜0.5%、H2 残り、
反応雰囲気温度:780〜880℃、
反応雰囲気圧力:5〜10kPa、
の条件、すなわち上記の通常条件に比して、反応ガス組成では、CO2を相対的に低く、かつ新たに例えばCHCNなどの有機化合物を添加し、さらに雰囲気温度を相対的に低くした条件(反応ガス組成調整低温条件)で蒸着形成すると、この結果の反応ガス組成調整低温条件で形成したκ型Al23層は、
電界放出型走査電子顕微鏡を用い、工具基体表面と平行な表面研磨面の測定範囲内に存在する斜方晶の結晶構造を有する結晶粒個々に電子線を照射して、前記結晶粒の構成結晶面である(001)面および(010)面のそれぞれの法線が前記表面研磨面の法線と交わる角度を測定すると、その測定結果によれば、それぞれ隣接する結晶粒相互の界面(結晶粒界面単位)における(001)面の法線同士の交わる角度が10°以下で、かつ(010)面の法線同士の交わる角度が55°以上65°以下である結晶粒界面単位が、全結晶粒界面単位の40%以上の割合を占める結晶粒界面配列を示すようになること(図3参照)。
The present inventors have, from the viewpoint as described above, focuses on coated cermet tool κ type the Al 2 O 3 layer described above constituting the upper layer of the hard coating layer, particularly the κ type the Al 2 O 3 layer As a result of research to improve the high-temperature strength of
(A) The κ-type Al 2 O 3 layer as the upper layer constituting the hard coating layer of the conventional coated cermet tool is, for example, in a normal chemical vapor deposition apparatus,
Reaction gas composition: volume%, AlCl 3 3-10%, CO 2 3-6%, HCl 1-4%, H 2 S 0.1-0.5%, H 2 remaining,
Reaction atmosphere temperature: 920-1020 ° C.
Reaction atmosphere pressure: 5 to 10 kPa,
It is formed by vapor deposition under the conditions (called normal conditions).
Reaction gas composition: volume%, AlCl 3 3-6%, CO 2 0.5-3%, HCl 1-3%, CH 3 CN 0.1-0.3%, H 2 S 0.1-0. 5%, H 2 remaining,
Reaction atmosphere temperature: 780-880 ° C.
Reaction atmosphere pressure: 5 to 10 kPa,
Compared with the above conditions, that is, the above normal conditions, in the reaction gas composition, CO 2 is relatively low, and an organic compound such as CH 3 CN is newly added, and the ambient temperature is further lowered. When vapor deposition is performed under the conditions (reactive gas composition adjustment low temperature conditions), the resulting κ-type Al 2 O 3 layer formed under the reaction gas composition adjustment low temperature conditions
Using a field emission scanning electron microscope, each crystal grain having an orthorhombic crystal structure existing within the measurement range of the surface polished surface parallel to the surface of the tool substrate is irradiated with an electron beam to form a constituent crystal of the crystal grain. When the angles at which the normal lines of the (001) plane and the (010) plane, which are the planes, intersect with the normal line of the surface polished surface are measured, according to the measurement results, the interface between adjacent crystal grains (crystal grains The crystal grain interface unit in which the (001) plane normal intersects with each other in (interface unit) is 10 ° or less and the (010) plane normal intersects between 55 ° and 65 ° The crystal grain interface arrangement occupying a ratio of 40% or more of the grain interface units (see FIG. 3).

なお、ここでいう「結晶粒界面単位」とは、工具基体表面と平行な表面研磨面の測定範囲内に存在する斜方晶の結晶構造を有する結晶粒個々に電子線を照射して、前記結晶粒の構成結晶面である(001)面および(010)面のそれぞれの法線と前記表面研磨面の法線との交わる角度を測定し、その結果得られた測定値に基づいて、前記測定を行うある単位測定領域に対し、その単位測定領域から得られた前記測定値と、その単位測定領域とそれぞれ隣接する単位測定領域における前記測定値とを、(001)面の法線同士の交わる角度と(010)面の法線同士の交わる角度それぞれについて、測定値間の差の絶対値を計算し、少なくとも一方の角度の差の絶対値がある値以上(例えば、本発明では「2°以上」とした)となる単位測定領域同士の境界を結晶粒界と定義した場合、その単位測定領域間の境界(すなわち結晶粒界)を構成する単位線分長さを意味する。
なお、(001)面の法線同士の交わる角度、あるいは、(010)面の法線同士の交わる角度を、以下、「交差角」と呼ぶ。
(b)これに対して、上記の従来κ型Al23層では、それぞれ隣接する結晶粒相互の界面(結晶粒界面単位)における(001)面の法線同士の交差角が10°以下で、かつ(010)面の法線同士の交差角が55°以上65°以下である結晶粒界面単位は、全結晶粒界面単位の15%以下の割合の結晶粒界面配列を示すにすぎないこと(図4参照)。
(c)上記の反応ガス組成調整低温条件形成のκ型Al23層は、Al23自体が具備する高温硬さおよび耐熱性に加えて、安定な粒界形成に基づきすぐれた粒界面強度を備えるため、上記従来κ型Al23層に比して一段と高い高温強度を有し、これを硬質被覆層の上部層として蒸着形成してなる被覆サーメット工具は、同下部層であるTi化合物層が具備するすぐれた高温強度と相俟って、特に断続切削加工を高切り込みや高送りなどの重切削条件で行うのに用いた場合にも、同じく前記従来κ型Al23層を蒸着形成してなる従来被覆サーメット工具に比して、硬質被覆層が一段とすぐれた耐チッピング性を発揮するようになること。
以上(a)〜(c)に示される研究結果を得たのである。
Incidentally, the “crystal grain interface unit” as used herein means that the crystal grains having an orthorhombic crystal structure existing within the measurement range of the surface polished surface parallel to the tool substrate surface are irradiated with an electron beam, Measure the angle at which the normal lines of the (001) plane and (010) plane that are the constituent crystal planes of the crystal grains intersect with the normal line of the surface-polished surface, and based on the measured values obtained as a result, With respect to a unit measurement region where measurement is performed, the measurement value obtained from the unit measurement region and the measurement value in the unit measurement region adjacent to the unit measurement region are represented by the normals of (001) planes. The absolute value of the difference between the measured values is calculated for each of the intersecting angle and the angle at which the normal lines of the (010) plane intersect, and the absolute value of the difference between at least one angle is equal to or greater than a certain value (for example, “2 Unit measurement area When the boundary between each other is defined as a crystal grain boundary, it means the length of a unit line segment constituting the boundary between the unit measurement regions (that is, the crystal grain boundary).
The angle at which the normal lines of the (001) plane intersect or the angle at which the normal lines of the (010) plane intersect is hereinafter referred to as “intersection angle”.
(B) On the other hand, in the above conventional κ-type Al 2 O 3 layer, the crossing angle between the normal lines of the (001) plane at the interface between adjacent crystal grains (crystal grain interface unit) is 10 ° or less. In addition, the crystal grain interface unit whose crossing angle between the normal lines of the (010) plane is 55 ° or more and 65 ° or less only shows a crystal grain interface arrangement with a ratio of 15% or less of the total crystal grain interface unit. (See FIG. 4).
(C) The κ-type Al 2 O 3 layer formed by adjusting the reaction gas composition at a low temperature condition has excellent grains based on stable grain boundary formation in addition to the high temperature hardness and heat resistance of the Al 2 O 3 itself. Because it has interfacial strength, it has a higher high-temperature strength than the conventional κ-type Al 2 O 3 layer, and the coated cermet tool formed by vapor deposition as the upper layer of the hard coating layer has the same lower layer. Combined with the excellent high-temperature strength of a certain Ti compound layer, the conventional κ-type Al 2 O is also used in the case where the intermittent cutting is performed under heavy cutting conditions such as high cutting and high feed. Compared to the conventional coated cermet tool formed by vapor deposition of 3 layers, the hard coating layer will exhibit even better chipping resistance.
The research results shown in (a) to (c) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、WC基超硬合金またはTiCN基サーメットで構成された工具基体の表面に、
(a)下部層として、いずれも化学蒸着された、Tiの炭化物層(TiC層)、窒化物層(TiN層)、炭窒化物層(TiCN層)、炭酸化物層(TiCO層)および炭窒酸化物層(TiCNO層)のうちの1層または2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層
(b)上部層として、化学蒸着した状態でκ(カッパ−)型の結晶構造を有し、電界放出型走査電子顕微鏡を用い、工具基体表面と平行な表面研磨面の測定範囲内に存在する斜方晶の結晶構造を有する結晶粒個々に電子線を照射して、前記結晶粒の構成結晶面である(001)面および(010)面のそれぞれの法線が前記表面研磨面の法線と交わる角度を測定し、この結果得られた測定値から、それぞれ隣接する結晶粒相互の界面(結晶粒界面単位)における(001)面の法線同士の交わる角度(交差角)が10°以下で、かつ(010)面の法線同士の交わる角度(交差角)が55°以上65°以下である結晶粒界面単位が、全結晶粒界面単位の40%以上の割合を占める結晶粒界面配列を示し、かつ1〜15μmの平均層厚を有する酸化アルミニウム層、
以上(a)および(b)で構成された硬質被覆層の改質κ(カッパー)型Al23層が優れた粒界面強度を有する表面被覆サーメット製切削工具(被覆サーメット工具)に特徴を有するものである。
The present invention has been made based on the above research results, and on the surface of a tool base composed of a WC-based cemented carbide or TiCN-based cermet,
(A) Ti carbide layer (TiC layer), nitride layer (TiN layer), carbonitride layer (TiCN layer), carbonate layer (TiCO layer) and carbonitride, all chemically vapor-deposited as lower layers As an upper layer of the Ti compound layer (b) composed of one or two or more oxide layers (TiCNO layers) and having a total average layer thickness of 3 to 20 μm, κ (kappa) Using a field emission scanning electron microscope, irradiate each crystal grain with an orthorhombic crystal structure within the measurement range of the surface polished surface parallel to the tool substrate surface with an electron beam. Then, the angles at which the normal lines of the (001) plane and (010) plane, which are the constituent crystal planes of the crystal grains, intersect with the normal line of the surface polished surface are measured, and from the measured values obtained as a result, The interface between adjacent grains (grain interface unit ) The angle at which the (001) plane normals intersect (intersection angle) is 10 ° or less and the angle at which the (010) plane normals intersect (intersection angle) is 55 ° or more and 65 ° or less. An aluminum oxide layer having an average unit thickness of 1 to 15 μm, wherein the interface unit exhibits a crystal grain interface arrangement that accounts for 40% or more of the total crystal grain interface unit;
Features of the surface-coated cermet cutting tool (coated cermet tool) in which the modified κ (copper) type Al 2 O 3 layer of the hard coating layer composed of (a) and (b) has excellent grain interface strength It is what you have.

以下に、この発明の被覆サーメット工具の硬質被覆層の構成層において、上記の通りに数値限定した理由を説明する。
(a)下部層のTi化合物層
Ti化合物層は、κ型Al23層の下部層として存在し、自身の具備するすぐれた高温強度によって硬質被覆層の高温強度向上に寄与するほか、工具基体とκ型Al23層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性を向上させる作用を有するが、その平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方その平均層厚が20μmを越えると、特に高熱発生を伴なう高速切削では熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その平均層厚を3〜20μmと定めた。
(b)上部層の改質κ(カッパー)型Al23
電界放出型走査電子顕微鏡を用い、工具基体表面と平行な表面研磨面の測定範囲内に存在する斜方晶の結晶構造を有する結晶粒個々に電子線を照射して、前記結晶粒の構成結晶面である(001)面および(010)面のそれぞれの法線の、前記表面研磨面の法線との交わる角度を測定し、この結果得られた測定値から、それぞれ隣接する結晶粒相互の界面(結晶粒界面単位)における(001)面の法線同士の交差角が10°以下で、かつ(010)面の法線同士の交差角が55°以上65°以下である結晶粒界面単位が、全結晶粒界面単位の40%以上の割合を占める結晶粒界面配列を示す改質κ型Al23層は、Al23自体のもつ高温硬さと耐熱性に加えて、κ型Al23の結晶対称性から非常に安定な粒界を形成するために、すぐれた粒界面強度を備え、クラックの発生ばかりか、クラックの伝播も抑えられ、一段とすぐれた高温強度を有することになるので、強い機械的衝撃が繰り返し付加される断続重切削加工で、上記の従来被覆サーメット工具の硬質被覆層を構成する従来κ型Al23層に比して、一段とすぐれた耐チッピング性を発揮するが、その平均層厚が1μm未満では、所望のすぐれた耐摩耗性を十分に発揮させることができず、一方その平均層厚が15μmを越えて厚くなりすぎると、チッピングが発生し易くなることから、その平均層厚を1〜15μmと定めた。
なお、電界放出型走査電子顕微鏡を用いた実際の分析手順を説明すると次のとおりである。
Hereinafter, the reason why the constituent layers of the hard coating layer of the coated cermet tool of the present invention are numerically limited as described above will be described.
(A) Lower Ti compound layer The Ti compound layer exists as a lower layer of the κ-type Al 2 O 3 layer, and contributes to improving the high temperature strength of the hard coating layer by its excellent high temperature strength. The substrate and the κ-type Al 2 O 3 layer are firmly adhered to each other, thereby improving the adhesion of the hard coating layer to the tool substrate. However, when the average layer thickness is less than 3 μm, the above-described operation is sufficiently achieved. On the other hand, if the average layer thickness exceeds 20 μm, it becomes easy to cause thermoplastic deformation especially in high-speed cutting with high heat generation, which causes uneven wear. Was determined to be 3 to 20 μm.
(B) Upper layer modified κ (copper) type Al 2 O 3 layer Using a field emission scanning electron microscope, an orthorhombic crystal structure existing within the measurement range of the surface polished surface parallel to the tool substrate surface Irradiate each individual crystal grain with an electron beam, and measure the angle at which the normal lines of the (001) plane and (010) plane, which are constituent crystal planes of the crystal grain, intersect with the normal line of the polished surface From the measured values obtained as a result, the intersection angle between the normal lines of the (001) planes at the interface between adjacent crystal grains (grain interface unit) is 10 ° or less, and the method of the (010) plane. The modified κ-type Al 2 O 3 layer showing a crystal grain interface arrangement in which a crystal grain interface unit having an angle of intersection between lines of 55 ° or more and 65 ° or less accounts for 40% or more of the total crystal grain interface unit, in addition to the high-temperature hardness and heat resistance possessed by the Al 2 O 3 itself, the crystal pair of κ type Al 2 O 3 In order to form a very stable grain boundary, it has excellent grain interface strength, not only cracking, but also crack propagation is suppressed, and it has a much higher high-temperature strength, so it has strong mechanical strength Intermittent heavy cutting with repeated impact exerts excellent chipping resistance compared to the conventional κ-type Al 2 O 3 layer that constitutes the hard coating layer of the above conventional coated cermet tool. If the average layer thickness is less than 1 μm, the desired excellent wear resistance cannot be sufficiently exhibited. On the other hand, if the average layer thickness exceeds 15 μm, chipping tends to occur. The average layer thickness was determined to be 1-15 μm.
The actual analysis procedure using the field emission scanning electron microscope will be described as follows.

表面研磨面に電子線を照射し、各測定点における結晶面の法線が、表面研磨面の法線に対して交わる角度(本発明では、(001)面および(010)面の各法線が、表面研磨面の法線に対してなす角度)を測定し、各測定点毎の結晶方位データを取得し、各測定点の結晶方位データを、それと隣接する測定点での結晶方位データと比較し、ある一定以上の角度の差(例えば、本発明では「2°以上」の角度の差とした)の有無を調べ、そして、一定以上の角度の差(2°以上の角度の差)がある場合には、そこを「粒界」と判断し、その場合の測定点間の境界の長さを粒界の最小単位としてカウントする。つまり、2°以上のズレが(001)面の法線同士あるいは(010)面の法線同士のいずれか一方にでもある場合には、その測定点の境界を「粒界」と判断し、逆に、どちらの法線同士のズレも2°に満たない測定点間には、「粒界」は存在せず、同一結晶粒であるとして取り扱うことになる。   The surface polished surface is irradiated with an electron beam, and the normal of the crystal plane at each measurement point intersects the normal of the surface polished surface (in the present invention, each normal of the (001) plane and the (010) plane) Is measured with respect to the normal of the surface polished surface), crystal orientation data at each measurement point is obtained, and crystal orientation data at each measurement point is obtained from crystal orientation data at a measurement point adjacent thereto. Comparison is made to determine whether or not there is an angle difference of a certain level or more (for example, in the present invention, an angle difference of “2 ° or more”), and an angle difference of a certain value or more (angle difference of 2 ° or more) If there is, it is determined as a “grain boundary”, and the length of the boundary between the measurement points in that case is counted as the minimum unit of the grain boundary. In other words, when the deviation of 2 ° or more is in either one of the normals on the (001) plane or the normal lines on the (010) plane, the boundary of the measurement point is determined as a “grain boundary” On the contrary, there is no “grain boundary” between the measurement points where the deviation between the normals is less than 2 °, and it is handled as the same crystal grain.

例えば、ある単位測定領域i(すなわち分析の最小単位)から得られる測定値のうち、(001)面の法線と表面研磨面の法線との交わる角度をθ(001),(011)面の法線と表面研磨面の法線との交わる角度をθ(010)と表現した場合に、それぞれ隣接する単位測定領域A,Bについて考えると、領域Aから得られた結晶方位データは((θ(001),θ(010)),また、領域Bから得られた結晶方位データは(θ(001),θ(010))と表わされ、これを用いると、隣接する領域A,Bについて、

(001)面の法線同士の交差角φ(001)A−Bは、
φ(001)A−B=θ(001)−θ(001)
(010)面の法線同士の交差角φ(010)A−Bは、
φ(010)A−B=θ(010)−θ(010)

となり、そして、このφ(001)A−B,φ(010)A−Bの少なくとも一方の値の絶対値が2°以上である場合には、この領域Aと領域Bとの境界は「結晶粒界」であると判断され、この領域Aと領域Bとの境界の長さが結晶粒界面単位となる。そして、領域Aと領域Bは、いずれも分析の最小単位であるので、結晶粒界面単位の具体的な単位長さは、すなわち分析実施時の単位ステップ長さになり、本発明の実施例(後記)では分析の単位ステップが0.1μm/stepであるから、結晶粒界面単位の単位長さは、0.1μmということになる。
このような手順によって、結晶方位データの取得、結晶粒界の確定、結晶粒界面単位のカウント等を行う。
なお、切削工具の使用前後の識別を目的として、黄金色の色調を有するTiN層を、必要に応じて硬質被覆層の最表面層として蒸着形成してもよいが、この場合の平均層厚は0.1〜1μmでよく、これは0.1μm未満では、十分な識別効果が得られず、一方前記TiN層による前記識別効果は1μmまでの平均層厚で十分であるという理由からである。
For example, among the measurement values obtained from a certain unit measurement area i (that is, the minimum unit of analysis), the angle between the normal of the (001) plane and the normal of the surface polished surface is defined as θ i (001), (011) When the angle between the normal of the surface and the normal of the surface-polished surface is expressed as θ i (010), considering the adjacent unit measurement regions A and B, the crystal orientation data obtained from the region A is ((Θ A (001), θ A (010)), and the crystal orientation data obtained from the region B is expressed as (θ B (001), θ B (010)), and using this, For adjacent areas A and B,

(001) intersection angle of normal to each other face phi (001) A-B is
φ (001) A−B = θ A (001) −θ B (001)
(010) intersection angle of normal to each other face phi (010) A-B is
φ (010) A−B = θ A (010) −θ B (010)

Next, and this φ (001) A-B, φ (010) when the absolute value of at least one value of A-B is 2 ° or more, the boundary between the regions A and B is "crystalline The boundary length between the region A and the region B is a crystal grain interface unit. Since both the region A and the region B are the minimum unit of analysis, the specific unit length of the crystal grain interface unit is the unit step length at the time of performing the analysis. In the following description, since the unit step of analysis is 0.1 μm / step, the unit length of the crystal grain interface unit is 0.1 μm.
By such a procedure, acquisition of crystal orientation data, determination of crystal grain boundaries, counting of crystal grain interface units, and the like are performed.
In addition, for the purpose of identification before and after the use of the cutting tool, a TiN layer having a golden color tone may be vapor-deposited as the outermost surface layer of the hard coating layer as necessary, but the average layer thickness in this case is It may be 0.1 to 1 μm, and if the thickness is less than 0.1 μm, a sufficient discrimination effect cannot be obtained, while the discrimination effect by the TiN layer is sufficient for an average layer thickness of up to 1 μm.

この発明の被覆サーメット工具は、各種の鋼や鋳鉄などの切削加工を、強い機械的衝撃を伴う断続切削加工を重切削条件で行うのに用いた場合にも、硬質被覆層の上部層を構成する改質κ型Al23層が、Al23自身のもつすぐれた高温硬さと耐熱性による耐摩耗性に加えて、より一段とすぐれた高温強度を具備することから、すぐれた耐チッピング性を発揮し、使用寿命の一層の延命化を可能とするものである。 The coated cermet tool of the present invention constitutes the upper layer of the hard coating layer even when it is used for cutting various steels and cast irons, etc. to perform intermittent cutting with strong mechanical impact under heavy cutting conditions. The improved κ-type Al 2 O 3 layer has excellent high temperature strength in addition to the excellent high temperature hardness and heat resistance of Al 2 O 3 itself, so it has excellent chipping resistance It is possible to further extend the service life.

つぎに、この発明の被覆サーメット工具を実施例により具体的に説明する。   Next, the coated cermet tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で40時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG160412に規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体A〜Fをそれぞれ製造した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders are blended in the blending composition shown in Table 1, added with wax, ball milled in acetone for 40 hours, dried under reduced pressure, and pressed into a compact of a predetermined shape at a pressure of 98 MPa. The green compact was vacuum sintered at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour in a vacuum of 5 Pa. After sintering, the cutting edge portion was R: 0.07 mm honing By processing, tool bases A to F made of a WC-based cemented carbide having a throwaway tip shape defined in ISO · CNMG 160412 were produced.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで40時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG160412のチップ形状をもったTiCN基サーメット製の工具基体a〜fを形成した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 40 hours, dried, and pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after the sintering, the cutting edge portion was subjected to a honing process of R: 0.07 mm. Tool bases a to f made of TiCN-based cermet having standard / CNMG 160412 chip shapes were formed.

ついで、これらの工具基体A〜Fおよび工具基体a〜fのそれぞれを、通常の化学蒸着装置に装入し、まず、表3(表3中のl−TiCNは特開平6−8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)に示される条件にて、表4に示される目標層厚のTi化合物層を硬質被覆層の下部層として蒸着形成し、ついで、表5に示される条件で、表4に示される目標層厚の改質κ型Al23層を硬質被覆層の上部層として蒸着形成することにより本発明被覆サーメット工具1〜13をそれぞれ製造した。 Next, each of the tool bases A to F and the tool bases a to f was charged into a normal chemical vapor deposition apparatus. First, Table 3 (l-TiCN in Table 3 is disclosed in JP-A-6-8010). The conditions shown in Table 4 are the conditions shown in Table 4 below, which show the conditions for forming a TiCN layer having a vertically grown crystal structure, and the conditions for forming a normal granular crystal structure. A Ti compound layer having a layer thickness is deposited and formed as a lower layer of the hard coating layer, and then the modified κ-type Al 2 O 3 layer having the target layer thickness shown in Table 4 is formed on the hard coating layer under the conditions shown in Table 5. The coated cermet tools 1 to 13 according to the present invention were produced by vapor deposition as the upper layer of each.

また、比較の目的で、表6に示される条件で、表7に示される目標層厚の従来κ型Al23層を硬質被覆層の上部層として蒸着形成する以外は同一の条件で従来被覆サーメット工具1〜13をそれぞれ製造した。 For comparison purposes, the conventional κ-type Al 2 O 3 layer having the target layer thickness shown in Table 7 was vapor-deposited as the upper layer of the hard coating layer under the conditions shown in Table 6. Coated cermet tools 1 to 13 were produced.

ついで、上記の本発明被覆サーメット工具の硬質被覆層を構成する改質κ型Al23層と従来被覆サーメット工具の硬質被覆層を構成する従来κ型Al23層のそれぞれについて、電界放出型走査電子顕微鏡を用いて、図3、図4に例示されるように、交差角分布グラフをそれぞれ作成した。なお、図3は、本発明被覆サーメット工具2のκ型Al23層の交差角分布グラフ、図4は、従来被覆サーメット工具2のκ型Al23層の交差角分布グラフをそれぞれ示す。 Next, an electric field is applied to each of the modified κ-type Al 2 O 3 layer constituting the hard coating layer of the above-described coated cermet tool and the conventional κ-type Al 2 O 3 layer constituting the hard coating layer of the conventional coated cermet tool. Using an emission scanning electron microscope, crossing angle distribution graphs were created as illustrated in FIGS. 3 and 4. Incidentally, FIG. 3, the crossing angle distribution graph of the present invention coated cermet tool 2 of the kappa type the Al 2 O 3 layer, 4, of the conventional coated cermet tool 2 kappa type the Al 2 O 3 layer of the crossing angle distribution graphs respectively Show.

上記交差角分布グラフは、上記のκ型Al23層の表面を上記工具基体の表面と平行な研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記表面研磨面の測定範囲内に存在する斜方晶の結晶構造を有する結晶粒個々に照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(001)面および(010)面のそれぞれの法線の前記表面研磨面の法線との交わる角度を測定し、この結果得られた測定値から、それぞれ隣接する結晶粒相互の界面(結晶粒界面単位)における(001)面の法線同士の交差角が2°以上10°以下であるものについて、斜方晶の結晶構造の対称性を考慮し、(010)面の法線同士の交差角0〜120°の範囲内において、(010)面の法線同士の交差角を0.25°のピッチ毎に区分し、各区分内に存在する結晶粒界面単位の度数を集計することにより作成した。 The crossing angle distribution graph is obtained by setting the surface of the κ-type Al 2 O 3 layer in a lens barrel of a field emission scanning electron microscope in a state where the surface of the κ-type Al 2 O 3 layer is a polishing surface parallel to the surface of the tool base. An electron beam with an acceleration voltage of 15 kV at an incident angle of 70 degrees on the surface is irradiated with an irradiation current of 1 nA on each crystal grain having an orthorhombic crystal structure existing within the measurement range of the surface-polished surface. Using a backscatter diffraction image apparatus, a region of 30 × 50 μm is spaced at a spacing of 0.1 μm / step, and the (001) plane and (010) are the crystal planes of the crystal grains with respect to the normal line of the polished surface. The angle at which each normal of the surface intersects with the normal of the surface polished surface is measured, and from the measured value obtained as a result, the (001) plane at the interface between adjacent crystal grains (grain interface unit) When the crossing angle between the normals is 2 ° or more and 10 ° or less In consideration of the symmetry of the orthorhombic crystal structure, the crossing angle between the (010) plane normals is set to 0 within the range of the crossing angle between the (010) plane normals of 0 to 120 °. It was created by dividing each pitch of 25 ° and counting the frequency of crystal grain interface units existing in each division.

各種のκ型Al23層について作成した交差角分布グラフから、隣接する結晶粒相互の界面(結晶粒界面単位)における(001)面の法線同士の交差角が2°以上10°以下で、かつ(010)面の法線同士の交差角が55°以上65°以下である結晶粒界面単位が、全結晶粒界面単位に対して占める割合を求め、その結果を表4、7に示した。 From the crossing angle distribution graph created for various κ-type Al 2 O 3 layers, the crossing angle between the normals of the (001) planes at the interface between adjacent crystal grains (grain interface unit) is 2 ° or more and 10 ° or less. And the ratio of the crystal grain interface unit whose crossing angle between the normal lines of the (010) plane is 55 ° or more and 65 ° or less to the total crystal grain interface unit is shown in Tables 4 and 7. Indicated.

図3、図4として例示した交差角分布グラフおよび表4、7に示した数値割合からもわかるように、本発明被覆サーメット工具1〜13および従来被覆サーメット工具1〜13の硬質被覆層を構成するいずれのκ型Al23層であっても、隣接領域の(001)面の法線同士の交差角が2°以上10°以下で、かつ、隣接領域の(010)面の法線同士の交差角が55°以上65°以下の範囲に分布のピークが存在するが、本発明被覆サーメット工具1〜13では、そのピーク値は40%以上の数値であるのに対して、従来被覆サーメット工具1〜13では、そのピーク値は僅か15%以下の値にすぎなかった。 As can be seen from the crossing angle distribution graph illustrated as FIGS. 3 and 4 and the numerical ratios shown in Tables 4 and 7, the hard coating layers of the present coated cermet tools 1 to 13 and the conventional coated cermet tools 1 to 13 are configured. In any of the κ-type Al 2 O 3 layers, the crossing angle between the normal lines of the (001) plane of the adjacent region is 2 ° or more and 10 ° or less, and the normal line of the (010) plane of the adjacent region Although there is a distribution peak in the range where the crossing angle is 55 ° or more and 65 ° or less, in the coated cermet tools 1 to 13 of the present invention, the peak value is a value of 40% or more, whereas the conventional coating is used. In the cermet tools 1-13, the peak value was only 15% or less.

また、この結果得られた本発明被覆サーメット工具1〜13および従来被覆サーメット工具1〜13の硬質被覆層の構成層の厚さを、走査型電子顕微鏡を用いて測定(縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。   Moreover, when the thickness of the constituent layer of the hard coating layer of the present coated cermet tools 1 to 13 and the conventional coated cermet tools 1 to 13 obtained as a result was measured using a scanning electron microscope (longitudinal section measurement). , Each showed an average layer thickness (average value of 5-point measurement) substantially the same as the target layer thickness.

つぎに、上記の本発明被覆サーメット工具1〜13および従来被覆サーメット工具1〜13各種の被覆サーメット工具について、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・SNCM431の長さ方向等間隔4本縦溝入り丸棒、
切削速度:270m/min、
切り込み:6mm、
送り:0.25mm/rev、
切削時間:8分、
の条件(切削条件Aという)での合金鋼の乾式断続高切り込み切削試験(通常の切り込みは2mm)、
被削材:JIS・S25Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:300m/min、
切り込み:2mm、
送り:0.65mm/rev、
切削時間:8分、
の条件(切削条件Bという)での炭素鋼の乾式断続高送り切削試験(通常の送りは0.3mm/rev)、さらに、
被削材:JIS・FCD400の長さ方向等間隔4本縦溝入り丸棒、
切削速度:240m/min、
切り込み:5.5mm、
送り:0.35mm/rev、
切削時間:8分、
の条件(切削条件Cという)でのダクタイル鋳鉄の乾式断続高切り込み切削試験(通常の切り込みは2mm)を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表8に示した。
Next, for the various coated cermet tools of the present invention coated cermet tool 1-13 and the conventional coated cermet tool 1-13, all of them are screwed with a fixing jig to the tip of the tool steel tool,
Work material: JIS / SNCM431 lengthwise equal 4 round bars with vertical grooves,
Cutting speed: 270 m / min,
Incision: 6mm,
Feed: 0.25mm / rev,
Cutting time: 8 minutes
Dry interrupted high cutting test of alloy steel under the conditions (cutting condition A) (normal cutting is 2 mm),
Work material: JIS-S25C round bar with four equal grooves in the longitudinal direction,
Cutting speed: 300 m / min,
Cutting depth: 2mm,
Feed: 0.65mm / rev,
Cutting time: 8 minutes
Of carbon steel under the following conditions (referred to as cutting condition B) (normal feed is 0.3 mm / rev),
Work material: JIS / FCD400 in the longitudinal direction, 4 equally spaced round bars,
Cutting speed: 240 m / min,
Cutting depth: 5.5 mm,
Feed: 0.35mm / rev,
Cutting time: 8 minutes
The dry interrupted high cut cutting test (normal cutting is 2 mm) of ductile cast iron under the above conditions (referred to as cutting condition C) was carried out, and the flank wear width of the cutting blade was measured in any cutting test. The measurement results are shown in Table 8.

Figure 2007210066
Figure 2007210066

Figure 2007210066
Figure 2007210066

Figure 2007210066
Figure 2007210066

Figure 2007210066
Figure 2007210066

Figure 2007210066
Figure 2007210066

Figure 2007210066
Figure 2007210066

Figure 2007210066
Figure 2007210066

Figure 2007210066
表4、7、8に示される結果から、本発明被覆サーメット工具1〜13は、いずれも硬質被覆層の上部層は、それぞれ隣接する結晶粒相互の界面(結晶粒界面単位)における(001)面の法線同士の交差角が10°以下で、かつ(010)面の法線同士の交差角が55〜65°である結晶粒界面単位が全結晶粒界面単位の40%以上を占める結晶粒界面配列示すκ(カッパー)型Al23層で構成されているので、Al23自体のもつ高温硬さと耐熱性に加えて、その結晶対称性から非常に安定な粒界を形成し、粒界面強度を高め、クラックの発生ばかりか、クラックの伝播も抑え、その結果、一段とすぐれた高温強度を有するものであることから、鋼および鋳鉄の強い機械的衝撃を伴う断続重切削加工で、すぐれた耐チッピング性を示し、長期に亘ってすぐれた切削性能を発揮するのに対して、硬質被覆層の上部層が、それぞれ隣接する結晶粒相互の界面(結晶粒界面単位)における(001)面の法線同士の交差角が10°以下で、かつ(010)面の法線同士の交差角が55〜65°である結晶粒界面単位が全結晶粒界面単位の15%以下を占めるにすぎないκ型Al23層で構成された従来被覆サーメット工具1〜13においては、いずれも上記の断続重切削加工では、前記κ型Al23層の高温強度不足が原因で硬質被覆層にチッピングが発生し、比較的短時間で使用寿命に至ることが明らかである。
Figure 2007210066
From the results shown in Tables 4, 7, and 8, in the coated cermet tools 1 to 13 of the present invention, the upper layer of the hard coating layer is (001) at the interface (crystal grain interface unit) between adjacent crystal grains. A crystal in which the crossing angle between the normals of the planes is 10 ° or less and the crossing angle between the normals of the (010) planes is 55 to 65 ° occupies 40% or more of the total grain interface units Since it is composed of κ (copper) type Al 2 O 3 layer showing the grain boundary arrangement, in addition to the high temperature hardness and heat resistance of Al 2 O 3 itself, it forms a very stable grain boundary due to its crystal symmetry In addition, the grain interface strength is increased, and not only cracks are generated, but also crack propagation is suppressed. As a result, it has excellent high-temperature strength, which makes it possible to perform intermittent heavy cutting with strong mechanical impact on steel and cast iron. With excellent chipping resistance The upper layer of the hard coating layer intersects the normal lines of the (001) plane at the interface between adjacent crystal grains (crystal grain interface unit), while exhibiting excellent cutting performance over a long period of time. Κ-type Al 2 O in which the crystal grain interface unit having an angle of 10 ° or less and the (010) plane normal crossing angle of 55 to 65 ° occupies 15% or less of the total crystal grain interface unit In the conventional coated cermet tools 1 to 13 composed of three layers, any of the intermittent heavy cutting described above causes chipping in the hard coating layer due to insufficient high-temperature strength of the κ-type Al 2 O 3 layer. It is clear that the service life is reached in a relatively short time.

上述のように、この発明の被覆サーメット工具は、各種鋼や鋳鉄などの通常の条件での連続切削や断続切削は勿論のこと、特に断続切削加工を重切削条件で行う場合にもすぐれた耐チッピング性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated cermet tool of the present invention has excellent resistance not only to continuous cutting and interrupted cutting under normal conditions such as various steels and cast iron, but also particularly when interrupted cutting is performed under heavy cutting conditions. Since it exhibits chipping performance and exhibits excellent cutting performance over a long period of time, it can sufficiently satisfy the high performance of cutting equipment, labor saving and energy saving of cutting processing, and further cost reduction. .

硬質被覆層を構成するκ型Al23層における、結晶粒(結晶格子)の(001)面の法線の方向、(010)面の法線の方向を示す概略説明図である。It is a schematic explanatory drawing which shows the direction of the normal line of the (001) plane of the crystal grain (crystal lattice) and the direction of the normal line of the (010) plane in the κ-type Al 2 O 3 layer constituting the hard coating layer. 硬質被覆層を構成するκ型Al23層に結晶粒界面において(a)は、(001)面の法線が表面研磨面の法線と交わる状態を示し、(b)は、(010)面の法線同士が交わる状態を示す概略説明図である。In the κ-type Al 2 O 3 layer constituting the hard coating layer, (a) shows the state where the normal line of the (001) plane intersects the normal line of the surface polished surface at the crystal grain interface, and (b) shows (010) It is a schematic explanatory drawing which shows the state where the normals of a surface cross. 本発明被覆サーメット工具2の硬質被覆層を構成するκ型Al23層の(010)面の法線同士の交差角分布グラフである。It is a crossing angle distribution graph of the normal lines of the (010) plane of the κ-type Al 2 O 3 layer constituting the hard coating layer of the coated cermet tool 2 of the present invention. 従来被覆サーメット工具2の硬質被覆層を構成するκ型Al23層の(010)面の法線同士の交差角分布グラフである。It is a crossing angle distribution graph of the normal lines of the (010) plane of the κ-type Al 2 O 3 layer constituting the hard coating layer of the conventional coated cermet tool 2.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a)下部層として、いずれも化学蒸着された、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(b)上部層として、化学蒸着した状態でκ(カッパ−)型の結晶構造を有し、電界放出型走査電子顕微鏡を用い、工具基体表面と平行な表面研磨面の測定範囲内に存在する斜方晶の結晶構造を有する結晶粒個々に電子線を照射して、前記結晶粒の構成結晶面である(001)面および(010)面のそれぞれの法線が前記表面研磨面の法線と交わる角度を測定し、この結果得られた測定値から、それぞれ隣接する結晶粒相互の界面(結晶粒界面単位)における(001)面の法線同士の交わる角度が10°以下で、かつ(010)面の法線同士の交わる角度が55°以上65°以下である結晶粒界面単位が、全結晶粒界面単位の40%以上の割合を占める結晶粒界面配列を示し、かつ1〜15μmの平均層厚を有する酸化アルミニウム層、
以上(a)および(b)で構成された硬質被覆層を蒸着形成してなる、硬質被覆層の改質κ(カッパ−)型酸化アルミニウム層が優れた粒界面強度を有する表面被覆サーメット製切削工具。
On the surface of the tool base composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(A) As a lower layer, all consisted of one or two or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer, and carbonitride layer, which are chemically vapor-deposited, And a Ti compound layer having a total average layer thickness of 3 to 20 μm,
(B) The upper layer has a κ (kappa) type crystal structure in the state of chemical vapor deposition, and exists within the measurement range of the surface polished surface parallel to the tool substrate surface using a field emission scanning electron microscope. Each crystal grain having an orthorhombic crystal structure is irradiated with an electron beam, and the normal lines of the (001) plane and the (010) plane, which are constituent crystal planes of the crystal grains, are normal lines of the polished surface. The angle at which the normals of the (001) planes intersect each other at the interface between adjacent crystal grains (crystal grain interface unit) is 10 ° or less, and ( 010) The crystal grain interface unit in which the angle between the normals of the planes is 55 ° or more and 65 ° or less indicates a crystal grain interface arrangement that occupies a ratio of 40% or more of the total crystal grain interface units, and is 1 to 15 μm An aluminum oxide layer having an average layer thickness,
Surface-coated cermet cutting in which the modified κ (kappa) type aluminum oxide layer of the hard coating layer formed by vapor-depositing the hard coating layer composed of (a) and (b) has excellent grain interface strength tool.
JP2006032430A 2006-02-09 2006-02-09 Surface-coated cermet cutting tool with excellent grain interface strength in modified κ-type aluminum oxide layer of hard coating layer Active JP4811787B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006032430A JP4811787B2 (en) 2006-02-09 2006-02-09 Surface-coated cermet cutting tool with excellent grain interface strength in modified κ-type aluminum oxide layer of hard coating layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006032430A JP4811787B2 (en) 2006-02-09 2006-02-09 Surface-coated cermet cutting tool with excellent grain interface strength in modified κ-type aluminum oxide layer of hard coating layer

Publications (2)

Publication Number Publication Date
JP2007210066A true JP2007210066A (en) 2007-08-23
JP4811787B2 JP4811787B2 (en) 2011-11-09

Family

ID=38488920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006032430A Active JP4811787B2 (en) 2006-02-09 2006-02-09 Surface-coated cermet cutting tool with excellent grain interface strength in modified κ-type aluminum oxide layer of hard coating layer

Country Status (1)

Country Link
JP (1) JP4811787B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009066742A (en) * 2007-09-18 2009-04-02 Mitsubishi Materials Corp Surface coated cutting tool with hard coat layer having improved chipping resistance
JP2013506570A (en) * 2009-10-05 2013-02-28 セラティチット オーストリア ゲゼルシャフト ミット ベシュレンクテル ハフツング Tool for processing metal materials
JP2019520992A (en) * 2016-07-01 2019-07-25 ヴァルター アーゲー Cutting tool with textured alumina layer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009066742A (en) * 2007-09-18 2009-04-02 Mitsubishi Materials Corp Surface coated cutting tool with hard coat layer having improved chipping resistance
JP2013506570A (en) * 2009-10-05 2013-02-28 セラティチット オーストリア ゲゼルシャフト ミット ベシュレンクテル ハフツング Tool for processing metal materials
US8828563B2 (en) 2009-10-05 2014-09-09 Ceratizit Austria Gesellschaft Mbh Cutting tool for machining metallic materials
JP2019520992A (en) * 2016-07-01 2019-07-25 ヴァルター アーゲー Cutting tool with textured alumina layer

Also Published As

Publication number Publication date
JP4811787B2 (en) 2011-11-09

Similar Documents

Publication Publication Date Title
JP4518260B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP4645983B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP4822120B2 (en) Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting
JP2006289556A (en) Surface-coated cermet cutting tool having hard coating layer for exhibiting superior chipping resistance in high speed intermittent cutting work
JP2006231433A (en) Surface-coated cermet cutting tool with hard coating layer exerting excellent chipping resistance in high-speed intermittent cutting
JP2006015426A (en) Surface-coated cermet cutting tool with hard coating layer exerting excellent chipping resistance in high-speed intermittent cutting
JP2007160497A (en) SURFACE COATED CUTTING TOOL MADE OF CERMET HAVING PROPERTY-MODIFIED ALPHA TYPE Al2O3 LAYER OF HARD COATING LAYER HAVING EXCELLENT CRYSTAL GRAIN INTERFACE STRENGTH
JP4716250B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting
JP4720418B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP2007167987A (en) Surface coated cermet-made cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed cutting material hard to cut
JP4474643B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP4811787B2 (en) Surface-coated cermet cutting tool with excellent grain interface strength in modified κ-type aluminum oxide layer of hard coating layer
JP2006289586A (en) Surface-coated cermet cutting tool having hard coating layer exhibiting superior chipping resistance in high speed intermittent cutting work
JP4474644B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP2006289546A (en) Surface-coated cermet cutting tool having hard coating layer for exhibiting superior chipping resistance in high speed intermittent cutting work
JP2006116621A (en) Surface-coated cermet cutting tool with hard coating layer exerting excellent chipping resistance in high-speed intermittent cutting
JP4822119B2 (en) Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting
JP4747338B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP4857950B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high-speed intermittent cutting
JP2007185751A (en) Surface coated cermet-made cutting tool having hard coating layer exhibiting excellent chipping resistance in cutting material hard to work
JP4748444B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP2005246598A (en) Surface-coated cermet cutting tool having hard coating layer exhibiting excellent chipping resistance
JP4894406B2 (en) Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting
JP4438559B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in intermittent heavy cutting
JP2007168029A (en) Surface coated cermet-made cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed cutting material hard to cut

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20110425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110801

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4811787

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110814

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3