JP2007160497A - SURFACE COATED CUTTING TOOL MADE OF CERMET HAVING PROPERTY-MODIFIED ALPHA TYPE Al2O3 LAYER OF HARD COATING LAYER HAVING EXCELLENT CRYSTAL GRAIN INTERFACE STRENGTH - Google Patents

SURFACE COATED CUTTING TOOL MADE OF CERMET HAVING PROPERTY-MODIFIED ALPHA TYPE Al2O3 LAYER OF HARD COATING LAYER HAVING EXCELLENT CRYSTAL GRAIN INTERFACE STRENGTH Download PDF

Info

Publication number
JP2007160497A
JP2007160497A JP2006285526A JP2006285526A JP2007160497A JP 2007160497 A JP2007160497 A JP 2007160497A JP 2006285526 A JP2006285526 A JP 2006285526A JP 2006285526 A JP2006285526 A JP 2006285526A JP 2007160497 A JP2007160497 A JP 2007160497A
Authority
JP
Japan
Prior art keywords
layer
crystal grain
crystal
plane
hard coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006285526A
Other languages
Japanese (ja)
Other versions
JP5023654B2 (en
Inventor
Akira Osada
晃 長田
Keiji Nakamura
惠滋 中村
Hisashi Honma
尚志 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2006285526A priority Critical patent/JP5023654B2/en
Publication of JP2007160497A publication Critical patent/JP2007160497A/en
Application granted granted Critical
Publication of JP5023654B2 publication Critical patent/JP5023654B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface coated cermet cutting tool, with property-modified α-type Al<SB>2</SB>O<SB>3</SB>layer in a hard coating layer, having excellent crystal grain interface strength. <P>SOLUTION: The cutting tool of cermet comprises the hard coating layer comprising a lower layer of Ti compound layer and an upper layer of an α-type Al<SB>2</SB>O<SB>3</SB>layer, formed on the surface of a tool base member. A field emission type scanning electron microscope and an electron back-scattered diffraction image device are used to radiate an electronic beam to each crystal grain having a hexagonal crystal grid existing in a measurement range of a surface polished face, so that the angle of the normal line of each crystal face of the crystal grain to the normal line of the surface-polished face where they cross each other is measured. Based on the result of this measurement, faces (0001) and faces ä10-10} are selected, and among the selected faces (0001) and faces ä10-10}, the angle of the normal lines of the faces (0001) in the interface (by the unit of crystal grain interface) between adjoining crystal grains to each other and to the normal lines of faces ä10-10} where they cross each other is 15 deg. or less in crystal grain interface units in 45% or more of total crystal grain interface units in the reformed α-type Al<SB>2</SB>O<SB>3</SB>layer to compose the device. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、硬質被覆層の上部層を構成する改質α型Al23層がすぐれた結晶粒界面強度を有し、特に自身が高い粘性を有し、かつ切削時の切削工具表面部の硬質被覆層に対する粘着性も高く、この結果切削抵抗のきわめて高いものとなる軟鋼やステンレス鋼、さらに高マンガン鋼などの難削材の高速切削加工で、硬質被覆層がすぐれた耐チッピング性を示し、長期に亘ってすぐれた耐摩耗性を発揮する表面被覆サーメット製切削工具(以下、被覆サーメット工具という)に関するものである。 In the present invention, the modified α-type Al 2 O 3 layer constituting the upper layer of the hard coating layer has excellent crystal grain interface strength, and particularly has high viscosity, and the cutting tool surface portion during cutting High adhesion of hard coating layer, resulting in extremely high chipping resistance in high-speed cutting of difficult-to-cut materials such as mild steel, stainless steel, and high manganese steel. The present invention relates to a surface-coated cermet cutting tool (hereinafter referred to as a coated cermet tool) that exhibits excellent wear resistance over a long period of time.

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)下部層が、いずれも化学蒸着形成された、Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(b)上部層が、2〜20μmの平均層厚を有し、かつ化学蒸着した状態でα型の結晶構造を有する酸化アルミニウム層(以下、従来α型Al23層という)、
以上(a)および(b)で構成された硬質被覆層を蒸着形成してなる被覆サーメット工具が知られており、この被覆サーメット工具が、例えば各種の一般鋼や普通鋳鉄などの切削加工に用いられることは良く知られるところである。
Conventionally, generally on the surface of a substrate (hereinafter collectively referred to as a tool substrate) composed of a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet. ,
(A) Ti carbide (hereinafter referred to as TiC) layer, nitride (hereinafter also referred to as TiN) layer, carbonitride (hereinafter referred to as TiCN) layer formed by chemical vapor deposition of the lower layers. A Ti compound having a total average layer thickness of 3 to 20 μm, consisting of one or more of carbon dioxide (hereinafter referred to as TiCO) layer and carbonitride oxide (hereinafter referred to as TiCNO) layer layer,
(B) an aluminum oxide layer having an average layer thickness of 2 to 20 μm and having an α-type crystal structure in a state of chemical vapor deposition (hereinafter referred to as a conventional α-type Al 2 O 3 layer);
A coated cermet tool formed by vapor-depositing the hard coating layer constituted by (a) and (b) above is known, and this coated cermet tool is used for cutting various general steels and ordinary cast irons, for example. It is well known that

また、上記の被覆サーメット工具において、これの硬質被覆層の構成層は、一般に粒状結晶組織を有し、さらに、下部層であるTi化合物層を構成するTiCN層を、層自身の強度向上を目的として、通常の化学蒸着装置にて、反応ガスとして有機炭窒化物を含む混合ガスを使用し、700〜950℃の中温温度域で化学蒸着することにより形成して縦長成長結晶組織をもつようにすることも知られている。
特開平6−31503号公報 特開平6−8010号公報
Further, in the above-described coated cermet tool, the constituent layer of the hard coating layer generally has a granular crystal structure, and further, the TiCN layer constituting the Ti compound layer as the lower layer is intended to improve the strength of the layer itself. In a normal chemical vapor deposition apparatus, a gas mixture containing organic carbonitrides is used as a reaction gas, and it is formed by chemical vapor deposition at an intermediate temperature range of 700 to 950 ° C. so that it has a vertically grown crystal structure. It is also known to do.
Japanese Unexamined Patent Publication No. 6-31503 Japanese Patent Laid-Open No. 6-8010

近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は一段と高速化の傾向にあるが、上記の従来被覆サーメット工具においては、これを低合金鋼や炭素鋼などの一般鋼、さらにねずみ鋳鉄などの普通鋳鉄の高速切削加工に用いた場合には問題はないが、特にこれを軟鋼やステンレス鋼、さらに高マンガン鋼などの難削材の高速切削加工に用いた場合には、前記難削材自身が高い粘性を有し、かつ切削時の切削工具表面部の硬質被覆層に対する粘着性も高く、この傾向は高速切削時に発生する高熱によって一段と増大することと相俟って、切削抵抗のきわめて高いものとなり、一方硬質被覆層を構成する従来α型Al23層の高温強度はこれに耐えるに十分なものではなく、この結果切刃部にチッピング(微少欠け)が発生し易くなり、これが原因で比較的短時間で使用寿命に至るのが現状である。 In recent years, the performance of cutting machines has been remarkable. On the other hand, there is a strong demand for labor saving, energy saving, and cost reduction for cutting work, and along with this, cutting work tends to be further accelerated. In coated cermet tools, there is no problem when used for high-speed cutting of general steel such as low alloy steel and carbon steel, and ordinary cast iron such as gray cast iron. When used for high-speed cutting of difficult-to-cut materials such as high-manganese steel, the difficult-to-cut material itself has a high viscosity and has high adhesion to the hard coating layer on the surface of the cutting tool during cutting. The tendency, combined with the further increase due to the high heat generated during high-speed cutting, has extremely high cutting resistance, while the high-temperature strength of the conventional α-type Al 2 O 3 layer that constitutes the hard coating layer can withstand this. As a result, chipping (slight chipping) is likely to occur in the cutting edge portion, and the service life is reached in a relatively short time due to this.

そこで、本発明者等は、上述のような観点から、上記の従来α型Al23層が硬質被覆層の上部層を構成する従来被覆サーメット工具に着目し、特に前記従来α型Al23層の耐チッピング性向上を図るべく研究を行った結果、
(a)上記の従来被覆サーメット工具の硬質被覆層としての従来α型Al23層は、一般に、通常の化学蒸着装置にて、
反応ガス組成:容量%で、AlCl3:2〜4%、CO2:4〜8%、HCl:1〜3%、H2S:0.05〜0.2%、H2:残り、
反応雰囲気温度:1020〜1050℃、
反応雰囲気圧力:6〜10kPa、
の条件で蒸着形成されるが、α型Al23層を、同じく通常の化学蒸着装置にて、例えば、
反応ガス組成:容量%で、AlCl3:6〜10%、CO2:4〜8%、HCl:3〜5%、H2S:0.25〜0.6%、H2:残り、
反応雰囲気温度:920〜1000℃、
反応雰囲気圧力:6〜10kPa、
の条件で蒸着形成すると、この結果形成されたα型Al23層(以下、改質α型Al23層という)は、α型Al23層自身のもつすぐれた高温硬さおよび耐熱性に加えて、上記の従来α型Al23層に比して、一段とすぐれた高温強度を具備するようになること。
In view of the above, the present inventors have focused on the conventional coated cermet tool in which the conventional α-type Al 2 O 3 layer constitutes the upper layer of the hard coating layer, and in particular, the conventional α-type Al 2 O 3 layer result to conducted research promote chipping resistance improving,
(A) The conventional α-type Al 2 O 3 layer as the hard coating layer of the conventional coated cermet tool is generally a normal chemical vapor deposition apparatus,
Reaction gas composition: volume%, AlCl 3 : 2 to 4%, CO 2 : 4 to 8%, HCl: 1 to 3%, H 2 S: 0.05 to 0.2%, H 2 : remaining,
Reaction atmosphere temperature: 1020 to 1050 ° C.
Reaction atmosphere pressure: 6 to 10 kPa,
The α-type Al 2 O 3 layer is formed by the same ordinary chemical vapor deposition apparatus, for example,
Reaction gas composition:% by volume, AlCl 3 : 6 to 10%, CO 2 : 4 to 8%, HCl: 3 to 5%, H 2 S: 0.25 to 0.6%, H 2 : remaining,
Reaction atmosphere temperature: 920 to 1000 ° C.
Reaction atmosphere pressure: 6 to 10 kPa,
When the α-type Al 2 O 3 layer (hereinafter referred to as a modified α-type Al 2 O 3 layer) formed as a result of vapor deposition under the following conditions, the α-type Al 2 O 3 layer itself has excellent high-temperature hardness. In addition to heat resistance, it should have a higher temperature strength than the conventional α-type Al 2 O 3 layer.

(b)上記の従来α型Al23層および改質α型Al23層について、図1に、α型Al23層を構成する結晶粒の有する六方晶結晶格子と、前記α型Al23層の表面研磨面の関係を模式的に概略斜視図で示す通り、電界放出型走査電子顕微鏡と電子後方散乱回折像装置を用い、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記結晶粒の各結晶面のそれぞれの法線が前記表面研磨面の法線と交わる角度を測定し、この測定結果から、結晶粒の構成結晶面である(0001)面および{10−10}面を選び出し、さらに、選び出した(0001)面および{10−10}面において、それぞれ隣接する結晶粒相互の界面(結晶粒界面単位)における(0001)面の法線同士および{10−10}面の法線同士の交わる角度を求めた場合に、前記改質α型Al23層は、(0001)面の法線同士および{10−10}面の法線同士の交わる角度が15度以下の結晶粒界面単位が全結晶粒界面単位の45%以上の割合を占める結晶粒界面配列を示すのに対して、前記従来α型Al23層においては、(0001)面の法線同士および{10−10}面の法線同士の交わる角度が15度以下の結晶粒界面単位が全結晶粒界面単位の25%以下を示し、この結果は前記従来α型Al23層に比して前記改質α型Al23層が一段とすぐれた結晶粒界面強度を有することを示し、このように結晶粒界面強度が向上した改質α型Al23層は層自身の高温強度が著しく向上したものになること。 (B) Regarding the conventional α-type Al 2 O 3 layer and the modified α-type Al 2 O 3 layer, FIG. 1 shows a hexagonal crystal lattice of crystal grains constituting the α-type Al 2 O 3 layer, As shown schematically in schematic perspective view of the relationship of the surface polished surface of the α-type Al 2 O 3 layer, it exists within the measurement range of the surface polished surface using a field emission scanning electron microscope and an electron backscatter diffraction image apparatus. Each crystal grain having a hexagonal crystal lattice is irradiated with an electron beam, and the angle at which each normal line of each crystal plane of the crystal grain intersects the normal line of the surface polished surface is measured. The (0001) plane and the {10-10} plane, which are the constituent crystal planes of the grains, are selected, and, in the selected (0001) plane and {10-10} plane, the interfaces between adjacent grains (crystal grain interfaces) Normals of (0001) planes in units) and {10 If the calculated angle of intersection of the normal line among the 10} plane, the reforming α-type Al 2 O 3 layer intersects the normal line between the normal to each other and {10-10} plane of the (0001) plane angle In the conventional α-type Al 2 O 3 layer, the crystal grain interface unit occupies a ratio of 45% or more of the crystal grain interface unit of 15 degrees or less, The crystal grain interface unit whose angle between the normal lines and the normal lines of the {10-10} planes is 15 degrees or less indicates 25% or less of the total crystal grain interface units. This result shows that the conventional α-type Al 2 O The modified α-type Al 2 O 3 layer shows that the modified α-type Al 2 O 3 layer has a much higher crystal grain interface strength than the three- layer structure. The high-temperature strength of the layer itself must be significantly improved.

(c)したがって、すぐれた高温硬さおよび耐熱性に加えて、一段とすぐれた高温強度を有する上記改質α型Al23層を硬質被覆層の上部層として、下部層の上記Ti化合物層と共に、上記工具基体の表面に蒸着形成してなる被覆サーメット工具は、特に切削抵抗の著しく高い上記の難削材の高速切削加工においても前記硬質被覆層にチッピングが発生することがなく、この結果すぐれた耐摩耗性を長期に亘って発揮するようになること。
以上(a)〜(c)の研究結果を得たのである。
(C) Therefore, in addition to excellent high temperature hardness and heat resistance, the modified α-type Al 2 O 3 layer having excellent high temperature strength is used as the upper layer of the hard coating layer, and the lower Ti compound layer At the same time, the coated cermet tool formed by vapor deposition on the surface of the tool base does not cause chipping in the hard coating layer even in the high-speed cutting of the above difficult-to-cut material, which has a particularly high cutting resistance. Providing excellent wear resistance over a long period of time.
The research results (a) to (c) have been obtained.

この発明は、上記の研究結果に基づいてなされたものであって、工具基体の表面に、
(a)下部層として、いずれも化学蒸着形成された、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(b)上部層として、化学蒸着した状態でα型の結晶構造を有し、電界放出型走査電子顕微鏡と電子後方散乱回折像装置を用い、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記結晶粒の各結晶面のそれぞれの法線が前記表面研磨面の法線と交わる角度を測定し、この測定結果から、結晶粒の構成結晶面である(0001)面および{10−10}面を選び出し、さらに、選び出した(0001)面および{10−10}面において、それぞれ隣接する結晶粒相互の界面(結晶粒界面単位)における(0001)面の法線同士および{10−10}面の法線同士の交わる角度を求めた場合に、前記(0001)面の法線同士および{10−10}面の法線同士の交わる角度が15度以下の結晶粒界面単位が全結晶粒界面単位の45%以上の割合を占める結晶粒界面配列を示し、かつ2〜20μmの平均層厚を有する改質α型酸化アルミニウム層、
以上(a)および(b)で構成された硬質被覆層を蒸着形成してなる、硬質被覆層の改質α型酸化アルミニウム層がすぐれた結晶粒界面強度を有し、特に難削材の高速切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する被覆サーメット工具に特徴を有するものである。
This invention was made based on the above research results, and on the surface of the tool base,
(A) As a lower layer, any one or two or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer, and carbonitride layer formed by chemical vapor deposition are formed. And a Ti compound layer having a total average layer thickness of 3 to 20 μm,
(B) As an upper layer, a hexagonal crystal having an α-type crystal structure in the state of chemical vapor deposition and existing within the measurement range of the surface polished surface using a field emission scanning electron microscope and an electron backscatter diffraction image apparatus Each crystal grain having a lattice is irradiated with an electron beam, and an angle at which each normal line of each crystal plane of the crystal grain intersects with a normal line of the surface polished surface is measured. The (0001) plane and {10-10} plane which are crystal planes are selected, and further, in the selected (0001) plane and {10-10} plane, at the interface between adjacent crystal grains (crystal grain interface unit), respectively. When the angles at which the normals of the (0001) plane and the normals of the {10-10} plane intersect are obtained, the normals of the (0001) plane and the normals of the {10-10} plane intersect. Crystal with an angle of 15 degrees or less It shows the grain boundaries sequence interface unit accounts for 45% or more of the total grain surface units and modified α-type aluminum oxide layer having an average layer thickness of 2 to 20 [mu] m,
The modified α-type aluminum oxide layer of the hard coating layer formed by vapor-depositing the hard coating layer composed of the above (a) and (b) has excellent crystal grain interface strength, particularly high speed of difficult-to-cut materials. This is characterized by a coated cermet tool that exhibits excellent chipping resistance when a hard coating layer is cut.

以下に、この発明の被覆サーメット工具の硬質被覆層の構成層に関し、上記の通りに数値限定した理由を説明する。
(a)Ti化合物層(下部層)
Ti化合物層は、基本的には上部層である改質α型Al23層の下部層として存在し、自身の具備するすぐれた高温強度によって硬質被覆層の高温強度向上に寄与するほか、工具基体と改質α型Al23層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性向上にも寄与する作用を有するが、その合計平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方その合計平均層厚が20μmを越えると、特に高熱発生を伴う難削材の高速切削では熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その合計平均層厚を3〜20μmと定めた。
The reason why the numerical values of the constituent layers of the hard coating layer of the coated cermet tool of the present invention are limited as described above will be described below.
(A) Ti compound layer (lower layer)
The Ti compound layer basically exists as a lower layer of the modified α-type Al 2 O 3 layer, which is the upper layer, and contributes to improving the high temperature strength of the hard coating layer by its excellent high temperature strength. It adheres firmly to both the tool base and the modified α-type Al 2 O 3 layer, and thus contributes to improving the adhesion of the hard coating layer to the tool base, but if the total average layer thickness is less than 3 μm If the total average layer thickness exceeds 20 μm, the high-speed cutting of difficult-to-cut materials with high heat generation is likely to cause thermoplastic deformation, which is a cause of uneven wear. Therefore, the total average layer thickness was determined to be 3 to 20 μm.

(b)改質α型Al23層(上部層)
上記の通り、結晶粒界面配列において、それぞれ隣接する結晶粒相互の界面(結晶粒界面単位)における(0001)面の法線同士および{10−10}面の法線同士の交わる角度が15度以下の結晶粒界面単位が全結晶粒界面単位の45%以上の割合を占める場合に、結晶粒界面強度が一段と向上するようになることは多くの試験結果に基づいて明らかになったものであり、したがって、それぞれの法線同士の交わる角度の上限を例えば16度とした場合や、それぞれの法線同士の交わる角度が15度以下の結晶粒界面単位の占める割合が45%未満の場合には所望のすぐれた結晶粒界面強度を確保することはできず、前記の条件を満足した場合に改質α型Al23層は、α型Al23自身のもつすぐれた高温硬さおよび耐熱性に加えて、すぐれた高温強度を具備するようになるものである。
また、その平均層厚が2μm未満では、上記の特性を硬質被覆層に十分に具備せしめることができず、一方、その平均層厚が20μmを越えると、特に難削材の高速切削加工ではチッピングが発生し易くなることから、その平均層厚を2〜20μmと定めた。
(B) modified α type the Al 2 O 3 layer (upper layer)
As described above, in the crystal grain interface arrangement, the angle between the normal lines of the (0001) planes and the normal lines of the {10-10} planes at the interface between adjacent crystal grains (crystal grain interface unit) is 15 degrees. It has been clarified based on many test results that when the following crystal grain interface units occupy a ratio of 45% or more of the total crystal grain interface units, the crystal grain interface strength is further improved. Therefore, when the upper limit of the angle at which each normal intersects is, for example, 16 degrees, or when the proportion of the crystal grain interface unit where the angle between each normal intersects is 15 degrees or less is less than 45% The desired excellent grain interface strength cannot be ensured, and when the above conditions are satisfied, the modified α-type Al 2 O 3 layer has the excellent high-temperature hardness of the α-type Al 2 O 3 itself and In addition to heat resistance, It comes to have a high temperature strength.
Also, if the average layer thickness is less than 2 μm, the above properties cannot be sufficiently provided in the hard coating layer. On the other hand, if the average layer thickness exceeds 20 μm, chipping particularly in high-speed cutting of difficult-to-cut materials. Therefore, the average layer thickness was determined to be 2 to 20 μm.

なお、切削工具の使用前後の識別を目的として、黄金色の色調を有するTiN層を、必要に応じて硬質被覆層の最表面層として蒸着形成してもよいが、この場合の平均層厚は0.1〜1μmでよく、これは0.1μm未満では、十分な識別効果が得られず、一方前記TiN層による前記識別効果は1μmまでの平均層厚で十分であるという理由からである。   In addition, for the purpose of identification before and after the use of the cutting tool, a TiN layer having a golden color tone may be vapor-deposited as the outermost surface layer of the hard coating layer as necessary, but the average layer thickness in this case is It may be 0.1 to 1 μm, and if the thickness is less than 0.1 μm, a sufficient discrimination effect cannot be obtained, while the discrimination effect by the TiN layer is sufficient for an average layer thickness of up to 1 μm.

この発明の被覆サーメット工具は、硬質被覆層の上部層を構成する改質α型Al23層がα型Al23自身のもつすぐれた高温硬さおよび耐熱性に加えて、すぐれた高温強度を有し、下部層のTi化合物層のもつすぐれた高温強度と相俟って、特に切削抵抗の高い難削材の高速切削加工でも、硬質被覆層にチッピングの発生なく、すぐれた耐摩耗性を発揮し、使用寿命の一層の延命化を可能とするものである。 In the coated cermet tool of the present invention, the modified α-type Al 2 O 3 layer constituting the upper layer of the hard coating layer is excellent in addition to the excellent high-temperature hardness and heat resistance of the α-type Al 2 O 3 itself. Combined with the excellent high-temperature strength of the lower Ti compound layer, which has high-temperature strength, even in the high-speed cutting of difficult-to-cut materials with high cutting resistance, the hard coating layer has no chipping and excellent resistance to damage. It exhibits wear and enables further extension of the service life.

つぎに、この発明の被覆サーメット工具を実施例により具体的に説明する。   Next, the coated cermet tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG120408に規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体A〜Fをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, and Co powder each having an average particle diameter of 1 to 3 μm are prepared. The raw material powder was blended in the blending composition shown in Table 1, and then added with wax, mixed in a ball mill for 24 hours in acetone, dried under reduced pressure, and then press-molded into a green compact of a predetermined shape at a pressure of 98 MPa. The green compact is vacuum-sintered in a vacuum of 5 Pa at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour. After sintering, the cutting edge is subjected to a honing process of R: 0.07 mm. Thus, tool bases A to F made of a WC-based cemented carbide having a throwaway tip shape specified in ISO · CNMG120408 were manufactured.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比で、TiC/TiN=50/50)粉末、Mo2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG120412のチップ形状をもったTiCN基サーメット製の工具基体a〜fを形成した。 Further, as the raw material powder, both (in mass ratio, TiC / TiN = 50/50 ) TiCN having an average particle diameter of 0.5~2μm powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC Prepare powder, Co powder, and Ni powder, blend these raw material powders into the composition shown in Table 2, wet mix with a ball mill for 24 hours, dry, and press-mold into a green compact at 98 MPa pressure The green compact is sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after sintering, the cutting edge portion is subjected to a honing process of R: 0.07 mm. Tool bases a to f made of TiCN-based cermet having a chip shape conforming to ISO standards / CNMG 120212 were formed.

ついで、これらの工具基体A〜Fおよび工具基体a〜fのそれぞれを、通常の化学蒸着装置に装入し、
(a)まず、表3(表3中のl−TiCNは特開平6−8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)に示される条件にて、表4に示される目標層厚のTi化合物層を硬質被覆層の下部層として蒸着形成し、
(b)ついで、反応ガス組成:容量%で、AlCl3:6〜10%の範囲内の所定量、CO2:6%、HCl:4%、H2S:0.25〜0.6の範囲内の所定量%、H2:残り、
反応雰囲気温度:960℃、
反応雰囲気圧力:8kPa、
の条件で同じく表4に示される目標層厚で、同じく上部層として改質α型Al23層を蒸着形成することにより本発明被覆サーメット工具1〜13をそれぞれ製造した。
Then, each of these tool bases A to F and tool bases a to f is charged into a normal chemical vapor deposition apparatus,
(A) First, Table 3 (l-TiCN in Table 3 indicates the conditions for forming a TiCN layer having a vertically elongated crystal structure described in JP-A-6-8010, and the other conditions are ordinary granularity. Under the conditions shown in Table 4), the Ti compound layer having the target layer thickness shown in Table 4 is deposited as a lower layer of the hard coating layer.
(B) Next, the reaction gas composition: volume%, AlCl 3 : a predetermined amount within the range of 6 to 10%, CO 2 : 6%, HCl: 4%, H 2 S: 0.25 to 0.6 Predetermined amount% within range, H 2 : remaining,
Reaction atmosphere temperature: 960 ° C.
Reaction atmosphere pressure: 8 kPa,
Also the target layer thickness shown in Table 4 in the condition, the present invention coated cermet tools 1 to 13 were prepared respectively by also depositing form the modified α type the Al 2 O 3 layer as an upper layer.

また、比較の目的で、硬質被覆層の上部層である従来α型Al23層を、
反応ガス組成:容量%で、AlCl3:2〜4%の範囲内の所定量、CO2:6%、HCl:2%、H2S:0.05〜0.2%の範囲内の所定量、H2:残り、
反応雰囲気温度:1030℃、
反応雰囲気圧力:8kPa、
の条件で、表5に示される通りの目標層厚で形成する以外は同一の条件で、従来被覆サーメット工具1〜13をそれぞれ製造した。
For comparison purposes, the conventional α-type Al 2 O 3 layer, which is the upper layer of the hard coating layer,
Reaction gas composition: volume%, AlCl 3 : predetermined amount in the range of 2-4%, CO 2 : 6%, HCl: 2%, H 2 S: in the range of 0.05-0.2% Quantitative, H 2 : remaining,
Reaction atmosphere temperature: 1030 ° C.
Reaction atmosphere pressure: 8 kPa,
The conventional coated cermet tools 1 to 13 were manufactured under the same conditions except that the target layer thicknesses as shown in Table 5 were used.

ついで、上記の本発明被覆サーメット工具1〜13および従来被覆サーメット工具1〜13の硬質被覆層の上部層を構成する改質α型Al23層および従来α型Al23層について、電界放出型走査電子顕微鏡および電子後方散乱回折像装置を用いて、結晶粒界面配列を調査した。
すなわち、上記の本発明被覆サーメット工具1〜13の改質α型Al23層および従来被覆サーメット工具1〜13の従来α型Al23層について、まず、それぞれの表面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記表面研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、それぞれの前記表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記結晶粒の各結晶面のそれぞれの法線が前記表面研磨面の法線と交わる角度を測定し、この測定結果から、結晶粒の構成結晶面である(0001)面および{10−10}面を選び出し、さらに、選び出した(0001)面および{10−10}面において、それぞれ隣接する結晶粒相互の界面(結晶粒界面単位)における(0001)面の法線同士および{10−10}面の法線同士の交わる角度を求め、前記(0001)面の法線同士および{10−10}面の法線同士の交わる角度が15度以下の結晶粒界面単位が全結晶粒界面単位に占める割合(以下、交差角15度以下の結晶粒界面単位の割合という)を算出し、表4,5にそれぞれ示した。
Subsequently, the modified α-type Al 2 O 3 layer and the conventional α-type Al 2 O 3 layer constituting the upper layer of the hard coating layer of the above-described coated cermet tool 1-13 of the present invention and the conventional coated cermet tool 1-13, Using a field emission scanning electron microscope and an electron backscatter diffraction image apparatus, the crystal grain interface arrangement was investigated.
That is, the conventional α-type the Al 2 O 3 layer of the modified α type the Al 2 O 3 layer and the conventional coated cermet tools 1-13 of the invention as described above coated cermet tools 1 to 13, first, the respective surface polished surface In this state, it is set in a lens barrel of a field emission scanning electron microscope, and an electron beam with an acceleration voltage of 15 kV at an incident angle of 70 degrees is applied to the surface polishing surface with an irradiation current of 1 nA on each surface polishing surface. Each crystal grain having a hexagonal crystal lattice existing in the measurement range is irradiated, and an electron backscatter diffraction image apparatus is used, and a region of 30 × 50 μm is separated at an interval of 0.1 μm / step. The angle at which each normal of the surface intersects the normal of the surface polished surface is measured, and from this measurement result, the (0001) plane and the {10-10} plane that are the constituent crystal planes of the crystal grains are selected, and Selected (0 In the (01) plane and {10-10} plane, the angles at which the normal lines of the (0001) plane and the normal lines of the {10-10} plane intersect each other at the interface between adjacent crystal grains (grain interface unit) The ratio of the crystal grain interface units whose angle between the normal lines of the (0001) planes and the normal lines of the {10-10} planes is 15 degrees or less to the total crystal grain interface units (hereinafter, the intersection angle is 15 degrees) The ratios of the following crystal grain interface units are calculated and are shown in Tables 4 and 5, respectively.

表4,5にそれぞれ示される通り、本発明被覆サーメット工具1〜13の改質α型Al23層は、いずれも交差角15度以下の結晶粒界面単位の割合が45%以上の結晶粒界面配列を示すのに対して、従来被覆サーメット工具1〜13の従来α型Al23層は、いずれも交差角15度以下の結晶粒界面単位の割合が25%以下の結晶粒界面配列を示すものであった。 As shown in Tables 4 and 5, each of the modified α-type Al 2 O 3 layers of the coated cermet tools 1 to 13 of the present invention is a crystal having a crystal grain interface unit ratio of 45% or more with an intersection angle of 15 degrees or less. Whereas the conventional α-type Al 2 O 3 layer of the conventional coated cermet tools 1 to 13 shows a grain interface arrangement, the ratio of the crystal grain interface units with a crossing angle of 15 degrees or less is 25% or less. The sequence was shown.

また、この結果得られた本発明被覆サーメット工具1〜13および従来被覆サーメット工具1〜13の硬質被覆層の構成層の厚さを、走査型電子顕微鏡を用いて測定(縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。   Moreover, when the thickness of the constituent layer of the hard coating layer of the present coated cermet tools 1 to 13 and the conventional coated cermet tools 1 to 13 obtained as a result was measured using a scanning electron microscope (longitudinal section measurement). , Each showed an average layer thickness (average value of 5-point measurement) substantially the same as the target layer thickness.

つぎに、上記の本発明被覆サーメット工具1〜13および従来被覆サーメット工具1〜13各種の被覆サーメット工具について、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・SUS430の長さ方向等間隔4本縦溝入り丸棒、
切削速度:250m/min.、
切り込み:1.2mm、
送り:0.25mm/rev.、
切削時間:10分、
の条件(切削条件Aという)でのステンレス鋼の乾式断続高速切削試験(通常の切削速度150m/min.)、
被削材:JIS・S15Cの丸棒、
切削速度:400m/min.、
切り込み:1.5mm、
送り:0.28mm/rev.、
切削時間:10分、
の条件(切削条件Bという)での軟鋼の乾式連続高速切削試験(通常の切削速度は250m/min.)、さらに、
被削材:JIS・SMn443の長さ方向等間隔4本縦溝入り丸棒、
切削速度:250m/min.、
切り込み:1.5mm、
送り:0.22mm/rev.、
切削時間:10分、
の条件(切削条件Cという)での高マンガン鋼の乾式断続高速切削試験(通常の切削速度は150m/min.)を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表6に示した。
Next, for the various coated cermet tools of the present invention coated cermet tool 1-13 and the conventional coated cermet tool 1-13, all of them are screwed with a fixing jig to the tip of the tool steel tool,
Work material: JIS / SUS430 lengthwise equal 4 round bars with flutes,
Cutting speed: 250 m / min. ,
Cutting depth: 1.2mm,
Feed: 0.25 mm / rev. ,
Cutting time: 10 minutes,
Dry intermittent high-speed cutting test (normal cutting speed 150 m / min.) Of stainless steel under the following conditions (referred to as cutting conditions A),
Work material: JIS / S15C round bar,
Cutting speed: 400 m / min. ,
Incision: 1.5mm,
Feed: 0.28 mm / rev. ,
Cutting time: 10 minutes,
Dry continuous high-speed cutting test (normal cutting speed is 250 m / min.) Of mild steel under the following conditions (referred to as cutting conditions B),
Work material: JIS-SMn443 round bar with four equal grooves in the longitudinal direction,
Cutting speed: 250 m / min. ,
Incision: 1.5mm,
Feed: 0.22 mm / rev. ,
Cutting time: 10 minutes,
A dry intermittent high-speed cutting test (normal cutting speed is 150 m / min.) Of high manganese steel under the above conditions (referred to as cutting condition C), and the flank wear width of the cutting edge was measured in any cutting test. The measurement results are shown in Table 6.

Figure 2007160497
Figure 2007160497

Figure 2007160497
Figure 2007160497

Figure 2007160497
Figure 2007160497

Figure 2007160497
Figure 2007160497

Figure 2007160497
Figure 2007160497

Figure 2007160497
Figure 2007160497

表4〜6に示される結果から、本発明被覆サーメット工具1〜13は、いずれも硬質被覆層の上部層である改質α型Al23層が交差角15度以下の結晶粒界面単位の割合が45%以上の結晶粒界面配列を示し、この結果前記改質α型Al23層はすぐれた高温硬さおよび耐熱性に加えて、すぐれた結晶粒界面強度、すなわちすぐれた高温強度を有するようになることから、特に切削抵抗のきわめて高い難削材の高速切削でもチッピングの発生なく、すぐれた耐摩耗性を示すのに対して、硬質被覆層の上部層である従来α型Al23層の結晶粒界面配列における交差角15度以下の結晶粒界面単位の割合は25%以下であり、この結果前記従来α型Al23層は十分満足する高温強度を具備しないものとなるので、従来被覆サーメット工具1〜13においては、いずれも難削材の高速切削加工で硬質被覆層にチッピングが発生し、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 4 to 6, the coated cermet tools 1 to 13 of the present invention all have crystal grain interface units in which the modified α-type Al 2 O 3 layer, which is the upper layer of the hard coating layer, has an intersection angle of 15 degrees or less. As a result, the modified α-type Al 2 O 3 layer has not only excellent high-temperature hardness and heat resistance, but also excellent crystal grain interface strength, that is, excellent high-temperature. The conventional α type, which is the upper layer of the hard coating layer, shows excellent wear resistance without occurrence of chipping even at high-speed cutting of difficult-to-cut materials with extremely high cutting resistance. The proportion of crystal grain interface units having an intersection angle of 15 degrees or less in the crystal grain interface arrangement of the Al 2 O 3 layer is 25% or less. As a result, the conventional α-type Al 2 O 3 layer does not have a sufficiently high temperature strength. Conventionally coated cermet tool In 1 to 13, it is clear that chipping occurs in the hard coating layer by high-speed cutting of difficult-to-cut materials, and the service life is reached in a relatively short time.

上述のように、この発明の被覆サーメット工具は、各種の鋼や鋳鉄などの高速切削加工は勿論のこと、特に自身が高い粘性を有し、かつ切削時の切削工具表面部の硬質被覆層に対する粘着性も高く、この結果切削抵抗のきわめて高いものとなる軟鋼やステンレス鋼、さらに高マンガン鋼などの難削材の高速切削加工でも、チッピングの発生なく、すぐれた耐摩耗性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated cermet tool of the present invention has high viscosity in addition to high-speed cutting such as various types of steel and cast iron, and has a high viscosity with respect to the hard coating layer on the surface of the cutting tool at the time of cutting. Even with high-speed cutting of difficult-to-cut materials such as mild steel, stainless steel, and high-manganese steel, which have high adhesion and high cutting resistance as a result, it exhibits excellent wear resistance without chipping. Since it exhibits excellent cutting performance, it can sufficiently satisfy the high performance of the cutting device, the labor saving and energy saving of the cutting work, and the cost reduction.

α型Al23層を構成する結晶粒の有する六方晶結晶格子と、前記α型Al23層の表面研磨面の関係を模式的に示した概略斜視図である。a hexagonal crystal lattice with crystal grains constituting the α-type the Al 2 O 3 layer, the surface polishing plane relationship of the α-type Al 2 O 3 layer which is the schematic perspective view schematically showing.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a)下部層として、いずれも化学蒸着形成された、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(b)上部層として、化学蒸着した状態でα型の結晶構造を有し、電界放出型走査電子顕微鏡と電子後方散乱回折像装置を用い、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記結晶粒の各結晶面のそれぞれの法線が前記表面研磨面の法線と交わる角度を測定し、この測定結果から、結晶粒の構成結晶面である(0001)面および{10−10}面を選び出し、さらに、選び出した(0001)面および{10−10}面において、それぞれ隣接する結晶粒相互の界面(結晶粒界面単位)における(0001)面の法線同士および{10−10}面の法線同士の交わる角度を求めた場合に、前記(0001)面の法線同士および{10−10}面の法線同士の交わる角度が15度以下の結晶粒界面単位が全結晶粒界面単位の45%以上の割合を占める結晶粒界面配列を示し、かつ2〜20μmの平均層厚を有する改質α型酸化アルミニウム層、
以上(a)および(b)で構成された硬質被覆層を蒸着形成してなる、硬質被覆層の改質α型酸化アルミニウム層がすぐれた結晶粒界面強度を有する表面被覆サーメット製切削工具。
On the surface of the tool base composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(A) As a lower layer, any one or two or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer, and carbonitride layer formed by chemical vapor deposition are formed. And a Ti compound layer having a total average layer thickness of 3 to 20 μm,
(B) As an upper layer, a hexagonal crystal having an α-type crystal structure in the state of chemical vapor deposition and existing within the measurement range of the surface polished surface using a field emission scanning electron microscope and an electron backscatter diffraction image apparatus Each crystal grain having a lattice is irradiated with an electron beam, and an angle at which each normal line of each crystal plane of the crystal grain intersects with a normal line of the surface polished surface is measured. The (0001) plane and {10-10} plane which are crystal planes are selected, and further, in the selected (0001) plane and {10-10} plane, at the interface between adjacent crystal grains (crystal grain interface unit), respectively. When the angles at which the normals of the (0001) plane and the normals of the {10-10} plane intersect are obtained, the normals of the (0001) plane and the normals of the {10-10} plane intersect. Crystal with an angle of 15 degrees or less It shows the grain boundaries sequence interface unit accounts for 45% or more of the total grain surface units and modified α-type aluminum oxide layer having an average layer thickness of 2 to 20 [mu] m,
A surface-coated cermet cutting tool having a crystal grain interface strength with a modified α-type aluminum oxide layer of the hard coating layer formed by vapor-depositing the hard coating layer composed of (a) and (b) above.
JP2006285526A 2005-11-18 2006-10-19 Surface-coated cermet cutting tool with excellent crystal grain interface strength, modified α-type Al2O3 layer of hard coating layer Active JP5023654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006285526A JP5023654B2 (en) 2005-11-18 2006-10-19 Surface-coated cermet cutting tool with excellent crystal grain interface strength, modified α-type Al2O3 layer of hard coating layer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005333539 2005-11-18
JP2005333539 2005-11-18
JP2006285526A JP5023654B2 (en) 2005-11-18 2006-10-19 Surface-coated cermet cutting tool with excellent crystal grain interface strength, modified α-type Al2O3 layer of hard coating layer

Publications (2)

Publication Number Publication Date
JP2007160497A true JP2007160497A (en) 2007-06-28
JP5023654B2 JP5023654B2 (en) 2012-09-12

Family

ID=38243962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006285526A Active JP5023654B2 (en) 2005-11-18 2006-10-19 Surface-coated cermet cutting tool with excellent crystal grain interface strength, modified α-type Al2O3 layer of hard coating layer

Country Status (1)

Country Link
JP (1) JP5023654B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009066742A (en) * 2007-09-18 2009-04-02 Mitsubishi Materials Corp Surface coated cutting tool with hard coat layer having improved chipping resistance
JP2010064150A (en) * 2008-09-08 2010-03-25 Mitsubishi Materials Corp Surface-coated cutting tool, with hard coating layer having excellent chipping resistance
JP2010149235A (en) * 2008-12-25 2010-07-08 Mitsubishi Materials Corp Surface coated cutting tool
JP2011183486A (en) * 2010-03-05 2011-09-22 Mitsubishi Materials Corp Surface coated cutting tool with hard coating layer for exhibiting excellent chipping resistance
JP2011183485A (en) * 2010-03-05 2011-09-22 Mitsubishi Materials Corp Surface coated cutting tool with hard coating layer for exhibiting excellent chipping resistance
JP2013049119A (en) * 2011-08-31 2013-03-14 Mitsubishi Materials Corp Surface-coated cutting tool in which hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting work
CN103506819A (en) * 2012-06-29 2014-01-15 三菱综合材料株式会社 Surface coated cutting tool
JP2014087862A (en) * 2012-10-29 2014-05-15 Mitsubishi Materials Corp Surface-coated cutting tool having hard coating layer for exhibiting excellent peeling resistance and chipping resistance by high-speed intermittent cutting work
JP2014188593A (en) * 2013-03-26 2014-10-06 Mitsubishi Materials Corp Surface coated cutting tool in which hard coating layer demonstrates excellent wear resistance in high speed cutting process of ductile cast iron or the like

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005313245A (en) * 2004-04-27 2005-11-10 Mitsubishi Materials Corp Surface coated cermet cutting tool with hard coating layer exerting excellent chipping resistance

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005313245A (en) * 2004-04-27 2005-11-10 Mitsubishi Materials Corp Surface coated cermet cutting tool with hard coating layer exerting excellent chipping resistance

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009066742A (en) * 2007-09-18 2009-04-02 Mitsubishi Materials Corp Surface coated cutting tool with hard coat layer having improved chipping resistance
JP2010064150A (en) * 2008-09-08 2010-03-25 Mitsubishi Materials Corp Surface-coated cutting tool, with hard coating layer having excellent chipping resistance
JP2010149235A (en) * 2008-12-25 2010-07-08 Mitsubishi Materials Corp Surface coated cutting tool
JP2011183486A (en) * 2010-03-05 2011-09-22 Mitsubishi Materials Corp Surface coated cutting tool with hard coating layer for exhibiting excellent chipping resistance
JP2011183485A (en) * 2010-03-05 2011-09-22 Mitsubishi Materials Corp Surface coated cutting tool with hard coating layer for exhibiting excellent chipping resistance
JP2013049119A (en) * 2011-08-31 2013-03-14 Mitsubishi Materials Corp Surface-coated cutting tool in which hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting work
CN103506819A (en) * 2012-06-29 2014-01-15 三菱综合材料株式会社 Surface coated cutting tool
JP2014087862A (en) * 2012-10-29 2014-05-15 Mitsubishi Materials Corp Surface-coated cutting tool having hard coating layer for exhibiting excellent peeling resistance and chipping resistance by high-speed intermittent cutting work
JP2014188593A (en) * 2013-03-26 2014-10-06 Mitsubishi Materials Corp Surface coated cutting tool in which hard coating layer demonstrates excellent wear resistance in high speed cutting process of ductile cast iron or the like

Also Published As

Publication number Publication date
JP5023654B2 (en) 2012-09-12

Similar Documents

Publication Publication Date Title
JP4518260B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP5023654B2 (en) Surface-coated cermet cutting tool with excellent crystal grain interface strength, modified α-type Al2O3 layer of hard coating layer
JP2006231433A (en) Surface-coated cermet cutting tool with hard coating layer exerting excellent chipping resistance in high-speed intermittent cutting
JP5099490B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP4747388B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP4474643B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP2009166193A (en) Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting
JP2008080476A (en) Surface coated cutting tool with hard coated layer exerting excellent abrasion resistance in high speed cutting work
JP4811787B2 (en) Surface-coated cermet cutting tool with excellent grain interface strength in modified κ-type aluminum oxide layer of hard coating layer
JP5077647B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high-speed cutting of difficult-to-cut materials
JP5077648B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high-speed cutting of difficult-to-cut materials
JP4748361B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance with hard coating layer in difficult-to-cut materials
JP4474644B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP4747338B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP4747386B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent wear resistance in high speed cutting
JP4857950B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high-speed intermittent cutting
JP4748444B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP4894406B2 (en) Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting
JP2007168029A (en) Surface coated cermet-made cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed cutting material hard to cut
JP4793629B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP4438559B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in intermittent heavy cutting
JP4692065B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer
JP4716253B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer
JP2006341319A (en) SURFACE COATED CERMET CUTTING TOOL HAVING THICK alpha TYPE ALUMINUM OXIDE LAYER EXHIBITING EXCELLENT CHIPPING RESISTANCE
JP2009166194A (en) Surface coated cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111013

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120410

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5023654

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150