JP2008080476A - Surface coated cutting tool with hard coated layer exerting excellent abrasion resistance in high speed cutting work - Google Patents

Surface coated cutting tool with hard coated layer exerting excellent abrasion resistance in high speed cutting work Download PDF

Info

Publication number
JP2008080476A
JP2008080476A JP2007093791A JP2007093791A JP2008080476A JP 2008080476 A JP2008080476 A JP 2008080476A JP 2007093791 A JP2007093791 A JP 2007093791A JP 2007093791 A JP2007093791 A JP 2007093791A JP 2008080476 A JP2008080476 A JP 2008080476A
Authority
JP
Japan
Prior art keywords
layer
degrees
inclination angle
carbonitride
modified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007093791A
Other languages
Japanese (ja)
Other versions
JP5029099B2 (en
Inventor
Hisashi Honma
尚志 本間
Akira Osada
晃 長田
Keiji Nakamura
惠滋 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2007093791A priority Critical patent/JP5029099B2/en
Publication of JP2008080476A publication Critical patent/JP2008080476A/en
Application granted granted Critical
Publication of JP5029099B2 publication Critical patent/JP5029099B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface coated cutting tool with a hard coated layer exerting excellent abrasion resistance in high speed cutting work. <P>SOLUTION: The hard coated layer of the surface coated cutting tool is constituted of an upper part layer and a lower part layer both of which are formed by chemical vapor deposition, the upper part layer consists of an aluminum oxide layer having average layer thickness of 1 to 15 μm, the lower part layer consists of an adhesion Ti compound layer and a reformed Ti system carbonitride layer having total average layer thickness of 3 to 20 μm, the reformed Ti system carbonitride layer has average layer thickness of 2.5 to 15 μm and satisfies a composition formula: (Ti<SB>1-X</SB>Cr<SB>X</SB>)C<SB>1-Y</SB>N<SB>Y</SB>(wherein, X:0.12 to 0.20, Y:0.35 to 0.55 in atomic ratio), and the reformed Ti system carbonitride layer is constituted so that the highest peak exists in an inclination angle section within an area of 0 to 10 degrees and a total of frequency existing in the area of 0 to 10 degrees shows an inclination angle frequency distribution graph occupying a rate of 45% or more of the frequency total in the inclination angle frequency distribution graph. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、特に鋼や鋳鉄などの高い発熱を伴う高速切削加工で、硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent wear resistance with a hard coating layer, particularly in high-speed cutting with high heat generation such as steel and cast iron.

従来、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)下部層が、いずれも化学蒸着形成された、Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(b)上部層が、化学蒸着形成された1〜15μmの平均層厚を有する酸化アルミニウム(以下、Al23で示す)層、
からなる硬質被覆層を形成してなる被覆工具において、上記Ti化合物層におけるTiの一部を10原子%以下のCr等で置換することによって、耐摩耗性をさらに向上させるようにした被覆工具が知られている。
特開平 6− 31503号公報 特開平10−244405号公報
Conventionally, on the surface of a base composed of tungsten carbide (hereinafter referred to as WC) base cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) base cermet (hereinafter collectively referred to as a tool base),
(A) Ti carbide (hereinafter referred to as TiC) layer, nitride (hereinafter also referred to as TiN) layer, carbonitride (hereinafter referred to as TiCN) layer formed by chemical vapor deposition of the lower layers. A Ti compound layer consisting of two or more of a carbon oxide (hereinafter referred to as TiCO) layer and a carbonitride oxide (hereinafter referred to as TiCNO) layer and having a total average layer thickness of 3 to 20 μm,
(B) an aluminum oxide (hereinafter referred to as Al 2 O 3 ) layer having an average layer thickness of 1 to 15 μm, wherein the upper layer is formed by chemical vapor deposition;
A coated tool formed of a hard coating layer comprising: a coated tool that further improves wear resistance by replacing a part of Ti in the Ti compound layer with 10 atomic% or less of Cr or the like. Are known.
JP-A-6-31503 JP-A-10-244405

近年の切削装置の高性能化はめざましく、一方で切削加工における省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削効率の向上を目的として、切削速度を高速化する傾向にあるが、上記の従来被覆工具においては、これを鋼や鋳鉄などの通常の条件での連続切削や断続切削に用いた場合には問題はないが、特にこれを高速切削条件で用いた場合、これを構成する硬質被覆層は、下部層のTi化合物層による高温強度、同上部層のAl23層による高温硬さを具備するものの、前記Ti化合物層による耐熱性が不十分であるために切削加工時の発熱によって熱塑性変形、偏摩耗を生じやすく、そのため、耐摩耗性が低下し比較的短時間で使用寿命に至るのが現状である。 In recent years, the performance of cutting machines has been remarkable, while there has been a strong demand for labor saving and energy saving in cutting, as well as cost reduction, and along with this, the tendency to increase cutting speed for the purpose of improving cutting efficiency However, in the above-mentioned conventional coated tool, there is no problem when it is used for continuous cutting and intermittent cutting under normal conditions such as steel and cast iron, but especially when this is used under high-speed cutting conditions. The hard coating layer constituting this has high temperature strength due to the lower Ti compound layer and high temperature hardness due to the upper Al 2 O 3 layer, but the heat resistance due to the Ti compound layer is insufficient. Therefore, it is easy to cause thermoplastic deformation and uneven wear due to heat generated during cutting, so that the wear resistance is lowered and the service life is reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、上記の被覆工具の硬質被覆層の耐摩耗性向上をはかるべく、これの下部層であるTi化合物層を構成するTiCN層、すなわちTi化合物層のうちで相対的に高い高温強度を有するTiの一部をCrで置換した(Ti,Cr)CN層に着目し、研究を行った結果、
(a)従来被覆工具の硬質被覆層において、下部層を構成するTi化合物層のうちの(Ti,Cr)CN層(以下、「従来Ti系CN層」という)は、例えば、通常の化学蒸着装置にて、
反応ガス組成:容量%で、TiCl:3〜10%、CrF:0.1〜0.4%、CHCN:0.5〜3%、N2:20〜40%、H2:残り、
反応雰囲気温度:800〜900℃、
反応雰囲気圧力:6〜20kPa、
の条件(通常条件という)で蒸着形成されるが、
反応ガス組成:容量%で、TiCl:1〜5%、CrCl:0.7〜2.5%、CHCN:3〜6%、N2:20〜40%、HCl:0.5〜2%、H2:残り、
反応雰囲気温度:800〜900℃、
反応雰囲気圧力:5〜20kPa、
の条件、すなわち上記の通常条件に比して、反応ガス成分の一つであるCrFにかえて、少量のCrClおよびHClを加え、さらに、CHCNの含有割合を多くした条件で蒸着形成して、
組成式:(Ti1−XCr)C1−Y(ただし、原子比で、X:0.12〜0.20、Y:0.35〜0.55)、
を満足するTi系炭窒化物層を形成すると、この結果のTi系炭窒化物層(以下、「改質Ti系CN層」で示す)は、上記の従来Ti系CN層と同様の結晶構造、すなわち格子点にTi、Cr、炭素(C)、および窒素(N)からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造を有するが、前記従来Ti系CN層に比して一段とすぐれた耐熱性を有すること。
In view of the above, the inventors of the present invention, from the above viewpoint, in order to improve the wear resistance of the hard coating layer of the above-mentioned coated tool, the TiCN layer constituting the Ti compound layer as the lower layer thereof, that is, the Ti compound As a result of conducting research by paying attention to a (Ti, Cr) CN layer in which a part of Ti having a relatively high high-temperature strength is replaced with Cr among the layers,
(A) In a hard coating layer of a conventional coated tool, a (Ti, Cr) CN layer (hereinafter referred to as “conventional Ti-based CN layer”) among the Ti compound layers constituting the lower layer is, for example, a normal chemical vapor deposition In the device
Reaction gas composition: by volume%, TiCl 4: 3~10%, CrF 5: 0.1~0.4%, CH 3 CN: 0.5~3%, N 2: 20~40%, H 2: remaining,
Reaction atmosphere temperature: 800 to 900 ° C.
Reaction atmosphere pressure: 6-20 kPa,
It is formed by vapor deposition under the conditions (called normal conditions)
Reaction gas composition: by volume%, TiCl 4: 1~5%, CrCl 3: 0.7~2.5%, CH 3 CN: 3~6%, N 2: 20~40%, HCl: 0.5 ~2%, H 2: remainder,
Reaction atmosphere temperature: 800 to 900 ° C.
Reaction atmosphere pressure: 5 to 20 kPa,
As compared with the above normal conditions, that is, the above-mentioned normal conditions, vapor deposition is performed under the condition that a small amount of CrCl 3 and HCl are added instead of CrF 5 which is one of the reaction gas components, and further the content ratio of CH 3 CN is increased. Forming
Composition formula: (Ti 1-X Cr X ) C 1-Y N Y (however, in atomic ratio, X: 0.12 to 0.20, Y: 0.35 to 0.55),
When the Ti-based carbonitride layer satisfying the above conditions is formed, the resulting Ti-based carbonitride layer (hereinafter referred to as “modified Ti-based CN layer”) has the same crystal structure as that of the conventional Ti-based CN layer. That is, it has a NaCl type face centered cubic crystal structure in which constituent atoms composed of Ti, Cr, carbon (C), and nitrogen (N) are present at lattice points, respectively, but compared with the conventional Ti-based CN layer. It has excellent heat resistance.

(b)上記の従来Ti系CN層と上記(a)の改質Ti系CN層について、
電界放出型走査電子顕微鏡を用い、図1(a),(b)に概略説明図で例示される通り、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{111}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフを作成した場合、前記従来Ti系CN層は、図3に例示される通り、{111}面の測定傾斜角の分布が0〜45度の範囲内で不偏的な傾斜角度数分布グラフを示すのに対して、前記改質Ti系CN層は、図2に例示される通り、傾斜角区分の特定位置にシャープな最高ピークが現れ、そしてこのような場合に、改質Ti系CN層にはクーリングクラックが均一に分散し、これによって、Cr含有量を増加したことによる改質Ti系CN層の高温強度の低下を抑制することができ、しかも、このシャープな最高ピークは、グラフ横軸の傾斜角区分に現れる高さおよび傾斜角区分位置が前記改質Ti系CN層におけるCrの含有割合を調整することにより変化すること。
(B) About the conventional Ti-based CN layer and the modified Ti-based CN layer of (a),
Using a field emission scanning electron microscope, as illustrated in the schematic explanatory diagrams of FIGS. 1A and 1B, the electron beam is individually applied to each crystal grain having a cubic crystal lattice existing within the measurement range of the surface polished surface. Is measured with respect to the normal of the surface polished surface, and the tilt angle formed by the normal of the {111} plane that is the crystal plane of the crystal grain is measured. When the tilt angle distribution graph is created by dividing the measured tilt angles within the range of 0.25 degree pitches and summing up the frequencies existing in each section, the conventional Ti-based CN layer is 3, the distribution of the measured inclination angle of the {111} plane shows an unbiased inclination angle number distribution graph in the range of 0 to 45 degrees, whereas the modified Ti-based CN layer As shown in FIG. 2, a sharp peak appears at a specific position in the tilt angle section, In such a case, cooling cracks are uniformly dispersed in the modified Ti-based CN layer, thereby suppressing a decrease in high-temperature strength of the modified Ti-based CN layer due to an increase in Cr content. In addition, the sharp maximum peak can be changed by adjusting the Cr content in the modified Ti-based CN layer with respect to the height and the tilt angle segment position appearing in the tilt angle segment on the horizontal axis of the graph.

(c)上記の通り、上記改質Ti系CN層の形成に際して、層中のCr含有割合を、Tiとの合量に占める割合(原子比)で0.12〜0.20とすることによって、前記改質Ti系CN層の傾斜角度数分布グラフで、シャープな最高ピークが傾斜角区分の0〜10度の範囲内に現れ、かつ、前記0〜10度の範囲内に存在する度数割合が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示すようになるのであり、したがって、前記改質Ti系CN層中のCr含有割合が前記の範囲から低い方に外れても、あるいは高い方に外れても、傾斜角度数分布グラフにおけるシャープな最高ピークが傾斜角区分の0〜10度の範囲から外れ、かつ、前記0〜10度の範囲内に存在する度数数割合も45%未満になってしまい、この場合は一段の耐熱性向上効果を期待できないばかりか、Cr含有割合を増加したことによる高温強度の低下をクーリングクラックの均一分散によって抑制することはできないこと。
つまり、上記改質Ti系CN層のCr成分は、Tiとの合量に占める割合(原子比)で0.12(12原子%)以上で所望の耐熱性向上効果が現れるが、その含有割合が0.20(20原子%)を越えると、高熱発生を伴う高速切削加工では、改質Ti系CN層は急激に軟化し、熱塑性変形、偏摩耗を生じやすくなることから、その含有割合は、Tiとの合量に占める割合(原子比)で0.12〜0.20とする必要がある。
(C) As described above, when the modified Ti-based CN layer is formed, the Cr content ratio in the layer is set to 0.12 to 0.20 in the ratio (atomic ratio) to the total amount with Ti. In the inclination angle frequency distribution graph of the modified Ti-based CN layer, the frequency ratio at which the sharpest peak appears in the range of 0 to 10 degrees of the inclination angle section and exists in the range of 0 to 10 degrees. However, the inclination angle number distribution graph occupies a ratio of 45% or more of the entire frequency in the inclination angle number distribution graph. Therefore, the Cr content ratio in the modified Ti-based CN layer is from the above range. The sharpest peak in the slope angle distribution graph deviates from the range of 0 to 10 degrees of the slope angle section and falls within the range of 0 to 10 degrees, even if it is off to the lower side or off to the higher side. Existing frequency ratio is 45% Becomes fully, not only this can not be expected effect of improving heat resistance of the first stage if it can not be suppressed by uniform dispersion of cooling cracks a decrease in high-temperature strength due to an increase of Cr content.
That is, the Cr component of the modified Ti-based CN layer has a desired heat resistance improving effect when the ratio (atomic ratio) to the total amount with Ti is 0.12 (12 atomic%) or more, but the content ratio If it exceeds 0.20 (20 atomic%), in high-speed cutting with high heat generation, the modified Ti-based CN layer softens rapidly, and is susceptible to thermoplastic deformation and uneven wear. The ratio (atomic ratio) in the total amount with Ti needs to be 0.12 to 0.20.

(d)硬質被覆層の上部層がAl23層、下部層が密着性Ti化合物層と改質Ti系CN層とからなり、かつ、該改質Ti系CN層が、2.5〜15μmの平均層厚を有し、{111}面の測定傾斜角の分布が0〜10度の範囲内に傾斜角区分の最高ピークが現れ、かつ前記0〜10度の範囲内に存在する度数割合が45%以上を占める被覆工具は、改質Ti系CN層が従来Ti系CN層に比して一段と高い耐熱性を有し、また、同上部層であるAl23層がすぐれた高温硬さを具備することと相俟って、特に高熱発生を伴う高速切削加工でも、前記硬質被覆層がすぐれた耐熱性を発揮し、熱塑性変形、偏摩耗を生じることがないため、長期に亘ってすぐれた耐摩耗性を示すようになること。
以上(a)〜(d)に示される研究結果を得たのである。
(D) The upper layer of the hard coating layer is an Al 2 O 3 layer, the lower layer is an adhesive Ti compound layer and a modified Ti-based CN layer, and the modified Ti-based CN layer is 2.5 to A frequency having an average layer thickness of 15 μm, the highest peak of the tilt angle section appearing within the range of 0 to 10 degrees in the measured tilt angle distribution of the {111} plane, and existing in the range of 0 to 10 degrees The coated tool occupying 45% or more of the modified Ti-based CN layer has much higher heat resistance than the conventional Ti-based CN layer, and the Al 2 O 3 layer, which is the upper layer, is superior. Combined with high-temperature hardness, especially in high-speed cutting with high heat generation, the hard coating layer exhibits excellent heat resistance and does not cause thermoplastic deformation and uneven wear, so it can be used for a long time. To show excellent wear resistance over time.
The research results shown in (a) to (d) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、上記工具基体の表面に上部層と下部層とからなる硬質被覆層を蒸着形成した表面被覆切削工具において、
(a)上記上部層は、化学蒸着で形成された1〜15μmの平均層厚を有する酸化アルミニウム層からなり、
(b)上記下部層は、3〜20μmの合計平均層厚を有し、いずれも化学蒸着で形成された密着性Ti化合物層と改質Ti系炭窒化物層とからなり、
(c)上記密着性Ti化合物層は、0.5〜5μmの合計平均層厚を有するTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなり、
(d)上記改質Ti系炭窒化物層は、2.5〜15μmの平均層厚を有し、かつ、
組成式:(Ti1−XCr)C1−Y(ただし、原子比で、X:0.12〜0.20、Y:0.35〜0.55)、
を満足するTiとCrの炭窒化物層からなり、さらに、上記改質Ti系炭窒化物層は、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{111}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示すこと、
を特徴とする高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具(被覆工具)に特徴を有するものである。
This invention was made based on the above research results, and in the surface-coated cutting tool in which a hard coating layer composed of an upper layer and a lower layer is formed on the surface of the tool base by vapor deposition,
(A) The upper layer is made of an aluminum oxide layer having an average layer thickness of 1 to 15 μm formed by chemical vapor deposition,
(B) The lower layer has a total average layer thickness of 3 to 20 μm, and each consists of an adhesive Ti compound layer and a modified Ti carbonitride layer formed by chemical vapor deposition,
(C) The adhesion Ti compound layer is composed of a Ti carbide layer, a nitride layer, a carbonitride layer, a carbonate layer, and a carbonitride oxide layer having a total average layer thickness of 0.5 to 5 μm. It consists of one or more layers,
(D) The modified Ti carbonitride layer has an average layer thickness of 2.5 to 15 μm, and
Composition formula: (Ti 1-X Cr X ) C 1-Y N Y (however, in atomic ratio, X: 0.12 to 0.20, Y: 0.35 to 0.55),
Further, the modified Ti-based carbonitride layer is a cubic crystal lattice existing within the measurement range of the surface polished surface using a field emission scanning electron microscope. Irradiating the individual crystal grains with an electron beam, and measuring the tilt angle formed by the normal of the {111} plane, which is the crystal plane of the crystal grain, with respect to the normal of the surface polished surface, In the angle distribution graph formed by dividing the measured inclination angles within the range of 0 to 45 degrees among the angles for each pitch of 0.25 degrees and totaling the frequencies existing in each section, 0 to The highest peak exists in the inclination angle section within the range of 10 degrees, and the total of the frequencies existing in the range of 0 to 10 degrees occupies a ratio of 45% or more of the entire degrees in the inclination angle frequency distribution graph. Showing an angle distribution graph,
It is characterized by a surface-coated cutting tool (coated tool) that exhibits excellent wear resistance with a hard coating layer in high-speed cutting characterized by the above.

つぎに、この発明の被覆工具の硬質被覆層の構成層について、上記の通りに数値限定した理由を以下に説明する。
(a)下部層の密着性Ti化合物層
密着性Ti化合物層は、工具基体と上部層であるAl23層および改質Ti系CN層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性向上に寄与する作用をもつが、その合計平均層厚が0.5μm未満では、所望のすぐれた密着性を確保することができず、一方前記密着性は5μmまでの合計平均層厚で充分であることから、その合計平均層厚を0.5〜5μmと定めた。
Next, the reason why the constituent layers of the hard coating layer of the coated tool of the present invention are numerically limited as described above will be described below.
(A) Adhesive Ti compound layer of lower layer Adhesive Ti compound layer adheres firmly to both the tool base and the upper layer Al 2 O 3 layer and the modified Ti-based CN layer, and thus a hard coating layer However, if the total average layer thickness is less than 0.5 μm, the desired excellent adhesion cannot be ensured, while the adhesion is a total up to 5 μm. Since the average layer thickness is sufficient, the total average layer thickness was determined to be 0.5 to 5 μm.

(b)下部層の改質Ti系CN層
上記の改質Ti系CN層の傾斜角度数分布グラフの傾斜角区分における最高ピーク位置および前記最高ピークが存在する所定の傾斜角区分内に存在する度数割合は、上記の通り層中のCr含有割合(X値)をTiとの合量に占める原子比で、0.12〜0.20とすることによって、0〜10度の範囲内の傾斜角区分に最高ピークを存在させ、かつ前記0〜10度の範囲内に存在する度数割合を、傾斜角度数分布グラフにおける度数全体の45%以上とすることができるものであり、したがって、その含有割合が0.12未満でも、0.20を越えても、前記最高ピーク位置の現れる傾斜角区分が0〜10度の範囲内から外れ、さらに前記0〜10度の範囲内に存在する度数割合は45%未満となってしまい、そのため、高温強度の低下をクーリングクラックの均一分散により抑制することができなくなるばかりか、高速切削加工におけるすぐれた耐熱性向上効果を確保することができなくなり、熱塑性変形の発生あるいは偏摩耗の発生によって耐摩耗性の劣ったものとなる。
また、改質Ti系CN層におけるC成分には層の硬さを向上させ、一方N成分には高温強度を向上させる作用があり、これら両成分を共存含有することにより高い硬さとすぐれた強度を具備するようになるものであり、したがって、層中のN成分の含有割合(Y値)がC成分との合量に占める原子比で0.35未満では所望の強度を確保することができず、一方その含有割合(Y値)が同じく0.55を越えると、相対的にC成分の含有割合が少なくなり過ぎて、所望の高硬度が得られなくなることから、Y値を原子比で0.35〜0.55と定めた。
このように前記改質Ti系CN層は、上記の通り従来Ti系CN層に比して、一段とすぐれた耐熱性を有するようになるが、その平均層厚が2.5μm未満では所望のすぐれた耐熱性向上効果を硬質被覆層に十分に具備せしめることができず、一方その平均層厚が15μmを越えると、チッピングが発生し易くなることから、その平均層厚を2.5〜15μmと定めた。
(B) Modified Ti-based CN layer of the lower layer The modified Ti-based CN layer is present in the tilt angle segment of the tilt angle distribution graph of the above-described modified Ti-based CN layer and in the predetermined tilt angle segment where the highest peak exists. The frequency ratio is the atomic ratio of the Cr content ratio (X value) in the layer to the total amount with Ti as described above, and is in the range of 0 to 10 degrees by setting it to 0.12 to 0.20. The frequency ratio in which the highest peak is present in the angular section and the frequency is within the range of 0 to 10 degrees can be 45% or more of the entire frequency in the inclination angle frequency distribution graph, and therefore the content thereof Even if the ratio is less than 0.12 or exceeds 0.20, the frequency ratio at which the inclination angle section where the highest peak position appears is out of the range of 0 to 10 degrees, and further exists in the range of 0 to 10 degrees. Would be less than 45% Therefore, not only can the decrease in high-temperature strength be suppressed by the uniform dispersion of cooling cracks, but it will also be impossible to ensure an excellent heat resistance improvement effect in high-speed cutting, resulting in the occurrence of thermoplastic deformation or uneven wear. As a result, the wear resistance is inferior.
In addition, the C component in the modified Ti-based CN layer improves the hardness of the layer, while the N component has the effect of improving the high-temperature strength. By coexisting both these components, high hardness and excellent strength are achieved. Therefore, when the content ratio (Y value) of the N component in the layer is less than 0.35 in terms of the atomic ratio to the total amount with the C component, the desired strength can be ensured. On the other hand, if the content ratio (Y value) similarly exceeds 0.55, the content ratio of the C component becomes relatively small and the desired high hardness cannot be obtained. It was set as 0.35-0.55.
As described above, the modified Ti-based CN layer has higher heat resistance than the conventional Ti-based CN layer as described above. However, when the average layer thickness is less than 2.5 μm, the desired superiority is obtained. However, if the average layer thickness exceeds 15 μm, chipping is likely to occur, so that the average layer thickness is 2.5 to 15 μm. Determined.

(c)上部層のAl23
Al23層は、すぐれた高温硬さを有し、硬質被覆層の耐摩耗性向上に寄与するが、その平均層厚が1μm未満では、硬質被覆層に十分な耐摩耗性を発揮せしめることができず、一方その平均層厚が15μmを越えて厚くなりすぎると、チッピングが発生し易くなることから、その平均層厚を1〜15μmと定めた。
The Al 2 O 3 layer the Al 2 O 3 layer (c), the upper layer has excellent high-temperature hardness, contributes to improvement in wear resistance of the hard coating layer, the average layer thickness is less than 1 [mu] m, hard Since the coating layer cannot exhibit sufficient wear resistance, on the other hand, if the average layer thickness exceeds 15 μm, chipping tends to occur. Therefore, the average layer thickness is set to 1 to 15 μm. It was.

なお、切削工具の使用前後の識別を目的として、黄金色の色調を有するTiN層を最表面層として、必要に応じて蒸着形成してもよいが、この場合の平均層厚は0.1〜1μmでよく、これは0.1μm未満では、十分な識別効果が得られず、一方前記TiN層による前記識別効果は1μmまでの平均層厚で十分であるという理由からである。   In addition, for the purpose of identification before and after the use of the cutting tool, the TiN layer having a golden color tone may be vapor-deposited as necessary, but the average layer thickness in this case is 0.1 to 1 μm may be sufficient, and if the thickness is less than 0.1 μm, a sufficient discrimination effect cannot be obtained, while the discrimination effect by the TiN layer is sufficient for an average layer thickness of up to 1 μm.

この発明の被覆工具は、高熱発生を伴う鋼や鋳鉄などの高速切削加工でも、硬質被覆層の下部層のうちの改質Ti系CN層が一段とすぐれた耐熱性と高温強度を有し、熱塑性変形、偏摩耗の発生が抑制されることによって、硬質被覆層はすぐれた耐摩耗性を示すものとなる。   The coated tool of the present invention has excellent heat resistance and high-temperature strength in the modified Ti-based CN layer of the lower layer of the hard coating layer even in high-speed cutting such as steel and cast iron with high heat generation, and is thermoplastic. By suppressing the occurrence of deformation and uneven wear, the hard coating layer exhibits excellent wear resistance.

つぎに、この発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で20時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.05mmのホーニング加工を施すことによりISO・CNMG120412に規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体A〜Fをそれぞれ製造した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders are blended in the blending composition shown in Table 1, added with wax, ball milled in acetone for 20 hours, dried under reduced pressure, and pressed into a compact of a predetermined shape at a pressure of 98 MPa. The green compact was vacuum-sintered at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour in a vacuum of 5 Pa, and after sintering, the cutting edge portion was R: 0.05 mm honing By performing the processing, tool bases A to F made of a WC-base cemented carbide having a throwaway tip shape defined in ISO · CNMG12041 were manufactured.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比で、TiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで20時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG120412のチップ形状をもったTiCN基サーメット製の工具基体a〜fを形成した。 Further, as raw material powders, TiCN (mass ratio, TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC, all having an average particle diameter of 0.5 to 2 μm. Prepare powder, Co powder, and Ni powder, blend these raw material powders into the composition shown in Table 2, wet-mix them for 20 hours with a ball mill, dry them, and press-mold them into green compacts at a pressure of 98 MPa. The green compact is sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after sintering, the cutting edge portion is subjected to a honing process of R: 0.07 mm. Tool bases a to f made of TiCN-based cermet having a chip shape conforming to ISO standards / CNMG 120212 were formed.

つぎに、これらの工具基体A〜Fおよび工具基体a〜fの表面に、通常の化学蒸着装置を用い、硬質被覆層の下部層として、密着性Ti化合物層および改質Ti系CN層からなる下部層を表3に示される条件で、表4に示される組み合わせおよび目標層厚で蒸着形成し、ついで同じく表3に示される条件にて、上部層としてのAl23層を同じく表4に示される組み合わせで、かつ目標層厚で蒸着形成することにより本発明被覆工具1〜13をそれぞれ製造した。 Next, an ordinary chemical vapor deposition apparatus is used on the surfaces of the tool bases A to F and the tool bases a to f, and an adhesive Ti compound layer and a modified Ti-based CN layer are formed as a lower layer of the hard coating layer. The lower layer was formed by vapor deposition under the conditions shown in Table 3 with the combinations and target layer thicknesses shown in Table 4, and then the Al 2 O 3 layer as the upper layer was also formed under the conditions shown in Table 3. The coated tools 1 to 13 of the present invention were manufactured by vapor deposition with the combination shown in FIG.

また、比較の目的で、硬質被覆層の下部層として、密着性Ti化合物層および従来Ti系CN層を表3に示される条件で、表5に示される組み合わせおよび目標層厚で蒸着形成し、さらに上部層としてのAl23層を、表3に示される条件で、かつ同じく表5に示される目標層厚で蒸着形成することにより従来被覆工具1〜13をそれぞれ製造した。 Further, for the purpose of comparison, as a lower layer of the hard coating layer, an adhesive Ti compound layer and a conventional Ti-based CN layer are formed by vapor deposition with the combinations and target layer thicknesses shown in Table 5 under the conditions shown in Table 3. Further, conventionally coated tools 1 to 13 were manufactured by depositing an Al 2 O 3 layer as an upper layer under the conditions shown in Table 3 and with the target layer thicknesses shown in Table 5, respectively.

ついで、上記の本発明被覆工具と従来被覆工具の硬質被覆層を構成する改質Ti系CN層および従来Ti系CN層について、電界放出型走査電子顕微鏡を用いて、傾斜角度数分布グラフをそれぞれ作成した。
すなわち、上記傾斜角度数分布グラフは、上記の改質TiCN層および従来Ti系CN層の表面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{111}面の法線がなす傾斜角を測定し、この測定結果に基づいて、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより作成した。
Next, with respect to the modified Ti-based CN layer and the conventional Ti-based CN layer constituting the hard coating layer of the above-described coated tool of the present invention and the conventional coated tool, a gradient angle number distribution graph is respectively obtained using a field emission scanning electron microscope. Created.
That is, the inclination angle number distribution graph is set in a lens barrel of a field emission scanning electron microscope in a state where the surfaces of the modified TiCN layer and the conventional Ti-based CN layer are polished surfaces. An electron backscatter diffraction image is obtained by irradiating an electron beam with an acceleration voltage of 15 kV at an incident angle of 70 degrees with an irradiation current of 1 nA on each crystal grain having a cubic crystal lattice existing within the measurement range of the surface polished surface. The inclination angle formed by the normal of the {111} plane, which is the crystal plane of the crystal grain, with respect to the normal of the surface polished surface in a 30 × 50 μm region at an interval of 0.1 μm / step using an apparatus. Based on the measurement results, among the measured tilt angles, the measured tilt angles within the range of 0 to 45 degrees are divided into pitches of 0.25 degrees, and the frequency existing in each section is determined. Created by counting.

この結果得られた各種の改質Ti系CN層および従来Ti系CN層の傾斜角度数分布グラフにおいて、{111}面が最高ピークを示す傾斜角区分、並びに0〜10度の範囲内の傾斜角区分内に存在する傾斜角度数の傾斜角度数分布グラフ全体の傾斜角度数に占める割合を表4,5にそれぞれ示した。     In the gradient angle distribution graphs of various modified Ti-based CN layers and conventional Ti-based CN layers obtained as a result of this, the tilt angle segment where the {111} plane shows the highest peak, and the tilt within the range of 0 to 10 degrees Tables 4 and 5 show the ratio of the number of tilt angles existing in the angle section to the number of tilt angles in the entire tilt angle distribution graph.

上記の各種の傾斜角度数分布グラフにおいて、表4に示される通り、本発明被覆工具1〜13の改質Ti系CN層は、いずれも{111}面の測定傾斜角の分布が0〜10度の範囲内の傾斜角区分に最高ピークが現れ、かつ0〜10度の範囲内の傾斜角区分内に存在する傾斜角度数の割合が45%以上である傾斜角度数分布グラフを示すのに対して、表5に示される通り、従来被覆工具1〜13の従来Ti系CN層は、いずれも{111}面の測定傾斜角の分布が0〜45度の範囲内で不偏的で、最高ピークが存在せず、0〜10度の範囲内の傾斜角区分内に存在する傾斜角度数の割合も30%以下である傾斜角度数分布グラフを示すものであった。
なお、図2は、本発明被覆工具5の改質Ti系CN層の傾斜角度数分布グラフ、図3は、従来被覆工具5の従来Ti系CN層の傾斜角度数分布グラフをそれぞれ示すものである。
In the above-mentioned various inclination angle distribution graphs, as shown in Table 4, each of the modified Ti-based CN layers of the present coated tools 1 to 13 has a distribution of measured inclination angles on the {111} plane of 0 to 10. An inclination angle number distribution graph in which the highest peak appears in the inclination angle section within the range of degrees and the ratio of the inclination angle numbers existing in the inclination angle section within the range of 0 to 10 degrees is 45% or more is shown. On the other hand, as shown in Table 5, the conventional Ti-based CN layers of the conventional coated tools 1 to 13 are all unbiased in the range of the measured inclination angle of the {111} plane within the range of 0 to 45 degrees. The inclination angle number distribution graph in which no peak exists and the ratio of the inclination angle number existing in the inclination angle section within the range of 0 to 10 degrees is also 30% or less is shown.
2 shows an inclination angle number distribution graph of the modified Ti-based CN layer of the coated tool 5 of the present invention, and FIG. 3 shows an inclination angle number distribution graph of the conventional Ti-based CN layer of the conventional coated tool 5. is there.

さらに、上記の本発明被覆工具1〜13および従来被覆工具1〜13について、これの硬質被覆層の構成層を電子線マイクロアナライザー(EPMA)およびオージェ分光分析装置を用いて観察(層の縦断面を観察)したところ、前者および後者とも目標組成と実質的に同じ組成を有する密着性Ti化合物層、改質Ti系CN層および従来Ti系CN層、さらにAl23層からなることが確認された。また、これらの被覆工具の硬質被覆層の構成層の厚さを、走査型電子顕微鏡を用いて測定(同じく縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。 Further, regarding the above-described coated tools 1 to 13 of the present invention and the conventional coated tools 1 to 13, the hard coating layer was observed using an electron beam microanalyzer (EPMA) and an Auger spectrometer (longitudinal section of the layer). Observed) confirmed that the former and the latter consisted of an adhesive Ti compound layer, a modified Ti-based CN layer and a conventional Ti-based CN layer having substantially the same composition as the target composition, and an Al 2 O 3 layer. It was done. Moreover, when the thickness of the constituent layer of the hard coating layer of these coated tools was measured using a scanning electron microscope (similarly longitudinal section measurement), the average layer thickness (5 The average value of point measurement) was shown.

つぎに、上記の各種の被覆サーメット工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆工具1〜13および従来被覆工具1〜13について、
被削材:JIS・SNCM439の丸棒、
切削速度: 380 m/min、
切り込み: 1.5 mm、
送り: 0.25 mm/rev、
切削時間: 7 分、
の条件(切削条件Aという)での合金鋼の湿式連続高速切削試験(通常の切削速度は、200m/min)、
被削材:JIS・FC350の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 400 m/min、
切り込み: 2.0 mm、
送り: 0.30 mm/rev、
切削時間: 7 分、
の条件(切削条件Bという)での鋳鉄の湿式断続高速切削試験(通常の切削速度は、250m/min)、
被削材:JIS・S50Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度: 360 m/min、
切り込み: 1.3 mm、
送り: 0.35 mm/rev、
切削時間: 7 分、
の条件(切削条件Cという)での炭素鋼の湿式断続高速切削試験(通常の切削速度は、250m/min)を行い、
いずれの切削試験(水溶性切削油使用)でも切刃の逃げ面摩耗幅を測定した。この測定結果を表6に示した。
Next, with the various coated cermet tools described above, the present coated tools 1 to 13 and the conventional coated tools 1 to 13 in a state where all of the above-mentioned coated cermet tools are screwed to the tip of the tool steel tool with a fixing jig.
Work material: JIS / SNCM439 round bar,
Cutting speed: 380 m / min,
Cutting depth: 1.5 mm,
Feed: 0.25 mm / rev,
Cutting time: 7 minutes,
Wet continuous high-speed cutting test (normal cutting speed is 200 m / min) of alloy steel under the conditions (referred to as cutting condition A),
Work material: JIS / FC350 lengthwise equidistant round bars with 4 vertical grooves,
Cutting speed: 400 m / min,
Cutting depth: 2.0 mm,
Feed: 0.30 mm / rev,
Cutting time: 7 minutes,
Wet intermittent high-speed cutting test of cast iron under the conditions (cutting condition B) (normal cutting speed is 250 m / min),
Work material: JIS / S50C lengthwise equal 4 round grooved round bars,
Cutting speed: 360 m / min,
Cutting depth: 1.3 mm,
Feed: 0.35 mm / rev,
Cutting time: 7 minutes,
The carbon steel was subjected to a wet intermittent high speed cutting test (normal cutting speed is 250 m / min) under the above conditions (referred to as cutting conditions C),
In any cutting test (using water-soluble cutting oil), the flank wear width of the cutting edge was measured. The measurement results are shown in Table 6.

Figure 2008080476
Figure 2008080476

Figure 2008080476
Figure 2008080476

Figure 2008080476
Figure 2008080476

Figure 2008080476
Figure 2008080476

Figure 2008080476
Figure 2008080476

Figure 2008080476
Figure 2008080476

表4〜6に示される結果から、本発明被覆工具1〜13は、いずれも硬質被覆層の下部層のうちの改質Ti系CN層が、{111}面の傾斜角が0〜10度の範囲内の傾斜角区分で最高ピークを示すと共に、前記0〜10度の傾斜角区分範囲内に存在する度数の合計割合が45%以上を占める傾斜角度数分布グラフを示し、高い熱発生を伴う鋼や鋳鉄の高速切削でも、前記改質Ti系CN層が一段とすぐれた耐熱性と高温強度を有し、熱塑性変形、偏摩耗の発生が防がれることから、硬質被覆層がすぐれた耐摩耗性を示すのに対して、硬質被覆層の下部層のうちの従来Ti系CN層が、{111}面の測定傾斜角の分布が0〜45度の範囲内で不偏的で、最高ピークが存在しない傾斜角度数分布グラフを示す従来Ti系CN層で構成された従来被覆工具1〜13においては、いずれも高速切削では硬質被覆層の熱塑性変形あるいは偏摩耗の発生により、硬質被覆層の耐摩耗性は非常におとったものであり、比較的短時間で使用寿命に至ることが明らかである。   From the results shown in Tables 4 to 6, all of the coated tools 1 to 13 of the present invention have a modified Ti-based CN layer in the lower layer of the hard coating layer, and the inclination angle of the {111} plane is 0 to 10 degrees. In addition to showing the highest peak in the inclination angle section within the range, the inclination angle distribution graph in which the total ratio of the frequencies existing in the inclination angle section range of 0 to 10 degrees occupies 45% or more shows high heat generation. Even in high-speed cutting of steel and cast iron, the modified Ti-based CN layer has excellent heat resistance and high-temperature strength, and prevents the occurrence of thermoplastic deformation and uneven wear. The conventional Ti-based CN layer of the lower layer of the hard coating layer is non-biased within the range of the measured inclination angle of the {111} plane within the range of 0 to 45 degrees, while having the highest peak. Is a conventional Ti-based CN layer showing an inclination angle distribution graph in which there is no existence of In all of the coated tools 1 to 13, the wear resistance of the hard coating layer is extremely high due to the occurrence of thermoplastic deformation or partial wear of the hard coating layer in high-speed cutting, and the service life is relatively short. It is clear that

上述のように、この発明の被覆工具は、各種鋼や鋳鉄などの通常の条件での連続切削や断続切削は勿論のこと、特に高い熱発生を伴う高速切削加工でも硬質被覆層がすぐれた耐摩耗性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention has excellent resistance to hard coating even in high-speed cutting with high heat generation, as well as continuous cutting and intermittent cutting under normal conditions such as various steels and cast iron. Since it exhibits wearability and exhibits excellent cutting performance over a long period of time, it can sufficiently satisfy the high performance of cutting equipment, labor saving and energy saving of cutting, and cost reduction. .

硬質被覆層の下部層を構成する改質Ti系CN層および従来Ti系CN層における結晶粒の{111}面の傾斜角の測定範囲を示す概略説明図である。It is a schematic explanatory drawing which shows the measurement range of the inclination angle of the {111} plane of the crystal grain in the modified Ti type | system | group CN layer which comprises the lower layer of a hard coating layer, and the conventional Ti type | system | group CN layer. 本発明被覆工具5の硬質被覆層の下部層を構成する改質Ti系CN層の{111}面の傾斜角度数分布グラフである。It is an inclination angle number distribution graph of the {111} plane of the modified Ti-based CN layer constituting the lower layer of the hard coating layer of the present coated tool 5. 従来被覆工具5の硬質被覆層の下部層を構成する従来Ti系CN層の{111}面の傾斜角度数分布グラフである。7 is a graph showing the inclination angle number distribution of the {111} plane of a conventional Ti-based CN layer constituting the lower layer of the hard coating layer of the conventional coating tool 5.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に上部層と下部層とからなる硬質被覆層を蒸着形成した表面被覆切削工具において、
(a)上記上部層は、化学蒸着で形成された1〜15μmの平均層厚を有する酸化アルミニウム層からなり、
(b)上記下部層は、3〜20μmの合計平均層厚を有し、いずれも化学蒸着で形成された密着性Ti化合物層と改質Ti系炭窒化物層とからなり、
(c)上記密着性Ti化合物層は、0.5〜5μmの合計平均層厚を有するTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなり、
(d)上記改質Ti系炭窒化物層は、2.5〜15μmの平均層厚を有し、かつ、
組成式:(Ti1−XCr)C1−Y(ただし、原子比で、X:0.12〜0.20、Y:0.35〜0.55)、
を満足するTiとCrの炭窒化物層からなり、さらに、上記改質Ti系炭窒化物層は、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{111}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示すこと、
を特徴とする高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具。
In a surface-coated cutting tool in which a hard coating layer composed of an upper layer and a lower layer is vapor-deposited on the surface of a tool base composed of a tungsten carbide-based cemented carbide or a titanium carbonitride-based cermet,
(A) The upper layer is made of an aluminum oxide layer having an average layer thickness of 1 to 15 μm formed by chemical vapor deposition,
(B) The lower layer has a total average layer thickness of 3 to 20 μm, and each consists of an adhesive Ti compound layer and a modified Ti carbonitride layer formed by chemical vapor deposition,
(C) The adhesion Ti compound layer is composed of a Ti carbide layer, a nitride layer, a carbonitride layer, a carbonate layer, and a carbonitride oxide layer having a total average layer thickness of 0.5 to 5 μm. It consists of one or more layers,
(D) The modified Ti carbonitride layer has an average layer thickness of 2.5 to 15 μm, and
Composition formula: (Ti 1-X Cr X ) C 1-Y N Y (however, in atomic ratio, X: 0.12 to 0.20, Y: 0.35 to 0.55),
Further, the modified Ti-based carbonitride layer is a cubic crystal lattice existing within the measurement range of the surface polished surface using a field emission scanning electron microscope. Irradiating the individual crystal grains with an electron beam, and measuring the tilt angle formed by the normal of the {111} plane, which is the crystal plane of the crystal grain, with respect to the normal of the surface polished surface, In the angle distribution graph formed by dividing the measured inclination angles within the range of 0 to 45 degrees among the angles for each pitch of 0.25 degrees and totaling the frequencies existing in each section, 0 to The highest peak exists in the inclination angle section within the range of 10 degrees, and the total of the frequencies existing in the range of 0 to 10 degrees occupies a ratio of 45% or more of the entire degrees in the inclination angle frequency distribution graph. Showing an angle distribution graph,
A surface-coated cutting tool that exhibits excellent wear resistance with a hard coating layer in high-speed cutting.
JP2007093791A 2006-09-01 2007-03-30 Surface coated cutting tool with excellent wear resistance with high hard coating layer in high speed cutting Expired - Fee Related JP5029099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007093791A JP5029099B2 (en) 2006-09-01 2007-03-30 Surface coated cutting tool with excellent wear resistance with high hard coating layer in high speed cutting

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006238335 2006-09-01
JP2006238335 2006-09-01
JP2007093791A JP5029099B2 (en) 2006-09-01 2007-03-30 Surface coated cutting tool with excellent wear resistance with high hard coating layer in high speed cutting

Publications (2)

Publication Number Publication Date
JP2008080476A true JP2008080476A (en) 2008-04-10
JP5029099B2 JP5029099B2 (en) 2012-09-19

Family

ID=39351838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007093791A Expired - Fee Related JP5029099B2 (en) 2006-09-01 2007-03-30 Surface coated cutting tool with excellent wear resistance with high hard coating layer in high speed cutting

Country Status (1)

Country Link
JP (1) JP5029099B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010094761A (en) * 2008-10-15 2010-04-30 Mitsubishi Materials Corp Surface-coated cutting tool provided with hard coated layer demonstrating superior chipping resistance
JP2010094764A (en) * 2008-10-15 2010-04-30 Mitsubishi Materials Corp Surface-coated cutting tool provided with hard coated layer demonstrating superior chipping resistance and wear resistance
CN103572250A (en) * 2012-07-25 2014-02-12 三菱综合材料株式会社 Surface coating cutting tool

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8754366B2 (en) 2005-01-11 2014-06-17 Hamilton Sundstrand Corporation Tandem differential mobility ion mobility spectrometer for chemical vapor detection

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0890310A (en) * 1994-09-19 1996-04-09 Mitsubishi Materials Corp Surface coat cutting tool
JPH11256336A (en) * 1998-03-10 1999-09-21 Hitachi Metals Ltd Titanium carbonitride-coated tool
JP2004167620A (en) * 2002-11-19 2004-06-17 Hitachi Tool Engineering Ltd Film coating tool for titanium-chromium compound film
JP2006021257A (en) * 2004-07-06 2006-01-26 Mitsubishi Materials Corp Surface-coated cemented carbide cutting tool having lubrication-coated layer exhibiting superior abrasion resistance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0890310A (en) * 1994-09-19 1996-04-09 Mitsubishi Materials Corp Surface coat cutting tool
JPH11256336A (en) * 1998-03-10 1999-09-21 Hitachi Metals Ltd Titanium carbonitride-coated tool
JP2004167620A (en) * 2002-11-19 2004-06-17 Hitachi Tool Engineering Ltd Film coating tool for titanium-chromium compound film
JP2006021257A (en) * 2004-07-06 2006-01-26 Mitsubishi Materials Corp Surface-coated cemented carbide cutting tool having lubrication-coated layer exhibiting superior abrasion resistance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010094761A (en) * 2008-10-15 2010-04-30 Mitsubishi Materials Corp Surface-coated cutting tool provided with hard coated layer demonstrating superior chipping resistance
JP2010094764A (en) * 2008-10-15 2010-04-30 Mitsubishi Materials Corp Surface-coated cutting tool provided with hard coated layer demonstrating superior chipping resistance and wear resistance
CN103572250A (en) * 2012-07-25 2014-02-12 三菱综合材料株式会社 Surface coating cutting tool

Also Published As

Publication number Publication date
JP5029099B2 (en) 2012-09-19

Similar Documents

Publication Publication Date Title
JP4518260B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP4534790B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP2006015426A (en) Surface-coated cermet cutting tool with hard coating layer exerting excellent chipping resistance in high-speed intermittent cutting
JP2006334721A (en) SURFACE COATED CERMET CUTTING TOOL WITH THICKENED alpha TYPE ALUMINUM OXIDE LAYER EXHIBITING EXCELLENT CHIPPING RESISTANCE
JP5023839B2 (en) Surface coated cutting tool with excellent wear resistance with high hard coating layer in high speed cutting
JP6139057B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4716250B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting
JP2006334750A (en) SURFACE COATED CERMET CUTTING TOOL WHOSE THICK alpha-TYPE ALUMINUM OXIDE LAYER EXHIBITS HIGH CHIPPING RESISTANCE
JP4730522B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer
JP4756453B2 (en) Surface coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high speed heavy cutting
JP4793750B2 (en) Surface coated cermet cutting tool with excellent chipping resistance in high-speed intermittent cutting of hard steel with excellent hard coating layer
JP5029099B2 (en) Surface coated cutting tool with excellent wear resistance with high hard coating layer in high speed cutting
JP5023896B2 (en) Surface coated cutting tool
JP5003308B2 (en) Surface coated cutting tool
JP4720283B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer
JP2006198740A (en) Cutting tool made of surface coated cermet with hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting
JP5023897B2 (en) Surface coated cutting tool
JP5023895B2 (en) Surface coated cutting tool
JP4811787B2 (en) Surface-coated cermet cutting tool with excellent grain interface strength in modified κ-type aluminum oxide layer of hard coating layer
JP4466848B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4730656B2 (en) Surface coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high speed heavy cutting
JP4474647B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP2006289546A (en) Surface-coated cermet cutting tool having hard coating layer for exhibiting superior chipping resistance in high speed intermittent cutting work
JP5019258B2 (en) Surface coated cutting tool
JP4747338B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120611

R150 Certificate of patent or registration of utility model

Ref document number: 5029099

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees