JP4466848B2 - A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting - Google Patents
A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting Download PDFInfo
- Publication number
- JP4466848B2 JP4466848B2 JP2004304280A JP2004304280A JP4466848B2 JP 4466848 B2 JP4466848 B2 JP 4466848B2 JP 2004304280 A JP2004304280 A JP 2004304280A JP 2004304280 A JP2004304280 A JP 2004304280A JP 4466848 B2 JP4466848 B2 JP 4466848B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- inclination angle
- degrees
- range
- reaction atmosphere
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000005520 cutting process Methods 0.000 title claims description 56
- 239000011195 cermet Substances 0.000 title claims description 44
- 239000011247 coating layer Substances 0.000 title claims description 36
- 239000010410 layer Substances 0.000 claims description 202
- 238000009826 distribution Methods 0.000 claims description 51
- 239000013078 crystal Substances 0.000 claims description 38
- 239000012298 atmosphere Substances 0.000 claims description 36
- 239000010936 titanium Substances 0.000 claims description 24
- 239000010409 thin film Substances 0.000 claims description 20
- 150000001875 compounds Chemical class 0.000 claims description 18
- 239000012495 reaction gas Substances 0.000 claims description 17
- 239000000203 mixture Substances 0.000 claims description 16
- 238000005229 chemical vapour deposition Methods 0.000 claims description 15
- 238000005259 measurement Methods 0.000 claims description 15
- 239000011295 pitch Substances 0.000 claims description 11
- 238000000151 deposition Methods 0.000 claims description 9
- 238000010894 electron beam technology Methods 0.000 claims description 8
- 238000001887 electron backscatter diffraction Methods 0.000 claims description 7
- 238000007740 vapor deposition Methods 0.000 claims description 7
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 6
- 230000008021 deposition Effects 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 claims description 3
- 150000004767 nitrides Chemical class 0.000 claims description 2
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 claims description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims 1
- 239000000126 substance Substances 0.000 claims 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 60
- 239000000843 powder Substances 0.000 description 18
- 238000012360 testing method Methods 0.000 description 8
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 229910001018 Cast iron Inorganic materials 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 5
- 230000035939 shock Effects 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 229910001141 Ductile iron Inorganic materials 0.000 description 1
- 229910001315 Tool steel Inorganic materials 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- 229910002090 carbon oxide Inorganic materials 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000004453 electron probe microanalysis Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 102200003959 rs11556986 Human genes 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
Images
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Chemical Vapour Deposition (AREA)
Description
この発明は、特に各種の鋼や鋳鉄などの高速断続切削加工で、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具(以下、被覆サーメット工具という)に関するものである。 The present invention relates to a surface-coated cermet cutting tool (hereinafter referred to as a coated cermet tool) that exhibits excellent chipping resistance with a hard coating layer, particularly in high-speed intermittent cutting of various types of steel and cast iron.
従来、一般に、被覆サーメット工具として、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(1)下部層が、いずれも化学蒸着形成または物理蒸着形成された、Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、
(2)上部層が、化学蒸着形成した状態でα型の結晶構造を有し、かつ1〜14μmの平均層厚を有する酸化アルミニウム(以下、α型Al2O3で示す)層、
以上(a)および(b)で構成された硬質被覆層を蒸着形成してなる、表面被覆サーメット製切削工具が知られており、この被覆サーメット工具は、各種の鋼や鋳鉄などの被削材の連続切削や断続切削に用いられている。
(1) Ti carbide (hereinafter referred to as TiC) layer, nitride (hereinafter also referred to as TiN) layer, carbonitride (hereinafter referred to as TiCN), each of which is formed by chemical vapor deposition or physical vapor deposition. 1), a carbon oxide (hereinafter referred to as TiCO) layer, and a carbonitride oxide (hereinafter referred to as TiCNO) layer, and an overall average layer thickness of 3 to 20 μm. A Ti compound layer having
(2) An aluminum oxide (hereinafter referred to as α-type Al 2 O 3 ) layer having an α-type crystal structure in an upper layer formed by chemical vapor deposition and having an average layer thickness of 1 to 14 μm,
There is known a surface-coated cermet cutting tool formed by vapor-depositing the hard coating layer composed of (a) and (b) above, and this coated cermet tool is a work material such as various steels and cast iron. It is used for continuous cutting and intermittent cutting.
近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は一段と高速化の傾向にあるが、上記の従来被覆サーメット工具においては、これを鋼や鋳鉄などの通常の条件での切削加工に用いた場合には問題はないが、特にこれを切削条件の厳しい高速断続切削加工、すなわち切刃部にきわめて速いピッチで機械的熱的衝撃の加わる高速断続切削加工に用いた場合、硬質被覆層を構成するTi化合物層は相対的に高い高温強度を有し、かつα型Al2O3層は、相対的に高温硬さおよび耐熱性にすぐれるものの、特に前記α型Al2O3層の高温強度不足は著しく、さらに前記Ti化合物層も十分満足な高温強度を具備しないことと相俟って、硬質被覆層にチッピング(微小欠け)が発生し易くなり、この結果比較的短時間で使用寿命に至るのが現状である。 In recent years, the performance of cutting machines has been remarkable. On the other hand, there is a strong demand for labor saving, energy saving, and cost reduction for cutting, and along with this, cutting has been on the trend of higher speed. For coated cermet tools, there is no problem when this is used for cutting under normal conditions such as steel and cast iron, but this is especially fast for high-speed intermittent cutting with severe cutting conditions, that is, extremely fast cutting edges. When used for high-speed interrupted cutting with mechanical thermal shock at a pitch, the Ti compound layer constituting the hard coating layer has a relatively high high-temperature strength, and the α-type Al 2 O 3 layer is relatively In addition, the α-type Al 2 O 3 layer is particularly deficient in high-temperature strength and heat resistance, and the Ti compound layer is not sufficiently satisfactory in high-temperature strength. Coating layer Mappings easily (small chipping) occurs, the reach this result relatively short time service life at present.
そこで、本発明者等は、上述のような観点から、上記の従来被覆サーメット工具の硬質被覆層を構成する、特にTi化合物層のうちのTiCN層(以下、従来TiCN層という)およびα型Al2O3層(以下、従来Al2O3層という)に着目し、これ両層の高温強度を一段と向上させ、もって高速断続切削加工条件でチッピング発生のない被覆サーメット工具を開発すべく研究を行った結果、
(A−a)上記の従来TiCN層は、通常の化学蒸着装置にて、
反応ガス組成−体積%で、TiCl4:2〜10%、CH3CN:0.5〜3%、N2:10〜30%、H2:残り、
反応雰囲気温度:850〜950℃、
反応雰囲気圧力:3〜13kPa、
の条件で形成されるが、上記従来TiCN層の形成に先だって、
反応ガス組成−体積%で、TiCl4:0.52〜0.84%、C3H6(メチルエチレン):2〜5%、N2:20〜40%、H2:残り、
反応雰囲気温度:700〜750℃、
反応雰囲気圧力:3〜7kPa、
成膜時間:1〜3時間、
の条件で、望ましくは0.02〜0.5μmの平均層厚で種薄膜としてのTiCN薄膜(以下、TiCN種薄膜という)を形成し、このTiCN種薄膜の上に上記の従来TiCN層の形成条件と同じ条件でTiCN層を形成すると、形成時の前記TiCN層は、前記TiCN種薄膜の結晶配列に著しく影響を受け、これを十分に履歴するようになり、しかもこの結果形成されたTiCN層(以下、履歴TiCN層という)は、上記の従来TiCN層に比して、一段とすぐれた高温強度を有し、すぐれた耐機械的熱的衝撃性を具備するようになること。
In view of the above, the inventors of the present invention constitute a hard coating layer of the above-described conventional coated cermet tool, in particular, a TiCN layer (hereinafter referred to as a conventional TiCN layer) of the Ti compound layer and α-type Al. Focusing on the 2 O 3 layer (hereinafter referred to as the conventional Al 2 O 3 layer), research was conducted to further improve the high-temperature strength of both layers and to develop a coated cermet tool that does not generate chipping under high-speed intermittent cutting conditions. As a result,
(Aa) The conventional TiCN layer is a normal chemical vapor deposition apparatus.
Reaction gas composition - by volume%, TiCl 4: 2~10%, CH 3 CN: 0.5~3%, N 2: 10~30%, H 2: remainder,
Reaction atmosphere temperature: 850-950 ° C.
Reaction atmosphere pressure: 3 to 13 kPa,
However, prior to the formation of the conventional TiCN layer,
Reaction gas composition - by volume%, TiCl 4: 0.52~0.84%, C 3 H 6 ( methylethylene): 2 ~5%, N 2 : 20~40%, H 2: remainder,
Reaction atmosphere temperature: 700 to 750 ° C.
Reaction atmosphere pressure: 3 to 7 kPa,
Deposition time: 1-3 hours
In this condition, a TiCN thin film as a seed thin film (hereinafter referred to as a TiCN seed thin film) is preferably formed with an average layer thickness of 0.02 to 0.5 μm, and the above-described conventional TiCN layer is formed on the TiCN seed thin film. When the TiCN layer is formed under the same conditions, the TiCN layer at the time of formation is significantly affected by the crystal arrangement of the TiCN seed thin film, and the TiCN layer is formed as a result. (Hereinafter referred to as a history TiCN layer) has a higher temperature strength than that of the conventional TiCN layer, and has excellent mechanical and thermal shock resistance.
(A−b)上記の被覆サーメット工具の硬質被覆層の下部層を構成する従来TiCN層と履歴TiCN層について、
電界放出型走査電子顕微鏡を用い、図1(a),(b)に概略説明図で示される通り、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射し、電子後方散乱回折像装置を用いて、所定領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対する、前記結晶粒の結晶面である{112}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフを作成した場合、前記従来TiCN層は、図5に例示される通り、{112}面の測定傾斜角の分布が0〜45度の範囲内で不偏的な傾斜角度数分布グラフを示すのに対して、前記履歴TiCN層は、図2に例示される通り、傾斜角区分の特定位置にシャープな最高ピークが現れ、このシャープな最高ピークは、グラフ横軸の傾斜角区分に現れる高さが上記TiCN種薄膜形成時の反応雰囲気温度および反応雰囲気圧力によって変化し、グラフ横軸の傾斜角区分位置が同じく反応ガスのTiCl4含有量によって変化すること。
(Ab) About the conventional TiCN layer and the history TiCN layer constituting the lower layer of the hard coating layer of the coated cermet tool,
Using a field emission scanning electron microscope, as shown in the schematic explanatory diagrams of FIGS. 1A and 1B, electron beams are individually applied to crystal grains having a cubic crystal lattice existing within the measurement range of the surface polished surface. Irradiate and use an electron backscatter diffraction image apparatus, and the normal of the {112} plane, which is the crystal plane of the crystal grain, with respect to the normal of the polished surface with respect to the normal of the surface-polished surface at an interval of 0.1 μm / step Measure the inclination angle to be made, divide the measurement inclination angle within the range of 0-45 degrees out of the measurement inclination angle for each pitch of 0.25 degree, and totalize the frequency existing in each division When the tilt angle number distribution graph is created, the conventional TiCN layer has an unbiased tilt angle number within the range of the measured tilt angle distribution of the {112} plane within the range of 0 to 45 degrees as illustrated in FIG. While the distribution graph is shown, the history TiCN layer is shown in FIG. As can be seen, a sharp maximum peak appears at a specific position in the tilt angle section, and the sharp maximum peak has a height that appears in the tilt angle section on the horizontal axis of the graph. It changes depending on the pressure, and the inclination angle division position on the horizontal axis of the graph also changes depending on the TiCl 4 content of the reaction gas.
(A−c)上記の通り、上記TiCN種薄膜形成に際して、上記反応ガスにおけるTiCl4の含有量を0.52〜0.84%とすることにより、上記履歴TiCN層の傾斜角度数分布グラフで、シャープな最高ピークが傾斜角区分の2.00〜6.50度の範囲内に現れ、かつ、反応雰囲気温度を700〜750℃、反応雰囲気圧力を3〜7kPaとすることにより、0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の61〜75%の割合を占める傾斜角度数分布グラフを示すようになるが、この場合、試験結果によれば、表3に示される通りTiCl4の含有量が0.52%未満でも、またその含有量が0.84%を越えても、いずれの場合も上記履歴TiCN層の傾斜角度数分布グラフで、最高ピークの傾斜角区分位置が2.00〜6.50度の範囲を外れた位置に現れるようになり、この結果前記履歴TiCN層に一段のすぐれた高温強度を確保することができなくなり、また、反応雰囲気温度および反応雰囲気圧力に関しては、温度が700℃未満でも、750℃を越えても、さらに圧力が3kPa未満でも、7kPaを越えても、前記履歴TiCN層の傾斜角度数分布グラフにおける0〜10度の範囲内に存在する度数数割合が61%未満になる場合が発生し、この場合も一段の高温強度の向上を図ることができないこと。 ( Ac ) As described above, when forming the TiCN seed thin film, by setting the content of TiCl 4 in the reaction gas to 0.52 to 0.84 %, the inclination angle number distribution graph of the hysteresis TiCN layer A sharp maximum peak appears in the range of 2.00 to 6.50 degrees of the tilt angle section, and the reaction atmosphere temperature is set to 700 to 750 ° C. and the reaction atmosphere pressure is set to 3 to 7 kPa. An inclination angle distribution graph in which the total of the frequencies existing within a range of 10 degrees occupies a ratio of 61 to 75 % of the entire frequency in the inclination angle distribution distribution graph is shown. In this case, according to the test result, , even less than 0.52% content of as TiCl 4 shown in Table 3, also beyond the content is 0.84% at any tilt angle frequency distribution graph of the history TiCN layer in each case, Tilt angle division position of the high peak is to appear at a position outside the range of 2.00 to 6.50 degrees, it becomes impossible to secure a high temperature strength which is superior in one step on the result the history TiCN layer, In regard to the reaction atmosphere temperature and the reaction atmosphere pressure, whether the temperature is less than 700 ° C., more than 750 ° C., even if the pressure is less than 3 kPa, or more than 7 kPa, The frequency ratio existing in the range of 0 to 10 degrees may be less than 61 %, and in this case, the high temperature strength cannot be further improved.
(B−a)上記の従来Al2O3層は、通常の化学蒸着装置にて、
反応ガス組成−体積%で、AlCl3:1〜5%、CO2:0.5〜10%、HCl:0.3〜3%、H2S:0.02〜0.4%、H2:残り、
反応雰囲気温度:950〜1100℃、
反応雰囲気圧力:3〜13kPa、
の条件で形成されるが、上記従来Al2O3層の形成に先だって、
反応ガス組成−体積%で、AlCl3:1〜5%、CO2:5〜10%、HCl:0.3〜3%、CH3CN:0.02〜0.1%、NO:0.02〜0.2%、H2:残り、
反応雰囲気温度:840〜900℃、
反応雰囲気圧力:5〜13kPa、
成膜時間:1〜1.5時間、
の条件で、望ましくは0.02〜0.5μmの平均層厚で種薄膜としてのAl2O3薄膜(以下、Al2O3種薄膜という)を形成し、このAl2O3種薄膜の上に上記の従来Al2O3層の形成条件と同じ条件でα型Al2O3層を形成すると、形成時の前記α型Al2O3層は、前記Al2O3種薄膜の結晶配列に著しく影響を受け、これを十分に履歴するようになり、しかもこの結果形成されたα型Al2O3層(以下、履歴Al2O3層という)は、α型Al2O3層自身が具備するすぐれた高温硬さおよび耐熱性を損なうことなく、上記の従来Al2O3層に比して、一段とすぐれた高温強度を具備するようになること。
(Ba) The conventional Al 2 O 3 layer is a normal chemical vapor deposition apparatus.
Reaction gas composition - by volume%, AlCl 3: 1~5%, CO 2: 0.5~10%, HCl: 0.3~3%, H 2 S: 0.02~0.4%, H 2 :remaining,
Reaction atmosphere temperature: 950-1100 ° C.
Reaction atmosphere pressure: 3 to 13 kPa,
However, prior to the conventional Al 2 O 3 layer formation,
Reaction gas composition - by volume%, AlCl 3: 1~5%, CO 2: 5~10%, HCl: 0.3~3%, CH 3 CN: 0.02~0.1%, NO: 0. 02~ 0.2%, H 2: remainder,
Temperature of reaction atmosphere: 840 ~900 ℃,
Reaction atmosphere pressure: 5 to 13 kPa,
Deposition time: 1 to 1.5 hours
In conditions, preferably as the Al 2 O 3 thin film (hereinafter, Al referred 2 O 3 or thin) species thin with an average layer thickness of 0.02~0.5μm is formed and the Al 2 O 3 or thin When forming the above-described prior the Al 2 O 3 layer α type the Al 2 O 3 layer under the same conditions as the conditions for forming the above forming the α-type the Al 2 O 3 layer at the time of the crystals of the Al 2 O 3 or thin The α-type Al 2 O 3 layer (hereinafter referred to as a history Al 2 O 3 layer) formed as a result of the significant influence of the arrangement and the sufficient history of the α-type Al 2 O 3 layer The high-temperature strength and heat resistance possessed by itself are not impaired, and the high-temperature strength is further improved as compared with the conventional Al 2 O 3 layer.
(B−b)上記(a)の履歴Al2O3層および従来Al2O3層について、電界放出型走査電子顕微鏡を用い、図2(a),(b)に概略説明図で示される通り、表面研磨面の測定範囲内に存在する六方晶結晶格子を有するAl2O3結晶粒個々に電子線を照射し、電子後方散乱回折像装置を用いて、所定領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対する、前記結晶粒の結晶面である{0001}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフを作成した場合、前記従来Al2O3層は、図6に例示される通り、{0001}面の測定傾斜角の分布が0〜45度の範囲内で不偏的な傾斜角度数分布グラフを示すのに対して、前記履歴Al2O3層は、図4に例示される通り、傾斜角区分の特定位置にシャープな最高ピークが現れ、このシャープな最高ピークは、グラフ横軸の傾斜角区分に現れる高さが上記Al2O3種薄膜形成時の反応雰囲気温度および反応雰囲気圧力によって変化し、グラフ横軸の傾斜角区分位置が同じく反応ガスのCH3CN含有量によって変化すること。 (Bb) The history Al 2 O 3 layer and the conventional Al 2 O 3 layer in (a) above are shown schematically in FIGS. 2A and 2B using a field emission scanning electron microscope. As described above, each of the Al 2 O 3 crystal grains having a hexagonal crystal lattice existing within the measurement range of the polished surface is irradiated with an electron beam, and a predetermined region is set to 0.1 μm / step using an electron backscatter diffraction image apparatus. Is measured with respect to the normal of the surface polished surface at an interval of the inclination angle formed by the normal of the {0001} plane which is the crystal plane of the crystal grain, and within the range of 0 to 45 degrees of the measured inclination When the inclination angle number distribution graph is created by dividing the measured inclination angles at 0.25 degree pitches and adding up the frequencies existing in each section, the conventional Al 2 O 3 layer is As illustrated in FIG. 6, the distribution of measured inclination angles on the {0001} plane is within the range of 0 to 45 degrees. Whereas it illustrates an unbiased inclination angle frequency distribution graph, the history the Al 2 O 3 layer, as illustrated in FIG. 4, appear sharp highest peak in a specific position of the tilt angle indicator, the sharp maximum The height of the peak that appears in the tilt angle section of the horizontal axis of the graph varies depending on the reaction atmosphere temperature and the reaction atmosphere pressure during the formation of the Al 2 O 3 seed thin film, and the tilt angle section position of the horizontal axis of the graph is the same as the CH of the reaction gas. 3 Change according to CN content.
(B−c)上記の通り、上記Al2O3種薄膜形成に際して、上記反応ガスにおけるCH3CNの含有量を0.02〜0.1%とすることにより、上記履歴Al2O3層の傾斜角度数分布グラフで、シャープな最高ピークが傾斜角区分の0〜10度の範囲内に現れ、かつ、反応雰囲気温度を840〜900℃、反応雰囲気圧力を5〜13kPaとすることにより、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45〜71%の割合を占める傾斜角度数分グラフを示すようになるが、この場合、試験結果によれば、CH3CNの含有量が0.02%未満でも、またその含有量が0.1%を越えても、上記履歴Al 2 O 3 層の傾斜角度数分布グラフで、最高ピークの傾斜角区分位置が10度を越えた位置に現れるようになり、この結果前記履歴Al2O3層に所望のすぐれた高温強度を確保することができなくなり、また、反応雰囲気温度および反応雰囲気圧力に関しては、温度が840℃未満でも、また900℃を越えても、さらに圧力が5kPa未満でも、また13kPaを越えても、いずれも場合も前記履歴Al2O3層の傾斜角度数分布グラフにおける0〜10度の範囲内に存在する度数割合が45%未満になってしまい、高温強度に所望の向上効果が得られないこと。 (Bc) As described above, when the Al 2 O 3 seed thin film is formed, the history Al 2 O 3 layer is formed by setting the content of CH 3 CN in the reaction gas to 0.02 to 0.1%. In the inclination angle number distribution graph, the sharp maximum peak appears in the range of 0 to 10 degrees of the inclination angle section, the reaction atmosphere temperature is 840 to 900 ° C., and the reaction atmosphere pressure is 5 to 13 kPa, The total number of frequencies within the range of 0 to 10 degrees shows a graph corresponding to 45 to 71 % of the total frequency in the tilt angle frequency distribution graph. In this case, the test results According to the graph, even when the content of CH 3 CN is less than 0.02% and the content exceeds 0.1%, the highest peak in the inclination angle number distribution graph of the above-mentioned history Al 2 O 3 layer Tilt angle section position exceeds 10 degrees As a result, it becomes impossible to ensure the desired excellent high-temperature strength in the hysteresis Al 2 O 3 layer, and the reaction atmosphere temperature and the reaction atmosphere pressure are less than 840 ° C. In addition, even if the temperature exceeds 900 ° C., the pressure is less than 5 kPa, and the pressure exceeds 13 kPa, both are within the range of 0 to 10 degrees in the inclination angle number distribution graph of the hysteresis Al 2 O 3 layer. The frequency ratio present is less than 45%, and the desired improvement effect cannot be obtained in the high temperature strength.
(B−d)以上の通り、硬質被覆層の上部層が上記履歴Al2O3層で構成され、かつ下部層のうちの1層が上記履歴TiCN層からなるTi化合物層で構成された被覆サーメット工具は、特に切刃部にきわめて速いピッチで機械的熱的衝撃が加わる高速断続切削加工でも、前記硬質被覆層が著しくすぐれた高温強度を具備するようになることから、すぐれた耐チッピング性を発揮し、長期に亘ってすぐれた耐摩耗性を示すようになること
以上(A)および(B)に示される研究結果を得たのである。
(Bd) As described above, a coating in which the upper layer of the hard coating layer is composed of the hysteresis Al 2 O 3 layer and one of the lower layers is composed of a Ti compound layer composed of the hysteresis TiCN layer. The cermet tool has excellent chipping resistance because the hard coating layer has extremely high temperature strength, especially in high-speed intermittent cutting where mechanical thermal shock is applied to the cutting edge at an extremely fast pitch. As a result, the research results shown in (A) and (B) have been obtained.
この発明は、上記の研究結果に基づいてなされたものであって、WC基超硬合金またはTiCN基サーメットで構成された工具基体の表面に、
(1)下部層が、いずれも化学蒸着形成された、TiC層、TiN層、TiCN層、TiCO層、およびTiCNO層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、
(2)上部層が、化学蒸着形成した状態でα型の結晶構造を有するα型Al2O3層、
以上(1)および(2)で構成された硬質被覆層を蒸着形成してなる、被覆サーメット製切削工具において、
(A)上記(1)のTi化合物層のうちの1層を、
反応ガス組成−体積%で、TiCl 4 :0.52〜0.84%、C 3 H 6 (メチルエチレン):2〜5%、N 2 :20〜40%、H 2 :残り、
反応雰囲気温度:700〜750℃、
反応雰囲気圧力:3〜7kPa、
成膜時間:1〜3時間、
の条件で、0.02〜0.5μmの平均層厚に化学蒸着形成されたTiCN種薄膜を介して、
反応ガス組成−体積%で、TiCl 4 :2〜10%、CH 3 CN:0.5〜3%、N 2 :10〜30%、H 2 :残り、
反応雰囲気温度:850〜950℃、
反応雰囲気圧力:3〜13kPa、
の条件(従来蒸着条件に相当する条件)で2.5〜15μmの平均層厚に化学蒸
着形成してなると共に、
電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する立方晶結
晶格子を有する結晶粒個々に電子線を照射し、電子後方散乱回折像装置を用いて、所定領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対する、前記結晶粒の結晶面である{112}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、2.00〜6.50度の範囲内の傾斜角区分に最高ピークが存在すると共に、0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の61〜75%の割合を占める傾斜角度数分布グラフを示す履歴TiCN層、
(B)上記のα型Al2O3層を、
反応ガス組成−体積%で、AlCl 3 :1〜5%、CO 2 :5〜10%、HCl:0.3〜3%、CH 3 CN:0.02〜0.1%、NO:0.02〜0.2%、H 2 :残り、
反応雰囲気温度:840〜900℃、
反応雰囲気圧力:5〜13kPa、
成膜時間:1〜1.5時間、
の条件で、0.02〜0.5μmの平均層厚に化学蒸着形成されたAl 2 O 3 種薄膜を介して、
反応ガス組成−体積%で、AlCl 3 :1〜5%、CO 2 :0.5〜10%、HCl:0.3〜3%、H 2 S:0.02〜0.4%、H 2 :残り、
反応雰囲気温度:950〜1100℃、
反応雰囲気圧力:3〜13kPa、
の条件(従来蒸着条件に相当する条件)で、1〜14μmの平均層厚に化学蒸着形成してなると共に、
電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射し、電子後方散乱回折像装置を用いて、所定領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対する、前記結晶粒の結晶面である{0001}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45〜71%の割合を占める傾斜角度数分布グラフを示す化学蒸着形成した状態でα型の結晶構造を有する履歴Al2O3層、
で構成してなる、高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する被覆サーメット工具に特徴を有するものである。
The present invention has been made based on the above research results, and on the surface of a tool base composed of a WC-based cemented carbide or TiCN-based cermet,
(1) The lower layer consists of one or more of TiC layer, TiN layer, TiCN layer, TiCO layer, and TiCNO layer, all formed by chemical vapor deposition, and an overall average layer of 3 to 20 μm A Ti compound layer having a thickness;
(2) an α-type Al 2 O 3 layer having an α-type crystal structure in a state where the upper layer is formed by chemical vapor deposition;
In the coated cermet cutting tool formed by vapor-depositing the hard coating layer composed of (1) and (2) above,
(A) One of the Ti compound layers of (1) above is
Reaction gas composition - by volume%, TiCl 4: 0.52~0.84%, C 3 H 6 ( methylethylene): 2~5%, N 2: 20~40%, H 2: remainder,
Reaction atmosphere temperature: 700 to 750 ° C.
Reaction atmosphere pressure: 3 to 7 kPa,
Deposition time: 1-3 hours
Under the conditions, through a TiCN seed thin film formed by chemical vapor deposition to an average layer thickness of 0.02 to 0.5 μm,
Reaction gas composition - by volume%, TiCl 4: 2~10%, CH 3 CN: 0.5~3%, N 2: 10~30%, H 2: remainder,
Reaction atmosphere temperature: 850-950 ° C.
Reaction atmosphere pressure: 3 to 13 kPa,
Under the conditions (corresponding to the conventional vapor deposition conditions)
As it is formed,
Using electric field emission scanning electron microscope, the crystal grains each having a cubic crystal lattice existing in a measurement range of the surface polishing surface is irradiated with an electron beam, using an electron backscattering diffraction image device, 0 a predetermined area The inclination angle formed by the normal of the {112} plane, which is the crystal plane of the crystal grain, is measured with respect to the normal of the surface-polished surface at an interval of 1 μm / step. In the inclination angle number distribution graph obtained by dividing the measured inclination angles within the range of degrees into pitches of 0.25 degrees and totaling the frequencies existing in the respective sections, 2.00 to 6.50 degrees Inclination angle distribution in which the highest peak exists in the inclination angle section within the range, and the sum of the frequencies existing in the range of 0 to 10 degrees occupies 61 to 75 % of the entire frequency in the inclination angle distribution graph History TiCN layer showing graph,
(B) The α-type Al 2 O 3 layer is
Reaction gas composition - by volume%, AlCl 3: 1~5%, CO 2: 5~10%, HCl: 0.3~3%, CH 3 CN: 0.02~0.1%, NO: 0. 02~0.2%, H 2: remainder,
Reaction atmosphere temperature: 840 to 900 ° C.
Reaction atmosphere pressure: 5 to 13 kPa,
Deposition time: 1 to 1.5 hours
Under the conditions, through the Al 2 O 3 seed thin film formed by chemical vapor deposition to an average layer thickness of 0.02 to 0.5 μm ,
Reaction gas composition - by volume%, AlCl 3: 1~5%, CO 2: 0.5~10%, HCl: 0.3~3%, H 2 S: 0.02~0.4%, H 2 :remaining,
Reaction atmosphere temperature: 950-1100 ° C.
Reaction atmosphere pressure: 3 to 13 kPa,
In the above conditions (conditions corresponding to conventional vapor deposition conditions), chemical vapor deposition is formed to an average layer thickness of 1 to 14 μm ,
Using a field emission scanning electron microscope, each crystal grain having a hexagonal crystal lattice existing within the measurement range of the surface polished surface is irradiated with an electron beam, and a predetermined region is set to 0. 0 using an electron backscatter diffraction image apparatus. At an interval of 1 μm / step, an inclination angle formed by a normal line of the {0001} plane, which is a crystal plane of the crystal grain, is measured with respect to a normal line of the polished surface. In the inclination angle distribution graph formed by dividing the measured inclination angles within the range of 0.25 degrees into pitches and adding up the frequencies existing in each section, the inclination angles within the range of 0 to 10 degrees Chemistry showing an inclination angle distribution graph in which the highest peak exists in the section and the total of the frequencies existing in the range of 0 to 10 degrees occupies 45 to 71 % of the entire frequency in the inclination angle distribution graph Α-type in the state of vapor deposition History the Al 2 O 3 layer having a crystal structure,
It is characterized by a coated cermet tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting.
つぎに、この発明の被覆サーメット工具の硬質被覆層の構成層について、上記の通りに数値限定した理由を以下に説明する。
(A)(a)Ti化合物層(下部層)
Ti化合物層は、自体が高温強度を有し、これの存在によって硬質被覆層が高温強度を具備するようになるほか、工具基体と上部層である履歴Al2O3層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性向上に寄与する作用をもつが、その合計平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方その合計平均層厚が20μmを越えると、特に高熱発生を伴なう高速断続切削で熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その合計平均層厚を3〜20μmと定めた。
Next, the reason why the constituent layers of the hard coating layer of the coated cermet tool of the present invention are numerically limited as described above will be described below.
(A) (a) Ti compound layer (lower layer)
The Ti compound layer itself has high-temperature strength, and the presence of the Ti compound layer allows the hard coating layer to have high-temperature strength, and is strong against both the tool base and the hysteresis Al 2 O 3 layer that is the upper layer. It has an action that contributes to improving the adhesion of the hard coating layer to the tool substrate, but if the total average layer thickness is less than 3 μm, the above-mentioned action cannot be sufficiently exerted, whereas the total average layer thickness When the thickness exceeds 20 μm, it becomes easy to cause thermoplastic deformation particularly by high-speed intermittent cutting accompanied by generation of high heat, which causes uneven wear. Therefore, the total average layer thickness is determined to be 3 to 20 μm.
(b)履歴TiCN層(下部層)
上記の通り、上記TiCN種薄膜形成に際して、上記反応ガスにおけるTiCl4の含有量を0.52〜0.84%とすることにより、傾斜角度数分布グラフで、シャープな最高ピークが傾斜角区分の2.00〜6.50度の範囲内に現れ、かつ、反応雰囲気温度を700〜750℃、反応雰囲気圧力を3〜7kPaとすることにより、0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の61〜75%の割合を占める傾斜角度数分布グラフを示す履歴TiCN層が形成されるようになり、この結果として前記履歴TiCN層はさらに一段とすぐれた高温強度を具備するようになるが、その平均層厚が2.5μm未満では所望のすぐれた高温強度を硬質被覆層に具備せしめることができず、一方その平均層厚が15μmを越えると、偏摩耗の原因となる熱塑性変形が発生し易くなり、摩耗が加速するようになることから、その平均層厚を2.5〜15μmと定めた。
(B) History TiCN layer (lower layer)
As described above, when the TiCN seed thin film is formed, by setting the content of TiCl 4 in the reaction gas to 0.52 to 0.84 %, the sharpest peak in the tilt angle distribution graph is the tilt angle section. When the reaction atmosphere temperature is 700 to 750 ° C. and the reaction atmosphere pressure is 3 to 7 kPa, the frequency that is in the range of 0 to 10 degrees appears. The hysteresis TiCN layer showing the inclination angle frequency distribution graph in which the total accounted for 61 to 75 % of the total frequency in the inclination angle frequency distribution graph is formed, and as a result, the history TiCN layer was further improved. However, if the average layer thickness is less than 2.5 μm, it is not possible to provide the hard coating layer with the desired excellent high-temperature strength. If the layer thickness exceeds 15 [mu] m, easily heat the plastic deformation which causes partial wear is generated, since it becomes worn accelerates, determined the average layer thickness and 2.5~15Myuemu.
(B)履歴Al2O3層(上部層)
履歴Al2O3層は、傾斜角度数分布グラフで、シャープな最高ピークが傾斜角区分の0〜10度の範囲内に現れ、かつ前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45〜71%の割合を占める傾斜角度数分布グラフを示し、この結果すぐれた高温強度を具備し、耐チッピング性の向上が図られるようになる外、Al2O3層自身のもつすぐれた高温硬さと耐熱性によって、硬質被覆層の耐摩耗性向上に寄与するが、その平均層厚が1μm未満では、硬質被覆層に十分な耐摩耗性を発揮せしめることができず、一方その平均層厚が14μmを越えて厚くなりすぎると、チッピングが発生し易くなることから、その平均層厚を1〜14μmと定めた。
(B) History Al 2 O 3 layer (upper layer)
The history Al 2 O 3 layer is an inclination angle distribution graph, where the sharpest peak appears in the range of 0 to 10 degrees of the inclination angle section, and the sum of the frequencies existing in the range of 0 to 10 degrees is , Showing an inclination angle distribution graph occupying a ratio of 45 to 71 % of the entire frequency in the inclination angle distribution graph, and as a result, it has excellent high-temperature strength and improves chipping resistance. The excellent high-temperature hardness and heat resistance of the 2 O 3 layer itself contributes to improving the wear resistance of the hard coating layer. However, if the average layer thickness is less than 1 μm, the hard coating layer can exhibit sufficient wear resistance. On the other hand, if the average layer thickness exceeds 14 μm and becomes too thick, chipping tends to occur. Therefore, the average layer thickness was set to 1 to 14 μm.
なお、切削工具の使用前後の識別を目的として、黄金色の色調を有するTiN層を、必要に応じて蒸着形成してもよいが、この場合の平均層厚は0.1〜1μmでよく、これは0.1μm未満では、十分な識別効果が得られず、一方前記TiN層による前記識別効果は1μmまでの平均層厚で十分であるという理由からである。 In addition, for the purpose of identification before and after the use of the cutting tool, a TiN layer having a golden color tone may be vapor-deposited as necessary, but the average layer thickness in this case may be 0.1 to 1 μm, This is because if the thickness is less than 0.1 μm, a sufficient discrimination effect cannot be obtained, while the discrimination effect by the TiN layer is sufficient with an average layer thickness of up to 1 μm.
この発明の被覆サーメット工具は、上記の従来被覆サーメット工具の硬質被覆層の下部層を構成するTi化合物層のうちの1層であるTiCN層および上部層であるα型Al2O3層を、上記の通りいずれも高温強度の一段と向上した履歴TiCN層および履歴Al2O3層で構成することにより、特に切刃部にきわめて速いピッチで機械的熱的衝撃の加わる鋼や鋳鉄などの高速断続切削加工でも、チッピングの発生なく、すぐれた耐摩耗性を発揮するようにしたものである。 The coated cermet tool of the present invention comprises a TiCN layer which is one of the Ti compound layers constituting the lower layer of the hard coating layer of the conventional coated cermet tool and an α-type Al 2 O 3 layer which is the upper layer. As described above, high-speed intermittent cutting of steel and cast iron, etc., in which mechanical thermal shock is applied to the cutting edge at a very fast pitch by configuring it with a history TiCN layer and a history Al 2 O 3 layer that are further improved in high-temperature strength. Even in the cutting process, excellent wear resistance is exhibited without occurrence of chipping.
つぎに、この発明の被覆サーメット工具を実施例により具体的に説明する。 Next, the coated cermet tool of the present invention will be specifically described with reference to examples.
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、TaC粉末、NbC粉末、TiN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG120412に規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体A,Bを製造した。 As raw material powders, WC powder, TiC powder, ZrC powder, TaC powder, NbC powder, TiN powder, and Co powder each having an average particle diameter of 1 to 3 μm are prepared. These raw material powders are shown in Table 1. After blending into the blending composition, adding wax, ball mill mixing in acetone for 24 hours, drying under reduced pressure, press-molding into a compact of a predetermined shape at a pressure of 98 MPa, and this compact in a vacuum of 5 Pa. Slow stipulated in ISO · CNMG120412 by vacuum sintering at a predetermined temperature within the range of 1370 to 1470 ° C under the condition of holding for 1 hour, and after sintering, the honing process of R: 0.07mm is applied to the cutting edge part. Tool bases A and B made of a WC-base cemented carbide having an outer tip shape were manufactured.
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG120412のチップ形状をもったTiCN基サーメット製の工具基体b,eを形成した。 Further, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, TaC powder, WC powder, Co powder, all having an average particle diameter of 0.5 to 2 μm. , And Ni powder, these raw material powders are blended in the blending composition shown in Table 1 , wet mixed for 24 hours with a ball mill, dried, and then pressed into a compact at a pressure of 98 MPa. The powder is sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after sintering, the cutting edge portion is subjected to a honing process of R: 0.07 mm to achieve ISO standard / CNMG120212. The tool bases b and e made of TiCN base cermet having the following chip shape were formed.
つぎに、これらの工具基体の表面に、通常の化学蒸着装置を用い、表2に示される条件にて、硬質被覆層の下部層としてTi化合物層を形成し、この場合、前記Ti化合物層のうちの履歴TiCN層を形成するに際しては、まず表3に示される条件、すなわち試験結果に基づいて定められた目標履歴TiCN層に対する種薄膜c,d,f,およびgの条件でそれぞれTiCN種薄膜を形成し、引続いて、上記の通り表2に示される従来TiCN層の形成条件と同じ条件で履歴TiCN層を、表5に示される組み合わせおよび目標層厚で蒸着形成し、ついで、まず表4に示される条件、すなわち試験結果に基づいて定められた目標履歴Al2O3層に対する種薄膜A,B,E,およびKの条件でAl2O3種薄膜を表5に示される組み合わせで形成し、引続いて、上記の通り表3に示される従来Al2O3層の形成条件と同じ条件で履歴Al2O3層を、表5に示される組み合わせおよび目標層厚で蒸着形成することにより本発明被覆サーメット工具1〜5をそれぞれ製造した。 Next, a Ti compound layer is formed on the surface of these tool bases as a lower layer of the hard coating layer under the conditions shown in Table 2 using a normal chemical vapor deposition apparatus. When forming the history TiCN layer, the TiCN seed thin film is first subjected to the conditions shown in Table 3 , that is, the conditions of the seed thin films c, d, f, and g for the target history TiCN layer determined based on the test results. Subsequently, a history TiCN layer was formed by vapor deposition with the combination and target layer thickness shown in Table 5 under the same conditions as the conventional TiCN layer formation conditions shown in Table 2 as described above. In the combinations shown in Table 5 , the Al 2 O 3 seed thin film is subjected to the conditions shown in FIG. 4 , that is, the seed thin films A, B, E, and K conditions for the target history Al 2 O 3 layer determined based on the test results. form Then, as described above, a history Al 2 O 3 layer is vapor-deposited with the combination and target layer thickness shown in Table 5 under the same conditions as the conventional Al 2 O 3 layer formation conditions shown in Table 3. By this, this invention coated cermet tool 1-5 was manufactured, respectively.
また、比較の目的で、同じく表5に示される通り、硬質被覆層の下部層である従来TiCN層を含むTi化合物層およびα型Al2O3層(従来Al2O3層)を同じく表2に示される条件で、かつ表5に示される目標層厚で蒸着形成する以外は同一の条件で硬質被覆層を形成することにより従来被覆サーメット工具1〜5をそれぞれ製造した。 For comparison purposes, as shown in Table 5 , the Ti compound layer including the conventional TiCN layer and the α-type Al 2 O 3 layer (conventional Al 2 O 3 layer), which are the lower layers of the hard coating layer, are also shown. Conventionally coated cermet tools 1 to 5 were produced by forming a hard coating layer under the same conditions except that vapor deposition was performed under the conditions shown in Table 2 and with the target layer thickness shown in Table 5 .
ついで、上記の本発明被覆サーメット工具と従来被覆サーメット工具の硬質被覆層を構成する履歴TiCN層および従来TiCN層、さらに履歴Al2O3層および従来Al2O3層について、電界放出型走査電子顕微鏡および電子後方散乱回折像装置を用いて、傾斜角度数分布グラフをそれぞれ作成した。
すなわち、上記傾斜角度数分布グラフは、上記の履歴TiCN層および従来TiCN層、さらに履歴Al2O3層および従来Al2O3層の表面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記表面研磨面の測定範囲内に存在する立方晶結晶格子(TiCN)または六方晶結晶格子(Al2O3)を有する結晶粒個々に照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対する、前記結晶粒の結晶面である{112}面(TiCN層)または{0001}面(Al2O3層)の法線がなす傾斜角を測定し、この測定結果に基づいて、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより作成した。
Next, with respect to the hysteresis TiCN layer and the conventional TiCN layer constituting the hard coating layer of the above-described coated cermet tool of the present invention and the conventional coated cermet tool, and further to the hysteresis Al 2 O 3 layer and the conventional Al 2 O 3 layer, field emission scanning electrons An inclination angle number distribution graph was prepared using a microscope and an electron backscatter diffraction image apparatus .
That is, the inclination angle number distribution graph shows the field emission scanning electron microscope in a state where the surfaces of the hysteresis TiCN layer and the conventional TiCN layer, and further the surfaces of the hysteresis Al 2 O 3 layer and the conventional Al 2 O 3 layer are polished surfaces. A cubic crystal lattice (TiCN) existing in the measurement range of the surface polished surface with an electron beam with an acceleration voltage of 15 kV at an incident angle of 70 degrees and an irradiation current of 1 nA on the polished surface. Alternatively, each crystal grain having a hexagonal crystal lattice (Al 2 O 3 ) is irradiated, and an electron backscatter diffraction image apparatus is used to divide a region of 30 × 50 μm at an interval of 0.1 μm / step. The inclination angle formed by the normal of the {112} plane (TiCN layer) or {0001} plane (Al 2 O 3 layer), which is the crystal plane of the crystal grain, with respect to the normal is measured. Of the measured tilt angles Measuring the inclination angle is in the range of 0 to 45 degrees while divided for each pitch of 0.25 degrees, it was created by aggregating the frequencies present in each segment.
この結果得られた各種の履歴TiCN層および従来TiCN層、さらに各種の履歴Al2O3層および従来Al2O3層の傾斜角度数分布グラフにおいて、{112}面または{0001}面が最高ピークを示す傾斜角区分、並びに0〜10度の範囲内の傾斜角区分内に存在する傾斜角度数の傾斜角度数分布グラフ全体の傾斜角度数に占める割合を表6にそれぞれ示した。 As a result, the {112} plane or {0001} plane is the highest in the inclination angle number distribution graphs of various hysteresis TiCN layers and conventional TiCN layers, and various hysteresis Al 2 O 3 layers and conventional Al 2 O 3 layers. Table 6 shows the ratio of the number of inclination angles existing in the inclination angle section showing the peak and the inclination angle number existing in the inclination angle section in the range of 0 to 10 degrees to the entire inclination angle distribution graph.
上記の各種の傾斜角度数分布グラフにおいて、表6に示される通り、本発明被覆サーメット工具の履歴TiCN層および履歴Al2O3層は、いずれも{112}面の測定傾斜角の分布が2.00〜6.50度および{0001}面の測定傾斜角の分布が0〜10度の範囲内の傾斜角区分にそれぞれ最高ピークが現れ、かつ前記2.00〜6.50度および0〜10度の範囲内の傾斜角区分内に存在する傾斜角度数の割合がそれぞれ61〜75%および45〜71%である傾斜角度数分布グラフを示すのに対して、従来被覆サーメット工具の従来TiCN層および従来Al2O3層は、いずれも{112}面および{0001}面の測定傾斜角の分布が0〜45度の範囲内で不偏的で、最高ピークが存在せず、0〜10度の範囲内の傾斜角区分内に存在する傾斜角度数の割合も30%以下である傾斜角度数分布グラフを示すものであった。
なお、図3,4は、本発明被覆サーメット工具3の履歴TiCN層および履歴Al2O3層の傾斜角度数分布グラフ、図5,6は、従来被覆サーメット工具3の従来TiCN層および従来Al2O3層の傾斜角度数分布グラフをそれぞれ示すものである。
In the above-mentioned various inclination angle number distribution graphs, as shown in Table 6 , each of the hysteresis TiCN layer and the hysteresis Al 2 O 3 layer of the coated cermet tool of the present invention has a distribution of measured inclination angles of 2 in the {112} plane. The highest peak appears in each of the inclination angle sections in the range of 0 to 6.50 degrees and the measured inclination angle of the {0001} plane in the range of 0 to 10 degrees, and the 2.00 to 6.50 degrees and 0 to 0 degrees. While showing the inclination angle number distribution graph in which the ratio of the inclination angle numbers existing in the inclination angle section within the range of 10 degrees is 61 to 75% and 45 to 71% , respectively , the conventional TiCN of the conventional coated cermet tool Both the conventional layer and the conventional Al 2 O 3 layer are unbiased in the distribution of the measured inclination angles of the {112} plane and the {0001} plane within the range of 0 to 45 degrees, and the highest peak does not exist. Tilt angle division within the range of degrees The inclination angle number distribution graph in which the ratio of the number of inclination angles existing therein is also 30% or less is shown.
3 and 4 are graphs of inclination angle number distribution of the hysteresis TiCN layer and the hysteresis Al 2 O 3 layer of the coated cermet tool 3 of the present invention, and FIGS. 5 and 6 are the conventional TiCN layer and the conventional AlN of the conventional coated cermet tool 3. 2 shows an inclination angle number distribution graph of the 2 O 3 layer.
さらに、上記の本発明被覆サーメット工具1〜5および従来被覆サーメット工具1〜5について、これの硬質被覆層のTi化合物層とAl2O3層を電子線マイクロアナライザー(EPMA)およびオージェ分光分析装置を用いて観察(層の縦断面を観察)したところ、前者および後者とも目標組成と実質的に同じ組成を有することが確認され、また、これらの被覆サーメット工具の硬質被覆層の構成層の厚さを、走査型電子顕微鏡を用いて測定(同じく縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。 Further, with respect to the above-described coated cermet tools 1 to 5 and the conventional coated cermet tools 1 to 5 , the Ti compound layer and the Al 2 O 3 layer of the hard coating layer are formed by an electron beam microanalyzer (EPMA) and an Auger spectrometer. (The longitudinal section of the layer was observed), it was confirmed that both the former and the latter had substantially the same composition as the target composition, and the thickness of the constituent layers of the hard coating layer of these coated cermet tools When measured using a scanning electron microscope (same longitudinal section measurement), all showed an average layer thickness (average value of five-point measurement) substantially the same as the target layer thickness.
つぎに、上記の各種の被覆サーメット工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆サーメット工具1〜5および従来被覆サーメット工具1〜5について、
被削材:JIS・SCM440の長さ方向等間隔4本縦溝入り丸棒、
切削速度:450m/min、
切り込み:1.5mm、
送り:0.3mm/rev、
切削時間:10分、
の条件(切削条件A)での合金鋼の乾式高速断続切削試験(通常の切削速度は250m/min)、
被削材:JIS・S40Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:450m/min、
切り込み:1.5mm、
送り:0.3mm/rev、
切削時間:10分、
の条件(切削条件B)での炭素鋼の乾式高速断続切削試験(通常の切削速度は200m/min)、
被削材:JIS・FCD350の長さ方向等間隔4本縦溝入り丸棒、
切削速度:450m/min、
切り込み:1.6mm、
送り:0.32mm/rev、
切削時間:10分、
の条件(切削条件C)でのダクタイル鋳鉄の乾式高速断続切削試験(通常の切削速度は250m/min)を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表7に示した。
Next, in the state where each of the above various coated cermet tools is screwed to the tip of the tool steel tool with a fixing jig, the present coated cermet tools 1 to 5 and the conventional coated cermet tools 1 to 5 are as follows:
Work material: JIS · SCM440 lengthwise equidistant 4 vertical grooved round bar,
Cutting speed: 450 m / min,
Incision: 1.5mm,
Feed: 0.3mm / rev,
Cutting time: 10 minutes,
Dry high-speed intermittent cutting test (normal cutting speed is 250 m / min) of alloy steel under the above conditions (cutting condition A),
Work material: JIS · S40C lengthwise equal length 4 round bar with round groove,
Cutting speed: 450 m / min,
Incision: 1.5mm,
Feed: 0.3mm / rev,
Cutting time: 10 minutes,
Dry high-speed intermittent cutting test of carbon steel under the conditions (cutting condition B) (normal cutting speed is 200 m / min),
Work material: JIS / FCD350 lengthwise equidistant round bars with 4 vertical grooves,
Cutting speed: 450 m / min,
Cutting depth: 1.6mm,
Feed: 0.32mm / rev,
Cutting time: 10 minutes,
A dry high-speed intermittent cutting test (normal cutting speed is 250 m / min) of ductile cast iron under the above conditions (cutting condition C), and the flank wear width of the cutting edge was measured in any cutting test. The measurement results are shown in Table 7 .
表5〜7に示される結果から、本発明被覆サーメット工具1〜5は、いずれも硬質被覆層の下部層のTi化合物層のうちの1層および上部層が、それぞれ前記下部層のうちの1層にあっては{112}面の傾斜角が2.00〜6.50度、さらに上記上部層にあっては{0001}面の傾斜角が0〜10度の範囲内の傾斜角区分で最高ピークを示すと共に、0〜10度の傾斜角区分範囲内に存在する度数の合計割合がそれぞれ61〜75%および45〜71%を占める傾斜角度数分布グラフを示す履歴TiCN層および履歴Al2O3層で構成され、切刃部にきわめて速いピッチで機械的熱的衝撃の加わる高速断続切削加工でも、前記履歴TiCN層および履歴Al2O3層のいずれもが一段とすぐれた高温強度を具備することから、切刃部のチッピング発生が著しく抑制され、すぐれた耐摩耗性を示すのに対して、硬質被覆層の下部層のTi化合物層のうちの1層および上部層が、それぞれ前記下部層のうちの1層にあっては{112}面、さらに上記上部層にあっては{0001}面の測定傾斜角の分布がいずれも0〜45度の範囲内で不偏的で、最高ピークが存在しない傾斜角度数分布グラフを示す従来TiCN層および従来Al2O3層で構成された従来被覆サーメット工具1〜5においては、いずれも高速断続切削加工では硬質被覆層の高温強度が不十分であるために、切刃部にチッピングが発生し、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 5-7 , in the coated cermet tools 1-5 of the present invention, one of the Ti compound layers and the upper layer of the lower layer of the hard coating layer are each one of the lower layers. In the layer, the {112} plane has an inclination angle of 2.00 to 6.50 degrees , and in the upper layer, the {0001} plane has an inclination angle in the range of 0 to 10 degrees. Hysteresis TiCN layer and hysteresis Al 2 showing the gradient peak distribution graph showing the highest peak and occupying 61 to 75% and 45 to 71% of the total ratio of the frequencies existing in the gradient angle range of 0 to 10 degrees, respectively. Both the hysteresis TiCN layer and the hysteresis Al 2 O 3 layer have excellent high-temperature strength even in high-speed intermittent machining, which consists of an O 3 layer, and mechanical thermal shock is applied to the cutting edge at an extremely fast pitch. From the cutting edge While the occurrence of chipping is remarkably suppressed and excellent wear resistance is exhibited, one of the Ti compound layers and the upper layer of the lower layer of the hard coating layer are respectively present in one of the lower layers. In the {112} plane, and in the above upper layer, the distribution of measured inclination angles on the {0001} plane is all unbiased within the range of 0 to 45 degrees, and the inclination angle number distribution graph without the highest peak. In the conventional coated cermet tools 1 to 5 composed of the conventional TiCN layer and the conventional Al 2 O 3 layer, the cutting edge portion is high because the high temperature strength of the hard coating layer is insufficient in high-speed intermittent cutting. It is clear that chipping occurs and the service life is reached in a relatively short time.
上述のように、この発明の被覆サーメット工具は、各種鋼や鋳鉄などの通常の条件での切削加工は勿論のこと、特に硬質被覆層に高温強度が要求される高速断続切削加工でも、硬質被覆層がすぐれた耐チッピング性を示し、長期に亘ってすぐれた耐摩耗性を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。 As described above, the coated cermet tool of the present invention can be used for hard coating not only for cutting under normal conditions such as various types of steel and cast iron, but also for high-speed intermittent cutting that requires high-temperature strength for the hard coating layer. Since the layer exhibits excellent chipping resistance and excellent wear resistance over a long period of time, it is fully satisfied with high performance of cutting equipment, labor saving and energy saving of cutting processing, and cost reduction It can cope with.
Claims (1)
(1)下部層が、いずれも化学蒸着形成された、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(2)上部層が、化学蒸着形成した状態でα型の結晶構造を有する酸化アルミニウム層、
以上(1)および(2)で構成された硬質被覆層を蒸着形成してなる、表面被覆サーメット製切削工具において、
(A)上記(1)のTi化合物層のうちの1層を、
反応ガス組成−体積%で、TiCl 4 :0.52〜0.84%、C 3 H 6 (メチルエチレン):2〜5%、N 2 :20〜40%、H 2 :残り、
反応雰囲気温度:700〜750℃、
反応雰囲気圧力:3〜7kPa、
成膜時間:1〜3時間、
の条件で、0.02〜0.5μmの平均層厚に化学蒸着形成された種薄膜としての炭窒化チタン薄膜を介して、
反応ガス組成−体積%で、TiCl 4 :2〜10%、CH 3 CN:0.5〜3%、N 2 :10〜30%、H 2 :残り、
反応雰囲気温度:850〜950℃、
反応雰囲気圧力:3〜13kPa、
の条件(従来蒸着条件に相当する条件)で2.5〜15μmの平均層厚に化学蒸
着形成してなると共に、
電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する立方晶
結晶格子を有する結晶粒個々に電子線を照射し、電子後方散乱回折像装置を用いて、所定領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対する、前記結晶粒の結晶面である{112}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、2.00〜6.50度の範囲内の傾斜角区分に最高ピークが存在すると共に、0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の61〜75%の割合を占める傾斜角度数分布グラフを示す炭窒化チタン層、
(B)上記(2)の酸化アルミニウム層を、
反応ガス組成−体積%で、AlCl 3 :1〜5%、CO 2 :5〜10%、HCl:0.3〜3%、CH 3 CN:0.02〜0.1%、NO:0.02〜0.2%、H 2 :残り、
反応雰囲気温度:840〜900℃、
反応雰囲気圧力:5〜13kPa、
成膜時間:1〜1.5時間、
の条件で、0.02〜0.5μmの平均層厚に化学蒸着形成された種薄膜としての酸化アルミニウム薄膜を介して、
反応ガス組成−体積%で、AlCl 3 :1〜5%、CO 2 :0.5〜10%、HCl:0.3〜3%、H 2 S:0.02〜0.4%、H 2 :残り、
反応雰囲気温度:950〜1100℃、
反応雰囲気圧力:3〜13kPa、
の条件(従来蒸着条件に相当する条件)で、1〜14μmの平均層厚に化学蒸着形成してなると共に、
電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射し、電子後方散乱回折像装置を用いて、前記測定範囲を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{0001}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45〜71%の割合を占める傾斜角度数分布グラフを示す化学蒸着形成した状態でα型の結晶構造を有する酸化アルミニウム層、
で構成したことを特徴とする高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具。 On the surface of the tool base composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(1) The lower layer is formed of one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer, and carbonitride oxide layer, all formed by chemical vapor deposition. And a Ti compound layer having a total average layer thickness of 3 to 20 μm,
(2) an aluminum oxide layer having an α-type crystal structure in a state where the upper layer is formed by chemical vapor deposition;
In the surface-coated cermet cutting tool formed by vapor-depositing the hard coating layer composed of (1) and (2) above,
(A) One of the Ti compound layers of (1) above is
Reaction gas composition - by volume%, TiCl 4: 0.52~0.84%, C 3 H 6 ( methylethylene): 2~5%, N 2: 20~40%, H 2: remainder,
Reaction atmosphere temperature: 700 to 750 ° C.
Reaction atmosphere pressure: 3 to 7 kPa,
Deposition time: 1-3 hours
Under the conditions, through a titanium carbonitride thin film as a seed thin film formed by chemical vapor deposition to an average layer thickness of 0.02 to 0.5 μm,
Reaction gas composition - by volume%, TiCl 4: 2~10%, CH 3 CN: 0.5~3%, N 2: 10~30%, H 2: remainder,
Reaction atmosphere temperature: 850-950 ° C.
Reaction atmosphere pressure: 3 to 13 kPa,
Under the conditions (corresponding to the conventional vapor deposition conditions)
As it is formed,
Using a field emission scanning electron microscope, each crystal grain having a cubic crystal lattice existing within the measurement range of the surface polished surface is irradiated with an electron beam, and a predetermined region is set to 0. 0 using an electron backscatter diffraction image apparatus. The inclination angle formed by the normal of the {112} plane, which is the crystal plane of the crystal grain, is measured with respect to the normal of the surface polished surface at an interval of 1 μm / step. In the inclination angle number distribution graph in which the measured inclination angles within the range of 0.25 degrees are divided for each pitch of 0.25 degrees and the frequencies existing in each division are tabulated, the range of 2.00 to 6.50 degrees An inclination angle distribution graph in which the highest peak exists in the inclination angle section and the sum of the frequencies existing in the range of 0 to 10 degrees occupies a ratio of 61 to 75 % of the entire frequency in the inclination angle distribution graph. Showing a titanium carbonitride layer,
(B) The aluminum oxide layer of (2) above,
Reaction gas composition - by volume%, AlCl 3: 1~5%, CO 2: 5~10%, HCl: 0.3~3%, CH 3 CN: 0.02~0.1%, NO: 0. 02~0.2%, H 2: remainder,
Reaction atmosphere temperature: 840 to 900 ° C.
Reaction atmosphere pressure: 5 to 13 kPa,
Deposition time: 1 to 1.5 hours
Under the above conditions, through an aluminum oxide thin film as a seed thin film formed by chemical vapor deposition with an average layer thickness of 0.02 to 0.5 μm,
Reaction gas composition - by volume%, AlCl 3: 1~5%, CO 2: 0.5~10%, HCl: 0.3~3%, H 2 S: 0.02~0.4%, H 2 :remaining,
Reaction atmosphere temperature: 950-1100 ° C.
Reaction atmosphere pressure: 3 to 13 kPa,
In the above conditions (conditions corresponding to conventional vapor deposition conditions), chemical vapor deposition is formed to an average layer thickness of 1 to 14 μm ,
Using a field emission scanning electron microscope, each crystal grain having a hexagonal crystal lattice existing in the measurement range of the surface polished surface is irradiated with an electron beam, and the measurement range is set to 0 using an electron backscatter diffraction image apparatus. The inclination angle formed by the normal line of the {0001} plane, which is the crystal plane of the crystal grain, is measured with respect to the normal line of the polished surface at an interval of 1 μm / step. In the inclination angle distribution graph formed by dividing the measured inclination angles within the range of ˜45 degrees into the pitches of 0.25 degrees and totaling the frequencies existing in the respective sections, within the range of 0 to 10 degrees. Inclination angle number distribution graph in which the highest peak exists in the inclination angle section and the sum of the frequencies existing in the range of 0 to 10 degrees occupies a ratio of 45 to 71 % of the whole frequency in the inclination angle distribution graph α while chemical vapor deposited showing the Aluminum oxide layer having a crystal structure,
A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a high hard coating layer in high-speed intermittent cutting.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004304280A JP4466848B2 (en) | 2004-10-19 | 2004-10-19 | A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004304280A JP4466848B2 (en) | 2004-10-19 | 2004-10-19 | A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006116621A JP2006116621A (en) | 2006-05-11 |
JP4466848B2 true JP4466848B2 (en) | 2010-05-26 |
Family
ID=36534989
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004304280A Expired - Fee Related JP4466848B2 (en) | 2004-10-19 | 2004-10-19 | A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4466848B2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5217305B2 (en) * | 2006-09-05 | 2013-06-19 | 株式会社タンガロイ | Coated cutting tool and manufacturing method thereof |
JP6139057B2 (en) * | 2012-01-04 | 2017-05-31 | 三菱マテリアル株式会社 | A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting |
JP6548073B2 (en) * | 2014-05-28 | 2019-07-24 | 三菱マテリアル株式会社 | Surface coated cutting tool exhibiting excellent chipping resistance with hard coating layer |
DE112019004438T5 (en) | 2018-09-05 | 2021-05-20 | Kyocera Corporation | COATED TOOL AND CUTTING TOOL |
US11964328B2 (en) | 2018-09-05 | 2024-04-23 | Kyocera Corporation | Coated tool and cutting tool |
WO2020050259A1 (en) | 2018-09-05 | 2020-03-12 | 京セラ株式会社 | Coated tool and cutting tool |
US12030127B2 (en) | 2018-09-05 | 2024-07-09 | Kyocera Corporation | Coated tool and cutting tool |
WO2020050264A1 (en) | 2018-09-05 | 2020-03-12 | 京セラ株式会社 | Coated tool and cutting tool |
JP7089038B2 (en) | 2018-09-05 | 2022-06-21 | 京セラ株式会社 | Covering tools and cutting tools |
-
2004
- 2004-10-19 JP JP2004304280A patent/JP4466848B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2006116621A (en) | 2006-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4518260B2 (en) | Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting | |
JP4466841B2 (en) | A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting | |
JP4811781B2 (en) | Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer | |
JP4747324B2 (en) | Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high speed heavy cutting | |
JP2006231433A (en) | Surface-coated cermet cutting tool with hard coating layer exerting excellent chipping resistance in high-speed intermittent cutting | |
JP4518259B2 (en) | A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting | |
JP5023839B2 (en) | Surface coated cutting tool with excellent wear resistance with high hard coating layer in high speed cutting | |
JP4811782B2 (en) | Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer | |
JP4466848B2 (en) | A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting | |
JP4730522B2 (en) | Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer | |
JP4793750B2 (en) | Surface coated cermet cutting tool with excellent chipping resistance in high-speed intermittent cutting of hard steel with excellent hard coating layer | |
JP5023896B2 (en) | Surface coated cutting tool | |
JP5029099B2 (en) | Surface coated cutting tool with excellent wear resistance with high hard coating layer in high speed cutting | |
JP2005279912A (en) | Surface coated cermet-made cutting tool having hard coating layer exhibiting excellent chipping resistance | |
JP4811787B2 (en) | Surface-coated cermet cutting tool with excellent grain interface strength in modified κ-type aluminum oxide layer of hard coating layer | |
JP2006289586A (en) | Surface-coated cermet cutting tool having hard coating layer exhibiting superior chipping resistance in high speed intermittent cutting work | |
JP2009056562A (en) | Surface-coated cutting tool | |
JP4748361B2 (en) | Surface-coated cermet cutting tool with excellent chipping resistance with hard coating layer in difficult-to-cut materials | |
JP4591752B2 (en) | Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer | |
JP4747338B2 (en) | Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials | |
JP4483510B2 (en) | A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting | |
JP5019258B2 (en) | Surface coated cutting tool | |
JP4529578B2 (en) | Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high speed heavy cutting | |
JP4438559B2 (en) | Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in intermittent heavy cutting | |
JP4692065B2 (en) | Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070330 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091023 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091028 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091130 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100203 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4466848 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100216 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130305 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140305 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |