JP2005279912A - Surface coated cermet-made cutting tool having hard coating layer exhibiting excellent chipping resistance - Google Patents

Surface coated cermet-made cutting tool having hard coating layer exhibiting excellent chipping resistance Download PDF

Info

Publication number
JP2005279912A
JP2005279912A JP2004175038A JP2004175038A JP2005279912A JP 2005279912 A JP2005279912 A JP 2005279912A JP 2004175038 A JP2004175038 A JP 2004175038A JP 2004175038 A JP2004175038 A JP 2004175038A JP 2005279912 A JP2005279912 A JP 2005279912A
Authority
JP
Japan
Prior art keywords
layer
type
crystal structure
hard coating
degrees
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004175038A
Other languages
Japanese (ja)
Other versions
JP4569743B2 (en
Inventor
Fumio Tsushima
文雄 対馬
Takuya Hayatoi
拓也 早樋
Takatoshi Oshika
高歳 大鹿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2004175038A priority Critical patent/JP4569743B2/en
Priority to DE200460013903 priority patent/DE602004013903D1/en
Priority to EP04105829A priority patent/EP1536041B1/en
Priority to US10/999,222 priority patent/US7276301B2/en
Priority to CNB2004100962050A priority patent/CN100448576C/en
Publication of JP2005279912A publication Critical patent/JP2005279912A/en
Application granted granted Critical
Publication of JP4569743B2 publication Critical patent/JP4569743B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface coated cermet-made cutting tool, the hard coating layer of which exhibits excellent chipping resistance. <P>SOLUTION: A hard coating layer composed of the following (a) and (b) is formed on the surface of a tool base forming a surface coated cermet-made cutting tool. (a) A lower layer is a Ti-compound layer formed of one or two or more layers selected from a TiC layer, a TiN layer, a TiCN layer, a TiCO layer and a TiCNO layer which are all formed by chemical vapor deposition and having the total average layer thickness ranging from 3 to 20 μm, and (b) an upper layer is a thermal transformation α type Al-Zr oxide layer having a κ-type or θ-type crystal structure in the chemical deposition formation state, in which the surface of the Al-base oxide layer satisfying a specified composition formula is subjected to the thermal transformation treatment in the state where a Ti oxide layer is formed with the average layer thickness ranging from 0.05 to 1.5 μm by chemical vapor deposition, thereby transforming the crystal structure of the Al-Zr oxide layer having the κ-type or θ-type crystal structure to the α type crystal structure, and the average layer thickness is 1 to 15 μm. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、特に鋼や鋳鉄などの高速断続切削加工で、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具(以下、被覆サーメット工具という)に関するものである。   The present invention relates to a surface-coated cermet cutting tool (hereinafter referred to as a coated cermet tool) that exhibits excellent chipping resistance with a hard coating layer, particularly in high-speed intermittent cutting of steel or cast iron.

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)下部層として、いずれも化学蒸着形成されたTiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(b)上部層として、化学蒸着形成した状態でα型の結晶構造を有し、かつ1〜15μmの平均層厚を有する蒸着α型酸化アルミニウム(以下、Al23で示す)層、
以上(a)および(b)で構成された硬質被覆層を形成してなる被覆サーメット工具が知られており、この被覆サーメット工具が、例えば各種の鋼や鋳鉄などの連続切削や断続切削に用いられていることも知られている。
Conventionally, generally on the surface of a substrate (hereinafter collectively referred to as a tool substrate) composed of a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet. ,
(A) As a lower layer, a Ti carbide (hereinafter referred to as TiC) layer, nitride (hereinafter also referred to as TiN) layer, carbonitride (hereinafter referred to as TiCN) layer formed by chemical vapor deposition, Ti compound layer comprising one or more of a carbon oxide (hereinafter referred to as TiCO) layer and a carbonitride oxide (hereinafter referred to as TiCNO) layer and having a total average layer thickness of 3 to 20 μm ,
(B) a vapor-deposited α-type aluminum oxide (hereinafter referred to as Al 2 O 3 ) layer having an α-type crystal structure in the state of chemical vapor deposition and having an average layer thickness of 1 to 15 μm as an upper layer;
A coated cermet tool formed by forming a hard coating layer composed of (a) and (b) above is known, and this coated cermet tool is used for continuous cutting and intermittent cutting of various steels and cast irons, for example. It is also known that

また、一般に、上記の被覆サーメット工具の硬質被覆層を構成するTi化合物層や蒸着α型Al23 層が粒状結晶組織を有し、さらに、前記Ti化合物層を構成するTiCN層を、層自身の強度向上を目的として、通常の化学蒸着装置にて、反応ガスとして有機炭窒化物、例えばCH3CNを含む混合ガスを使用し、700〜950℃の中温温度域で化学蒸着することにより形成して縦長成長結晶組織をもつようにすることも知られている。
特開平6−31503号公報 特開平6−8010号公報
In general, the Ti compound layer and vapor-deposited α-type Al 2 O 3 layer constituting the hard coating layer of the above coated cermet tool have a granular crystal structure, and the TiCN layer constituting the Ti compound layer is For the purpose of improving its own strength, by performing chemical vapor deposition at a medium temperature range of 700 to 950 ° C. using a mixed gas containing an organic carbonitride such as CH 3 CN as a reaction gas in a normal chemical vapor deposition apparatus. It is also known to form a vertically elongated crystal structure.
Japanese Unexamined Patent Publication No. 6-31503 Japanese Patent Laid-Open No. 6-8010

近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は一段と高速化の傾向にあるが、上記の従来被覆サーメット工具においては、これを鋼や鋳鉄などの通常の条件での連続切削や断続切削に用いた場合には問題はないが、特にこれを切削条件の最も厳しい高速断続切削、すなわち切刃部にきわめて短いピッチで繰り返し機械的熱的衝撃の加わる高速断続切削に用いた場合、硬質被覆層の下部層であるTi化合物層は高温強度を有し、すぐれた耐チッピング性を示すものの、同上部層を構成する蒸着α型Al23層は、高温硬さおよび耐熱性にすぐれるものの、機械的熱的衝撃に対してきわめて脆いものであるために、これが原因で硬質被覆層にはチッピング(微小欠け)が発生し易くなり、この結果比較的短時間で使用寿命に至るのが現状である。 In recent years, the performance of cutting machines has been remarkable. On the other hand, there is a strong demand for labor saving, energy saving, and cost reduction for cutting work, and along with this, cutting work tends to be further accelerated. For coated cermet tools, there is no problem when this is used for continuous cutting and interrupted cutting under normal conditions such as steel and cast iron. The Ti compound layer, which is the lower layer of the hard coating layer, has high-temperature strength and excellent chipping resistance when used for high-speed intermittent cutting that is repeatedly subjected to mechanical thermal shock at a very short pitch. The vapor-deposited α-type Al 2 O 3 layer constituting the layer is excellent in high-temperature hardness and heat resistance, but is extremely brittle against mechanical thermal shock. Chipping (small chipping) is likely to occur, and as a result, the service life is reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、上記の被覆サーメット工具の硬質被覆層の上部層を構成する蒸着α型Al23層の耐チッピング性向上をはかるべく研究を行った結果、
工具基体の表面に、通常の化学蒸着装置で、下部層として、通常の条件で、上記Ti化合物層を形成した後、同じく通常の条件で、κ型またはθ型の結晶構造を有し、かつ、
組成式:(Al1−X Zr2 3
で現した場合、電子線マイクロアナライザー(EPMA)で測定して、X値が原子比で、0.003〜0.05を満足するAl−Zr酸化物[以下、(Al,Zr)2 3 で示す]層を蒸着形成し、
ついで、上記(Al,Zr)2 3 層の表面に、同じく化学蒸着装置にて、
反応ガス組成:体積%で、TiCl:0.2〜3%、CO:0.2〜10%、Ar:5〜50%、H:残り、
反応雰囲気温度:900〜1020℃、
反応雰囲気圧力:7〜30kPa、
時間:25〜100分、
の条件で処理して、
組成式:TiO
で表わした場合、オージェ分光分析装置で測定して、Y値がTiに対する原子比で1.2〜1.9、を満足するTi酸化物層を0.05〜1.5μmの平均層厚で形成し、
この状態で、加熱変態処理、望ましくは圧力:7〜50kPaのAr雰囲気中、温度:1000〜1200℃に10〜120分間保持の条件で加熱変態処理を施して、
上記κ型またはθ型の結晶構造の(Al,Zr)2 3 層をα型結晶構造の(Al,Zr)2 3 層に変態させると、前記変態前の(Al,Zr)2 3 層の表面に形成したTi酸化物層の作用で前記κ型またはθ型の結晶構造からα型結晶構造への変態が全面同時的に発生し、かつ前記加熱変態の進行が著しく促進されることから、変態時に発生する割れ(クラック)が、きわめて微細に、かつ一様に分散分布した状態となると共に、構成成分であるZrの作用で前記(Al,Zr)2 3 層自体の高温強度が著しく向上したものになることから、この結果形成された加熱変態α型(Al,Zr)2 3 層は、変態発生割れが層全体に亘って微細にして、均一化された組織を有し、かつ高強度を有するようになり、機械的熱的衝撃に対してきわめて強固なものとなり、すぐれた耐チッピング性を具備するようになり、したがって、硬質被覆層の上部層が前記加熱変態α型(Al,Zr)2 3 層、下部層が上記Ti化合物層(このTi化合物層には上記の条件での加熱変態処理では何らの変化も起らない)で構成された被覆サーメット工具は、特に激しい機械的熱的衝撃を伴なう高速断続切削加工でも、前記加熱変態α型(Al,Zr)2 3 層が、α型Al2 3 層の本来具備するすぐれた高温硬さおよび耐熱性と同等の高温硬さと耐熱性を具備した状態で、すぐれた耐チッピング性を発揮することから、すぐれた高温強度を有する前記Ti化合物層の共存と相俟って、硬質被覆層におけるチッピング発生が著しく抑制され、長期に亘ってすぐれた耐摩耗性を示すようになること、
In view of the above, the present inventors have conducted research to improve the chipping resistance of the vapor-deposited α-type Al 2 O 3 layer constituting the upper layer of the hard coating layer of the above coated cermet tool. result,
On the surface of the tool base, after forming the Ti compound layer under normal conditions as a lower layer with a normal chemical vapor deposition apparatus, it has a κ-type or θ-type crystal structure under the same normal conditions, and ,
Composition formula: (Al 1-X Zr X ) 2 O 3,
In this case, an Al—Zr oxide [hereinafter referred to as (Al, Zr) 2 O 3] in which the X value is in an atomic ratio and satisfies 0.003 to 0.05 as measured by an electron beam microanalyzer (EPMA). The layer is formed by vapor deposition,
Then, on the surface of the (Al, Zr) 2 O 3 layer, using the same chemical vapor deposition apparatus,
Reaction gas composition: by volume%, TiCl 4: 0.2~3%, CO 2: 0.2~10%, Ar: 5~50%, H 2: remainder,
Reaction atmosphere temperature: 900-1020 ° C.
Reaction atmosphere pressure: 7-30 kPa,
Time: 25-100 minutes
In the condition of
Composition formula: TiO Y ,
The Ti oxide layer measured by an Auger spectroscopic analyzer and satisfying a Y value of 1.2 to 1.9 in terms of atomic ratio to Ti is an average layer thickness of 0.05 to 1.5 μm. Forming,
In this state, heat transformation treatment, preferably pressure: 7-50 kPa in an Ar atmosphere, temperature: 1000-1200 ° C. under conditions of holding for 10 to 120 minutes,
When to transform the (Al, Zr) 2 O 3 layer of the κ-type or θ-type crystal structure (Al, Zr) 2 O 3 layer of α-type crystal structure, the transformation before (Al, Zr) 2 O By the action of the Ti oxide layer formed on the surface of the three layers, the transformation from the κ-type or θ-type crystal structure to the α-type crystal structure occurs simultaneously on the entire surface, and the progress of the heating transformation is remarkably accelerated. As a result, cracks generated during transformation are in a very fine and uniformly distributed state, and the high temperature of the (Al, Zr) 2 O 3 layer itself due to the action of Zr as a constituent component. Since the strength is remarkably improved, the heat-transformed α-type (Al, Zr) 2 O 3 layer formed as a result has a uniform structure in which transformation cracks are made fine throughout the layer. Have high strength and are extremely resistant to mechanical thermal shock Becomes solid ones, now includes the excellent chipping resistance, therefore, the upper layer of the hard coating layer the heat transformation α-type (Al, Zr) 2 O 3 layer, the lower layer is the Ti compound layer (this The Ti compound layer is not subject to any change in the heat transformation treatment under the above conditions), and the coated cermet tool is particularly suitable for high-speed intermittent cutting with intense mechanical and thermal shock. The transformation α-type (Al, Zr) 2 O 3 layer has excellent high-temperature hardness and heat resistance equivalent to those of the α-type Al 2 O 3 layer. Since the chipping property is exhibited, the occurrence of chipping in the hard coating layer is remarkably suppressed in combination with the coexistence of the Ti compound layer having excellent high-temperature strength so that excellent wear resistance is exhibited over a long period of time. To become a,

(b)上記の従来蒸着α型Al23層および上記(a)の加熱変態α型(Al,Zr)2 3 層について、
電界放出型走査電子顕微鏡を用い、図1(a),(b)に概略説明図で示される通り、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフを作成した場合、前記従来の蒸着α型Al23層は、図3に例示される通り、(0001)面の測定傾斜角の分布が0〜45度の範囲内で不偏的な傾斜角度数分布グラフを示すのに対して、前記加熱変態α型(Al,Zr)2 3 層は、図2に例示される通り、傾斜角区分の特定位置にシャープな最高ピークが現れ、このシャープな最高ピークは、Ti酸化物層の組成式:TiO におけるY値を変化させることによりグラフ横軸の傾斜角区分に現れる位置が変わること。
(B) About the above-mentioned conventional vapor deposition α-type Al 2 O 3 layer and the above-mentioned heat-transformed α-type (Al, Zr) 2 O 3 layer of (a),
Using a field emission scanning electron microscope, as shown in the schematic explanatory diagrams in FIGS. 1A and 1B, an electron beam is individually applied to each crystal grain having a hexagonal crystal lattice existing within the measurement range of the surface polished surface. Irradiation is performed to measure the inclination angle formed by the normal line of the (0001) plane that is the crystal plane of the crystal grain with respect to the normal line of the surface-polished surface. When the measured inclination angle within the range is divided for each pitch of 0.25 degrees and the inclination angle number distribution graph is created by summing up the frequencies existing in each division, the conventional vapor deposition α-type Al 2 As illustrated in FIG. 3, the O 3 layer exhibits an unbiased inclination angle number distribution graph in the range of the measured inclination angle of the (0001) plane within the range of 0 to 45 degrees, whereas the heating transformation α-type (Al, Zr) 2 O 3 layer, as illustrated in FIG. 2, the specific position of the tilt angle segment Sharp highest peak appears, the sharp highest peak, the composition formula of the Ti oxide layer: appearing in the tilt angle sections of the graph the horizontal axis by changing the Y value at the TiO Y position changes that.

(c)試験結果によれば、上記Ti酸化物層の組成式:TiO におけるY値を、上記の通りTiに対する原子比で1.2〜1.9とすると、上記シャープな最高ピークが傾斜角区分の0〜10度の範囲内に現れると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示すようになり、この結果の傾斜角度数分布グラフで0〜10度の範囲内の傾斜角度数の割合が45%以上を占め、かつ前記0〜10度の範囲内に傾斜角区分の最高ピークが現れる加熱変態α型(Al,Zr)2 3 層を硬質被覆層の上部層として、下部層のTi化合物層と共存した状態で蒸着形成してなる被覆サーメット工具は、上記の従来被覆サーメット工具に比して、特に高速断続切削で切刃部にチッピングの発生なく、一段とすぐれた耐摩耗性を発揮するようになること。
以上(a)〜(c)に示される研究結果を得たのである。
(C) According to the test results, when the Y value in the composition formula: TiO Y of the Ti oxide layer is 1.2 to 1.9 in terms of the atomic ratio to Ti as described above, the sharpest peak is inclined. Inclination angle number distribution that appears in the range of 0 to 10 degrees of the angular section and the total of the frequencies existing in the range of 0 to 10 degrees occupies a ratio of 45% or more of the entire degrees in the inclination angle distribution graph In the resulting slope angle distribution graph, the ratio of the slope angle number in the range of 0 to 10 degrees occupies 45% or more, and the slope angle section is in the range of 0 to 10 degrees. The coated cermet tool formed by vapor deposition in the state of coexisting with the lower Ti compound layer, with the heat-transformed α-type (Al, Zr) 2 O 3 layer in which the highest peak appears as the upper layer of the hard coating layer, Compared to coated cermet tools, Fast intermittent cutting without chipping occurs cutting edge in, to become to exert more excellent wear resistance.
The research results shown in (a) to (c) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、WC基超硬合金またはTiCN基サーメットで構成された工具基体の表面に、
(a)下部層として、いずれも化学蒸着形成されたTiC層、TiN層、TiCN層、TiCO層、およびTiCNO層のうちの1層または2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(b)上部層として、化学蒸着形成した状態でκ型またはθ型の結晶構造を有し、かつ、
組成式:(Al1−X Zr2 3
で表わした場合、電子線マイクロアナライザー(EPMA)で測定して、X値が原子比で0.003〜0.05を満足する(Al,Zr)2 3 層の表面に、
組成式:TiO
で表わした場合、オージェ分光分析装置で測定して、Y値がTiに対する原子比で1.2〜1.9、を満足するTi酸化物層を0.05〜1.5μmの平均層厚で化学蒸着形成した状態で、加熱変態処理を施して、前記κ型またはθ型の結晶構造を有する(Al,Zr)2 3 層の結晶構造をα型結晶構造に変態してなると共に、
電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示し、かつ1〜15μmの平均層厚を有する加熱変態α型(Al,Zr)2 3 層、
以上(a)および(b)で構成された硬質被覆層を形成してなる、硬質被覆層がすぐれた耐チッピング性を発揮する被覆サーメット工具に特徴を有するものである。
The present invention has been made based on the above research results, and on the surface of a tool base composed of a WC-based cemented carbide or TiCN-based cermet,
(A) The lower layer is composed of one or more of TiC layer, TiN layer, TiCN layer, TiCO layer, and TiCNO layer formed by chemical vapor deposition, and has a total average layer thickness of 3 to 20 μm. A Ti compound layer having
(B) the upper layer has a κ-type or θ-type crystal structure in the state of chemical vapor deposition, and
Composition formula: (Al 1-X Zr X ) 2 O 3,
In the surface of the (Al, Zr) 2 O 3 layer, which is measured by an electron beam microanalyzer (EPMA) and the X value satisfies the atomic ratio of 0.003 to 0.05,
Composition formula: TiO Y ,
The Ti oxide layer measured by an Auger spectroscopic analyzer and satisfying a Y value of 1.2 to 1.9 in terms of atomic ratio to Ti is an average layer thickness of 0.05 to 1.5 μm. In a state where chemical vapor deposition is formed, heat transformation treatment is performed to transform the crystal structure of the (Al, Zr) 2 O 3 layer having the κ-type or θ-type crystal structure into an α-type crystal structure,
Using a field emission scanning electron microscope, each crystal grain having a hexagonal crystal lattice existing within the measurement range of the surface polishing surface is irradiated with an electron beam, and the crystal grain is compared with the normal line of the surface polishing surface. The tilt angle formed by the normal line of the (0001) plane, which is the crystal plane, is measured, and among the measured tilt angles, the measured tilt angles within the range of 0 to 45 degrees are classified for each pitch of 0.25 degrees. In addition, in the inclination angle number distribution graph obtained by summing up the frequencies existing in each section, the highest peak exists in the inclination angle section within the range of 0 to 10 degrees and also exists within the range of 0 to 10 degrees. The heating transformation α-type (Al, Zr) 2 having a mean angle thickness of 1 to 15 μm, and showing a tilt angle frequency distribution graph in which the total frequency to be obtained accounts for 45% or more of the total frequency in the tilt angle frequency distribution graph O 3 layer,
The hard coating layer formed by the hard coating layer configured as described above in (a) and (b) is characterized by a coated cermet tool that exhibits excellent chipping resistance.

つぎに、この発明の被覆サーメット工具の硬質被覆層の構成層について、上記の通りに数値限定した理由を以下に説明する。
(a)下部層(Ti化合物層)の平均層厚
Ti化合物層は、自体がすぐれた高温強度を有し、これの存在によって硬質被覆層が高温強度を具備するようになるほか、工具基体と上部層である加熱変態α型(Al,Zr)2 3 層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性向上に寄与する作用をもつが、その合計平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方その合計平均層厚が20μmを越えると、特に高熱発生を伴なう高速断続切削で熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その合計平均層厚を3〜20μmと定めた。
Next, the reason why the constituent layers of the hard coating layer of the coated cermet tool of the present invention are numerically limited as described above will be described below.
(A) The average layer thickness of the lower layer (Ti compound layer) The Ti compound layer itself has excellent high-temperature strength, and the presence of the Ti compound layer makes the hard coating layer have high-temperature strength. The heat-transformed α-type (Al, Zr) 2 O 3 layer, which is the upper layer, adheres firmly to any of the layers, thus contributing to improving the adhesion of the hard coating layer to the tool substrate, but the total average layer thickness However, if the total average layer thickness exceeds 20 μm, thermoplastic deformation tends to occur particularly during high-speed intermittent cutting with high heat generation. Since it causes wear, the total average layer thickness is set to 3 to 20 μm.

(b)Ti酸化物層の組成(Y値)および平均層厚
Ti酸化物層は、上記の通り蒸着κ型またはθ型(Al,Zr)2 3 層の加熱変態α型(Al,Zr)2 3 層への加熱変態を全面同時的に発生させて、加熱変態時に発生する割れを微細化および均一化するほか、前記加熱変態を促進し、処理時間の短縮化によって結晶粒の成長を抑制する作用を有し、さらに、前記Ti酸化物層には、組成式:TiO におけるY値を、上記の通りTiに対する原子比で1.2〜1.9とすると、試験結果によれば、これに対応して、傾斜角度数分布グラフにおける0〜10度の傾斜角区分範囲内に測定傾斜角の最高ピークが現れ、かつ前記0〜10度の傾斜角区分内に存在する度数の合計割合が、傾斜角度数分布グラフにおける度数全体の45%以上となる傾斜角度数分布グラフを示す作用があり、したがって、前記Y値が1.2未満では、前記加熱変態α型(Al,Zr)2 3 層の傾斜角度数分布グラフの0〜10度の範囲内に現れるピーク高さが不十分、すなわち、前記0〜10度の範囲内に存在する度数の合計割合が、傾斜角度数分布グラフにおける度数全体の45%未満となってしまい、この場合上記の通り、前記加熱変態α型(Al,Zr)2 3 層に所望のすぐれた高温強度を確保することができず、この結果耐チッピング性に所望の向上効果が得られず、一方そのY値が1.9を越えると、最高ピークの現れる傾斜角区分が0〜10度の範囲から外れてしまい、この場合も前記加熱変態α型(Al,Zr)2 3 層に所望のすぐれた高温強度を確保することができないことから、そのY値をTiに対する原子比で1.2〜1.9と定めた。
また、この場合上記Ti酸化物層の平均層厚が0.05μm未満では上記の作用を十分に発揮させることができず、一方前記作用は1.5μmの平均層厚で十分であり、これ以上の厚さは不必要であることから、その平均層厚を0.05〜1.5μmμmと定めた。
(B) Ti oxide layer composition (Y value) and average layer thickness As described above, the Ti oxide layer is a vaporized κ-type or θ-type (Al, Zr) 2 O 3 layer heat-transformed α-type (Al, Zr). ) Heat transformation to the 2 O 3 layer is generated simultaneously on the entire surface, and cracks generated during the heat transformation are refined and uniformed. In addition, the heat transformation is promoted, and the crystal grain growth is achieved by shortening the processing time. Furthermore, the Ti oxide layer has a composition formula: TiO Y with a Y value of 1.2 to 1.9 in terms of atomic ratio to Ti as described above. Correspondingly, the highest peak of the measured inclination angle appears in the inclination angle section range of 0 to 10 degrees in the inclination angle number distribution graph, and the frequency existing in the inclination angle section of 0 to 10 degrees The total ratio is 45% or more of the whole frequency in the slope angle distribution graph. That has the effect of showing the inclination angle frequency distribution graph, therefore, in the Y value is less than 1.2, the heating transformation α-type (Al, Zr) of 0 degrees inclination angle frequency distribution graph of the 2 O 3 layer The height of the peak appearing in the range is insufficient, that is, the total ratio of the frequencies existing in the range of 0 to 10 degrees is less than 45% of the total frequencies in the inclination angle frequency distribution graph. As described above, the heat-transformed α-type (Al, Zr) 2 O 3 layer cannot secure a desired excellent high-temperature strength, and as a result, a desired improvement effect in chipping resistance cannot be obtained. When the value exceeds 1.9, the slope angle section where the highest peak appears is out of the range of 0 to 10 degrees, and in this case as well, the heat transformation α-type (Al, Zr) 2 O 3 layer is excellent in the desired manner. Because high temperature strength cannot be secured, The Y value was defined as 1.2 to 1.9 in atomic ratio to Ti.
Further, in this case, when the average thickness of the Ti oxide layer is less than 0.05 μm, the above-mentioned action cannot be sufficiently exerted, while an average layer thickness of 1.5 μm is sufficient for the action, and more Therefore, the average layer thickness was determined to be 0.05 to 1.5 μm μm.

(c)上部層[加熱変態α型(Al,Zr)2 3 層]のZrの含有割合および平均層厚
加熱変態α型(Al,Zr)2 3 層は、構成成分であるAlの作用ですぐれた高温硬さと耐熱性、同Zrの作用で高温強度を具備することから、すぐれた耐摩耗性と耐チッピング性を発揮するようになるが、Zrの含有割合(X値)が、Alとの合量に占める割合で、原子比で(以下同じ)0.003未満では、十分な高温強度向上効果を確保することができず、一方Zrの含有割合が同0.05を越えると、六方晶結晶格子に乱れが生じ、加熱変態処理でのκ型またはθ型結晶構造からα型結晶構造への変態を満足に行うことが困難になることから、Zrの含有割合(X値)を0.003〜0.05と定めた。
また、加熱変態α型(Al,Zr)2 3 層の平均層厚が1μm未満では、硬質被覆層に十分な耐摩耗性を発揮せしめることができず、一方その平均層厚が15μmを越えて厚くなりすぎると、チッピングが発生し易くなることから、その平均層厚を1〜15μmと定めた。
(C) Zr content and average layer thickness of upper layer [heat-transformed α-type (Al, Zr) 2 O 3 layer] The heat-transformed α-type (Al, Zr) 2 O 3 layer is composed of the constituent Al Excellent high temperature hardness and heat resistance due to the action, and high temperature strength due to the action of the same Zr, it will exhibit excellent wear resistance and chipping resistance, but the Zr content ratio (X value), If the atomic ratio (hereinafter the same) is less than 0.003 in the total amount with Al, a sufficient high-temperature strength improvement effect cannot be secured, while if the Zr content exceeds 0.05, Since the hexagonal crystal lattice is disturbed and it becomes difficult to satisfactorily transform from the κ-type or θ-type crystal structure to the α-type crystal structure in the heat transformation treatment, the content ratio of Zr (X value) Was determined to be 0.003 to 0.05.
If the average thickness of the heat-transformed α-type (Al, Zr) 2 O 3 layer is less than 1 μm, the hard coating layer cannot exhibit sufficient wear resistance, while the average layer thickness exceeds 15 μm. When the thickness is too thick, chipping is likely to occur. Therefore, the average layer thickness is set to 1 to 15 μm.

なお、切削工具の使用前後の識別を目的として、黄金色の色調を有するTiN層を、必要に応じて蒸着形成してもよいが、この場合の平均層厚は0.1〜1μmでよく、これは0.1μm未満では、十分な識別効果が得られず、一方前記TiN層による前記識別効果は1μmまでの平均層厚で十分であるという理由からである。   In addition, for the purpose of identification before and after the use of the cutting tool, a TiN layer having a golden color tone may be vapor-deposited as necessary, but the average layer thickness in this case may be 0.1 to 1 μm, This is because if the thickness is less than 0.1 μm, a sufficient discrimination effect cannot be obtained, while the discrimination effect by the TiN layer is sufficient with an average layer thickness of up to 1 μm.

この発明被覆サーメット工具は、機械的熱的衝撃がきわめて高い鋼や鋳鉄などの高速断続切削でも、硬質被覆層の上部層を構成する加熱変態α型(Al,Zr)2 3 層がすぐれた高温硬さと耐熱性、さらにすぐれた耐チッピング性を発揮することから、硬質被覆層にチッピングの発生なく、すぐれた耐摩耗性を示すものである。 The coated cermet tool of the present invention has an excellent heat-transformed α-type (Al, Zr) 2 O 3 layer that constitutes the upper layer of the hard coating layer even in high-speed intermittent cutting such as steel and cast iron with extremely high mechanical and thermal shock. Since it exhibits high temperature hardness and heat resistance, and excellent chipping resistance, the hard coating layer exhibits excellent wear resistance without occurrence of chipping.

つぎに、この発明の被覆サーメット工具を実施例により具体的に説明する。   Next, the coated cermet tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr3 2 粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG120408に規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体A〜Fをそれぞれ製造した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders were blended into the composition shown in Table 1, added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and pressed into a green compact with a predetermined shape at a pressure of 98 MPa. The green compact was vacuum sintered at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour in a vacuum of 5 Pa. After sintering, the cutting edge portion was R: 0.07 mm honing By performing the processing, tool bases A to F made of a WC-base cemented carbide having a throwaway tip shape specified in ISO · CNMG120408 were manufactured.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG120412のチップ形状をもったTiCN基サーメット製の工具基体a〜fを形成した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after the sintering, the cutting edge portion was subjected to a honing process of R: 0.07 mm. Tool bases a to f made of TiCN-based cermet having a standard / CNMG12041 chip shape were formed.

つぎに、これらの工具基体A〜Fおよび工具基体a〜fの表面に、通常の化学蒸着装置を用い、表3(表3中のl−TiCNは特開平6−80.050号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)に示される条件にて、硬質被覆層の下部層としてTi化合物層を、表5に示される組み合わせで、かつ目標層厚で蒸着形成し、ついで同じく表3に示される条件にて、結晶構造がκ型またはθ型の(Al,Zr)2 3 層を同じく表5に示される組み合わせで、かつ目標層厚で蒸着形成し、ついで前記蒸着κ型またはθ型の(Al,Zr)2 3 層の表面に、Ti酸化物層を同じく表4に示される条件で表5に示される組み合わせで蒸着形成した状態で、これに30kPaのAr雰囲気中、温度:1100℃に20〜100分の範囲内の所定の時間保持の条件で加熱変態処理を施して、前記蒸着κ型またはθ型の結晶構造の(Al,Zr)2 3 層をα型結晶構造の(Al,Zr)2 3 層に変態させてなる加熱変態α型(Al,Zr)2 3 層を硬質被覆層の上部層として形成することにより本発明被覆サーメット工具1〜13をそれぞれ製造した。 Next, a normal chemical vapor deposition apparatus was used on the surfaces of the tool bases A to F and the tool bases a to f, and Table 3 (l-TiCN in Table 3 is described in JP-A-6-80.050). As the lower layer of the hard coating layer, the conditions for forming a TiCN layer having a vertically grown crystal structure are shown. Ti compound layers are vapor-deposited in the combinations shown in Table 5 and with the target layer thickness, and then (Al, Zr) 2 O 3 having a crystal structure of κ-type or θ-type under the same conditions shown in Table 3 The layers are also formed by vapor deposition in the combinations shown in Table 5 and with the target layer thickness, and then a Ti oxide layer is formed on the surface of the vapor-deposited κ-type or θ-type (Al, Zr) 2 O 3 layer. Vapor deposition was carried out with the combinations shown in Table 5 under the conditions shown in In this state, this was subjected to a heat transformation treatment in a 30 kPa Ar atmosphere at a temperature of 1100 ° C. for a predetermined time within a range of 20 to 100 minutes, and the deposited κ-type or θ-type crystal structure ( Al, Zr) formation (Al of 2 O 3 layer a α-type crystal structure, Zr) 2 O 3 layer by transformation becomes heated transformation α type (Al, Zr) 2 O 3 layer as the upper layer of the hard coating layer By doing this, this invention coated cermet tool 1-13 was manufactured, respectively.

なお、上記本発明被覆サーメット工具1〜13の製造に際しては、それぞれ別途試験片を用意し、この試験片を同じく化学蒸着装置に装入し、前記試験片の表面にTi酸化物層が形成された時点で装置から取りだし、前記Ti酸化物層の組成(Y値)および層厚をオージェ分光分析装置および走査型電子顕微鏡を用いて測定(縦断面測定)した。この結果、いずれも目標組成および目標層厚と実質的に同じ組成および平均層厚(5点測定の平均値)を示した。   In the production of the cermet tools 1 to 13 according to the present invention, a separate test piece is prepared, and the test piece is loaded into the chemical vapor deposition apparatus, and a Ti oxide layer is formed on the surface of the test piece. At that time, it was taken out from the apparatus, and the composition (Y value) and layer thickness of the Ti oxide layer were measured (longitudinal section measurement) using an Auger spectroscopic analyzer and a scanning electron microscope. As a result, all showed the composition and average layer thickness (average value of 5-point measurement) substantially the same as the target composition and target layer thickness.

また、比較の目的で、表6に示される通り、硬質被覆層の上部層として同じく表3に示される条件で、同じく表6に示される目標層厚の蒸着α型Al23層を形成し、かつ上記のTi酸化物層の形成および上記条件での加熱変態処理を行わない以外は同一の条件で従来被覆サーメット工具1〜13をそれぞれ製造した。 For comparison purposes, as shown in Table 6, an evaporated α-type Al 2 O 3 layer having the target layer thickness shown in Table 6 is also formed as the upper layer of the hard coating layer under the same conditions as shown in Table 3. In addition, conventionally coated cermet tools 1 to 13 were produced under the same conditions except that the formation of the Ti oxide layer and the heat transformation treatment under the above conditions were not performed.

ついで、上記の本発明被覆サーメット工具と従来被覆サーメット工具の硬質被覆層を構成する加熱変態α型(Al,Zr)2 3 層と蒸着α型Al23層について、電界放出型走査電子顕微鏡を用いて、ポールプロットグラフをそれぞれ作成した。
すなわち、上記ポールプロットグラフは、上記の加熱変態α型(Al,Zr)2 3 層および蒸着α型Al23層の表面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、この測定結果に基づいて、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより作成した。
Next, the field-emission type scanning electrons of the heat-transformed α-type (Al, Zr) 2 O 3 layer and the vapor-deposited α-type Al 2 O 3 layer constituting the hard coating layer of the above-described coated cermet tool of the present invention and the conventional coated cermet tool Each pole plot graph was created using a microscope.
That is, the pole plot graph shows a mirror of a field emission scanning electron microscope in a state where the surfaces of the heat-transformed α-type (Al, Zr) 2 O 3 layer and the deposited α-type Al 2 O 3 layer are polished surfaces. Each crystal grain having a hexagonal crystal lattice existing in the measurement range of the surface polished surface is set in a cylinder, and an electron beam with an acceleration voltage of 15 kV is applied to the polished surface at an incident angle of 70 degrees with an irradiation current of 1 nA. The surface of the crystal grain is the crystal plane of the surface polished surface with respect to the normal of the surface polished surface at an interval of 0.1 μm / step using an electron backscatter diffraction image apparatus (0001) ) The inclination angle formed by the normal of the surface is measured, and based on the measurement result, the measurement inclination angle within the range of 0 to 45 degrees is classified for each 0.25 degree pitch among the measurement inclination angles. And count the frequencies that exist in each category Ri was created.

この結果得られた各種の加熱変態α型(Al,Zr)2 3 層および蒸着α型Al23層の傾斜角度数分布グラフにおいて、(0001)面が最高ピークを示す傾斜角区分、並びに0〜10度の範囲内の傾斜角区分内に存在する傾斜角度数の傾斜角度数分布グラフ全体の傾斜角度数に占める割合をそれぞれ表5,6にそれぞれ示した。 In the inclination angle number distribution graphs of the various heat-transformed α-type (Al, Zr) 2 O 3 layers and vapor-deposited α-type Al 2 O 3 layers obtained as a result, the inclination angle segments in which the (0001) plane shows the highest peak, Tables 5 and 6 show the ratios of the number of inclination angles existing in the inclination angle section in the range of 0 to 10 degrees to the number of inclination angles in the entire inclination angle number distribution graph, respectively.

上記の各種の傾斜角度数分布グラフにおいて、表5,6にそれぞれ示される通り、本発明被覆サーメット工具の加熱変態α型(Al,Zr)2 3 層は、いずれも(0001)面の測定傾斜角の分布が0〜10度の範囲内の傾斜角区分に最高ピークが現れ、かつ0〜10度の範囲内の傾斜角区分内に存在する傾斜角度数の割合が45%以上である傾斜角度数分布グラフを示すのに対して、従来被覆サーメット工具の蒸着α−Al23層は、いずれも(0001)面の測定傾斜角の分布が0〜45度の範囲内で不偏的で、最高ピークが存在せず、0〜10度の範囲内の傾斜角区分内に存在する傾斜角度数の割合も23%以下である傾斜角度数分布グラフを示すものであった。
なお、図2は、本発明被覆サーメット工具2の加熱変態α型(Al,Zr)2 3 層の傾斜角度数分布グラフ、図3は、従来被覆サーメット工具10の蒸着α型Al23層の傾斜角度数分布グラフをそれぞれ示すものである。
In the above-described various inclination angle number distribution graphs, as shown in Tables 5 and 6, each of the heat-transformed α-type (Al, Zr) 2 O 3 layers of the coated cermet tool of the present invention is measured on the (0001) plane. An inclination in which the highest peak appears in the inclination angle section where the inclination angle distribution is in the range of 0 to 10 degrees, and the ratio of the number of inclination angles existing in the inclination angle section in the range of 0 to 10 degrees is 45% or more. Whereas the angle distribution graph is shown, the vapor deposition α-Al 2 O 3 layers of the conventional coated cermet tools are all unbiased within the range of the measured inclination angle of the (0001) plane within the range of 0 to 45 degrees. The inclination angle number distribution graph in which the highest peak does not exist and the ratio of the inclination angle number existing in the inclination angle section within the range of 0 to 10 degrees is also 23% or less is shown.
2 is a graph showing the distribution of the number of inclination angles of the heat-transformed α-type (Al, Zr) 2 O 3 layer of the coated cermet tool 2 of the present invention, and FIG. 3 is the vapor-deposited α-type Al 2 O 3 of the conventional coated cermet tool 10. The graph of the distribution of the number of inclination angles of the layers is shown respectively.

さらに、上記の本発明被覆サーメット工具1〜13および従来被覆サーメット工具1〜13について、これの硬質被覆層の構成層を電子線マイクロアナライザー(EPMA)およびオージェ分光分析装置を用いて観察(層の縦断面を観察)したところ、前者ではいずれも目標組成と実質的に同じ組成を有するTi化合物層と加熱変態α型(Al,Zr)2 3 層からなり、かつ表面部に加熱変態処理前に蒸着形成されたTi酸化物層の存在も確認された。一方後者でも、いずれも同じく目標組成と実質的に同じ組成を有するTi化合物と蒸着α型Al23層からなることが確認された。また、これらの被覆サーメット工具の硬質被覆層の構成層の厚さを、走査型電子顕微鏡を用いて測定(同じく縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。 Further, for the above-described coated cermet tools 1 to 13 and the conventional coated cermet tools 1 to 13, the constituent layers of the hard coating layer were observed using an electron beam microanalyzer (EPMA) and an Auger spectroscopic analysis device (layer When the longitudinal cross section was observed), the former consisted of a Ti compound layer having substantially the same composition as the target composition and a heat-transformed α-type (Al, Zr) 2 O 3 layer, and the surface portion was subjected to heat transformation treatment. The presence of a Ti oxide layer formed by evaporation was also confirmed. On the other hand, it was confirmed that both of the latter consisted of a Ti compound having substantially the same composition as the target composition and a deposited α-type Al 2 O 3 layer. Moreover, when the thickness of the constituent layer of the hard coating layer of these coated cermet tools was measured using a scanning electron microscope (same longitudinal section measurement), the average layer thickness (substantially the same as the target layer thickness) Average value of 5-point measurement) was shown.

つぎに、上記の各種の被覆サーメット工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆サーメット工具1〜13および従来被覆サーメット工具1〜13について、
被削材:JIS・SCM420の長さ方向等間隔4本縦溝入り丸棒、
切削速度:450m/min、
切り込み:1.5mm、
送り:0.3mm/rev、
切削時間:5分、
の条件での合金鋼の乾式高速断続切削試験(通常の切削速度は200m/min)、
被削材:JIS・S25Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:450m/min、
切り込み:1.5mm、
送り:0.35mm/rev、
切削時間:5分、
の条件での炭素鋼の乾式高速断続切削試験(通常の切削速度は250m/min)、
被削材:JIS・FC250の長さ方向等間隔4本縦溝入り丸棒、
切削速度:500m/min、
切り込み:1.5mm、
送り:0.3mm/rev、
切削時間:5分、
の条件での鋳鉄の乾式高速断続切削試験(通常の切削速度は250m/min)を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表7に示した。
Next, in the state where each of the various coated cermet tools is screwed to the tip of the tool steel tool with a fixing jig, the present coated cermet tools 1 to 13 and the conventional coated cermet tools 1 to 13 are as follows.
Work material: JIS · SCM420 lengthwise equal four round grooved round bars,
Cutting speed: 450 m / min,
Incision: 1.5mm,
Feed: 0.3mm / rev,
Cutting time: 5 minutes
Dry high-speed intermittent cutting test of alloy steel under the conditions (normal cutting speed is 200 m / min),
Work material: JIS · S25C lengthwise equidistantly 4 vertical grooved round bars,
Cutting speed: 450 m / min,
Incision: 1.5mm,
Feed: 0.35mm / rev,
Cutting time: 5 minutes
Dry high-speed intermittent cutting test of carbon steel under the conditions (normal cutting speed is 250 m / min),
Work material: JIS / FC250 lengthwise equidistant round bars with 4 vertical grooves,
Cutting speed: 500 m / min,
Incision: 1.5mm,
Feed: 0.3mm / rev,
Cutting time: 5 minutes
The dry high speed intermittent cutting test (normal cutting speed is 250 m / min) was performed on cast iron under the above conditions, and the flank wear width of the cutting edge was measured in any cutting test. The measurement results are shown in Table 7.

Figure 2005279912
Figure 2005279912

Figure 2005279912
Figure 2005279912

Figure 2005279912
Figure 2005279912

Figure 2005279912
Figure 2005279912

Figure 2005279912
Figure 2005279912

Figure 2005279912
Figure 2005279912

Figure 2005279912
Figure 2005279912

表5〜7に示される結果から、本発明被覆サーメット工具1〜13は、いずれも硬質被覆層の上部層が、(0001)面の傾斜角が0〜10度の範囲内の傾斜角区分で最高ピークを示すと共に、前記0〜10度の傾斜角区分範囲内に存在する度数の合計割合が45%以上を占める傾斜角度数分布グラフを示す加熱変態α型(Al,Zr)2 3 層で構成され、機械的熱的衝撃がきわめて高く、かつ高い発熱を伴なう鋼や鋳鉄の高速断続切削でも、前記加熱変態α型(Al,Zr)2 3 層がすぐれた耐チッピング性を発揮することから、切刃部のチッピング発生が著しく抑制され、すぐれた耐摩耗性を示すのに対して、硬質被覆層の上部層が、(0001)面の測定傾斜角の分布が0〜45度の範囲内で不偏的で、最高ピークが存在しない傾斜角度数分布グラフを示す蒸着α−Al23層で構成された従来被覆サーメット工具1〜13においては、いずれも高速断続切削では前記蒸着α−Al23層が激しい機械的熱的衝撃に耐えられず、切刃部にチッピングが発生し、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 5 to 7, in the coated cermet tools 1 to 13 of the present invention, the upper layer of the hard coating layer is an inclination angle section within the range where the inclination angle of the (0001) plane is 0 to 10 degrees. Heat transformation α-type (Al, Zr) 2 O 3 layer showing the highest peak and showing an inclination angle number distribution graph in which the total ratio of the frequencies existing in the inclination angle range of 0 to 10 degrees occupies 45% or more The heat-transformed α-type (Al, Zr) 2 O 3 layer has excellent chipping resistance even in high-speed intermittent cutting of steel and cast iron with extremely high mechanical thermal shock and high heat generation. As a result, the occurrence of chipping at the cutting edge is remarkably suppressed and excellent wear resistance is exhibited, whereas the upper layer of the hard coating layer has a distribution of measured inclination angles on the (0001) plane of 0 to 45. Slope that is unbiased within the range of degrees and does not have the highest peak In the conventional coated cermet tools 1 to 13, which is composed of vapor-deposited α-Al 2 O 3 layer shows a frequency distribution graph, both the deposition α-Al 2 O 3 layer is the severe mechanical and thermal shock at high speed interrupted cutting It is obvious that chipping occurs at the cutting edge and the service life is reached in a relatively short time.

上述のように、この発明の被覆サーメット工具は、各種鋼や鋳鉄などの通常の条件での連続切削や断続切削は勿論のこと、特に厳しい切削条件となる高速断続切削でもすぐれた耐チッピング性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated cermet tool of the present invention has excellent chipping resistance not only in continuous cutting and intermittent cutting under normal conditions such as various steels and cast iron, but also in high-speed intermittent cutting which is particularly severe cutting conditions. Since it exhibits excellent cutting performance over a long period of time, it can sufficiently satisfy the high performance of the cutting device, the labor saving and energy saving of the cutting work, and the cost reduction.

硬質被覆層を構成する各種加熱変態α型(Al,Zr)2 3 層および蒸着α型Al23層における結晶粒の(0001)面の傾斜角の測定範囲を示す概略説明図である。Is a schematic explanatory view showing the measurement range of the various heating transformation α-type (Al, Zr) crystal grains (0001) in 2 O 3 layer and deposition α type the Al 2 O 3 layer surface inclination angle of which constitutes the hard coating layer . 本発明被覆サーメット工具2の硬質被覆層を構成する加熱変態α型(Al,Zr)2 3 層の(0001)面の傾斜角度数分布グラフである。It is an inclination angle number distribution graph of the (0001) plane of the heat transformation α type (Al, Zr) 2 O 3 layer constituting the hard coating layer of the coated cermet tool 2 of the present invention. 従来被覆サーメット工具10の硬質被覆層を構成する蒸着α型Al23層の(0001)面の傾斜角度数分布グラフである。It is the inclination angle number distribution graph of the (0001) plane of the vapor-deposited α-type Al 2 O 3 layer constituting the hard coating layer of the conventional coated cermet tool 10.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a)下部層として、いずれも化学蒸着形成されたTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(b)上部層として、化学蒸着形成した状態でκ型またはθ型の結晶構造を有し、かつ、
組成式:(Al1−X Zr2 3
で表わした場合、電子線マイクロアナライザー(EPMA)で測定して、X値が原子比で0.003〜0.05を満足するAl―Zr酸化物層の表面に、
組成式:TiO
で表わした場合、オージェ分光分析装置で測定して、Y値がTiに対する原子比で1.2〜1.9、を満足するTi酸化物層を0.05〜1.5μmの平均層厚で化学蒸着形成した状態で、加熱変態処理を施して、前記κ型またはθ型の結晶構造を有するAl―Zr酸化物層の結晶構造をα型結晶構造に変態してなると共に、
電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示し、かつ1〜15μmの平均層厚を有する加熱変態α型Al―Zr酸化物層、
以上(a)および(b)で構成された硬質被覆層を形成してなる硬質被覆層がすぐれた耐チッピング性を有する表面被覆サーメット製切削工具。
On the surface of the tool base composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(A) As a lower layer, each consists of one or two or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer, and carbonitride oxide layer formed by chemical vapor deposition, And a Ti compound layer having a total average layer thickness of 3 to 20 μm,
(B) the upper layer has a κ-type or θ-type crystal structure in the state of chemical vapor deposition, and
Composition formula: (Al 1-X Zr X ) 2 O 3,
In the surface of the Al—Zr oxide layer having an X value satisfying 0.003 to 0.05 in atomic ratio, as measured by an electron beam microanalyzer (EPMA),
Composition formula: TiO Y ,
The Ti oxide layer measured by an Auger spectroscopic analyzer and satisfying a Y value of 1.2 to 1.9 in terms of atomic ratio to Ti is an average layer thickness of 0.05 to 1.5 μm. In the state where chemical vapor deposition is formed, a heat transformation treatment is performed to transform the crystal structure of the Al-Zr oxide layer having the κ-type or θ-type crystal structure into an α-type crystal structure,
Using a field emission scanning electron microscope, each crystal grain having a hexagonal crystal lattice existing within the measurement range of the surface polishing surface is irradiated with an electron beam, and the crystal grain is compared with the normal line of the surface polishing surface. The tilt angle formed by the normal line of the (0001) plane, which is the crystal plane, is measured, and among the measured tilt angles, the measured tilt angles within the range of 0 to 45 degrees are classified for each pitch of 0.25 degrees. In addition, in the inclination angle number distribution graph obtained by summing up the frequencies existing in each section, the highest peak exists in the inclination angle section within the range of 0 to 10 degrees and also exists within the range of 0 to 10 degrees. The heat-transformed α-type Al—Zr oxide layer showing a tilt angle frequency distribution graph in which the total frequency to be applied accounts for 45% or more of the total frequency in the tilt angle frequency distribution graph and having an average layer thickness of 1 to 15 μm ,
A surface-coated cermet cutting tool having excellent chipping resistance due to the hard coating layer formed by the hard coating layer constituted of (a) and (b) above.
JP2004175038A 2003-11-25 2004-06-14 Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer Expired - Fee Related JP4569743B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004175038A JP4569743B2 (en) 2003-12-22 2004-06-14 Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer
DE200460013903 DE602004013903D1 (en) 2003-11-25 2004-11-17 Coated Cermet cutting insert with hard coating resistant to rubbing off
EP04105829A EP1536041B1 (en) 2003-11-25 2004-11-17 Coated cermet cutting tool with a chipping resistant, hard coating layer
US10/999,222 US7276301B2 (en) 2003-11-25 2004-11-24 Surface-coated cermet cutting tool with a hard coating layer exhibiting excellent chipping resistance
CNB2004100962050A CN100448576C (en) 2003-11-25 2004-11-25 Coated cement cutting tool with a chipping resistant, hard coating layer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003424405 2003-12-22
JP2004058681 2004-03-03
JP2004175038A JP4569743B2 (en) 2003-12-22 2004-06-14 Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer

Publications (2)

Publication Number Publication Date
JP2005279912A true JP2005279912A (en) 2005-10-13
JP4569743B2 JP4569743B2 (en) 2010-10-27

Family

ID=35178833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004175038A Expired - Fee Related JP4569743B2 (en) 2003-11-25 2004-06-14 Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer

Country Status (1)

Country Link
JP (1) JP4569743B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009006425A (en) * 2007-06-27 2009-01-15 Mitsubishi Materials Corp Surface coated cutting tool
JP2009066742A (en) * 2007-09-18 2009-04-02 Mitsubishi Materials Corp Surface coated cutting tool with hard coat layer having improved chipping resistance
JP2010058176A (en) * 2008-09-01 2010-03-18 Mitsubishi Materials Corp Surface coated cutting tool, having hard coating layer exhibiting excellent chipping resistance and wear resistance
JP2011173230A (en) * 2010-01-27 2011-09-08 Mitsubishi Materials Corp Surface coated cutting tool having hard coating layer exhibiting excellent peel resistance and abrasion resistance
JP2011173231A (en) * 2010-01-27 2011-09-08 Mitsubishi Materials Corp Surface coated cutting tool having hard coating layer exhibiting excellent peel resistance, chipping resistance and abrasion resistance
JP2011173229A (en) * 2010-01-27 2011-09-08 Mitsubishi Materials Corp Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance
JP2011189493A (en) * 2010-02-16 2011-09-29 Mitsubishi Materials Corp Surface coated cutting tool with hard coating layer for exhibiting excellent separation resistance and abrasion resistance
JP2011189494A (en) * 2010-02-16 2011-09-29 Mitsubishi Materials Corp Surface coated cutting tool with hard coating layer for exhibiting superior separation resistance and abrasion resistance
JP2012143825A (en) * 2011-01-11 2012-08-02 Mitsubishi Materials Corp Surface-coated cutting tool in which hard coating layer demonstrates excellent chipping resistance

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001310203A (en) * 1999-08-12 2001-11-06 Mitsubishi Materials Corp Surface covered cemented carbide made cutting tool excellent in surface lubricity against chip
JP2002096207A (en) * 2000-09-21 2002-04-02 Mitsubishi Materials Corp Surface covering cemented carbide made cutting tool excellent in surface lubricity against chip
EP1288335A1 (en) * 2001-08-31 2003-03-05 Mitsubishi Materials Corporation Surface-coated carbide alloy cutting tool

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001310203A (en) * 1999-08-12 2001-11-06 Mitsubishi Materials Corp Surface covered cemented carbide made cutting tool excellent in surface lubricity against chip
JP2002096207A (en) * 2000-09-21 2002-04-02 Mitsubishi Materials Corp Surface covering cemented carbide made cutting tool excellent in surface lubricity against chip
EP1288335A1 (en) * 2001-08-31 2003-03-05 Mitsubishi Materials Corporation Surface-coated carbide alloy cutting tool

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009006425A (en) * 2007-06-27 2009-01-15 Mitsubishi Materials Corp Surface coated cutting tool
JP2009066742A (en) * 2007-09-18 2009-04-02 Mitsubishi Materials Corp Surface coated cutting tool with hard coat layer having improved chipping resistance
JP2010058176A (en) * 2008-09-01 2010-03-18 Mitsubishi Materials Corp Surface coated cutting tool, having hard coating layer exhibiting excellent chipping resistance and wear resistance
JP2011173230A (en) * 2010-01-27 2011-09-08 Mitsubishi Materials Corp Surface coated cutting tool having hard coating layer exhibiting excellent peel resistance and abrasion resistance
JP2011173231A (en) * 2010-01-27 2011-09-08 Mitsubishi Materials Corp Surface coated cutting tool having hard coating layer exhibiting excellent peel resistance, chipping resistance and abrasion resistance
JP2011173229A (en) * 2010-01-27 2011-09-08 Mitsubishi Materials Corp Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance
JP2011189493A (en) * 2010-02-16 2011-09-29 Mitsubishi Materials Corp Surface coated cutting tool with hard coating layer for exhibiting excellent separation resistance and abrasion resistance
JP2011189494A (en) * 2010-02-16 2011-09-29 Mitsubishi Materials Corp Surface coated cutting tool with hard coating layer for exhibiting superior separation resistance and abrasion resistance
JP2012143825A (en) * 2011-01-11 2012-08-02 Mitsubishi Materials Corp Surface-coated cutting tool in which hard coating layer demonstrates excellent chipping resistance

Also Published As

Publication number Publication date
JP4569743B2 (en) 2010-10-27

Similar Documents

Publication Publication Date Title
JP4811781B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer
JP2006231433A (en) Surface-coated cermet cutting tool with hard coating layer exerting excellent chipping resistance in high-speed intermittent cutting
JP2005205586A (en) Surface-coated cermet cutting tool exhibiting excellent chipping resistance in hard coated layer
JP4811782B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer
JP4730522B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer
JP4569743B2 (en) Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer
JP2006334710A (en) Surface coated cermet cutting tool whose hard coating layer exhibits high chipping resistance in high-speed heavy cutting operation
JP2005246597A (en) Surface coated cubic boron nitride sintered material-made cutting tool having excellent chipping resistance in hard coated layer
JP2008080476A (en) Surface coated cutting tool with hard coated layer exerting excellent abrasion resistance in high speed cutting work
JP2006315154A (en) SURFACE COATED CERMET CUTTING TOOL IN WHICH THICK FILM alpha-TYPE ALUMINUM OXIDE LAYER EXHIBITS EXCELLENT CHIPPING RESISTANCE
JP2006289586A (en) Surface-coated cermet cutting tool having hard coating layer exhibiting superior chipping resistance in high speed intermittent cutting work
JP4530141B2 (en) Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer
JP4569862B2 (en) Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer
JP4569746B2 (en) Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer
JP2006289546A (en) Surface-coated cermet cutting tool having hard coating layer for exhibiting superior chipping resistance in high speed intermittent cutting work
JP4591752B2 (en) Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer
JP4569861B2 (en) Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer
JP4756454B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer
JP4747338B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP4569742B2 (en) Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer
JP4747387B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer
JP2005279915A (en) Surface-coated cermet cutting tool exhibiting superior chipping resistance in hard-coated layer
JP4569745B2 (en) Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer
JP4483510B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP2005246596A (en) Surface-coated cermet cutting tool having hard coating layer exhibiting excellent chipping resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100714

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100727

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4569743

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees