JP4730522B2 - Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer - Google Patents
Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer Download PDFInfo
- Publication number
- JP4730522B2 JP4730522B2 JP2005151909A JP2005151909A JP4730522B2 JP 4730522 B2 JP4730522 B2 JP 4730522B2 JP 2005151909 A JP2005151909 A JP 2005151909A JP 2005151909 A JP2005151909 A JP 2005151909A JP 4730522 B2 JP4730522 B2 JP 4730522B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- inclination angle
- degrees
- range
- type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000011195 cermet Substances 0.000 title claims description 48
- 238000005520 cutting process Methods 0.000 title claims description 34
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 title claims description 5
- 239000010410 layer Substances 0.000 claims description 235
- 238000009826 distribution Methods 0.000 claims description 60
- 239000011247 coating layer Substances 0.000 claims description 38
- 239000013078 crystal Substances 0.000 claims description 37
- 238000005259 measurement Methods 0.000 claims description 17
- 239000010936 titanium Substances 0.000 claims description 16
- 150000001875 compounds Chemical class 0.000 claims description 12
- 238000005229 chemical vapour deposition Methods 0.000 claims description 10
- 238000007740 vapor deposition Methods 0.000 claims description 9
- 238000010894 electron beam technology Methods 0.000 claims description 8
- 238000001887 electron backscatter diffraction Methods 0.000 claims description 7
- 239000011295 pitch Substances 0.000 claims description 7
- 239000000853 adhesive Substances 0.000 claims description 5
- 230000001070 adhesive effect Effects 0.000 claims description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 2
- 150000004767 nitrides Chemical class 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 claims description 2
- 150000003608 titanium Chemical class 0.000 claims 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 81
- 239000012298 atmosphere Substances 0.000 description 22
- 239000000843 powder Substances 0.000 description 20
- 239000010409 thin film Substances 0.000 description 17
- 230000000052 comparative effect Effects 0.000 description 11
- 230000008719 thickening Effects 0.000 description 10
- 239000012495 reaction gas Substances 0.000 description 9
- 239000000203 mixture Substances 0.000 description 8
- 238000012360 testing method Methods 0.000 description 7
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 6
- 238000000151 deposition Methods 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 229910001018 Cast iron Inorganic materials 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 229910001141 Ductile iron Inorganic materials 0.000 description 1
- 229910001315 Tool steel Inorganic materials 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910002090 carbon oxide Inorganic materials 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000004453 electron probe microanalysis Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 102220076183 rs796052896 Human genes 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
Images
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Chemical Vapour Deposition (AREA)
Description
この発明は、硬質被覆層の上部層、すなわち化学蒸着形成した状態でα型の結晶構造を有する酸化アルミニウム層(以下、α型Al2O3層で示す)を、特に厚膜化した状態で、各種の鋼や鋳鉄などの切削加工に用いた場合にも、すぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具(以下、被覆サーメット工具という)に関するものである。 In the present invention, an upper layer of a hard coating layer, that is, an aluminum oxide layer (hereinafter referred to as an α-type Al 2 O 3 layer) having an α-type crystal structure in a state where chemical vapor deposition is formed is particularly thick. The present invention relates to a surface-coated cermet cutting tool (hereinafter referred to as a coated cermet tool) that exhibits excellent chipping resistance even when used for cutting various steels and cast iron.
従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)下部層として、いずれも化学蒸着形成されたTiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、
(b)上部層として、1〜15μmの平均層厚を有するα型Al2O3層、
以上(a)および(b)で構成された硬質被覆層を蒸着形成してなる被覆サーメット工具が知られており、この被覆サーメット工具が、例えば各種の鋼や鋳鉄などの連続切削や断続切削に用いられることは良く知られている。
(A) As a lower layer, a Ti carbide (hereinafter referred to as TiC) layer, nitride (hereinafter also referred to as TiN) layer, carbonitride (hereinafter referred to as TiCN) layer formed by chemical vapor deposition, Ti compound layer composed of one or more of a carbon oxide (hereinafter referred to as TiCO) layer and a carbonitride oxide (hereinafter referred to as TiCNO) layer and having an overall average layer thickness of 3 to 20 μm ,
(B) an α-type Al 2 O 3 layer having an average layer thickness of 1 to 15 μm as an upper layer;
There is known a coated cermet tool formed by vapor-depositing a hard coating layer composed of the above (a) and (b). It is well known to be used.
近年の切削装置のFA化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削工具に対する使用寿命の一層の延命化を図る目的で、特に硬質被覆層を構成する上部層、すなわちすぐれた高温硬さと耐熱性を有するα型Al2 O3 層には一段の厚膜化が強く望まれているが、前記α型Al2 O3 層の層厚を従来実用に供されている最大平均層厚である15μmを越えて厚膜化すると、Al2 O3 結晶粒が急激に粗大化し、かつ層自体の緻密性が著しく低下し、この結果高温強度の低下が避けられなくなることから、かかる厚膜化α型Al2 O3 層を硬質被覆層の上部層として蒸着形成してなる被覆サーメット工具においては、前記厚膜化α型Al2 O3 層が原因で、切刃部にチッピング(微少欠け)が発生し易くなり、この結果使用寿命のきわめて短いものとなることから、実用に供することができないのが現状である。 In recent years, the use of FA for cutting devices has been remarkable. On the other hand, there has been a strong demand for labor saving and energy saving and further cost reduction for cutting work, and with this purpose, especially for the purpose of further extending the service life of cutting tools. upper layer constituting the hard coating layer, i.e. excellent but the hot hardness and thickening of one step in the α-type the Al 2 O 3 layer having heat resistance is strongly demanded, of the α-type the Al 2 O 3 layer When the layer thickness exceeds 15 μm, which is the maximum average layer thickness that has been practically used in the past, the Al 2 O 3 crystal grains become coarser and the denseness of the layer itself is significantly reduced. since the decrease in the high-temperature strength can not be avoided, the coated cermet tool formed by depositing formed as an upper layer of such thickening α type the Al 2 O 3 layer a hard coating layer, the thickening α-type Al 2 O 3 layer due to chipping to the cutting edge (fine Chipping) is likely to occur, since it becomes very short for this result useful life, it can not be put to practical use at present.
そこで、本発明者等は、上述のような観点から、上記の従来被覆サーメット工具の硬質被覆層を構成する1〜15μmの平均層厚を有するα型Al2O3層に着目し、これの層厚を平均層厚で15μmを越えて厚膜化しても、前記厚膜化α型Al2O3層が原因のチッピングが切刃部に発生しない被覆サーメット工具を開発するべく研究を行った結果、
(1−a)工具基体の表面に、硬質被覆層としてのα型Al2O3層を蒸着形成するに際して、例えばこれの蒸着形成に先だって、通常の化学蒸着装置にて、
反応ガス組成:容量%で、AlCl3:3〜10%、CO2:0.5〜3%、C2H4:0.01〜0.3%、H2:残り、
反応雰囲気温度:750〜900℃、
反応雰囲気圧力:3〜13kPa、
の低温条件で、下部層であるTi化合物層の表面にAl2O3核を形成し、この場合前記Al2O3核は30〜200nmの平均層厚を有するAl2O3核薄膜であるのが望ましく、引き続いて、反応雰囲気を圧力:3〜13kPaの水素雰囲気に変え、反応雰囲気温度を1100〜1200℃に昇温した条件で前記Al2O3核薄膜に加熱処理を施した状態で、硬質被覆層としてのα型Al2O3層を通常の条件で、平均層厚で15μmを越えた18〜28μmの層厚に形成すると、この結果の前記加熱処理Al2O3核薄膜上に蒸着形成された厚膜化α型Al2O3層(以下、厚膜化改質α型Al2O3層という)においては、平均層厚で18〜28μmの層厚に厚膜化したにもかかわらず、Al2O3結晶粒の粗大化が著しく抑制され、かつ層自体の緻密性も保持されたものになるので、高温強度の低下が抑制され、寧ろ向上したものになること。
Therefore, the present inventors focused on the α-type Al 2 O 3 layer having an average layer thickness of 1 to 15 μm constituting the hard coating layer of the above-described conventional coated cermet tool from the above viewpoint, Research was conducted to develop a coated cermet tool in which chipping caused by the thickened α-type Al 2 O 3 layer does not occur at the cutting edge even if the layer thickness is increased to an average layer thickness exceeding 15 μm. result,
(1-a) When forming an α-type Al 2 O 3 layer as a hard coating layer on the surface of the tool base by vapor deposition, for example, prior to the vapor deposition formation,
Reaction gas composition:% by volume, AlCl 3 : 3 to 10%, CO 2 : 0.5 to 3%, C 2 H 4 : 0.01 to 0.3%, H 2 : remaining,
Reaction atmosphere temperature: 750 to 900 ° C.
Reaction atmosphere pressure: 3 to 13 kPa,
Under the low temperature conditions, Al 2 O 3 nuclei are formed on the surface of the lower Ti compound layer. In this case, the Al 2 O 3 nuclei are Al 2 O 3 nuclei thin films having an average layer thickness of 30 to 200 nm. Subsequently, the reaction atmosphere is changed to a hydrogen atmosphere at a pressure of 3 to 13 kPa, and the reaction atmosphere temperature is raised to 1100 to 1200 ° C., and the Al 2 O 3 core thin film is heated. When the α-type Al 2 O 3 layer as the hard coating layer is formed to a layer thickness of 18 to 28 μm exceeding the average layer thickness of 15 μm under normal conditions, the resulting heat-treated Al 2 O 3 core thin film In the thickened α-type Al 2 O 3 layer (hereinafter referred to as “thickened modified α-type Al 2 O 3 layer”) formed by vapor deposition on the thick film, the average layer thickness is 18 to 28 μm. phased Nevertheless, Al 2 O 3 grain coarsening significantly suppressed, and the layer itself Since also those held denseness, decrease in high temperature strength been suppressed, to become possible that enhanced rather.
(1−b)上記の厚膜化改質α型Al2O3層、および上記の加熱処理Al2O3核薄膜の形成を行わないで、下部層であるTi化合物層の表面に、通常の条件で18〜28μmの平均層厚で蒸着形成された厚膜化α型Al2O3層(以下、厚膜化通常α型Al2O3層という)について、電界放出型走査電子顕微鏡を用い、図4(a),(b)に概略説明図で示される通り、表面研磨面の測定範囲内に存在する六方晶結晶格子を有するα型Al2O3結晶粒個々に電子線を照射し、電子後方散乱回折像装置を用い、所定領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフを作成した場合、前記厚膜化通常α型Al2O3層は、図6に例示される通り、(0001)面の測定傾斜角の分布が0〜45度の範囲内で不偏的な傾斜角度数分布グラフを示すのに対して、前記加熱処理Al2O3核薄膜上に蒸着形成された厚膜化改質α型Al2O3層は、図5に例示される通り、傾斜角区分の特定位置にシャープな最高ピークが現れ、このシャープな最高ピークは、前記Al2O3核薄膜の平均層厚を変化させることによりグラフ横軸の傾斜角区分に現れる位置が変わること。 (1-b) Without forming the thickening-modified α-type Al 2 O 3 layer and the heat-treated Al 2 O 3 core thin film, the surface of the Ti compound layer as the lower layer is usually formed A field emission scanning electron microscope for a thickened α-type Al 2 O 3 layer (hereinafter referred to as a thickened normal α-type Al 2 O 3 layer) deposited with an average layer thickness of 18 to 28 μm under the above conditions As shown in the schematic explanatory diagrams in FIGS. 4A and 4B, an electron beam is individually applied to each α-type Al 2 O 3 crystal grain having a hexagonal crystal lattice existing within the measurement range of the surface polished surface. Irradiate and use an electron backscatter diffraction image apparatus, and a predetermined area is spaced at a distance of 0.1 μm / step, and the normal line of the (0001) plane which is the crystal plane of the crystal grain with respect to the normal line of the polished surface Is measured, and the measured inclination angle within the range of 0 to 45 degrees out of the measured inclination angles is a pitch of 0.25 degrees. As with partitioning, if you create a tilt angle frequency distribution graph obtained by aggregating the frequencies present in each segment, the thickened normal α-type Al 2 O 3 layer is illustrated in FIG. 6 for each, While the distribution of the measured inclination angle of the (0001) plane shows an unbiased inclination angle number distribution graph within the range of 0 to 45 degrees, the thickness formed by vapor deposition on the heat-treated Al 2 O 3 nuclear thin film In the film-modified α-type Al 2 O 3 layer, as illustrated in FIG. 5, a sharp maximum peak appears at a specific position in the tilt angle section, and this sharp maximum peak is the same as that of the Al 2 O 3 core thin film. By changing the average layer thickness, the position that appears in the tilt angle section on the horizontal axis of the graph changes.
(1−c)試験結果によれば、上記の厚膜化改質α型Al2O3層においては、上記Al2O3核薄膜の平均層厚を30〜200nmとすると、上記シャープな最高ピークが傾斜角区分の1.25〜10.00度の範囲内に現れると共に、0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45〜70%の割合を占める傾斜角度数分布グラフを示すようになること。 (1-c) According to the test results, in the above-mentioned thickened modified α-type Al 2 O 3 layer, when the average layer thickness of the Al 2 O 3 core thin film is 30 to 200 nm, the sharpest maximum The peak appears in the range of 1.25 to 10.00 degrees of the tilt angle section, and the total frequency existing in the range of 0 to 10 degrees is 45 to 70 % of the total frequency in the tilt angle frequency distribution graph. To show the distribution graph of the number of inclination angles that occupy the ratio.
(2−a)さらに、上記の従来被覆サーメット工具の硬質被覆層の下部層であるTi化合物層を構成するTiCN層(以下、「従来TiCN層」という)は、通常の化学蒸着装置で、
反応ガス組成−体積%で、TiCl4:2〜10%、CH3CN:0.5〜3%、N2:10〜30%、H2:残り、
反応雰囲気温度:800〜900℃、
反応雰囲気圧力:6〜20kPa、
の条件で形成されるが、これを、同じく通常の化学蒸着装置で、
反応ガス組成−体積%で、TiCl4:0.6〜1%、CH3CN:0.3〜1.4%、C2H4:1.6〜3%、N2:15〜30%、H2:残り、
反応雰囲気温度:700〜750℃、
反応雰囲気圧力:25〜40kPa、
の条件で、かつ、2.5〜15μmの平均層厚で形成すると、この結果形成されたTiCN層(以下、「改質TiCN層」という)は、上記の従来TiCN層に比して一段と高温強度の向上したものになること。
(2-a) Furthermore, the TiCN layer (hereinafter referred to as “conventional TiCN layer”) constituting the Ti compound layer, which is the lower layer of the hard coating layer of the conventional coated cermet tool, is a normal chemical vapor deposition apparatus.
Reaction gas composition - by volume%, TiCl 4: 2~10%, CH 3 CN: 0.5~3%, N 2: 10~30%, H 2: remainder,
Reaction atmosphere temperature: 800 to 900 ° C.
Reaction atmosphere pressure: 6-20 kPa,
It is formed under the conditions of, but this is also a normal chemical vapor deposition device,
Reaction gas composition - by volume%, TiCl 4: 0.6 ~1% , CH 3 CN: 0.3~ 1.4%, C 2 H 4: 1.6 ~3%, N 2: 15 ~30% , H 2 : remaining,
Reaction atmosphere temperature: 700 to 750 ° C.
Reaction atmosphere pressure: 25-40 kPa,
And an average layer thickness of 2.5 to 15 μm, the resulting TiCN layer (hereinafter referred to as “modified TiCN layer”) has a higher temperature than the conventional TiCN layer. To be improved in strength.
(2−b)上記の従来TiCN層と改質TiCN層について、電界放出型走査電子顕微鏡を用い、図1(a),(b)に概略説明図で示される通り、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射し、電子後方散乱回折像装置を用い、所定領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{110}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフを作成した場合、前記従来TiCN層は、図3に例示される通り、{110}面の測定傾斜角の分布が0〜45度の範囲内で不偏的な傾斜角度数分布グラフを示すのに対して、前記改質TiCN層は、図2に例示される通り、傾斜角区分の特定位置にシャープな最高ピークが現れ、このシャープな最高ピークは、反応ガス中に構成成分として添加したC2H4の含有割合によってグラフ横軸の傾斜角区分に現れる位置が変わること。 (2-b) About the above conventional TiCN layer and modified TiCN layer, using a field emission scanning electron microscope, as shown in the schematic explanatory diagrams of FIGS. 1A and 1B, the measurement range of the surface polished surface Each crystal grain having a cubic crystal lattice existing therein is irradiated with an electron beam, and an electron backscatter diffraction image apparatus is used, and a predetermined region is spaced 0.1 μm / step from the normal line of the surface polished surface. Then, the inclination angle formed by the normal line of the {110} plane which is the crystal plane of the crystal grain is measured, and the measurement inclination angle within the range of 0 to 45 degrees out of the measurement inclination angles is 0.25 degrees. When the slope angle number distribution graph formed by dividing the pitches and counting the frequencies existing in each section is created, the conventional TiCN layer has a measured slope of the {110} plane as illustrated in FIG. Unbiased inclination angle number distribution in the range of angle distribution of 0 to 45 degrees In contrast to the rough, the modified TiCN layer, as illustrated in FIG. 2, shows a sharp maximum peak at a specific position in the tilt angle section, and this sharp maximum peak is a constituent component in the reaction gas. The position appearing in the tilt angle section of the horizontal axis of the graph changes depending on the content ratio of C 2 H 4 added as.
(2−c)上記の改質TiCN層は、上記の通り、反応ガス中に新たにC2H4を1.6〜3%の割合で加え、一方同反応ガス中のTiCl4の含有割合は0.6〜1%と相対的に低くし、さらに反応雰囲気温度は700〜750℃と相対的に低く、かつ反応雰囲気圧力は25〜40kPaと相対的に高くした条件で形成され、形成された前記改質TiCN層は、上記傾斜角度数分布グラフにおいて、シャープな最高ピークが傾斜角区分の0.75〜9.25度の範囲内に現れると共に、0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の56〜75%の割合を占める傾斜角度数分布グラフを示すようになるが、この場合、試験結果によれば、反応ガス中のC2H4の含有割合が1.6%未満でも、3%を越えて高くなっても、最高ピークの現れる傾斜角区分が0.75〜9.25度の範囲から外れてしまう場合が生じ、また反応雰囲気温度が750℃を越えたり、あるいは反応雰囲気圧力が25kPa未満であったりすると、0〜10度の範囲内に存在する度数の合計割合が、傾斜角度数分布グラフにおける度数全体の56%未満となる場合があり、いずれの場合もTiCN層にすぐれた高温強度を確保することができず、さらに反応雰囲気温度が700℃未満であったり、あるいは反応雰囲気圧力が40kPaを越えたりすると、層の蒸着形成速度が著しく低下し、コストの点で望ましくなくないこと。 (2-c) As described above, the modified TiCN layer is newly added with C 2 H 4 in the reaction gas at a ratio of 1.6 to 3%, while the content ratio of TiCl 4 in the reaction gas is as follows. Is formed under the condition that the reaction atmosphere temperature is relatively low as 0.6 to 1%, the reaction atmosphere temperature is relatively low as 700 to 750 ° C., and the reaction atmosphere pressure is relatively high as 25 to 40 kPa. In the tilt angle distribution graph, the modified TiCN layer has a sharp maximum peak in the range of 0.75 to 9.25 degrees of the tilt angle section and in the range of 0 to 10 degrees. total power is, but exhibits a tilt angle frequency distribution graph in a proportion of 56-75% of the total power at the inclination angle frequency distribution graph, in this case, according to the test results, C 2 H in the reaction gas content of 4 is less than 1.6% , Even if higher than 3% when the tilt angle segment of appearance of the maximum peak deviates from the range of 0.75 to 9.25 degrees occurs, also or reaction atmosphere temperature exceeds the 750 ° C., or the reaction If the atmospheric pressure is less than 25 kPa, the total ratio of the frequencies existing in the range of 0 to 10 degrees may be less than 56 % of the entire frequencies in the inclination angle frequency distribution graph. In any case, the TiCN layer If the reaction atmosphere temperature is less than 700 ° C. or the reaction atmosphere pressure exceeds 40 kPa, the deposition rate of the layer is remarkably reduced, and the cost is low. Not undesirable.
(3)以上の結果から、傾斜角度数分布グラフで、(0001)面の測定傾斜角の分布が1.25〜10.00度の範囲内に傾斜角区分の最高ピークが現れ、かつ0〜10度の範囲内に存在する度数割合が45〜70%の割合を占める厚膜化改質α型Al2O3層を硬質被覆層の上部層とし、同じく、{110}面の測定傾斜角の分布が0.75〜9.25度の範囲内に傾斜角区分の最高ピークが現れ、かつ0〜10度の範囲内に存在する度数割合が56〜75%の割合を占める改質TiCN層を同下部層として2.5〜15μmの平均層厚で蒸着形成してなる被覆サーメット工具は、α型Al2O3層を平均層厚で18〜28μmに厚膜化しても、前記厚膜化改質α型Al2O3層および改質TiCN層の具備する高温強度によって、上記の厚膜化通常α型Al2O3層を上部層とし、かつ上記従来TiCN層を同下部層として2.5〜15μmの平均層厚で蒸着形成した被覆サーメット工具に比して、特に切刃部にチッピングの発生なく、一段とすぐれた耐摩耗性を発揮するようになることから、使用寿命の一段の延命化が可能となること。
以上(1)〜(3)に示される研究結果を得たのである。
(3) From the above results, in the inclination angle number distribution graph, the highest peak of the inclination angle section appears in the range of the measured inclination angle distribution of the (0001) plane within the range of 1.25 to 10.00 degrees, and 0 to A thickening-modified α-type Al 2 O 3 layer having a power ratio of 45 to 70 % in the range of 10 degrees is used as the upper layer of the hard coating layer, and similarly, the measured inclination angle of the {110} plane Modified TiCN layer in which the highest peak of the tilt angle section appears in the range of 0.75 to 9.25 degrees and the frequency ratio existing in the range of 0 to 10 degrees accounts for 56 to 75% The coated cermet tool formed by vapor deposition with an average layer thickness of 2.5 to 15 μm as the lower layer is the same even if the α-type Al 2 O 3 layer is increased to an average layer thickness of 18 to 28 μm. the high temperature strength which includes the forming a film reformed α-type the Al 2 O 3 layer and reforming TiCN layer, the thickness The usual α-type the Al 2 O 3 layer as an upper layer, and the conventional TiCN layer as compared with the coated cermet tool formed deposited with an average layer thickness of 2.5~15μm as the lower layer, particularly the cutting edge It will be possible to prolong the service life because it will exhibit even better wear resistance without chipping.
The research results shown in (1) to (3) above were obtained.
この発明は、上記の研究結果に基づいてなされたものであって、WC基超硬合金またはTiCN基サーメットで構成された工具基体の表面に蒸着形成した硬質被覆層を、
(a)いずれも化学蒸着形成された、TiC層、TiN層、TiCN層、TiCO層、およびTiCNO層のうちの1層以上からなり、かつ0.1〜5μmの合計平均層厚を有する密着性Ti化合物層と、2.5〜15μmの平均層厚を有する改質TiCN層からなる下部層、
(b)18〜28μmの平均層厚を有する厚膜化改質α型Al2O3層からなる上部層、
以上(a)および(b)で構成し、かつ、上記(a)の下部層における改質TiCN層は、
電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射し、電子後方散乱回折像装置を用い、所定領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{110}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、0.75〜9.25度の範囲内の傾斜角区分に最高ピークが存在すると共に、0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の56〜75%の割合を占める傾斜角度数分布グラフ、
を示し、さらに、上記(b)の厚膜化改質α型Al2O3層は、
化学蒸着形成された状態でα型の結晶構造を有し、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射し、電子後方散乱回折像装置を用い、所定領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、1.25〜10.00度の範囲内の傾斜角区分に最高ピークが存在すると共に、0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45〜70%の割合を占める傾斜角度数分布グラフ、
を示してなる、硬質被覆層がすぐれた耐チッピング性を発揮する被覆サーメット工具に特徴を有するものである。
The present invention was made based on the above research results, and a hard coating layer formed by vapor deposition on the surface of a tool base composed of a WC-based cemented carbide or TiCN-based cermet,
(A) All formed by chemical vapor deposition, comprising one or more of a TiC layer, a TiN layer, a TiCN layer, a TiCO layer, and a TiCNO layer, and having a total average layer thickness of 0.1 to 5 μm A lower layer comprising a Ti compound layer and a modified TiCN layer having an average layer thickness of 2.5 to 15 μm,
(B) an upper layer composed of a thickened modified α-type Al 2 O 3 layer having an average layer thickness of 18 to 28 μm;
The modified TiCN layer composed of the above (a) and (b), and the lower layer of (a),
Using a field emission scanning electron microscope, each crystal grain having a cubic crystal lattice existing within the measurement range of the surface polished surface is irradiated with an electron beam, and an electron backscatter diffraction image apparatus is used to set a predetermined area to 0.1 μm. The inclination angle formed by the normal line of the {110} plane, which is the crystal plane of the crystal grain, is measured with respect to the normal line of the surface polished surface at an interval of / step. In the inclination angle number distribution graph obtained by dividing the measured inclination angles within the range of degrees into pitches of 0.25 degrees and totaling the frequencies existing in the respective sections, 0.75 to 9.25 degrees Inclination angle number distribution in which the highest peak exists in the inclination angle section within the range, and the sum of the frequencies existing in the range of 0 to 10 degrees occupies a ratio of 56 to 75% of the entire frequency in the inclination angle frequency distribution graph Graph,
Further, the thickening-modified α-type Al 2 O 3 layer in (b) above is
In the state of chemical vapor deposition, it has an α-type crystal structure, and a field emission scanning electron microscope is used to irradiate individual crystal grains having a hexagonal crystal lattice existing within the measurement range of the surface polished surface with an electron beam. Then, using the electron backscatter diffraction image apparatus, the normal of the (0001) plane , which is the crystal plane of the crystal grain, is made with respect to the normal of the surface-polished surface in a predetermined region at an interval of 0.1 μm / step. The inclination angle is measured, and among the measurement inclination angles, the measurement inclination angles within the range of 0 to 45 degrees are divided for each pitch of 0.25 degrees, and the frequencies existing in each division are totaled. In the inclination angle distribution graph, the highest peak exists in the inclination angle section in the range of 1.25 to 10.00 degrees, and the total of the frequencies existing in the range of 0 to 10 degrees is the inclination angle distribution graph. accounts for 45-70% of the total power in the Oblique angle frequency distribution graph,
The hard coating layer is characterized by a coated cermet tool that exhibits excellent chipping resistance.
また、この発明の被覆サーメット工具の硬質被覆層の構成層において、上記の通りに数値限定した理由を以下に説明する。
(a)下部層の密着性Ti化合物層
密着性Ti化合物層は、工具基体と上部層である厚膜化改質α型Al2O3層および改質TiCN層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性向上に寄与する作用をもつが、その合計平均層厚が0.1μm未満では、所望のすぐれた密着性を確保することができず、一方前記密着性は5μmまでの合計平均層厚で充分であることから、その合計平均層厚を0.1〜5μmと定めた。
In addition, the reason why the numerical values of the constituent layers of the hard coating layer of the coated cermet tool of the present invention are limited as described above will be described below.
(A) Lower layer adhesive Ti compound layer The adhesive Ti compound layer firmly adheres to both the tool substrate and the upper layer thickened modified α-type Al 2 O 3 layer and modified TiCN layer. Therefore, it has an effect of improving the adhesion of the hard coating layer to the tool substrate, but if the total average layer thickness is less than 0.1 μm, the desired excellent adhesion cannot be secured, while the adhesion Since the total average layer thickness up to 5 μm is sufficient, the total average layer thickness was determined to be 0.1 to 5 μm.
(b)下部層の改質TiCN層
上記の通り、反応ガスの構成成分であるC2H4の含有割合を1.6〜3%とすることにより、0.75〜9.25度の傾斜角区分範囲内に測定傾斜角の最高ピークが現れ、かつ反応雰囲気温度を700〜750℃、反応雰囲気圧力を25〜40kPaとすることにより、0〜10度の傾斜角区分内に存在する度数の合計割合が、傾斜角度数分布グラフにおける度数全体の56〜75%となる傾斜角度数分布グラフを示す改質TiCN層が形成されるようになり、この結果として改質TiCN層は一段とすぐれた高温強度を具備するようになるが、その平均層厚が2.5μm未満では所望のすぐれた高温強度を硬質被覆層に具備せしめることができず、一方その平均層厚が15μmを越えると、切削時の発生熱による熱塑性変形量が許容範囲を越えて大きくなり、この結果上部層である厚膜化改質α型Al2O3層に割れが発生し易くなることから、その平均層厚を2.5〜15μmと定めた。
(B) Modified TiCN layer of lower layer As described above, by setting the content ratio of C 2 H 4 which is a component of the reaction gas to 1.6 to 3%, an inclination of 0.75 to 9.25 degrees The maximum peak of the measured inclination angle appears in the angular section range, the reaction atmosphere temperature is 700 to 750 ° C., and the reaction atmosphere pressure is 25 to 40 kPa, so that the frequency existing in the inclination angle section of 0 to 10 degrees A modified TiCN layer showing an inclination angle number distribution graph in which the total ratio is 56 to 75% of the entire frequency in the inclination angle number distribution graph is formed, and as a result, the modified TiCN layer has a much higher temperature. However, if the average layer thickness is less than 2.5 μm, the hard coating layer cannot have the desired high-temperature strength, whereas if the average layer thickness exceeds 15 μm, Departure Thermal plastic deformation due to heat is increased beyond the allowable range, since the crack results thickening modified α-type Al 2 O 3 layer which is the upper layer is likely to occur, the average layer thickness 2.5 It was defined as ˜15 μm.
(c)厚膜化改質α型Al2O3層
上記の通り加熱処理Al2O3核薄膜上に形成された厚膜化改質α型Al2O3層には、Al2O3自体のもつすぐれた高温硬度と耐熱性によって硬質被覆層の耐摩耗性を向上させると共に、厚膜化通常α型Al2O3層に比して、一段とすぐれた高温強度の向上したものとなっているので、厚膜化した硬質被覆層にチッピングが発生するのを抑制する作用があるが、その平均層厚が18μm未満では厚膜化の要求に十分満足に対応することができず、一方その平均層厚が28μmを越えて厚くなりすぎると、チッピングが発生し易くなることから、その平均層厚を18〜28μmと定めた。
(C) Thickened modified α-type Al 2 O 3 layer As described above, the thickened modified α-type Al 2 O 3 layer formed on the heat-treated Al 2 O 3 core thin film includes Al 2 O 3 It improves the wear resistance of the hard coating layer by its excellent high-temperature hardness and heat resistance, and also has an improved high-temperature strength compared to the thickened normal α-type Al 2 O 3 layer. Therefore, there is an effect of suppressing the occurrence of chipping in the hard coating layer that has been thickened, but if the average layer thickness is less than 18 μm, it cannot sufficiently satisfy the demand for thickening, On the other hand, if the average layer thickness exceeds 28 μm and becomes too thick, chipping tends to occur. Therefore, the average layer thickness was determined to be 18 to 28 μm.
(c)加熱処理Al2O3核薄膜
この発明の被覆サーメット工具の硬質被覆層を構成する厚膜化改質α型Al2O3層に関して、傾斜角度数分布グラフで最高ピークを示す傾斜角区分と加熱処理Al2O3核薄膜の平均層厚との間には密接な関係があり、この場合試験結果によれば、前記加熱処理Al2O3核薄膜の平均層厚を30〜200nmの範囲で変化させると、最高ピークが1.25〜10.00度の範囲内の傾斜角区分に現れると共に、0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45〜70%の割合を占める傾斜角度数分布グラフを示すようになるものであり、したがって、前記加熱処理Al2O3核薄膜の平均層厚が、30nm未満では、これの上に蒸着形成される厚膜化改質α型Al2O3層の傾斜角度数分布グラフの1.25〜10.00度の範囲内に現れるピーク高さが不十分、すなわち、0〜10度の範囲内に存在する度数の合計割合が、傾斜角度数分布グラフにおける度数全体の45%未満となる場合が生じ、この場合上記の通り、前記厚膜化改質α型Al2O3層の高温強度を、上記の従来被覆サーメット工具の硬質被覆層の上部層を構成するα型Al2O3層、すなわち1〜15μmの平均層厚を有するα型Al2O3層の具備する高温強度と同等の高温強度を保持することができず、この結果耐チッピング性が低下するようになり、一方その平均層厚が200nmを越えると、最高ピークの現れる傾斜角区分が1.25〜10.00度の範囲から外れてしまい、この場合も前記厚膜化改質α型Al2O3層の高温強度の低下が避けられなくなることから、硬質被覆層の下部層であるTi化合物層上に形成される前記Al2O3核薄膜の平均層厚を30〜200nm、望ましくは同30〜150nmとしたのである。
(C) Heat-treated Al 2 O 3 core thin film For the thickened modified α-type Al 2 O 3 layer constituting the hard coating layer of the coated cermet tool of the present invention, the inclination angle showing the highest peak in the inclination angle number distribution graph There is a close relationship between the classification and the average layer thickness of the heat-treated Al 2 O 3 core thin film. In this case, according to the test results, the average layer thickness of the heat-treated Al 2 O 3 core thin film is 30 to 200 nm. The maximum peak appears in the inclination angle section within the range of 1.25 to 10.00 degrees, and the total of the frequencies existing within the range of 0 to 10 degrees is represented in the inclination angle number distribution graph. An inclination angle frequency distribution graph occupying a ratio of 45 to 70% of the entire frequency is shown. Therefore, when the average layer thickness of the heat-treated Al 2 O 3 core thin film is less than 30 nm, the upper Thickened reformed α-type A Peak height appearing in the range of 1.25 to 10.00 degree inclination angle frequency distribution graph of the 2 O 3 layer is insufficient, i.e., the total proportion of the frequencies present in the range of 0 degrees, tilt In some cases, the frequency is less than 45% of the total frequency in the angle distribution graph. In this case, as described above, the high-temperature strength of the thickening-modified α-type Al 2 O 3 layer is determined by the hard coating of the conventional coated cermet tool. α-type the Al 2 O 3 layer constituting the upper layer of the layer, i.e., can not be held the average layer thickness-temperature strength equivalent to that of the high temperature strength comprising the α-type the Al 2 O 3 layer having a 1 to 15 m, As a result, the chipping resistance is lowered. On the other hand, when the average layer thickness exceeds 200 nm, the inclination angle section where the highest peak appears is out of the range of 1.25 to 10.00 degrees. hot strength of thickening modified α type the Al 2 O 3 layer Since the decrease in can not be avoided, the Al 2 O 3 Average layer thickness of 30 to 200 nm nuclear thin film formed on the Ti compound layer as the lower layer of the hard coating layer, since preferably has the same 30~150nm is there.
なお、被覆サーメット工具の使用前後の識別を目的として、黄金色の色調を有するTiN層を、硬質被覆層の最表面層として必要に応じて蒸着形成してもよいが、この場合の平均層厚は0.1〜1μmでよく、これは0.1μm未満では、十分な識別効果が得られず、一方前記TiN層による前記識別効果は1μmまでの平均層厚で十分であるという理由からである。 For the purpose of identification before and after the use of the coated cermet tool, a TiN layer having a golden color tone may be vapor-deposited as the outermost surface layer of the hard coating layer, but the average layer thickness in this case 0.1-1 μm may be sufficient, because if the thickness is less than 0.1 μm, a sufficient discrimination effect cannot be obtained, while the discrimination effect by the TiN layer is sufficient with an average layer thickness of up to 1 μm. .
この発明の被覆サーメット工具は、これの硬質被覆層を構成する厚膜化改質α型Al2O3層が、図4に例示される通り1.25〜10.00度の範囲内の傾斜角区分に最高ピークが現れる傾斜角度数分布グラフを示し、これを平均層厚で18〜28μmの層厚に厚膜化しても、図2に例示される通り、0.75〜9.25度の範囲内の傾斜角区分に最高ピークが現れる傾斜角度数分布グラフを示す改質TiCN層の具備する高温強度と相俟って、すぐれた耐チッピング性を発揮することから、各種の鋼や鋳鉄の切削加工で、すぐれた耐摩耗性を長期に亘って発揮し、使用寿命の一段の延命化を可能とするものである。 In the coated cermet tool of the present invention, the thickened modified α-type Al 2 O 3 layer constituting the hard coating layer thereof is inclined within the range of 1.25 to 10.00 degrees as illustrated in FIG. shows an inclination angle frequency distribution graph the highest peak in the angular segment appears, even thickened this average layer thickness in a layer thickness of 18 to 28 [mu] m, as illustrated in FIG. 2, from 0.75 to 9.25 Combined with the high-temperature strength of the modified TiCN layer, which shows an inclination angle number distribution graph in which the highest peak appears in the inclination angle range within the range of degrees, it exhibits excellent chipping resistance. In the cutting of cast iron, excellent wear resistance is demonstrated over a long period of time, and the service life can be further extended.
つぎに、この発明の被覆サーメット工具を実施例により具体的に説明する。 Next, the coated cermet tool of the present invention will be specifically described with reference to examples.
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、NbC粉末、Cr3 C2 粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で32時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.05mmのホーニング加工を施すことによりISO・CNMG120408に規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体A,C〜Fをそれぞれ製造した。 WC powder, TiC powder, ZrC powder, VC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder each having an average particle diameter of 1 to 3 μm are prepared as raw material powders. The raw material powder was blended in the blending composition shown in Table 1, added with wax, ball mill mixed in acetone for 32 hours, dried under reduced pressure, and then pressed into a green compact of a predetermined shape at a pressure of 98 MPa. The green compact is vacuum-sintered in a vacuum of 5 Pa at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour. After sintering, the cutting edge is subjected to a honing process of R: 0.05 mm. As a result, tool bases A and C to F made of a WC-based cemented carbide having a throwaway tip shape specified in ISO · CNMG120408 were produced.
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで32時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG120412のチップ形状をもったTiCN基サーメット製の工具基体b,d〜fを形成した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 32 hours, dried, and then pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after the sintering, the cutting edge portion was subjected to a honing process of R: 0.07 mm. Tool bases b and df made of TiCN base cermet having a standard / CNMG12041 chip shape were formed.
つぎに、これらの工具基体A,C〜Fおよび工具基体b,d〜fの表面に、通常の化学蒸着装置を用い、表3および表4に示される条件にて、硬質被覆層の下部層として改質TiCN層および密着性Ti化合物層を、表5に示される組み合わせで、かつ目標層厚で蒸着形成し、ついで、
反応ガス組成:容量%で、AlCl3:6.5%、CO2:1.6%、C2H4:0.13%、H2:残り、
反応雰囲気温度:820℃、
反応雰囲気圧力:8kPa、
時間:5〜80分、
の低温条件で表6に示される目標層厚のAl2O3核薄膜を形成した後(前記Al2O3核薄膜の層厚と処理時間の関係は実験により予め調査されている)、反応雰囲気を圧力:8kPaの水素雰囲気に変え、反応雰囲気温度を1135℃に昇温した条件で前記Al2O3核薄膜に加熱処理を施し、引続いて、同じく表3に示される条件で、同じく表6に示される目標層厚の厚膜化改質α型Al2O3層を硬質被覆層の上部層として蒸着することにより本発明被覆サーメット工具1〜10をそれぞれ製造した。
Next, on the surfaces of these tool bases A, C to F and tool bases b and df , a normal chemical vapor deposition apparatus is used, and the lower layer of the hard coating layer under the conditions shown in Tables 3 and 4 As the modified TiCN layer and the adhesive Ti compound layer, the combination shown in Table 5 and the target layer thickness are formed by vapor deposition.
Reaction gas composition: volume%, AlCl 3 : 6.5%, CO 2 : 1.6%, C 2 H 4 : 0.13%, H 2 : remaining,
Reaction atmosphere temperature: 820 ° C.
Reaction atmosphere pressure: 8 kPa,
Time: 5-80 minutes
After forming an Al 2 O 3 nucleus thin film having the target layer thickness shown in Table 6 under the low temperature conditions (the relationship between the layer thickness of the Al 2 O 3 nucleus thin film and the processing time has been investigated in advance by experiments), the reaction The atmosphere was changed to a hydrogen atmosphere at a pressure of 8 kPa, and the Al 2 O 3 core thin film was subjected to heat treatment under the conditions where the reaction atmosphere temperature was raised to 1135 ° C., and then under the same conditions as shown in Table 3, The coated cermet tools 1 to 10 of the present invention were manufactured by depositing a thickened modified α-type Al 2 O 3 layer having a target layer thickness shown in Table 6 as an upper layer of the hard coating layer.
また、比較の目的で、上記の工具基体A,C〜Fおよび工具基体b,d〜fの表面に、同じく通常の化学蒸着装置を用い、表3,7に示される条件にて、硬質被覆層の下部層として従来TiCN層および密着性Ti化合物層を、表8に示される組み合わせで、かつ目標層厚で蒸着形成し、ついで、同じく表3に示される条件で、同じく表9に示される目標層厚の厚膜化通常α型Al2O3層を硬質被覆層の上部層として蒸着形成することにより比較被覆サーメット工具1〜10をそれぞれ製造した。 Also, for comparison purposes, the surfaces of the above-mentioned tool bases A, C to F and tool bases b and df are similarly coated with a hard coating under the conditions shown in Tables 3 and 7 using the same chemical vapor deposition apparatus. A conventional TiCN layer and an adhesive Ti compound layer are formed as a lower layer of the layer by vapor deposition in the combination shown in Table 8 and with a target layer thickness, and then also shown in Table 9 under the same conditions as shown in Table 3. Comparative coating cermet tools 1 to 10 were produced by depositing a normal α-type Al 2 O 3 layer as the upper layer of the hard coating layer.
ついで、上記の本発明被覆サーメット工具1〜10と比較被覆サーメット工具1〜10の硬質被覆層を構成する改質TiCN層および従来TiCN層、さらに厚膜化改質α型Al2O3層および厚膜化通常α型Al2O3層について、電界放出型走査電子顕微鏡を用いて、傾斜角度数分布グラフをそれぞれ作成した。
すなわち、上記傾斜角度数分布グラフは、上記の改質TiCN層および従来TiCN層、並びに厚膜化改質α型Al2O3層および厚膜化通常α型Al2O3層の表面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記表面研磨面の測定範囲内に存在する立方晶結晶格子(TiCN層)および六方晶結晶格子(α型Al 2 O 3 層)を有する結晶粒個々に照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記改質TiCN層および従来TiCN層については結晶粒の結晶面である{110}面、前記厚膜化改質α型Al2O3層および厚膜化通常α型Al2O3層については結晶粒の結晶面である(0001)面のそれぞれ法線がなす傾斜角を測定し、この測定結果に基づいて、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより作成した。
Subsequently, the modified TiCN layer and the conventional TiCN layer constituting the hard coating layer of the present invention coated cermet tools 1 to 10 and the comparative coated cermet tools 1 to 10 , and the thickened modified α-type Al 2 O 3 layer and For the thickened normal α-type Al 2 O 3 layer, an inclination angle number distribution graph was prepared using a field emission scanning electron microscope.
That is, the slope angle distribution graph shows the polished surfaces of the modified TiCN layer and the conventional TiCN layer, and the thickened modified α-type Al 2 O 3 layer and the thickened normal α-type Al 2 O 3 layer. The surface polished surface was set in a lens barrel of a field emission scanning electron microscope in the state of a plane, and the surface polished surface was measured with an electron beam with an acceleration voltage of 15 kV at an incident angle of 70 degrees on the polished surface with an irradiation current of 1 nA. The crystal grains having a cubic crystal lattice (TiCN layer) and a hexagonal crystal lattice (α-type Al 2 O 3 layer) existing in the range are individually irradiated, and an electron backscatter diffraction image apparatus is used to measure 30 × 50 μm. For the modified TiCN layer and the conventional TiCN layer with respect to the normal of the surface polished surface at an interval of 0.1 μm / step, the {110} plane which is the crystal plane of the crystal grain, the thickening modification quality α type the Al 2 O 3 layer and a thick film normally α type A 2 for O 3 layer was measured tilt angles respectively formed by the normal of a crystal plane of the crystal grains (0001) plane, on the basis of the measurement result, of the measurement inclination angle within the range of 0 to 45 degrees The measured inclination angle is divided for each pitch of 0.25 degrees, and the frequency existing in each section is totaled.
この結果得られた各種の改質TiCN層および従来TiCN層の傾斜角度数分布グラフにおいて、{110}面が最高ピークを示す傾斜角区分、並びに0〜10度の範囲内の傾斜角区分内に存在する傾斜角度数の傾斜角度数分布グラフ全体の傾斜角度数に占める割合を表5,8に、さらに、同じく各種の厚膜化改質α型Al2O3層および厚膜化通常α型Al2O3層の傾斜角度数分布グラフにおいて、(0001)面が最高ピークを示す傾斜角区分、並びに0〜10度の範囲内の傾斜角区分内に存在する傾斜角度数の傾斜角度数分布グラフ全体の傾斜角度数に占める割合を表6,9にそれぞれ示した。 In the gradient angle distribution graphs of the various modified TiCN layers and conventional TiCN layers obtained as a result, the {110} plane has the highest peak, and the tilt angle within the range of 0 to 10 degrees. Tables 5 and 8 show the ratio of the existing tilt angle number to the tilt angle number distribution graph as a whole. Further, various thickened modified α-type Al 2 O 3 layers and thickened normal α-type In the inclination angle distribution graph of the Al 2 O 3 layer, the inclination angle distribution of the inclination angle number existing in the inclination angle section where the (0001) plane has the highest peak and in the inclination angle section in the range of 0 to 10 degrees. Tables 6 and 9 show the ratio of the entire graph to the number of inclination angles.
上記の各種の傾斜角度数分布グラフにおいて、表5,6にそれぞれ示される通り、本発明被覆サーメット工具1〜10の改質TiCN層は、いずれも{110}面の測定傾斜角の分布が0.75〜9.25度の範囲内の傾斜角区分に最高ピークが現れ、かつ0〜10度の範囲内の傾斜角区分内に存在する傾斜角度数の割合が56〜75%である傾斜角度数分布グラフを示し、また、本発明被覆サーメット工具1〜10の加熱処理Al2O3核薄膜上に形成された厚膜化改質α型Al2O3層も、いずれも(0001)面の測定傾斜角の分布が1.25〜10.00度の範囲内の傾斜角区分に最高ピークが現れ、かつ0〜10度の範囲内の傾斜角区分内に存在する傾斜角度数の割合が45〜70%である傾斜角度数分布グラフを示すのに対して、表8,9にそれぞれ示される通り、比較被覆サーメット工具1〜10の従来TiCN層は、いずれも{110}面の測定傾斜角の分布が0〜45度の範囲内で不偏的で、最高ピークが存在せず、0〜10度の範囲内の傾斜角区分内に存在する傾斜角度数の割合も30%以下である傾斜角度数分布グラフを示し、さらに、比較被覆サーメット工具1〜10の厚膜化通常α型Al2O3層も、いずれも(0001)面の測定傾斜角の分布が0〜45度の範囲内で不偏的で、最高ピークが存在せず、0〜10度の範囲内の傾斜角区分内に存在する傾斜角度数の割合も30%以下である傾斜角度数分布グラフを示すものであった。
なお、図2は、本発明被覆サーメット工具4の改質TiCN層の傾斜角度数分布グラフ、図3は、比較被覆サーメット工具4の従来TiCN層の傾斜角度数分布グラフ、図5は、本発明被覆サーメット工具4の厚膜化改質α型Al2O3層の傾斜角度数分布グラフ、図6は、比較被覆サーメット工具4の厚膜化通常α型Al2O3層の傾斜角度数分布グラフをそれぞれ示すものである。
In the above-mentioned various inclination angle number distribution graphs, as shown in Tables 5 and 6, all of the modified TiCN layers of the coated cermet tools 1 to 10 of the present invention have a measured inclination angle distribution of the {110} plane of 0. An inclination angle in which the highest peak appears in the inclination angle section in the range of .75 to 9.25 degrees and the ratio of the number of inclination angles existing in the inclination angle section in the range of 0 to 10 degrees is 56 to 75%. 2 shows a number distribution graph, and all the (0001) planes of the thickened modified α-type Al 2 O 3 layer formed on the heat-treated Al 2 O 3 core thin film of the coated cermet tools 1 to 10 of the present invention. The highest peak appears in the inclination angle section in the range of the measured inclination angle of 1.25 to 10.00 degrees, and the ratio of the number of inclination angles existing in the inclination angle section in the range of 0 to 10 degrees is whereas showing the inclination angle frequency distribution graph is 45 to 70% As shown in Tables 8 and 9, the conventional TiCN layer of the comparative coated cermet tool 1-10 are both unbiased manner in within range distribution of 0 to 45 degrees measured inclination angle of the {110} plane, the highest peak The inclination angle number distribution graph in which the ratio of the inclination angle number existing in the inclination angle section in the range of 0 to 10 degrees is 30% or less is shown, and the thickness of the comparative coated cermet tools 1 to 10 All of the normal α-type Al 2 O 3 layers formed into a film are unbiased within the range of the measured inclination angle of the (0001) plane within the range of 0 to 45 degrees, the highest peak does not exist, and the range of 0 to 10 degrees. The inclination angle number distribution graph in which the ratio of the inclination angle numbers existing in the inclination angle section is 30% or less was also shown.
2 is an inclination angle distribution graph of the modified TiCN layer of the coated cermet tool 4 of the present invention, FIG. 3 is an inclination angle distribution graph of the conventional TiCN layer of the comparative coated cermet tool 4 , and FIG. thickening modified α type the Al 2 O 3 layer inclination angle frequency distribution graph of the coated cermet tool 4, 6, the inclination angle frequency distribution of the thickened normal α type the Al 2 O 3 layer of the comparative coated cermet tool 4 Each graph is shown.
さらに、上記の本発明被覆サーメット工具1〜10および比較被覆サーメット工具1〜10について、これの硬質被覆層の構成層を電子線マイクロアナライザー(EPMA)およびオージェ分光分析装置を用いて観察(層の縦断面を観察)したところ、前者および後者とも目標組成と実質的に同じ組成を有するTiCN層およびTi化合物層と、α型Al2O3層からなることが確認された。また、これらの被覆サーメット工具の硬質被覆層の構成層の厚さを、走査型電子顕微鏡を用いて測定(同じく縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。 Further, regarding the above-described coated cermet tools 1 to 10 and comparative coated cermet tools 1 to 10 , the constituent layers of the hard coating layer were observed using an electron beam microanalyzer (EPMA) and an Auger spectroscopic analysis device When the longitudinal section was observed), it was confirmed that both the former and the latter were composed of a TiCN layer and a Ti compound layer having substantially the same composition as the target composition, and an α-type Al 2 O 3 layer. Moreover, when the thickness of the constituent layer of the hard coating layer of these coated cermet tools was measured using a scanning electron microscope (same longitudinal section measurement), the average layer thickness (substantially the same as the target layer thickness) Average value of 5-point measurement) was shown.
つぎに、上記の各種の被覆サーメット工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆サーメット工具1〜10および比較被覆サーメット工具1〜10について、
被削材:JIS・SCM432の丸棒、
切削速度:230m/min、
切り込み:2mm、
送り:0.25mm/rev、
切削時間:24分、
の条件(切削条件Aという)での合金鋼の乾式連続切削試験、
被削材:JIS・S33Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:250m/min、
切り込み:2.2mm、
送り:0.3mm/rev、
切削時間:24分、
の条件(切削条件Bという)での炭素鋼の乾式断続切削試験、さらに、
被削材:JIS・FCD350の丸棒、
切削速度:220m/min、
切り込み:2.2mm、
送り:0.25mm/rev、
切削時間:24分、
の条件(切削条件Cという)でのダクタイル鋳鉄の乾式連続切削試験を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表10に示した。
Next, with the various coated cermet tools described above, the present coated cermet tools 1 to 10 and comparative coated cermet tools 1 to 10 in a state where all the above-mentioned various coated cermet tools are screwed to the tip of the tool steel tool with a fixing jig.
Work material: JIS / SCM432 round bar,
Cutting speed: 230 m / min,
Cutting depth: 2mm,
Feed: 0.25mm / rev,
Cutting time: 24 minutes
Dry continuous cutting test of alloy steel under the following conditions (referred to as cutting condition A),
Work material: JIS · S33C lengthwise equal four round grooved round bars,
Cutting speed: 250 m / min,
Cutting depth: 2.2mm,
Feed: 0.3mm / rev,
Cutting time: 24 minutes
Dry interrupted cutting test of carbon steel under the conditions (referred to as cutting condition B),
Work material: JIS / FCD350 round bar,
Cutting speed: 220 m / min,
Cutting depth: 2.2mm,
Feed: 0.25mm / rev,
Cutting time: 24 minutes
A dry continuous cutting test of ductile cast iron was performed under the above conditions (referred to as cutting condition C), and the flank wear width of the cutting edge was measured in any cutting test. The measurement results are shown in Table 10.
表5〜10に示される結果から、本発明被覆サーメット工具1〜10は、いずれも硬質被覆層の下部層のうちの1層が、{110}面の傾斜角が0.75〜9.25度の範囲内の傾斜角区分で最高ピークを示すと共に、0〜10度の傾斜角区分範囲内に存在する度数の合計割合が56〜75%を占める傾斜角度数分布グラフを示す改質TiCN層で構成され、さらに、同上部層が、(0001)面の傾斜角が1.25〜10.00度の範囲内の傾斜角区分で最高ピークを示すと共に、0〜10度の範囲内に存在する合計度数割合が45〜70%を占める傾斜角度数分布グラフを示す厚膜化改質α型Al2O3層で構成され、この結果硬質被覆層がきわめてすぐれた高温強度を具備するようになることから、α型Al2O3層を平均層厚で18〜28μmの層厚に厚膜化しても、鋼や鋳鉄の切削加工で、特にα型Al2O3層の厚膜化が原因のチッピング発生がなくなり、長期に亘ってすぐれた耐摩耗性を示し、使用寿命の延命化を可能とするのに対して、硬質被覆層の下部層のうちの1層が、{110}面の測定傾斜角の分布が0〜45度の範囲内で不偏的で、最高ピークが存在しない傾斜角度数分布グラフを示す従来TiCN層で構成され、さらに、同上部層が、(0001)面の測定傾斜角の分布が0〜45度の範囲内で不偏的で、最高ピークが存在しない傾斜角度数分布グラフを示す厚膜化通常α型Al2O3層で構成された比較被覆サーメット工具1〜10においては、いずれも硬質被覆層の高温強度不足が原因で、切刃部にチッピングが発生し、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 5 to 10, in the coated cermet tools 1 to 10 of the present invention, one of the lower layers of the hard coating layer has an inclination angle of {110} plane of 0.75 to 9.25. Modified TiCN layer showing an inclination angle distribution graph showing the highest peak in the inclination angle section within the range of degrees and a total proportion of the frequencies existing in the inclination angle section range of 0 to 10 degrees occupying 56 to 75 % In addition, the upper layer has the highest peak in the inclination angle section with the inclination angle of (0001) plane in the range of 1.25 to 10.00 degrees, and exists in the range of 0 to 10 degrees. And a thickened modified α-type Al 2 O 3 layer showing an inclination angle frequency distribution graph in which the total frequency ratio is 45 to 70%, and as a result, the hard coating layer has a very high temperature strength. Therefore, the α-type Al 2 O 3 layer has an average layer thickness of 18 to Even when the layer thickness is increased to 28 μm, the chipping caused by the thickening of the α-type Al 2 O 3 layer is eliminated in the cutting of steel and cast iron, and excellent wear resistance is achieved over a long period of time. As shown in the figure, it is possible to extend the service life, whereas one of the lower layers of the hard coating layer is unbiased within the range of the measured inclination angle of the {110} plane in the range of 0 to 45 degrees. In the conventional TiCN layer showing an inclination angle number distribution graph where the highest peak does not exist, and the upper layer is unbiased within the range of the measured inclination angle of the (0001) plane within a range of 0 to 45 degrees. In the comparative coated cermet tools 1 to 10 composed of a thickened normal α-type Al 2 O 3 layer showing an inclination angle number distribution graph in which the highest peak does not exist, all are caused by insufficient high-temperature strength of the hard coating layer Chipping occurs at the cutting edge and the service life is reached in a relatively short time It is clear.
上述のように、この発明の被覆サーメット工具は、これの硬質被覆層の上部層であるα型Al2O3層の層厚を平均層厚で18〜28μmに厚くしても、各種の鋼や鋳鉄などの切削加工で、すぐれた耐チッピング性を示し、長期に亘ってすぐれた耐摩耗性を発揮し、使用寿命の延命化を可能とするものであるから、切削加工のFA化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。 As described above, the coated cermet tool of the present invention can be used in various ways even if the α-type Al 2 O 3 layer, which is the upper layer of the hard coating layer, has an average layer thickness of 18 to 28 μm. In cutting work such as steel and cast iron, it exhibits excellent chipping resistance, exhibits excellent wear resistance over a long period of time, and can extend the service life. It can fully satisfy the labor-saving and energy-saving of cutting and cost reduction.
Claims (1)
(a)いずれも化学蒸着形成された、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層以上からなり、かつ0.1〜5μmの合計平均層厚を有する密着性Ti化合物層と、2.5〜15μmの平均層厚を有する改質炭窒化チタン層からなる下部層、
(b)18〜28μmの平均層厚を有し、かつ化学蒸着形成された状態でα型の結晶構造を有する厚膜化改質α型酸化アルミニウム層からなる上部層、
以上(a)および(b)で構成し、かつ、上記(a)の下部層における改質炭窒化チタン層は、
電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射し、電子後方散乱回折像装置を用い、所定領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{110}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、0.75〜9.25度の範囲内の傾斜角区分に最高ピークが存在すると共に、0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の56〜75%の割合を占める傾斜角度数分布グラフ、
を示し、さらに、上記(b)の厚膜化改質α型酸化アルミニウム層は、
電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射し、電子後方散乱回折像装置を用い、所定領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、1.25〜10.00度の範囲内の傾斜角区分に最高ピークが存在すると共に、0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45〜70%の割合を占める傾斜角度数分布グラフ、
を示すことを特徴とする厚膜化α型酸化アルミニウム層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具。 A hard coating layer formed by vapor deposition on the surface of a tool base made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
(A) All are formed of one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer, and carbonitride layer formed by chemical vapor deposition, and 0.1 to 5 μm An adhesive Ti compound layer having a total average layer thickness, and a lower layer comprising a modified titanium carbonitride layer having an average layer thickness of 2.5 to 15 μm,
(B) an upper layer comprising a thickened modified α-type aluminum oxide layer having an average layer thickness of 18 to 28 μm and having an α-type crystal structure in a state of chemical vapor deposition;
The modified titanium carbonitride layer in the lower layer of the above (a) is composed of the above (a) and (b),
Using a field emission scanning electron microscope, each crystal grain having a cubic crystal lattice existing within the measurement range of the surface polished surface is irradiated with an electron beam, and an electron backscatter diffraction image apparatus is used to set a predetermined area to 0.1 μm. The inclination angle formed by the normal line of the {110} plane, which is the crystal plane of the crystal grain, is measured with respect to the normal line of the surface polished surface at an interval of / step. In the inclination angle number distribution graph obtained by dividing the measured inclination angles within the range of degrees into pitches of 0.25 degrees and totaling the frequencies existing in the respective sections, 0.75 to 9.25 degrees Inclination angle number distribution in which the highest peak exists in the inclination angle section within the range, and the sum of the frequencies existing in the range of 0 to 10 degrees occupies a ratio of 56 to 75% of the entire frequency in the inclination angle frequency distribution graph Graph,
Furthermore, the thickening-modified α-type aluminum oxide layer of (b) above is
Using a field emission scanning electron microscope, irradiate an electron beam to each crystal grain having a hexagonal crystal lattice existing in the measurement range of the surface polished surface, and use an electron backscatter diffraction image apparatus to set a predetermined area to 0.1 μm. The inclination angle formed by the normal line of the (0001) plane , which is the crystal plane of the crystal grain, is measured with respect to the normal line of the surface-polished surface at an interval of / step. In the inclination angle number distribution graph obtained by dividing the measured inclination angles within the range of degrees into pitches of 0.25 degrees and totaling the frequencies existing in the respective sections, 1.25 to 10.00 degrees Inclination angle distribution in which the highest peak exists in the inclination angle section within the range, and the sum of the frequencies existing in the range of 0 to 10 degrees occupies a ratio of 45 to 70% of the entire frequency in the inclination angle distribution graph Graph,
A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a thickened α-type aluminum oxide layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005151909A JP4730522B2 (en) | 2005-05-25 | 2005-05-25 | Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005151909A JP4730522B2 (en) | 2005-05-25 | 2005-05-25 | Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006326730A JP2006326730A (en) | 2006-12-07 |
JP4730522B2 true JP4730522B2 (en) | 2011-07-20 |
Family
ID=37548982
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005151909A Expired - Fee Related JP4730522B2 (en) | 2005-05-25 | 2005-05-25 | Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4730522B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5023839B2 (en) * | 2007-06-27 | 2012-09-12 | 三菱マテリアル株式会社 | Surface coated cutting tool with excellent wear resistance with high hard coating layer in high speed cutting |
JP5023895B2 (en) * | 2007-08-31 | 2012-09-12 | 三菱マテリアル株式会社 | Surface coated cutting tool |
JP5023896B2 (en) * | 2007-08-31 | 2012-09-12 | 三菱マテリアル株式会社 | Surface coated cutting tool |
JP5182501B2 (en) * | 2008-07-09 | 2013-04-17 | 三菱マテリアル株式会社 | Surface-coated cutting tool with excellent fracture resistance due to hard coating layer |
JP5483110B2 (en) * | 2010-09-30 | 2014-05-07 | 三菱マテリアル株式会社 | Surface coated cutting tool with excellent chipping resistance due to hard coating layer |
JP5748125B2 (en) * | 2011-08-31 | 2015-07-15 | 三菱マテリアル株式会社 | A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0847999A (en) * | 1994-03-22 | 1996-02-20 | Sandvik Ab | Coated superhard sintered alloy article and its production |
JPH11256336A (en) * | 1998-03-10 | 1999-09-21 | Hitachi Metals Ltd | Titanium carbonitride-coated tool |
JP2004122269A (en) * | 2002-10-01 | 2004-04-22 | Mitsubishi Materials Corp | Surface coated cermet cutting tool exhibiting superior chipping resistance under high speed heavy duty cutting |
JP2004188500A (en) * | 2002-06-28 | 2004-07-08 | Mitsubishi Materials Corp | Cutting tool of surface-coated cermet with hard coating layer having excellent thermal shock resistance |
-
2005
- 2005-05-25 JP JP2005151909A patent/JP4730522B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0847999A (en) * | 1994-03-22 | 1996-02-20 | Sandvik Ab | Coated superhard sintered alloy article and its production |
JPH11256336A (en) * | 1998-03-10 | 1999-09-21 | Hitachi Metals Ltd | Titanium carbonitride-coated tool |
JP2004188500A (en) * | 2002-06-28 | 2004-07-08 | Mitsubishi Materials Corp | Cutting tool of surface-coated cermet with hard coating layer having excellent thermal shock resistance |
JP2004122269A (en) * | 2002-10-01 | 2004-04-22 | Mitsubishi Materials Corp | Surface coated cermet cutting tool exhibiting superior chipping resistance under high speed heavy duty cutting |
Also Published As
Publication number | Publication date |
---|---|
JP2006326730A (en) | 2006-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4645983B2 (en) | Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting | |
JP4811781B2 (en) | Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer | |
JP4512989B2 (en) | Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer | |
JP2006231433A (en) | Surface-coated cermet cutting tool with hard coating layer exerting excellent chipping resistance in high-speed intermittent cutting | |
JP5023839B2 (en) | Surface coated cutting tool with excellent wear resistance with high hard coating layer in high speed cutting | |
JP4730522B2 (en) | Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer | |
JP4811782B2 (en) | Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer | |
JP4793750B2 (en) | Surface coated cermet cutting tool with excellent chipping resistance in high-speed intermittent cutting of hard steel with excellent hard coating layer | |
JP4756453B2 (en) | Surface coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high speed heavy cutting | |
JP4466848B2 (en) | A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting | |
JP4720283B2 (en) | Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer | |
JP5023896B2 (en) | Surface coated cutting tool | |
JP5003308B2 (en) | Surface coated cutting tool | |
JP5029099B2 (en) | Surface coated cutting tool with excellent wear resistance with high hard coating layer in high speed cutting | |
JP2005279912A (en) | Surface coated cermet-made cutting tool having hard coating layer exhibiting excellent chipping resistance | |
JP4530141B2 (en) | Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer | |
JP4474647B2 (en) | A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting | |
JP4591752B2 (en) | Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer | |
JP4756454B2 (en) | Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer | |
JP4747338B2 (en) | Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials | |
JP4747387B2 (en) | Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer | |
JP2009279694A (en) | Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance and wear resistance in high-speed heavy cutting | |
JP2009101462A (en) | Surface-coated cutting tool | |
JP4666211B2 (en) | Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer | |
JP4692065B2 (en) | Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080321 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101028 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101220 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110127 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110323 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110405 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140428 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4730522 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |