JP5023839B2 - Surface coated cutting tool with excellent wear resistance with high hard coating layer in high speed cutting - Google Patents

Surface coated cutting tool with excellent wear resistance with high hard coating layer in high speed cutting Download PDF

Info

Publication number
JP5023839B2
JP5023839B2 JP2007168863A JP2007168863A JP5023839B2 JP 5023839 B2 JP5023839 B2 JP 5023839B2 JP 2007168863 A JP2007168863 A JP 2007168863A JP 2007168863 A JP2007168863 A JP 2007168863A JP 5023839 B2 JP5023839 B2 JP 5023839B2
Authority
JP
Japan
Prior art keywords
layer
carbonitride
modified
inclination angle
degrees
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007168863A
Other languages
Japanese (ja)
Other versions
JP2009006426A (en
Inventor
惠滋 中村
晃 長田
満康 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2007168863A priority Critical patent/JP5023839B2/en
Publication of JP2009006426A publication Critical patent/JP2009006426A/en
Application granted granted Critical
Publication of JP5023839B2 publication Critical patent/JP5023839B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Description

この発明は、特に鋼や鋳鉄などの高い発熱を伴う高速切削加工で、硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent wear resistance with a hard coating layer, particularly in high-speed cutting with high heat generation such as steel and cast iron.

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)第1層として、化学蒸着形成された窒化チタン(以下、TiNで示す)層、炭窒化チタン(以下、TiCNで示す)層からなり、0.1〜1μmの平均層厚を有する第1密着接合層、
(b)第2層として、化学蒸着形成され、
組成式:(Ti1−XZr)CN(ただし、原子比で、Xは0.02〜0.25)、
を満足するTiとZrの複合炭窒化物層からなり、かつ2.5〜15μmの平均層厚を有するTi−Zr系炭窒化物[以下、(Ti,Zr)CNで示す]層、
(c)第3層として、炭酸化チタン(以下、TiCOで示す)層、炭窒酸化チタン(以下、TiCNOで示す)層からなり、0.1〜1μmの平均層厚を有する第2密着接合層、
(d)第4層として、化学蒸着形成された酸化アルミニウム(以下、Al23で示す)層からなり、かつ1〜15μmの平均層厚を有する高温硬質層、
以上(a)〜(d)で構成された硬質被覆層を形成してなる被覆工具が知られており、この被覆工具が、例えば各種の鋼や鋳鉄などの連続切削や断続切削に用いられていることも知られている。
特開2001−11632号公報
Conventionally, generally on the surface of a substrate (hereinafter collectively referred to as a tool substrate) composed of a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet. ,
(A) The first layer comprises a titanium nitride (hereinafter referred to as TiN) layer formed by chemical vapor deposition and a titanium carbonitride (hereinafter referred to as TiCN) layer, and has an average layer thickness of 0.1 to 1 μm. 1 adhesive bonding layer,
(B) The second layer is formed by chemical vapor deposition,
Composition formula: (Ti 1-X Zr X ) CN (wherein X is 0.02 to 0.25 in atomic ratio),
A Ti—Zr carbonitride [hereinafter referred to as (Ti, Zr) CN] layer comprising a composite carbonitride layer of Ti and Zr satisfying the above and having an average layer thickness of 2.5 to 15 μm,
(C) A second adhesive joint comprising a titanium carbonate (hereinafter referred to as TiCO) layer and a titanium carbonitride oxide (hereinafter referred to as TiCNO) layer as the third layer and having an average layer thickness of 0.1 to 1 μm. layer,
(D) As a fourth layer, a high-temperature hard layer comprising an aluminum oxide (hereinafter referred to as Al 2 O 3 ) layer formed by chemical vapor deposition and having an average layer thickness of 1 to 15 μm,
A coated tool formed by forming a hard coating layer composed of the above (a) to (d) is known, and this coated tool is used for continuous cutting and intermittent cutting of various steels and cast irons, for example. It is also known that
JP 2001-11632 A

近年の切削装置の高性能化はめざましく、一方で切削加工における省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削効率の向上を目的として、切削速度を高速化する傾向にあるが、上記の従来被覆工具においては、これを鋼や鋳鉄などの通常の条件での連続切削や断続切削に用いた場合には問題はないが、特にこれを高速切削条件で用いた場合、これを構成する硬質被覆層は、下部層のTi化合物層による高温強度、同上部層のAl23層による高温硬さを具備するものの、前記従来の(Ti,Zr)CN層による耐熱性が不十分であるために切削加工時の発熱によって熱塑性変形、偏摩耗を生じやすく、そのため、耐摩耗性が低下し比較的短時間で使用寿命に至るのが現状である。 In recent years, the performance of cutting machines has been remarkable, while there has been a strong demand for labor saving and energy saving in cutting, as well as cost reduction, and along with this, the tendency to increase cutting speed for the purpose of improving cutting efficiency However, in the above-mentioned conventional coated tool, there is no problem when it is used for continuous cutting and intermittent cutting under normal conditions such as steel and cast iron, but especially when this is used under high-speed cutting conditions. The hard coating layer constituting this has high temperature strength due to the Ti compound layer of the lower layer and high temperature hardness due to the Al 2 O 3 layer of the upper layer, but heat resistance due to the conventional (Ti, Zr) CN layer. Insufficient performance is likely to cause thermoplastic deformation and uneven wear due to heat generated during cutting, so that the wear resistance is lowered and the service life is reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、上記の被覆工具の硬質被覆層の耐摩耗性向上をはかるべく、これの下部層であるTi化合物層を構成するTiCN層、すなわちTi化合物層のうちで相対的に高い高温強度を有するTiの一部をZrで置換した(Ti,Zr)CN層に着目し、研究を行った結果、
(a)従来被覆工具の硬質被覆層において、下部層を構成するTi化合物層のうちの(Ti,Zr)CN層(以下、「従来(Ti,Zr)CN層」という)は、例えば、通常の化学蒸着装置にて、
反応ガス組成:容量%で、TiCl:1〜5%、ZrCl:0.1〜1%、CHCN:0.6〜5%、N2:25〜45%、H2:残り、
反応雰囲気温度:750〜980℃、
反応雰囲気圧力:2.7〜13.5kPa、
の条件(通常条件という)で蒸着形成されるが、これを、
反応ガス組成:容量%で、TiCl:10〜15%、ZrCl:0.5〜3.5%、CHCN:3〜8%、N2:20〜40%、HCl:0.5〜2%、H2:残り、
反応雰囲気温度:800〜900℃、
反応雰囲気圧力:5〜20kPa、
の条件、すなわち上記の通常条件に比して、反応ガス成分のTiClおよびCHCNの含有割合を多くし、さらに、HClを加えた条件で蒸着形成して、
組成式:(Ti1−XZr)CN(ただし、原子比で、X:0.02〜0.25)を満足する(Ti,Zr)CN層を形成すると、この結果の(Ti,Zr)CN層(以下、改質(Ti,Zr)CN層という)は、上記の従来(Ti,Zr)CN層と同様の結晶構造、すなわち格子点にTi、Zr、炭素(C)、および窒素(N)からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造を有するが、前記従来(Ti,Zr)CN層に比して一段とすぐれた耐熱性を有すること。
In view of the above, the inventors of the present invention, from the above viewpoint, in order to improve the wear resistance of the hard coating layer of the above-mentioned coated tool, the TiCN layer constituting the Ti compound layer as the lower layer thereof, that is, the Ti compound As a result of conducting research by paying attention to a (Ti, Zr) CN layer in which a part of Ti having a relatively high high-temperature strength is replaced with Zr in the layer,
(A) In a hard coating layer of a conventional coated tool, a (Ti, Zr) CN layer (hereinafter referred to as “conventional (Ti, Zr) CN layer”) among the Ti compound layers constituting the lower layer is, for example, usually In chemical vapor deposition equipment,
Reaction gas composition: by volume%, TiCl 4: 1~5%, ZrCl 4: 0.1~1%, CH 3 CN: 0.6~5%, N 2: 25~45%, H 2: remainder,
Reaction atmosphere temperature: 750-980 ° C.
Reaction atmosphere pressure: 2.7 to 13.5 kPa,
It is formed by vapor deposition under the conditions (called normal conditions).
Reaction gas composition: by volume%, TiCl 4: 10~15%, ZrCl 4: 0.5~3.5%, CH 3 CN: 3~8%, N 2: 20~40%, HCl: 0.5 ~2%, H 2: remainder,
Reaction atmosphere temperature: 800 to 900 ° C.
Reaction atmosphere pressure: 5 to 20 kPa,
In comparison with the above-mentioned conditions, that is, the above-mentioned normal conditions, the content ratio of the reaction gas components TiCl 4 and CH 3 CN is increased, and further, vapor deposition is performed under the condition of adding HCl,
When a (Ti, Zr) CN layer satisfying the composition formula: (Ti 1-X Zr X ) CN (wherein the atomic ratio is X: 0.02 to 0.25) is formed, the resulting (Ti, Zr ) The CN layer (hereinafter referred to as the modified (Ti, Zr) CN layer) has the same crystal structure as the conventional (Ti, Zr) CN layer, that is, Ti, Zr, carbon (C), and nitrogen at lattice points. It has a NaCl-type face-centered cubic crystal structure in which each of the constituent atoms made of (N) is present, but has a heat resistance that is far superior to that of the conventional (Ti, Zr) CN layer.

(b)上記の従来(Ti,Zr)CN層と上記(a)の改質(Ti,Zr)CN層について、
電界放出型走査電子顕微鏡を用い、図1(a),(b)に概略説明図で例示される通り、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{111}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフを作成した場合、前記従来(Ti,Zr)CN層は、図3に例示される通り、{111}面の測定傾斜角の分布が0〜45度の範囲内で不偏的な傾斜角度数分布グラフを示すのに対して、前記改質(Ti,Zr)CN層は、図2に例示される通り、傾斜角区分の特定位置にシャープな最高ピークが現れ、そしてこのような場合に、改質(Ti,Zr)CN層にはクーリングクラックが均一に分散し、これによって、Zr含有量を増加したことによる改質(Ti,Zr)CN層の高温強度の低下を抑制することができ、しかも、このシャープな最高ピークは、グラフ横軸の傾斜角区分に現れる高さおよび傾斜角区分位置が前記改質(Ti,Zr)CN層におけるZrの含有割合を調整することにより変化すること。
(B) For the conventional (Ti, Zr) CN layer and the modified (Ti, Zr) CN layer of (a),
Using a field emission scanning electron microscope, as illustrated in the schematic explanatory diagrams of FIGS. 1A and 1B, the electron beam is individually applied to each crystal grain having a cubic crystal lattice existing within the measurement range of the surface polished surface. Is measured with respect to the normal of the surface polished surface, and the tilt angle formed by the normal of the {111} plane that is the crystal plane of the crystal grain is measured. When the measured inclination angle in the range of 0.25 degrees is divided for each pitch of 0.25 degrees and the inclination angle number distribution graph is formed by counting the frequencies existing in each division, the conventional (Ti, Zr) As illustrated in FIG. 3, the CN layer exhibits an unbiased inclination angle number distribution graph in the range of the measured inclination angle of the {111} plane within the range of 0 to 45 degrees, whereas the modification ( As illustrated in FIG. 2, the Ti, Zr) CN layer has a sharp peak at a specific position in the tilt angle section. A peak appears, and in such a case, cooling cracks are uniformly dispersed in the modified (Ti, Zr) CN layer, and thereby the modified (Ti, Zr) CN layer due to an increase in the Zr content. In addition, the sharp maximum peak has a height that appears in the tilt angle section of the horizontal axis of the graph and the position of the tilt angle section in the Zr in the modified (Ti, Zr) CN layer. It changes by adjusting the content ratio.

(c)上記の通り、上記改質(Ti,Zr)CN層の形成に際して、層中のZr含有割合を、Tiとの合量に占める割合(原子比)で0.02〜0.25とすることによって、前記改質(Ti,Zr)CN層の傾斜角度数分布グラフで、シャープな最高ピークが傾斜角区分の0〜10度の範囲内に現れ、かつ、前記0〜10度の範囲内に存在する度数割合が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示すようになるのであり、したがって、前記改質(Ti,Zr)CN層中のZr含有割合が前記の範囲から低い方に外れても、あるいは高い方に外れても、傾斜角度数分布グラフにおけるシャープな最高ピークが傾斜角区分の0〜10度の範囲から外れ、かつ、前記0〜10度の範囲内に存在する度数数割合も45%未満になってしまい、この場合は一段の耐熱性向上効果を期待できないばかりか、Zr含有割合を増加したことによる高温強度の低下をクーリングクラックの均一分散によって抑制することはできないこと。
つまり、上記改質(Ti,Zr)CN層のZr成分は、Tiとの合量に占める割合(原子比)で0.02(2原子%)以上で所望の耐熱性向上効果が現れるが、その含有割合が0.25(25原子%)を越えると、高熱発生を伴う高速切削加工では、改質(Ti,Zr)CN層は急激に軟化し、熱塑性変形、偏摩耗を生じやすくなることから、その含有割合は、Tiとの合量に占める割合(原子比)で0.02〜0.25とする必要がある。
(C) As described above, when forming the modified (Ti, Zr) CN layer, the Zr content ratio in the layer is 0.02 to 0.25 as a ratio (atomic ratio) to the total amount with Ti. By doing this, in the gradient angle distribution graph of the modified (Ti, Zr) CN layer, a sharp maximum peak appears in the range of 0 to 10 degrees of the tilt angle section, and the range of 0 to 10 degrees In the modified (Ti, Zr) CN layer, the frequency ratio existing in the tilt angle frequency distribution graph occupies a ratio of 45% or more of the entire frequency in the tilt angle frequency distribution graph. Even if the Zr content ratio is out of the above range, the sharp maximum peak in the tilt angle distribution graph is out of the range of 0 to 10 degrees of the tilt angle section, and Within the range of 0 to 10 degrees The frequency ratio is also less than 45%. In this case, not only can the heat resistance improvement effect be further improved, but also the decrease in high-temperature strength due to the increase in the Zr content ratio should be suppressed by uniform distribution of cooling cracks. What you can't do.
That is, the Zr component of the modified (Ti, Zr) CN layer has a desired heat resistance improvement effect when the ratio (atomic ratio) to the total amount with Ti is 0.02 (2 atomic%) or more. When the content ratio exceeds 0.25 (25 atomic%), the modified (Ti, Zr) CN layer softens rapidly during high-speed cutting with high heat generation, and it is likely to cause thermoplastic deformation and uneven wear. Therefore, the content ratio needs to be 0.02 to 0.25 in the ratio (atomic ratio) to the total amount with Ti.

(d)硬質被覆層の上部層がAl23層、下部層が密着性Ti化合物層と改質(Ti,Zr)CN層とからなり、かつ、該改質(Ti,Zr)CN層が、2.5〜15μmの平均層厚を有し、{111}面の測定傾斜角の分布が0〜10度の範囲内に傾斜角区分の最高ピークが現れ、かつ前記0〜10度の範囲内に存在する度数割合が45%以上を占める被覆工具は、改質(Ti,Zr)CN層が従来(Ti,Zr)CN層に比して一段と高い耐熱性を有し、また、同上部層であるAl23層がすぐれた高温硬さを具備することと相俟って、特に高熱発生を伴う高速切削加工でも、前記硬質被覆層がすぐれた耐熱性を発揮し、熱塑性変形、偏摩耗を生じることがないため、長期に亘ってすぐれた耐摩耗性を示すようになること。
以上(a)〜(d)に示される研究結果を得たのである。
(D) The upper layer of the hard coating layer is an Al 2 O 3 layer, the lower layer is composed of an adhesive Ti compound layer and a modified (Ti, Zr) CN layer, and the modified (Ti, Zr) CN layer. However, it has an average layer thickness of 2.5 to 15 μm, and the distribution of the measured inclination angle of the {111} plane shows the highest peak of the inclination angle section within the range of 0 to 10 degrees, and the 0 to 10 degrees In the coated tools with a frequency ratio of 45% or more existing in the range, the modified (Ti, Zr) CN layer has a much higher heat resistance than the conventional (Ti, Zr) CN layer. Combined with the excellent high-temperature hardness of the Al 2 O 3 layer, which is a partial layer, the hard coating layer exhibits excellent heat resistance, especially in high-speed cutting with high heat generation, and thermoplastic deformation Because it does not cause uneven wear, it should show excellent wear resistance over a long period of time.
The research results shown in (a) to (d) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、上記工具基体の表面に上部層と下部層とからなる硬質被覆層を蒸着形成した表面被覆切削工具において、
(a)上記上部層は、化学蒸着で形成された1〜15μmの平均層厚を有する酸化アルミニウム層からなり、
(b)上記下部層は、3〜20μmの合計平均層厚を有し、いずれも化学蒸着で形成された密着性Ti化合物層と改質Ti系炭窒化物層とからなり、
(c)上記密着性Ti化合物層は、0.5〜5μmの合計平均層厚を有するTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなり、
(d)上記改質Ti系炭窒化物層(改質(Ti,Zr)CN)層は、2.5〜15μmの平均層厚を有し、かつ、
組成式:(Ti1−XZr)CN
で表した場合、0.02≦X≦0.25(但し、原子比)を満足するTiとZrの複合炭窒化物層からなり、さらに、上記改質Ti系炭窒化物層(改質(Ti,Zr)CN層)は、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{111}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示すこと、
を特徴とする高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具(被覆工具)、
に特徴を有するものである。
This invention was made based on the above research results, and in the surface-coated cutting tool in which a hard coating layer composed of an upper layer and a lower layer is formed on the surface of the tool base by vapor deposition,
(A) The upper layer is made of an aluminum oxide layer having an average layer thickness of 1 to 15 μm formed by chemical vapor deposition,
(B) The lower layer has a total average layer thickness of 3 to 20 μm, and each consists of an adhesive Ti compound layer and a modified Ti carbonitride layer formed by chemical vapor deposition,
(C) The adhesion Ti compound layer is composed of a Ti carbide layer, a nitride layer, a carbonitride layer, a carbonate layer, and a carbonitride oxide layer having a total average layer thickness of 0.5 to 5 μm. It consists of one or more layers,
(D) The modified Ti carbonitride layer (modified (Ti, Zr) CN) layer has an average layer thickness of 2.5 to 15 μm, and
Composition formula: (Ti 1-X Zr X ) CN
Is expressed by a composite carbonitride layer of Ti and Zr satisfying 0.02 ≦ X ≦ 0.25 (however, atomic ratio), and further, the modified Ti-based carbonitride layer (modified ( The Ti, Zr) CN layer) is irradiated with an electron beam to each crystal grain having a cubic crystal lattice existing within the measurement range of the surface polished surface using a field emission scanning electron microscope, and the surface polished surface The inclination angle formed by the normal line of the {111} plane that is the crystal plane of the crystal grain is measured with respect to the normal line, and the measurement inclination angle in the range of 0 to 45 degrees is set to 0 among the measurement inclination angles. In the inclination angle number distribution graph obtained by dividing the pitch every 25 degrees and counting the frequencies existing in each section, the highest peak exists in the inclination angle section in the range of 0 to 10 degrees, and The total frequency within the range of 0 to 10 degrees is the slope angle distribution graph. To indicate an inclination angle frequency distribution graph in a proportion of 45% or more of total power,
A surface-coated cutting tool (coated tool) that exhibits excellent wear resistance with a hard coating layer in high-speed cutting, characterized by
It has the characteristics.

つぎに、この発明の被覆工具の硬質被覆層の構成層について、上記の通りに数値限定した理由を以下に説明する。
(a)下部層の密着性Ti化合物層
密着性Ti化合物層は、工具基体と上部層であるAl23層および改質Ti系炭窒化物層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性向上に寄与する作用をもつが、その合計平均層厚が0.5μm未満では、所望のすぐれた密着性を確保することができず、一方前記密着性は5μmまでの合計平均層厚で充分であることから、その合計平均層厚を0.5〜5μmと定めた。
Next, the reason why the constituent layers of the hard coating layer of the coated tool of the present invention are numerically limited as described above will be described below.
(A) Adhesive Ti compound layer of lower layer Adhesive Ti compound layer adheres firmly to both the tool base and the Al 2 O 3 layer and the modified Ti carbonitride layer which are the upper layer, and is therefore hard Although it has the effect | action which contributes to the adhesive improvement with respect to the tool base | substrate of a coating layer, if the total average layer thickness is less than 0.5 micrometer, desired outstanding adhesiveness cannot be ensured, On the other hand, the said adhesiveness is up to 5 micrometers. Therefore, the total average layer thickness was determined to be 0.5 to 5 μm.

(b)下部層の改質Ti系炭窒化物(改質(Ti,Zr)CN)層
上記の改質Ti系炭窒化物層、即ち、改質(Ti,Zr)CN層の傾斜角度数分布グラフの傾斜角区分における最高ピーク位置および前記最高ピークが存在する所定の傾斜角区分内に存在する度数割合は、上記の通り層中のZr含有割合(X値)をTiとの合量に占める原子比で、0.02〜0.25とすることによって、0〜10度の範囲内の傾斜角区分に最高ピークを存在させ、かつ前記0〜10度の範囲内に存在する度数割合を、傾斜角度数分布グラフにおける度数全体の45%以上とすることができるものであり、したがって、その含有割合が0.02未満でも、0.25を越えても、前記最高ピーク位置の現れる傾斜角区分が0〜10度の範囲内から外れ、さらに前記0〜10度の範囲内に存在する度数割合は45%未満となってしまい、そのため、高温強度の低下をクーリングクラックの均一分散により抑制することができなくなるばかりか、高速切削加工におけるすぐれた耐熱性向上効果を確保することができなくなり、熱塑性変形の発生あるいは偏摩耗の発生によって耐摩耗性の劣ったものとなる。
また、改質(Ti,Zr)CN層におけるC成分には層の硬さを向上させ、一方N成分には高温強度を向上させる作用があり、これら両成分を共存含有することにより高い硬さとすぐれた強度を具備するようになるものであり、したがって、層中のN成分の含有割合が、C成分との合量に占める原子比で0.35未満では所望の強度を確保することができず、一方その含有割合が同じく0.55を越えると、相対的にC成分の含有割合が少なくなり過ぎて、所望の高硬度が得られなくなることから、C成分との合量に占めるN成分の含有割合は、原子比で0.35〜0.55とすることが望ましい。
このように前記改質(Ti,Zr)CN層は、上記の通り従来(Ti,Zr)CN層に比して、一段とすぐれた耐熱性を有するようになるが、その平均層厚が2.5μm未満では所望のすぐれた耐熱性向上効果を硬質被覆層に十分に具備せしめることができず、一方その平均層厚が15μmを越えると、チッピングが発生し易くなることから、その平均層厚を2.5〜15μmと定めた。
(B) Modified Ti-based carbonitride (modified (Ti, Zr) CN) layer in the lower layer The number of inclination angles of the modified Ti-based carbonitride layer, that is, the modified (Ti, Zr) CN layer As described above, the highest peak position in the inclination angle section of the distribution graph and the frequency ratio existing in the predetermined inclination angle section where the highest peak exists are obtained by setting the Zr content ratio (X value) in the layer to the total amount of Ti. By making the atomic ratio to be 0.02 to 0.25, the highest peak is present in the inclination angle section in the range of 0 to 10 degrees, and the frequency ratio existing in the range of 0 to 10 degrees is The inclination angle frequency distribution graph can be 45% or more of the total frequency, and therefore the inclination angle at which the highest peak position appears even if the content ratio is less than 0.02 or exceeds 0.25. The section falls outside the range of 0-10 degrees, The frequency ratio existing in the range of 0 to 10 degrees is less than 45%. Therefore, not only the decrease in high-temperature strength cannot be suppressed by uniform distribution of cooling cracks, but also excellent in high-speed cutting. The effect of improving heat resistance cannot be ensured, and the wear resistance is inferior due to the occurrence of thermoplastic deformation or uneven wear.
In addition, the C component in the modified (Ti, Zr) CN layer improves the hardness of the layer, while the N component has the effect of improving the high-temperature strength. Therefore, if the content ratio of the N component in the layer is less than 0.35 in terms of the atomic ratio to the total amount with the C component, the desired strength can be secured. On the other hand, if the content ratio similarly exceeds 0.55, the content ratio of the C component is relatively decreased, and the desired high hardness cannot be obtained. Therefore, the N component occupies the total amount with the C component. The content ratio of is desirably 0.35 to 0.55 in atomic ratio.
As described above, the modified (Ti, Zr) CN layer has higher heat resistance than the conventional (Ti, Zr) CN layer as described above, but the average layer thickness is 2. If the thickness is less than 5 μm, the desired excellent heat resistance improvement effect cannot be sufficiently provided in the hard coating layer. On the other hand, if the average layer thickness exceeds 15 μm, chipping tends to occur. It was set to 2.5 to 15 μm.

(c)上部層のAl23
Al23層は、すぐれた高温硬さを有し、硬質被覆層の耐摩耗性向上に寄与するが、その平均層厚が1μm未満では、硬質被覆層に十分な耐摩耗性を発揮せしめることができず、一方その平均層厚が15μmを越えて厚くなりすぎると、チッピングが発生し易くなることから、その平均層厚を1〜15μmと定めた。
The Al 2 O 3 layer the Al 2 O 3 layer (c), the upper layer has excellent high-temperature hardness, contributes to improvement in wear resistance of the hard coating layer, the average layer thickness is less than 1 [mu] m, hard Since the coating layer cannot exhibit sufficient wear resistance, on the other hand, if the average layer thickness exceeds 15 μm, chipping tends to occur. Therefore, the average layer thickness is set to 1 to 15 μm. It was.

なお、切削工具の使用前後の識別を目的として、黄金色の色調を有するTiN層を最表面層として、必要に応じて蒸着形成してもよいが、この場合の平均層厚は0.1〜1μmでよく、これは0.1μm未満では、十分な識別効果が得られず、一方前記TiN層による前記識別効果は1μmまでの平均層厚で十分であるという理由からである。   In addition, for the purpose of identification before and after the use of the cutting tool, the TiN layer having a golden color tone may be vapor-deposited as necessary, but the average layer thickness in this case is 0.1 to 1 μm may be sufficient, and if the thickness is less than 0.1 μm, a sufficient discrimination effect cannot be obtained, while the discrimination effect by the TiN layer is sufficient for an average layer thickness of up to 1 μm.

この発明の被覆工具は、高熱発生を伴う鋼や鋳鉄などの高速切削加工でも、硬質被覆層の下部層のうちの改質(Ti,Zr)CN層が一段とすぐれた耐熱性と高温強度を有し、熱塑性変形、偏摩耗の発生が抑制されることによって、硬質被覆層はすぐれた耐摩耗性を示すものとなる。   The coated tool of the present invention has excellent heat resistance and high-temperature strength in the modified (Ti, Zr) CN layer of the lower layer of the hard coating layer even in high-speed cutting such as steel and cast iron with high heat generation. However, by suppressing the occurrence of thermoplastic deformation and uneven wear, the hard coating layer exhibits excellent wear resistance.

つぎに、この発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも0.5〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で36時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.05mmのホーニング加工を施すことによりISO・CNMG120412に規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体A〜Fをそれぞれ製造した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 0.5 to 3 μm as raw material powder These raw material powders were blended into the blending composition shown in Table 1, and then added with wax, ball milled in acetone for 36 hours, dried under reduced pressure, and then formed into a compact with a predetermined shape at a pressure of 98 MPa. The green compact was press-molded and vacuum-sintered in a vacuum of 5 Pa at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour. After sintering, the cutting edge portion had R: 0.05 mm. The tool bases A to F made of a WC-base cemented carbide having a throwaway tip shape specified in ISO · CNMG12041 were manufactured by performing the honing process.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比で、TiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで36時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.05mmのホーニング加工を施すことによりISO規格・CNMG120412のチップ形状をもったTiCN基サーメット製の工具基体a〜fを形成した。 Further, as raw material powders, TiCN (mass ratio, TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC, all having an average particle diameter of 0.5 to 2 μm. Prepare powder, Co powder, and Ni powder, blend these raw material powders into the composition shown in Table 2, wet-mix for 36 hours with a ball mill, dry, and press-mold into green compact at 98 MPa pressure The green compact is sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after the sintering, the cutting edge portion is subjected to a honing process of R: 0.05 mm. Tool bases a to f made of TiCN-based cermet having a chip shape conforming to ISO standards / CNMG 120212 were formed.

つぎに、これらの工具基体A〜Fおよび工具基体a〜fの表面に、通常の化学蒸着装置を用い、硬質被覆層の下部層として、密着性Ti化合物層および改質(Ti,Zr)CN層からなる下部層を表3に示される条件で、表4に示される組み合わせおよび目標層厚で蒸着形成し、ついで同じく表3に示される条件にて、上部層としてのAl23層を同じく表4に示される組み合わせで、かつ目標層厚で蒸着形成することにより本発明被覆工具1〜13をそれぞれ製造した。 Next, on the surfaces of these tool bases A to F and tool bases a to f, an ordinary chemical vapor deposition apparatus is used, and an adhesive Ti compound layer and a modified (Ti, Zr) CN are used as a lower layer of the hard coating layer. A lower layer composed of layers is formed by vapor deposition with the combinations and target layer thicknesses shown in Table 4 under the conditions shown in Table 3, and then an Al 2 O 3 layer as an upper layer is formed under the same conditions shown in Table 3. Similarly, the coated tools 1 to 13 of the present invention were manufactured by vapor deposition with a combination shown in Table 4 and with a target layer thickness.

また、比較の目的で、硬質被覆層の下部層として、密着性Ti化合物層および従来(Ti,Zr)CN層を表3に示される条件で、表5に示される組み合わせおよび目標層厚で蒸着形成し、さらに上部層としてのAl23層を、表3に示される条件で、かつ同じく表5に示される目標層厚で蒸着形成することにより従来被覆工具1〜13をそれぞれ製造した。 For comparison, an adhesive Ti compound layer and a conventional (Ti, Zr) CN layer are deposited as the lower layer of the hard coating layer under the conditions shown in Table 3 and the combinations and target layer thicknesses shown in Table 5. Then, the conventional coated tools 1 to 13 were manufactured by depositing and forming an Al 2 O 3 layer as an upper layer under the conditions shown in Table 3 and with the target layer thicknesses also shown in Table 5.

ついで、上記の本発明被覆工具と従来被覆工具の硬質被覆層を構成する改質(Ti,Zr)CN層および従来(Ti,Zr)CN層について、電界放出型走査電子顕微鏡を用いて、傾斜角度数分布グラフをそれぞれ作成した。
すなわち、上記傾斜角度数分布グラフは、上記の改質(Ti,Zr)CN層および従来(Ti,Zr)CN層の表面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{111}面の法線がなす傾斜角を測定し、この測定結果に基づいて、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより作成した。
Next, the modified (Ti, Zr) CN layer and the conventional (Ti, Zr) CN layer constituting the hard coating layer of the present invention coated tool and the conventional coated tool are tilted using a field emission scanning electron microscope. Each angle distribution graph was created.
That is, the inclination angle number distribution graph shows the inside of the column of the field emission scanning electron microscope in a state where the surfaces of the modified (Ti, Zr) CN layer and the conventional (Ti, Zr) CN layer are polished surfaces. Irradiating the polished surface with an electron beam with an acceleration voltage of 15 kV at an incident angle of 70 degrees with an irradiation current of 1 nA on each crystal grain having a cubic crystal lattice existing within the measurement range of the surface polished surface Then, using an electron backscatter diffraction image apparatus, a {111} plane which is a crystal plane of the crystal grain with respect to a normal line of the surface-polished surface in a 30 × 50 μm region at an interval of 0.1 μm / step The inclination angle formed by the normal line is measured, and based on the measurement result, among the measurement inclination angles, the measurement inclination angle within the range of 0 to 45 degrees is divided for each pitch of 0.25 degrees, Created by counting the frequencies existing in each category It was.

この結果得られた各種の改質(Ti,Zr)CN層および従来(Ti,Zr)CN層の傾斜角度数分布グラフにおいて、{111}面が最高ピークを示す傾斜角区分、並びに0〜10度の範囲内の傾斜角区分内に存在する傾斜角度数の傾斜角度数分布グラフ全体の傾斜角度数に占める割合を表4,5にそれぞれ示した。     In the inclination angle number distribution graphs of the various modified (Ti, Zr) CN layers and conventional (Ti, Zr) CN layers obtained as a result, the inclination angle division in which the {111} plane shows the highest peak, and 0-10 Tables 4 and 5 show the ratio of the number of tilt angles existing in the tilt angle section within the degree range to the number of tilt angles in the entire tilt angle distribution graph.

上記の各種の傾斜角度数分布グラフにおいて、表4に示される通り、本発明被覆工具1〜13の改質(Ti,Zr)CN層は、いずれも{111}面の測定傾斜角の分布が0〜10度の範囲内の傾斜角区分に最高ピークが現れ、かつ0〜10度の範囲内の傾斜角区分内に存在する傾斜角度数の割合が45%以上である傾斜角度数分布グラフを示すのに対して、表5に示される通り、従来被覆工具1〜13の従来(Ti,Zr)CN層は、いずれも{111}面の測定傾斜角の分布が0〜45度の範囲内で不偏的で、最高ピークが存在せず、0〜10度の範囲内の傾斜角区分内に存在する傾斜角度数の割合も30%以下である傾斜角度数分布グラフを示すものであった。
なお、図2は、本発明被覆工具2の改質(Ti,Zr)CN層の傾斜角度数分布グラフ、図3は、従来被覆工具2の従来(Ti,Zr)CN層の傾斜角度数分布グラフをそれぞれ示すものである。
In the above-mentioned various inclination angle number distribution graphs, as shown in Table 4, the modified (Ti, Zr) CN layers of the inventive coated tools 1 to 13 all have a distribution of measured inclination angles on the {111} plane. An inclination angle number distribution graph in which the highest peak appears in the inclination angle section in the range of 0 to 10 degrees, and the ratio of the inclination angle numbers existing in the inclination angle section in the range of 0 to 10 degrees is 45% or more. On the other hand, as shown in Table 5, the conventional (Ti, Zr) CN layers of the conventional coated tools 1 to 13 all have a measured inclination angle distribution on the {111} plane within the range of 0 to 45 degrees. And the inclination angle number distribution graph in which the highest peak does not exist and the ratio of the inclination angle number existing in the inclination angle section within the range of 0 to 10 degrees is 30% or less.
2 is a graph showing the distribution of the tilt angle number of the modified (Ti, Zr) CN layer of the coated tool 2 of the present invention, and FIG. 3 is the distribution of the tilt angle number of the conventional (Ti, Zr) CN layer of the conventional coated tool 2. Each graph is shown.

さらに、上記の本発明被覆工具1〜13および従来被覆工具1〜13について、これの硬質被覆層の構成層を電子線マイクロアナライザー(EPMA)およびオージェ分光分析装置を用いて観察(層の縦断面を観察)したところ、前者および後者とも目標組成と実質的に同じ組成を有する密着性Ti化合物層、改質(Ti,Zr)CN層および従来(Ti,Zr)CN層、さらにAl23層からなることが確認された。また、これらの被覆工具の硬質被覆層の構成層の厚さを、走査型電子顕微鏡を用いて測定(同じく縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。 Further, regarding the above-described coated tools 1 to 13 of the present invention and the conventional coated tools 1 to 13, the hard coating layer was observed using an electron beam microanalyzer (EPMA) and an Auger spectrometer (longitudinal section of the layer). The adhesive Ti compound layer, the modified (Ti, Zr) CN layer, the conventional (Ti, Zr) CN layer, and the Al 2 O 3 layer having substantially the same composition as the target composition in both the former and the latter. It was confirmed to consist of layers. Moreover, when the thickness of the constituent layer of the hard coating layer of these coated tools was measured using a scanning electron microscope (similarly longitudinal section measurement), the average layer thickness (5 The average value of point measurement) was shown.

つぎに、上記の各種の被覆サーメット工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆工具1〜13および従来被覆工具1〜13について、
被削材:JIS・SCr420Hの丸棒、
切削速度: 420 m/min、
切り込み: 1.3 mm、
送り: 0.28 mm/rev、
切削時間: 7 分、
の条件(切削条件Aという)での合金鋼の湿式連続高速切削試験(通常の切削速度は、250m/min)、
被削材:JIS・SUM11の丸棒、
切削速度: 415 m/min、
切り込み: 1.5 mm、
送り: 0.29 mm/rev、
切削時間: 7 分、
の条件(切削条件Bという)での快削鋼の湿式連続高速切削試験(通常の切削速度は、200m/min)、
被削材:JIS・FC150の丸棒、
切削速度: 450 m/min、
切り込み: 2 mm、
送り: 0.3 mm/rev、
切削時間: 7 分、
の条件(切削条件Cという)での鋳鉄の湿式連続高速切削試験(通常の切削速度は、300m/min)を行い、
いずれの切削試験(水溶性切削油使用)でも切刃の逃げ面摩耗幅を測定した。この測定結果を表6に示した。
Next, with the various coated cermet tools described above, the present coated tools 1 to 13 and the conventional coated tools 1 to 13 in a state where all of the above-mentioned coated cermet tools are screwed to the tip of the tool steel tool with a fixing jig.
Work material: JIS / SCr420H round bar,
Cutting speed: 420 m / min,
Cutting depth: 1.3 mm,
Feed: 0.28 mm / rev,
Cutting time: 7 minutes,
Wet continuous high-speed cutting test (normal cutting speed is 250 m / min) of alloy steel under the conditions (referred to as cutting condition A),
Work material: JIS / SUM11 round bar,
Cutting speed: 415 m / min,
Cutting depth: 1.5 mm,
Feed: 0.29 mm / rev,
Cutting time: 7 minutes,
Wet continuous high-speed cutting test (normal cutting speed is 200 m / min)
Work material: JIS / FC150 round bar,
Cutting speed: 450 m / min,
Incision: 2 mm,
Feed: 0.3 mm / rev,
Cutting time: 7 minutes,
The wet continuous high-speed cutting test (normal cutting speed is 300 m / min) of cast iron under the conditions (referred to as cutting conditions C)
In any cutting test (using water-soluble cutting oil), the flank wear width of the cutting edge was measured. The measurement results are shown in Table 6.

Figure 0005023839
Figure 0005023839

Figure 0005023839
Figure 0005023839

Figure 0005023839
Figure 0005023839

Figure 0005023839
Figure 0005023839

Figure 0005023839
Figure 0005023839

Figure 0005023839
Figure 0005023839

表4〜6に示される結果から、本発明被覆工具1〜13は、いずれも硬質被覆層の下部層のうちの改質(Ti,Zr)CN層が、{111}面の傾斜角が0〜10度の範囲内の傾斜角区分で最高ピークを示すと共に、前記0〜10度の傾斜角区分範囲内に存在する度数の合計割合が45%以上を占める傾斜角度数分布グラフを示し、高い熱発生を伴う鋼や鋳鉄の高速切削でも、前記改質(Ti,Zr)CN層が一段とすぐれた耐熱性と高温強度を有し、熱塑性変形、偏摩耗の発生が防がれることから、硬質被覆層がすぐれた耐摩耗性を示すのに対して、硬質被覆層の下部層のうちの従来(Ti,Zr)CN層が、{111}面の測定傾斜角の分布が0〜45度の範囲内で不偏的で、最高ピークが存在しない傾斜角度数分布グラフを示す従来(Ti,Zr)CN層で構成された従来被覆工具1〜13においては、いずれも高速切削では硬質被覆層の熱塑性変形あるいは偏摩耗の発生により、硬質被覆層の耐摩耗性は非常に劣ったものであり、比較的短時間で使用寿命に至ることが明らかである。   From the results shown in Tables 4 to 6, all of the coated tools 1 to 13 of the present invention have a modified (Ti, Zr) CN layer in the lower layer of the hard coating layer, and the inclination angle of the {111} plane is 0. An inclination angle distribution graph showing the highest peak in an inclination angle section within a range of -10 degrees and an inclination angle number distribution graph in which the total ratio of the frequencies existing in the inclination angle section range of 0 to 10 degrees occupies 45% or more is high. Even in high-speed cutting of steel and cast iron with heat generation, the modified (Ti, Zr) CN layer has excellent heat resistance and high-temperature strength, and prevents the occurrence of thermoplastic deformation and uneven wear. While the coating layer exhibits excellent wear resistance, the conventional (Ti, Zr) CN layer of the lower layer of the hard coating layer has a measured inclination angle distribution on the {111} plane of 0 to 45 degrees. Conventionally showing an inclination angle distribution graph that is unbiased within the range and does not have the highest peak ( i, Zr) In the conventional coated tools 1 to 13 composed of CN layer, the hard coating layer has extremely poor wear resistance due to occurrence of thermoplastic deformation or partial wear of the hard coating layer in high speed cutting. It is clear that the service life is reached in a relatively short time.

上述のように、この発明の被覆工具は、各種鋼や鋳鉄などの通常の条件での連続切削や断続切削は勿論のこと、特に高い熱発生を伴う高速切削加工でも硬質被覆層がすぐれた耐摩耗性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention has excellent resistance to hard coating even in high-speed cutting with high heat generation, as well as continuous cutting and intermittent cutting under normal conditions such as various steels and cast iron. Since it exhibits wearability and exhibits excellent cutting performance over a long period of time, it can sufficiently satisfy the high performance of cutting equipment, labor saving and energy saving of cutting, and cost reduction. .

硬質被覆層の下部層を構成する改質(Ti,Zr)CN層および従来(Ti,Zr)CN層における結晶粒の{111}面の傾斜角の測定範囲を示す概略説明図である。It is a schematic explanatory drawing which shows the measurement range of the inclination angle of the {111} plane of crystal grains in the modified (Ti, Zr) CN layer and the conventional (Ti, Zr) CN layer constituting the lower layer of the hard coating layer. 本発明被覆工具2の硬質被覆層の下部層を構成する改質(Ti,Zr)CN層の{111}面の傾斜角度数分布グラフである。It is an inclination angle number distribution graph of the {111} plane of the modified (Ti, Zr) CN layer constituting the lower layer of the hard coating layer of the present coated tool 2. 従来被覆工具2の硬質被覆層の下部層を構成する従来(Ti,Zr)CN層の{111}面の傾斜角度数分布グラフである。It is the inclination angle number distribution graph of the {111} plane of the conventional (Ti, Zr) CN layer which comprises the lower layer of the hard coating layer of the conventional coating tool 2. FIG.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に上部層と下部層とからなる硬質被覆層を蒸着形成した表面被覆切削工具において、
(a)上記上部層は、化学蒸着で形成された1〜15μmの平均層厚を有する酸化アルミニウム層からなり、
(b)上記下部層は、3〜20μmの合計平均層厚を有し、いずれも化学蒸着で形成された密着性Ti化合物層と改質Ti系炭窒化物層とからなり、
(c)上記密着性Ti化合物層は、0.5〜5μmの合計平均層厚を有するTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなり、
(d)上記改質Ti系炭窒化物層は、2.5〜15μmの平均層厚を有し、かつ、
組成式:(Ti1−XZr)CN
で表した場合、0.02≦X≦0.25(但し、原子比)を満足するTiとZrの複合炭窒化物層からなり、さらに、上記改質Ti系炭窒化物層は、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{111}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示すこと、
を特徴とする高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具。
In a surface-coated cutting tool in which a hard coating layer composed of an upper layer and a lower layer is vapor-deposited on the surface of a tool base composed of a tungsten carbide-based cemented carbide or a titanium carbonitride-based cermet,
(A) The upper layer is made of an aluminum oxide layer having an average layer thickness of 1 to 15 μm formed by chemical vapor deposition,
(B) The lower layer has a total average layer thickness of 3 to 20 μm, and each consists of an adhesive Ti compound layer and a modified Ti carbonitride layer formed by chemical vapor deposition,
(C) The adhesion Ti compound layer is composed of a Ti carbide layer, a nitride layer, a carbonitride layer, a carbonate layer, and a carbonitride oxide layer having a total average layer thickness of 0.5 to 5 μm. It consists of one or more layers,
(D) The modified Ti carbonitride layer has an average layer thickness of 2.5 to 15 μm, and
Composition formula: (Ti 1-X Zr X ) CN
In this case, it is composed of a composite carbonitride layer of Ti and Zr that satisfies 0.02 ≦ X ≦ 0.25 (however, the atomic ratio), and the modified Ti-based carbonitride layer further comprises field emission. Using a scanning electron microscope, irradiate each crystal grain having a cubic crystal lattice existing within the measurement range of the surface polished surface with an electron beam, and the crystal of the crystal grain with respect to the normal of the surface polished surface Measuring the inclination angle formed by the normal of the {111} plane that is a surface, and dividing the measurement inclination angle within the range of 0 to 45 degrees out of the measurement inclination angles for each pitch of 0.25 degrees; In the slope angle distribution graph obtained by summing up the frequencies existing in each section, the highest peak exists in the tilt angle section within the range of 0 to 10 degrees, and the frequencies existing in the range of 0 to 10 degrees. Is a ratio of 45% or more of the total frequency in the slope angle distribution graph To indicate an inclination angle frequency distribution graph occupied,
A surface-coated cutting tool that exhibits excellent wear resistance with a hard coating layer in high-speed cutting.
JP2007168863A 2007-06-27 2007-06-27 Surface coated cutting tool with excellent wear resistance with high hard coating layer in high speed cutting Active JP5023839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007168863A JP5023839B2 (en) 2007-06-27 2007-06-27 Surface coated cutting tool with excellent wear resistance with high hard coating layer in high speed cutting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007168863A JP5023839B2 (en) 2007-06-27 2007-06-27 Surface coated cutting tool with excellent wear resistance with high hard coating layer in high speed cutting

Publications (2)

Publication Number Publication Date
JP2009006426A JP2009006426A (en) 2009-01-15
JP5023839B2 true JP5023839B2 (en) 2012-09-12

Family

ID=40322056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007168863A Active JP5023839B2 (en) 2007-06-27 2007-06-27 Surface coated cutting tool with excellent wear resistance with high hard coating layer in high speed cutting

Country Status (1)

Country Link
JP (1) JP5023839B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5023896B2 (en) * 2007-08-31 2012-09-12 三菱マテリアル株式会社 Surface coated cutting tool
JP5023898B2 (en) * 2007-08-31 2012-09-12 三菱マテリアル株式会社 Surface coated cutting tool
JP5023895B2 (en) * 2007-08-31 2012-09-12 三菱マテリアル株式会社 Surface coated cutting tool
JP5023897B2 (en) * 2007-08-31 2012-09-12 三菱マテリアル株式会社 Surface coated cutting tool
JP5170829B2 (en) * 2008-01-18 2013-03-27 三菱マテリアル株式会社 Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP5170830B2 (en) * 2008-01-18 2013-03-27 三菱マテリアル株式会社 A surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance with a hard coating layer in high-speed interrupted cutting
JP5170828B2 (en) * 2008-01-18 2013-03-27 三菱マテリアル株式会社 A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
WO2020162365A1 (en) * 2019-02-07 2020-08-13 三菱マテリアル株式会社 Surface-coated cutting tool having hard coating layer exhibiting superior deposition resistance, plastic-deformation resistance, and abnormal damage resistance

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3016703B2 (en) * 1995-01-31 2000-03-06 日立ツール株式会社 Coated hard member
JP3887811B2 (en) * 1999-06-28 2007-02-28 三菱マテリアル株式会社 Cutting tool made of surface-coated tungsten carbide based cemented carbide with a hard coating layer that provides excellent wear resistance in high-speed cutting
JP4761335B2 (en) * 1999-06-29 2011-08-31 日立ツール株式会社 Method for producing TiZr carbonitride coated tool
JP4466841B2 (en) * 2004-06-30 2010-05-26 三菱マテリアル株式会社 A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4483510B2 (en) * 2004-10-01 2010-06-16 三菱マテリアル株式会社 A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4518259B2 (en) * 2004-11-09 2010-08-04 三菱マテリアル株式会社 A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4534790B2 (en) * 2005-02-23 2010-09-01 三菱マテリアル株式会社 A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4720283B2 (en) * 2005-05-16 2011-07-13 三菱マテリアル株式会社 Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer
JP4730522B2 (en) * 2005-05-25 2011-07-20 三菱マテリアル株式会社 Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer
JP4756453B2 (en) * 2005-06-01 2011-08-24 三菱マテリアル株式会社 Surface coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high speed heavy cutting
JP4811781B2 (en) * 2005-06-02 2011-11-09 三菱マテリアル株式会社 Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer
JP4811782B2 (en) * 2005-06-06 2011-11-09 三菱マテリアル株式会社 Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer

Also Published As

Publication number Publication date
JP2009006426A (en) 2009-01-15

Similar Documents

Publication Publication Date Title
JP4518258B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4466841B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4534790B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4474646B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP5023839B2 (en) Surface coated cutting tool with excellent wear resistance with high hard coating layer in high speed cutting
JP2006334721A (en) SURFACE COATED CERMET CUTTING TOOL WITH THICKENED alpha TYPE ALUMINUM OXIDE LAYER EXHIBITING EXCELLENT CHIPPING RESISTANCE
JP4518259B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6139057B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4716250B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting
JP4747388B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP4730522B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer
JP4756453B2 (en) Surface coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high speed heavy cutting
JP5023896B2 (en) Surface coated cutting tool
JP5029099B2 (en) Surface coated cutting tool with excellent wear resistance with high hard coating layer in high speed cutting
JP5003308B2 (en) Surface coated cutting tool
JP5170828B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4466848B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4720283B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer
JP5023897B2 (en) Surface coated cutting tool
JP5023895B2 (en) Surface coated cutting tool
JP4474647B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP5019258B2 (en) Surface coated cutting tool
JP4747338B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP5170829B2 (en) Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP5023898B2 (en) Surface coated cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5023839

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150