JP4761335B2 - Method for producing TiZr carbonitride coated tool - Google Patents

Method for producing TiZr carbonitride coated tool Download PDF

Info

Publication number
JP4761335B2
JP4761335B2 JP18262299A JP18262299A JP4761335B2 JP 4761335 B2 JP4761335 B2 JP 4761335B2 JP 18262299 A JP18262299 A JP 18262299A JP 18262299 A JP18262299 A JP 18262299A JP 4761335 B2 JP4761335 B2 JP 4761335B2
Authority
JP
Japan
Prior art keywords
film
tizr
carbonitride
gas
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18262299A
Other languages
Japanese (ja)
Other versions
JP2001011632A (en
Inventor
敏夫 石井
正幸 権田
史郎 岡山
広志 植田
順彦 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP18262299A priority Critical patent/JP4761335B2/en
Publication of JP2001011632A publication Critical patent/JP2001011632A/en
Application granted granted Critical
Publication of JP4761335B2 publication Critical patent/JP4761335B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、TiZr炭窒化物皮膜被覆工具に関するものである。
【0002】
【従来の技術】
一般に、被覆工具は超硬合金、高速度鋼、特殊鋼からなる基体表面に硬質皮膜を化学蒸着法(以下、CVD法と略記する。)や、物理蒸着法(以下、PVD法と略記する。)により成膜して作製される。このような被覆工具は皮膜の耐摩耗性と基体の強靭性とを兼ね備えており、広く実用に供されている。特に、高速で切削する場合や切削液を用いずに旋削加工する場合には、切削工具の刃先の温度が1000℃前後まで上がり、被削材との接触による摩耗や断続切削等の機械的衝撃に耐える必要があり、膜の密着性が優れ、耐摩耗性と強靭性とが優れた被覆工具が重宝されている。
【0003】
硬質皮膜には、耐摩耗性と靭性とが優れる、周期律表4a、5a、6a族金属の炭化物、窒化物、炭窒化物からなる非酸化膜や、耐酸化性に優れる酸化アルミニウム膜が単層膜あるいは複層膜として一般に用いられている。
【0004】
これら硬質皮膜は、CVD法あるいはPVD法により成膜されている。PVD法の特長は、多数の元素を含有する膜を比較的容易に成膜できることであり、欠点は、CVD膜に比べて膜の密着性が劣ることである。これに対して、CVD法の欠点は、化学反応を用いて成膜するために、多数の元素を含有する膜を成膜することが困難なことであり、長所は、成膜温度が750〜1050℃と高いため膜の密着性が高いこと、また、より高温で使用しても膜特性の劣化が少ないことである。実際に、切削加工時に刃先が1000℃前後まで昇温する旋削工具に使用されている皮膜は、CVD法で成膜されたTiC、TiN、Ti(CN)、Al膜に限定されているのが実状である。
【0005】
先述の、TiC、TiN、Ti(CN)膜は、常温で測定したビッカース硬度Hvが約3200、2100、2700と硬く、耐摩耗性が優れているのが特長である。しかし、高温での膜硬度が低く、乾式切削等により刃先の温度が1000℃前後に達すると膜硬度が低下し、耐摩耗性が急激に低下する欠点を有している。
【0006】
また、これらTiC、TiN、Ti(CN)膜の特性を改善するため(TiAl)Nや(TiZr)N、(TiZr)C膜等、2種類以上の金属成分を含有した膜が検討され、(TiAl)N膜は実用化されているが、これらはいずれも、スパッタ法やイオンプレーティング法等のPVD法、またはプラズマCVD法で成膜したものであり、成膜温度が低く、当該膜が圧縮応力を有しており膜の密着性が低い、あるいは膜中に塩素が残留しており膜の硬度が低く、耐摩耗性が劣る欠点がある。
【0007】
引張残留応力を有するZr含有膜を熱CVD法で成膜する例は特開平1−252305、特開平5−177412、特開平5−177413で開示されている。しかし、これらはいずれもZrC、ZrN、Zr(CN)、Zr(CO)、Zr(CNO)と、金属成分がZrのみからなるCVD膜を用いており、(TiZr)N、(TiZr)C、(TiZr)(CN)等、Zrと他の金属成分との混合膜は検討していない。ZrC膜等、Zr単独からなる膜の硬度は、後述のように、室温における膜硬度が低く、湿式切削や低速で切削し刃先温度が高温にならないときに、耐摩耗性が劣る欠点がある。
【0008】
TiとZrの両者を含有するCVD膜としては、特開平3−267361によってTi−Zr−N膜が開示されているが、プラズマCVD法を用いており、膜中に塩素が残留するため、膜硬度が低く、工具として耐摩耗性が劣る欠点がある。また、基板にアルミナ板を用いており、基板自体の靭性が低いため、工具として使用時に欠落を生じ易く、切削耐久特性が劣る欠点がある。
【0009】
【発明が解決しようとする課題】
上記の、従来膜被覆工具の欠点を踏まえて、本発明が解決しようとする課題は、高温においても膜硬度が急激に低下せず、膜の密着性と耐摩耗性とが優れた膜を被覆した工具を実現し、従来に比して格段に切削耐久特性の優れるTiZr炭窒化物皮膜被覆工具を提供することである。
【0010】
【課題を解決するための手段】
本発明者らは上記課題を解決するために鋭意研究してきた結果、高温で成膜することにより引張残留応力と優れた密着性を有し、しかも、Zr含有により高温における膜硬度の低下が少なく、膜中の塩素量が少ないことにより中温から高温全体における膜硬度が高まり耐摩耗性が優れ、優れた切削耐久特性を持つ工具を実現できることを見出し、本発明に想到した。
【0011】
すなわち本発明は、基体上にTiとZrの炭窒化物の皮膜を有する被覆工具の製造方法において、該TiZr炭窒化物皮膜を、熱化学蒸着法で、該Ti源として塩化チタンガス、該Zr源として塩化ジルコニウムガス、該炭窒化物の炭素、窒素源として、CH CNガスを0.6〜5vol%とN ガスを25〜45vol%を用いて、圧力20〜100Torr、成膜温度750〜980℃、で形成し、該TiZr炭窒化物皮膜は引張残留応力を有し、Zrを0.3〜30質量%、塩素量が0.1〜2質量%、残り:Ti、及び、不可避不純物からなるものとすることを特徴とするTiZr炭窒化物皮膜被覆工具の製造方法である。
【0012】
更に、TiZr炭窒化物皮膜の表面に、更に、(a)TiN膜、TiC膜、Ti(CO)膜、(b)酸化アルミニウム膜、酸化アルミニウムと酸化ジルコニウムとの混合膜のいずれか、を前記(a)膜の上に、前記(b)膜を被覆すること、該基体が超硬合金であることが好ましい。
【0013】
【発明の実施の形態】
本発明のTiZr炭窒化物皮膜は、金属成分が主にチタンであることにより、常温での膜硬度が高いチタン含有膜(例えば、TiC、Ti(CN)膜等)の特長と高温での膜硬度が高いジルコニウム含有膜、両者の特長が得られ、耐摩耗性が優れた、良好な切削耐久特性が実現される。
次に、TiZr炭窒化物皮膜中に、Zrが0.3〜50質量%含まれていることが好ましい。また、1〜40質量%含まれていることが更に好ましく、5〜30質量%含有されていることが最も好ましい。膜中に、Zrが0.3〜50質量%含有されていることにより、Zr含有の良好な耐熱特性や高温高硬度の特長が実現されていると判断される。0.3質量%以下ではZr含有の効果が小さく、50質量%を超えるとTiCやTi(CN)膜に比べて常温での膜硬度が低下し、結果的に切削耐久特性が低下する傾向があらわれる。また、Zrが1〜40質量%含有されている場合は、Zr含有の良好な耐熱特性や高温高硬度の特長が顕著に実現されていると判断される。また、Zrが5〜30質量%含有されていることにより、Zr含有の良好な耐熱特性や高温高硬度の特長が最も顕著にあらわれ、最も良好な切削耐久特性が実現されていると判断される。
【0014】
更に、TiZr炭窒化物皮膜の表面に、更に、該TiZr炭窒化物皮膜の表面に、更に、(a)TiN膜、TiC膜、Ti(CO)膜、(b)酸化アルミニウム膜、酸化アルミニウムと酸化ジルコニウムとの混合膜のいずれか、を前記(a)膜の上に、前記(b)膜を被覆することが好ましい。前記(b)膜の酸化アルミニウム膜、酸化ジルコニウム膜、または酸化アルミニウムと酸化ジルコニウムからなる複合膜を被覆することにより、その下層に成膜されている前記単層皮膜や前記多層皮膜の酸化が防止され、優れた切削耐久特性が実現されていると判断される。
【0015】
該基体が超硬合金であることが好ましい。超硬合金を基体とすることにより本発明の被覆工具全体の靭性、硬度、耐熱性がバランス良く高まり、被覆工具として良好な切削耐久特性が実現される。
【0016】
TiZr炭窒化物皮膜が熱CVD法により成膜されていることが好ましい。少なくとも、TiZr炭窒化物皮膜が、成膜温度が高い熱化学蒸着法法により成膜されていることにより、緻密で膜の密着性、耐摩耗性に優れた、良好な切削耐久特性が実現される。
【0017】
表1はTiCとZrCの常温での硬度と融点をまとめたものである。常温でのビッカース硬度Hvは、TiCが3200と高く、ZrCは2700と少し低下するのに対して、融点はTiCが3420Kに対してZrCは3803Kと高い。ZrCとTiCとは両者の欠点を補完しあう関係にあると考えられる。
【0018】
【表1】

Figure 0004761335
【0019】
本発明のTiZr炭窒化物皮膜の用途は切削工具に限るものではなく、TiZr炭窒化物皮膜を含む単層膜あるいは複層膜や多層膜の硬質皮膜を被覆した耐摩耗材や金型、溶湯部品等でもよい。
【0020】
TiZr炭窒化物皮膜は、例えば(TiZr)(CN)に、Cr、Ta、Nb、Hf、Mg、Y、Si、Bを単独または複数組み合わせて各元素を0.3〜10質量%添加した膜でも良い。0.3質量%未満ではこれらを添加する効果が現れず、10質量%を超えるとTiZr炭窒化物皮膜の高温硬度の効果が低くなる欠点が現れる。また、Zr供給用のガスはZrCl、ZrCl、ZrClガス等の塩化ジルコニウムに限るものではなく、他のハロゲン化ジルコニウムやZr(t−OC)等の有機金属ガスを用いてもよい。また、上記膜には本発明の効果を消失しない範囲で不可避の添加物、不純物を例えば数質量%程度まで含むことが許容される。
【0021】
TiZr炭窒化物皮膜の表面に、更に被覆する酸化アルミニウム膜としてκ型酸化アルミニウム単相またはα型酸化アルミニウム単相の膜を用いることができる。また、κ型酸化アルミニウムとα型酸化アルミニウムとの混合膜でもよい。また、κ型酸化アルミニウムおよび/またはα型酸化アルミニウムと、γ型酸化アルミニウム、θ型酸化アルミニウム、δ型酸化アルミニウム、χ型酸化アルミニウムの少なくとも一種以上とからなる混合膜でもよい。また、酸化アルミニウムと酸化ジルコニウム等に代表される他の酸化物との混合膜でもよい。
【0022】
TiZr炭窒化物皮膜、酸化アルミニウム膜の表面に、更に、TiN膜やTi(CN)膜およびその多層膜を被覆してもよい。
【0023】
(実施例1)
比較例1、本発明例2〜16及び比較例17〜25として、WC72質量%、TiC8質量%、(TaNb)C11質量%、Co9質量%の組成よりなるスローアウェイインサートCNMG120408の切削工具用超硬合金基体をCVD炉内にセットし、その表面に、熱CVD法により、HキャリヤーガスとTiClガスとNガスとを原料ガスに用い0.3μm厚さのTiN膜を900℃でまず形成した。
続いて、成膜温度750〜980℃で、TiClガスを0.3〜2.5vol%、ZrClガスを0.3〜2.5vol%、CHCNガスを0.6〜5vol%、Nガスを25〜45vol%、残Hキャリヤーガスで構成された原料ガスを毎分5500mlだけCVD炉内に流し、成膜圧力20〜100Torrで、(TiZr)(CN)膜を6μm厚さ成膜した。
【0024】
比較例1、本発明例2〜16及び比較例17〜25のTiZr炭窒化物皮膜の組成分析結果と膜残留応力の符号を表2にまとめて示す。
組成は、堀場製作所製のエネルギー分散形X線分析装置EMAX−7000を用い測定した。測定は膜表面の組成を分析したが、EDXの測定深さが約2μmであるのに対して(TiZr)(CN)膜の膜厚が6μmと厚いため、(TiZr)(CN)膜のみの組成が分析されていると考えられる。
膜の残留応力は理学電気(株)製のX線回折装置(RU−200BH)と応力測定用ソフト(ManualNo.MJ13026A01)を用いて並傾法(X線の走査面と応力の測定方向面とが平行)とΨ一定法(θ−2θ連動スキャン)により測定した。
一般に、膜の残留応力σは、X線応力測定法による並傾法を用いて、次式に示す応力計算式により求められる。
σ=−(1/2){E/(1+ν)}cotθ{d(2θ)/d(sin2Ψ)}・・(1)
ここで、Eは弾性定数、νはポアソン比、θは無歪みの格子面からの標準ブラッグ回折角、Ψは回折格子面法線と試料面法線との傾き、θは測定試料の角度がΨの時のブラッグ回折角である。
(1)式より、応力の符合(±)の決定には2θ−sin2Ψ線図の勾配のみが必要とされ、弾性定数Eやポアソン比ν、cotθ(常に+)の正確な値は必要としないことがわかる。CVD法で成膜した時、膜の残留応力の符合は+で引張応力を持ち、PVD法で成膜した時は、符合が−で圧縮残留応力を有している。
【0025】
【表2】
Figure 0004761335
【0026】
表2より、比較例1、本発明例2〜16及び比較例17〜25は、Zrが0.1〜90質量%含有されており、塩素量は0.1〜2質量%であることがわかる。金属成分の内、Zr以外の大部分はTiであり、他には、WあるいはCoが数質量%以下検出されるだけであった。
【0027】
膜の密着性は、比較例1、本発明例2〜16及び比較例17〜25、各5個を用いて、以下の条件で30秒間切削した後、膜剥離の有無を観察することにより評価した。
被削材 FC25(HB230)
切削速度 300m/分
送り 0.3mm/rev
切り込み 1.0mm
水溶性切削油使用
連続切削寿命は、上記の条件で更に連続切削し、平均逃げ面摩耗量が0.4mm、クレーター摩耗が0.1mmのどちらかに達した時間を連続切削寿命時間と判断した。
表2より、比較例1、本発明例2〜16及び比較例17〜25は、いずれも、30秒間切削後も膜剥離が生じておらず、膜密着性が優れていることがわかる。連続切削テストにおいて、比較例1、本発明例2〜16及び比較例17〜25は、いずれも連続切削寿命が20分以上と長く優れていることがわかる。比較例1、本発明例2〜16及び比較例17〜25は、塩素量が0.1〜2質量%であり、塩素量が1質量%以下の時は、連続切削寿命が更に長くなり、更に優れていることがわかる。
本発明例2〜16及び比較例17〜20のZr含有量が0.3〜50質量%では、連続切削寿命が30分以上と長く優れた工具特性が得られ、本発明例4〜16及び比較例17、18のZr含有量が1〜40質量%では、連続切削寿命が35分以上と更に長くなり更に優れた工具特性が得られ、本発明例5〜16のZr含有量が5〜30質量%では40分以上と最も長くなっており最も優れた工具特性が得られることがわかる。
【0028】
従来例1
従来例として、ジルコニウム含有膜におけるジルコニウム含有の有無による切削耐久特性への影響を明らかにするために、実施例1と同じ基体に、同一条件でTiN膜を形成し、更に、成膜温度750〜980℃でTiClガスを0.3〜2.5vol%、CHCNガスを0.6〜5vol%、Nガスを25〜45vol%、残Hキャリヤーガスで構成される原料ガスを毎分5500mlだけCVD炉内に流し、成膜圧力20〜100Torrで、6μm厚さのTi(CN)膜を成膜した。
従来例は、膜残留応力の符号は+で引張残留応力を有している。従来例、5個を用いて実施例1と同一の条件で切削耐久特性を評価した結果、30秒間切削後に膜剥離は見られなかったものの、連続切削寿命は10分と短く、実施例1の本発明例・比較例よりも切削耐久特性が劣ることがわかった。
【0029】
従来例2
従来例として、TiZr炭窒化物皮膜が、本発明のように引張残留応力を有している場合と、圧縮残留応力を有している場合との差違による切削耐久特性への影響を明らかにするために、実施例1と同一の基体をアークイオンプレーティング装置内にセットし、その表面に、TiターゲットとNガスを用いることによりTiN膜を550℃でまず形成した。続いて、(TiZr)ターゲットおよびCとNとの混合ガスを用いて550℃で(TiZr)(CN)膜を3μm厚さ成膜した。
【0030】
従来例の膜残留応力は符号が−であり、圧縮残留応力が働いていることがわかった。従来例、5個を用いて実施例1と同一の条件で切削耐久特性を評価した結果、30秒間切削中に全て膜剥離が発生し、膜の密着性が実施例1の本発明例・比較例よりも劣ることがわかった。
【0031】
従来例3
従来例として、TiZr炭窒化物皮膜中に含まれる塩素量の差違による切削耐久特性への影響を明らかにするために、実施例1と同一の基体をプラズマCVD装置内にセットし、その表面に、HキャリヤーガスとTiClガスとNガスとを原料ガスに用い0.3μm厚さのTiNを700℃でまず形成した。続いて、成膜温度500〜650℃で、TiClガスを0.3〜2.5vol%、ZrClガスを0.3〜2.5vol%、CHガスを3〜6vol%、Nガスを32vol%、残Hキャリヤーガスで構成された原料ガスを毎分5500mlだけプラズマCVD炉内に流し、成膜圧力75Torrで、(TiZr)(CN)膜をプラズマCVD法により6μm厚さ成膜した。
【0032】
従来例をEDXにより分析した結果、膜中に含まれる塩素量は2質量%を超えていることがわかった。従来例3の条件で作製した切削工具各5個を用いて実施例1と同一の条件で切削耐久特性を評価した結果、10分以内で連続切削寿命に達し、膜の耐摩耗性が実施例1の本発明例・比較例よりも劣ることがわかった。
【0033】
(実施例
実施例2として、実施例1と同一の基体をCVD炉内にセットし、実施例1、本発明例5〜16と同様に、0.3μm厚さのTiN膜、6μm厚さの(TiZr)(CN)膜を成膜した。更に、950〜1020℃でTiClガスとCHガスとHキャリヤーガスとをトータル2200ml/分で60分間流して成膜し、そのまま連続して本構成ガスにさらに2.2〜550ml/分のCOとCOの混合ガスを追加して5〜30分間成膜することによりTiCおよびTi(CO)を作製した。続いてAlClガスとHガス2l/分とCOとCOの混合ガス500ml/分とをCVD炉内に流し、1010〜1020℃で30分間反応させることにより酸化アルミニウム膜を成膜した。その後、AlClガスとZrClガスおよびHガス2l/分とCOとCOの混合ガス500ml/分とをCVD炉内に流し、1000℃で2時間反応させることにより酸化アルミニウムと酸化ジルコニウムとの混合膜を成膜した。この酸化アルミニウムと酸化ジルコニウムとの混合膜の表面に、更に、HキャリヤーガスとTiClガスとNガスとにより0.5μm厚さのTiNを1000℃で成膜した。
【0034】
実施例2の組成と残留応力を実施例1と同一の方法で測定した。但し、組成の測定は、試料の膜断面を研磨し、EDX装置により(TiZr)(CN)膜の断面部分のみを分析した。組成の測定結果は、Zr量が5〜30質量%、塩素量が2質量%以下であった。また、膜は全て、残留応力の符号が+であり、引張残留応力を有していた。
【0035】
従来例4
従来例として、TiZr炭窒化物皮膜による切削耐久特性への影響を明らかにするために、実施例2の本発明例と同一の組成と形状よりなる切削工具用超硬合金基板をCVD炉内にセットし、その表面に、実施例2と同じ条件でTiN膜を形成した。続いて、750〜980℃でTiCl ガスを0.3〜2.5vol%、CH CNガスを0.6〜5vol%、N ガスを25〜45vol%、残H キャリヤーガスで構成されZrCl ガスを含有しない原料ガスを毎分5500mlだけCVD炉内に流し、成膜圧力20〜100Torrで、6μm厚さのTiCN膜を成膜した。その後、実施例2と同じ条件でチタンの炭化物および炭酸化物からなる膜、続いてAlClガスとHガス2l/分とCOとCOの混合ガス500ml/分とをCVD炉内に流し、1010〜1020℃で2時間反応させることにより所定の厚さの酸化アルミニウム膜を成膜し、従来例4を作製した。
【0036】
従来例は、膜残留応力の符号は+で引張残留応力を有した。
【0037】
実施例2と従来例の膜密着性と連続切削寿命特性を評価するため、以下の条件で切削テストを行った。
被削材S53C(HS35)
切削速度250m/min
送り0.2mm/rev
切り込み1.5mm
水溶性切削油使用
【0038】
膜の密着性は、実施例2と従来例4で製作した切削工具各5個を用いて、上記の切削条件で30秒間切削した後、膜剥離の有無を観察することにより評価した。連続切削寿命は、上記の条件で更に連続切削し、平均逃げ面摩耗量が0.4mm、クレーター摩耗が0.1mmのどちらかに達した時間を連続切削寿命時間と判断した。
【0039】
切削テストの結果、実施例2と従来例は、いずれも、30秒間切削後も膜剥離が生じておらず、膜密着性が優れていた。しかし、連続切削テストにおいては、従来例41は20分以内の切削で寿命に達したのに対して、実施例2はいずれも30分以上切削でき、優れた切削耐久特性を示すことが判明した。
【0040】
【発明の効果】
上述のように、本発明によれば、高温での膜硬度が高いZrを含有し、膜中の塩素量が少なく、しかも引張残留応力を有する膜が形成されており、耐摩耗性と膜密着性が優れ、優れた切削耐久特性を示すTiZr炭窒化物皮膜被覆工具を実現することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a TiZr carbonitride film-coated tool.
[0002]
[Prior art]
Generally, a coated tool is abbreviated as a chemical vapor deposition method (hereinafter abbreviated as a CVD method) or a physical vapor deposition method (hereinafter abbreviated as a PVD method) on a substrate surface made of cemented carbide, high speed steel, or special steel. ) To form a film. Such a coated tool has both the wear resistance of the coating and the toughness of the substrate, and is widely put into practical use. In particular, when cutting at high speed or turning without using cutting fluid, the temperature of the cutting edge of the cutting tool rises to around 1000 ° C, and mechanical impact such as wear due to contact with the work material and intermittent cutting It is necessary to have a coated tool that is excellent in abrasion resistance and toughness because of its excellent adhesion to the film, excellent in film adhesion.
[0003]
The hard coating is simply a non-oxide film composed of carbides, nitrides, carbonitrides of the Periodic Tables 4a, 5a, and 6a metals with excellent wear resistance and toughness, and an aluminum oxide film with excellent oxidation resistance. It is generally used as a layer film or a multilayer film.
[0004]
These hard films are formed by a CVD method or a PVD method. The feature of the PVD method is that a film containing a large number of elements can be formed relatively easily, and the disadvantage is that the adhesion of the film is inferior to that of a CVD film. On the other hand, the disadvantage of the CVD method is that it is difficult to form a film containing a large number of elements in order to form a film using a chemical reaction. Since the film is as high as 1050 ° C., the adhesiveness of the film is high, and the film characteristics are hardly deteriorated even when used at a higher temperature. Actually, coatings used for turning tools whose cutting edges are heated to around 1000 ° C. during cutting are limited to TiC, TiN, Ti (CN), and Al 2 O 3 films formed by the CVD method. The reality is.
[0005]
The above-described TiC, TiN, and Ti (CN) films are characterized by a Vickers hardness Hv measured at room temperature of about 3200, 2100, and 2700, and excellent wear resistance. However, the film hardness at a high temperature is low, and when the temperature of the cutting edge reaches around 1000 ° C. by dry cutting or the like, the film hardness is lowered and the wear resistance is rapidly lowered.
[0006]
Further, in order to improve the characteristics of these TiC, TiN, and Ti (CN) films, films containing two or more kinds of metal components such as (TiAl) N, (TiZr) N, and (TiZr) C films have been studied. TiAl) N films have been put into practical use, but all of these films are formed by PVD methods such as sputtering and ion plating, or plasma CVD methods. The film has compressive stress and low film adhesion, or chlorine remains in the film, resulting in low film hardness and poor wear resistance.
[0007]
Examples of forming a Zr-containing film having a tensile residual stress by a thermal CVD method are disclosed in JP-A-1-252305, JP-A-5-177712, and JP-A-5-177413. However, all of these use ZrC, ZrN, Zr (CN), Zr (CO), Zr (CNO), and a CVD film whose metal component consists only of Zr, and (TiZr) N, (TiZr) C, A mixed film of Zr and other metal components such as (TiZr) (CN) is not studied. As will be described later, the hardness of a film made of Zr alone such as a ZrC film has a drawback that the film hardness at room temperature is low and the wear resistance is inferior when the cutting edge temperature does not become high by wet cutting or low speed cutting.
[0008]
As a CVD film containing both Ti and Zr, JP-A-3-267361 discloses a Ti-Zr-N film. However, the plasma CVD method is used, and chlorine remains in the film. There is a drawback that the hardness is low and the wear resistance is inferior as a tool. Further, since an alumina plate is used for the substrate and the toughness of the substrate itself is low, there is a drawback in that it tends to be lost during use as a tool and the cutting durability characteristics are poor.
[0009]
[Problems to be solved by the invention]
In light of the above-mentioned drawbacks of conventional film-coated tools, the problem to be solved by the present invention is to coat a film with excellent film adhesion and wear resistance without a sudden decrease in film hardness even at high temperatures. It is to provide a TiZr carbonitride film-coated tool that realizes the above-mentioned tool and has excellent cutting durability characteristics as compared with conventional tools.
[0010]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the present inventors have a tensile residual stress and excellent adhesion by forming a film at a high temperature, and further, there is little decrease in film hardness at a high temperature by containing Zr. The inventors have found that a low amount of chlorine in the film increases the film hardness from the medium temperature to the entire high temperature and has excellent wear resistance, and can realize a tool having excellent cutting durability.
[0011]
That is, the present invention relates to a method of manufacturing a coated tool having a Ti and Zr carbonitride film on a substrate, wherein the TiZr carbonitride film is formed by thermal chemical vapor deposition, titanium chloride gas as the Ti source, and the Zr zirconium chloride gas as a source, the carbon of the carbon nitride, as a nitrogen source, with 25~45Vol% of 0.6~5Vol% and N 2 gas CH 3 CN gas, pressure 20~100Torr, deposition temperature 750 The TiZr carbonitride film has a tensile residual stress, 0.3 to 30% by mass of Zr, 0.1 to 2% by mass of chlorine, the remainder: Ti, and unavoidable It is a manufacturing method of a TiZr carbonitride film-coated tool characterized by comprising impurities.
[0012]
Further, the surface of the TiZr carbonitride film, further, (a) TiN film, TiC film, Ti (CO) film, (b) aluminum oxide film, or a mixed film of aluminum oxide and zirconium oxide, the It is preferable that (a) the film is coated on the film (b), and that the substrate is a cemented carbide.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The TiZr carbonitride film of the present invention is characterized by the characteristics of a titanium-containing film (for example, TiC, Ti (CN) film, etc.) having a high film hardness at room temperature and a film at a high temperature because the metal component is mainly titanium. Zirconium-containing film with high hardness, both features are obtained, and excellent cutting durability characteristics with excellent wear resistance are realized.
Next, it is preferable that 0.3-50 mass% of Zr is contained in the TiZr carbonitride film. Moreover, it is more preferable that 1-40 mass% is contained, and it is most preferable that 5-30 mass% is contained. When 0.3 to 50% by mass of Zr is contained in the film, it is judged that good heat resistance characteristics and high temperature and high hardness characteristics containing Zr are realized. If the content is less than 0.3% by mass, the effect of containing Zr is small, and if it exceeds 50% by mass, the film hardness at room temperature is lower than that of a TiC or Ti (CN) film, resulting in a tendency to decrease the cutting durability characteristics. Appears. Moreover, when 1-40 mass% of Zr is contained, it is judged that the good heat resistance characteristic of Zr content and the features of high temperature and high hardness are realized notably. Further, when Zr is contained in an amount of 5 to 30% by mass, it is judged that the best heat resistance characteristics and high temperature and high hardness characteristics of Zr content are most prominent and the best cutting durability characteristics are realized. .
[0014]
Furthermore, on the surface of the TiZr carbonitride film, and further on the surface of the TiZr carbonitride film, (a) a TiN film, a TiC film, a Ti (CO) film, (b) an aluminum oxide film, and an aluminum oxide It is preferable to coat any of the mixed films with zirconium oxide on the (a) film and the (b) film . By coating the aluminum oxide film, the zirconium oxide film, or the composite film composed of aluminum oxide and zirconium oxide of the (b) film, the oxidation of the single layer film or the multilayer film formed in the lower layer is prevented. Therefore, it is judged that excellent cutting durability characteristics are realized.
[0015]
The substrate is preferably a cemented carbide. By using a cemented carbide as a base, the toughness, hardness and heat resistance of the entire coated tool of the present invention are improved in a well-balanced manner, and good cutting durability characteristics as a coated tool are realized.
[0016]
The TiZr carbonitride film is preferably formed by a thermal CVD method. At least the TiZr carbonitride film is formed by a thermal chemical vapor deposition method with a high film formation temperature, so that it has a good cutting durability characteristic that is dense and excellent in film adhesion and wear resistance. The
[0017]
Table 1 summarizes the hardness and melting point of TiC and ZrC at room temperature. The Vickers hardness Hv at room temperature is as high as 3200 for TiC and slightly decreased to 2700 for ZrC, whereas the melting point is as high as 3803K for ZC and 3420K for TiC. ZrC and TiC are considered to have a relationship of complementing both drawbacks.
[0018]
[Table 1]
Figure 0004761335
[0019]
The use of the TiZr carbonitride film of the present invention is not limited to cutting tools, but wear-resistant materials, molds and molten metal parts coated with a hard film of a single layer film, a multilayer film or a multilayer film containing a TiZr carbonitride film. Etc.
[0020]
The TiZr carbonitride film is, for example, a film obtained by adding 0.3 to 10% by mass of each element by combining Cr, Ta, Nb, Hf, Mg, Y, Si, B alone or in combination with (TiZr) (CN). But it ’s okay. If the amount is less than 0.3% by mass, the effect of adding these does not appear. If the amount exceeds 10% by mass, the effect of the high-temperature hardness of the TiZr carbonitride film decreases. Further, the gas for supplying Zr is not limited to zirconium chloride such as ZrCl 4 , ZrCl 3 , ZrCl 2 gas, etc., but other zirconium halides or organometallic gases such as Zr (t-OC 4 H 9 ) are used. Also good. The film is allowed to contain unavoidable additives and impurities up to, for example, several mass% within a range where the effects of the present invention are not lost.
[0021]
On the surface of the TiZr carbonitride film, a κ-type aluminum oxide single-phase film or an α-type aluminum oxide single-phase film can be used as an aluminum oxide film to be further coated. Alternatively, a mixed film of κ-type aluminum oxide and α-type aluminum oxide may be used. Alternatively, a mixed film made of κ-type aluminum oxide and / or α-type aluminum oxide and at least one of γ-type aluminum oxide, θ-type aluminum oxide, δ-type aluminum oxide, and χ-type aluminum oxide may be used. Alternatively, a mixed film of aluminum oxide and another oxide typified by zirconium oxide or the like may be used.
[0022]
The surface of the TiZr carbonitride film or aluminum oxide film may be further coated with a TiN film, a Ti (CN) film, or a multilayer film thereof.
[0023]
Example 1
As comparative example 1, invention examples 2-16 and comparative examples 17-25, carbide for cutting tools of throw-away insert CNMG120408 having a composition of WC 72 mass%, TiC 8 mass%, (TaNb) C 11 mass%, Co 9 mass% An alloy substrate is set in a CVD furnace, and a 0.3 μm-thick TiN film is first formed at 900 ° C. on the surface using H 2 carrier gas, TiCl 4 gas and N 2 gas as source gases by thermal CVD. Formed.
Subsequently, at a film formation temperature of 750 to 980 ° C., the TiCl 4 gas is 0.3 to 2.5 vol%, the ZrCl 4 gas is 0.3 to 2.5 vol%, the CH 3 CN gas is 0.6 to 5 vol%, A source gas composed of 25 to 45 vol% of N 2 gas and the remaining H 2 carrier gas is flowed into the CVD furnace at a rate of 5500 ml per minute, and a (TiZr) (CN) film is 6 μm thick at a deposition pressure of 20 to 100 Torr. A film was formed.
[0024]
Table 2 summarizes the composition analysis results of the TiZr carbonitride films of Comparative Example 1, Invention Examples 2 to 16 and Comparative Examples 17 to 25 and the signs of the film residual stress.
The composition was measured using an energy dispersive X-ray analyzer EMAX-7000 manufactured by Horiba. In the measurement, the composition of the film surface was analyzed. Since the thickness of the (TiZr) (CN) film was as thick as 6 μm while the measurement depth of EDX was about 2 μm, only the (TiZr) (CN) film was It is thought that the composition has been analyzed.
Residual stress of the film is determined by using the X-ray diffractometer (RU-200BH) manufactured by Rigaku Denki Co., Ltd. and stress measurement software (Manual No. MJ13026A01). Are parallel) and the Ψ constant method (θ-2θ interlocking scan).
In general, the residual stress σ of the film is obtained by a stress calculation formula shown below using a parallel tilt method based on an X-ray stress measurement method.
σ = − (1/2) {E / (1 + ν)} cot θ 0 {d (2θ) / d (sin2Ψ)} (1)
Where E is the elastic constant, ν is the Poisson's ratio, θ 0 is the standard Bragg diffraction angle from the unstrained lattice plane, Ψ is the slope between the diffraction grating surface normal and the sample surface normal, and θ is the angle of the measurement sample Is the Bragg diffraction angle when is Ψ.
From equation (1), only the slope of the 2θ-sin2Ψ diagram is required to determine the sign of stress (±), and the exact values of elastic constant E, Poisson's ratio ν, cotθ o (always +) are required. I understand that I do not. When the film is formed by the CVD method, the sign of the residual stress of the film is + and has a tensile stress, and when the film is formed by the PVD method, the sign is-and has a compressive residual stress.
[0025]
[Table 2]
Figure 0004761335
[0026]
From Table 2, Comparative Example 1, Invention Examples 2-16 and Comparative Examples 17-25 contain 0.1 to 90% by mass of Zr, and the chlorine content is 0.1 to 2% by mass. Recognize. Most of the metal components other than Zr were Ti, and other than that, W or Co was only detected by several mass% or less.
[0027]
The adhesion of the film was evaluated by observing the presence or absence of film peeling after cutting for 30 seconds under the following conditions using Comparative Example 1, Invention Examples 2 to 16 and Comparative Examples 17 to 25, and 5 each. did.
Work material FC25 (HB230)
Cutting speed 300m / min Feed 0.3mm / rev
Notch 1.0mm
Continuous cutting life using water-soluble cutting oil was determined as the continuous cutting life time when continuous cutting was continued under the above conditions, and the average flank wear amount reached 0.4 mm and crater wear reached 0.1 mm. .
From Table 2, it can be seen that Comparative Example 1, Invention Examples 2 to 16 and Comparative Examples 17 to 25 did not cause film peeling even after cutting for 30 seconds and were excellent in film adhesion. In the continuous cutting test, it can be seen that Comparative Example 1, Invention Examples 2 to 16 and Comparative Examples 17 to 25 all have a continuous cutting life as long as 20 minutes or longer. Comparative Example 1, Invention Examples 2 to 16 and Comparative Examples 17 to 25 have a chlorine content of 0.1 to 2% by mass, and when the chlorine content is 1% by mass or less, the continuous cutting life is further increased. It turns out that it is further superior.
When the Zr content of Invention Examples 2 to 16 and Comparative Examples 17 to 20 is 0.3 to 50% by mass, continuous cutting life is as long as 30 minutes or longer, and excellent tool characteristics are obtained. Invention Examples 4 to 16 and When the Zr content of Comparative Examples 17 and 18 is 1 to 40% by mass, the continuous cutting life is further increased to 35 minutes or longer, and further excellent tool characteristics are obtained. The Zr content of Invention Examples 5 to 16 is 5 to 5%. It can be seen that 30% by mass is the longest of 40 minutes or more, and the most excellent tool characteristics can be obtained.
[0028]
( Conventional example 1 )
As a conventional example 1 , in order to clarify the influence on the cutting durability characteristics due to the presence or absence of zirconium in a zirconium-containing film , a TiN film is formed on the same substrate as in Example 1 under the same conditions, and further a film formation temperature of 750 A raw material gas composed of TiCl 4 gas at 0.3 to 2.5 vol%, CH 3 CN gas at 0.6 to 5 vol%, N 2 gas at 25 to 45 vol% and the remaining H 2 carrier gas at ˜980 ° C. A flow rate of 5500 ml per minute was flowed into the CVD furnace, and a 6 μm thick Ti (CN) film was formed at a film forming pressure of 20 to 100 Torr.
In Conventional Example 1 , the sign of the film residual stress is +, and it has a tensile residual stress. Conventional Example 1, five results of evaluation of cutting durability characteristics under the same conditions as in Example 1 using, although delamination was observed after 30 seconds cutting, continuous cutting life is as short as 10 minutes, Example 1 It was found that the cutting durability characteristics were inferior to those of the inventive examples and comparative examples.
[0029]
( Conventional example 2 )
As a conventional example 2 , the effect of the TiZr carbonitride film on the cutting durability due to the difference between the case where the TiZr carbonitride film has a tensile residual stress and the case where it has a compressive residual stress as in the present invention is clarified For this purpose, the same substrate as in Example 1 was set in an arc ion plating apparatus, and a TiN film was first formed on the surface thereof at 550 ° C. by using a Ti target and N 2 gas. Subsequently, a (TiZr) (CN) film having a thickness of 3 μm was formed at 550 ° C. using a (TiZr) target and a mixed gas of C 2 H 2 and N 2 .
[0030]
The sign of the film residual stress of Conventional Example 2 is-, indicating that compressive residual stress is working. Conventional Example 2, five results of evaluation of cutting durability characteristics under the same conditions as in Example 1 to obtain all film separation occurred during 30 seconds cutting, the present invention examples of adhesion of the film in Example 1, It turned out that it is inferior to a comparative example.
[0031]
( Conventional example 3 )
As conventional example 3 , in order to clarify the influence on the cutting durability characteristics due to the difference in the amount of chlorine contained in the TiZr carbonitride film, the same substrate as in example 1 was set in the plasma CVD apparatus, and its surface Then, TiN having a thickness of 0.3 μm was first formed at 700 ° C. using H 2 carrier gas, TiCl 4 gas and N 2 gas as source gases. Subsequently, at a film forming temperature of 500 to 650 ° C., TiCl 4 gas is 0.3 to 2.5 vol%, ZrCl 4 gas is 0.3 to 2.5 vol%, CH 4 gas is 3 to 6 vol%, and N 2 gas. A source gas composed of 32 vol% residual H 2 carrier gas is flowed in a plasma CVD furnace at a rate of 5500 ml per minute, and a (TiZr) (CN) film is formed to a thickness of 6 μm by plasma CVD at a film forming pressure of 75 Torr. did.
[0032]
As a result of analyzing Conventional Example 3 by EDX, it was found that the amount of chlorine contained in the film exceeded 2 mass%. As a result of evaluating the cutting durability characteristics under the same conditions as in Example 1 using five cutting tools manufactured under the conditions of Conventional Example 3 , the continuous cutting life was reached within 10 minutes, and the wear resistance of the film was in Example. It turned out that it is inferior to 1 example of this invention and a comparative example.
[0033]
(Example 2 )
As Example 2 , the same substrate as in Example 1 was set in a CVD furnace, and a TiN film having a thickness of 0.3 μm and (TiZr) having a thickness of 6 μm were obtained in the same manner as Example 1 and Invention Examples 5 to 16. A (CN) film was formed. Further, TiCl 4 gas, CH 4 gas, and H 2 carrier gas were flown at a total of 2200 ml / min for 60 minutes at 950 to 1020 ° C., and the film was further continuously added to this constituent gas at 2.2 to 550 ml / min. TiC and Ti (CO) were prepared by adding a mixed gas of CO 2 and CO and forming a film for 5 to 30 minutes. Subsequently, AlCl 3 gas, H 2 gas 2 l / min, and CO 2 and CO mixed gas 500 ml / min were flowed into the CVD furnace, and reacted at 1010 to 1020 ° C. for 30 minutes to form an aluminum oxide film. Thereafter, AlCl 3 gas, ZrCl 4 gas, 2 l / min of H 2 gas, and 500 ml / min of a mixed gas of CO 2 and CO are allowed to flow in the CVD furnace and reacted at 1000 ° C. for 2 hours to thereby obtain aluminum oxide and zirconium oxide. A mixed film was formed. On the surface of the mixed film of aluminum oxide and zirconium oxide, TiN having a thickness of 0.5 μm was further formed at 1000 ° C. with H 2 carrier gas, TiCl 4 gas and N 2 gas.
[0034]
The composition and residual stress of Example 2 were measured by the same method as Example 1. However, the composition was measured by polishing the film cross section of the sample and analyzing only the cross section of the (TiZr) (CN) film with an EDX apparatus. As a result of measuring the composition, the Zr content was 5 to 30% by mass, and the chlorine content was 2% by mass or less. All the films had a residual stress sign of + and had a tensile residual stress.
[0035]
( Conventional example 4 )
As conventional example 4 , in order to clarify the influence of the TiZr carbonitride film on the cutting durability characteristics, a cemented carbide substrate for a cutting tool having the same composition and shape as the example of the present invention in Example 2 was placed in a CVD furnace. And a TiN film was formed on the surface under the same conditions as in Example 2. Subsequently, at 750 to 980 ° C., the TiCl 4 gas is 0.3 to 2.5 vol%, the CH 3 CN gas is 0.6 to 5 vol%, the N 2 gas is 25 to 45 vol%, and the remaining H 2 carrier gas. A source gas not containing ZrCl 4 gas was flowed into the CVD furnace at a rate of 5500 ml per minute, and a 6 μm thick TiCN film was formed at a film forming pressure of 20 to 100 Torr. Thereafter, a film made of titanium carbide and carbonate under the same conditions as in Example 2, followed by flowing AlCl 3 gas, H 2 gas 2 l / min, and CO 2 and CO mixed gas 500 ml / min into the CVD furnace, By reacting at 1010 to 1020 ° C. for 2 hours, an aluminum oxide film having a predetermined thickness was formed to produce Conventional Example 4.
[0036]
In Conventional Example 4 , the sign of the film residual stress was +, and it had a tensile residual stress.
[0037]
In order to evaluate the film adhesion and continuous cutting life characteristics of Example 2 and Conventional Example 4 , a cutting test was performed under the following conditions.
Work Material S53C (HS35)
Cutting speed 250m / min
Feed 0.2mm / rev
Notch 1.5mm
Uses water-soluble cutting oil [0038]
The film adhesion was evaluated by observing the presence or absence of film peeling after cutting for 30 seconds under the above-described cutting conditions using each of the five cutting tools manufactured in Example 2 and Conventional Example 4 . The continuous cutting life was determined as the continuous cutting life time when further continuous cutting was performed under the above conditions, and the average flank wear amount reached 0.4 mm and crater wear reached 0.1 mm.
[0039]
As a result of the cutting test, in both Example 2 and Conventional Example 4 , film peeling did not occur even after cutting for 30 seconds, and the film adhesion was excellent. However, in the continuous cutting test, it was found that the conventional example 41 reached the end of its life after cutting within 20 minutes, whereas all of the examples 2 were able to cut for 30 minutes or more and showed excellent cutting durability characteristics. .
[0040]
【The invention's effect】
As described above, according to the present invention, a film containing Zr having a high film hardness at a high temperature, a small amount of chlorine in the film, and having a tensile residual stress is formed. A TiZr carbonitride film-coated tool having excellent properties and excellent cutting durability characteristics can be realized.

Claims (3)

基体上にTiとZrの炭窒化物の皮膜を有する被覆工具の製造方法において、該TiZr炭窒化物皮膜を、熱化学蒸着法で、該Ti源として塩化チタンガス、該Zr源として塩化ジルコニウムガス、該炭窒化物の炭素、窒素源として、CH CNガスを0.6〜5vol%とN ガスを25〜45vol%を用いて、圧力20〜100Torr、成膜温度750〜980℃、で形成し、該TiZr炭窒化物皮膜は引張残留応力を有し、Zrを0.3〜30質量%、塩素量が0.1〜2質量%、残り:Ti、及び、不可避不純物からなるものとすることを特徴とするTiZr炭窒化物皮膜被覆工具の製造方法In a method of manufacturing a coated tool having a Ti and Zr carbonitride film on a substrate, the TiZr carbonitride film is formed by thermal chemical vapor deposition, using titanium chloride gas as the Ti source and zirconium chloride gas as the Zr source. As carbon and nitrogen sources of the carbonitride, using CH 3 CN gas at 0.6 to 5 vol% and N 2 gas at 25 to 45 vol%, a pressure of 20 to 100 Torr, and a film forming temperature of 750 to 980 ° C. formed, the TiZr carbonitride coating has a tensile residual stresses, the Zr 0.3 to 30 mass%, chlorine content is 0.1 to 2 wt%, the remainder: Ti, and, to that consisting of unavoidable impurities A method of manufacturing a TiZr carbonitride film-coated tool characterized by comprising : 請求項1記載のTiZr炭窒化物皮膜被覆工具の製造方法において、該基体のTiZr炭窒化物皮膜の表面に、更に、(a)TiN膜、TiC膜、Ti(CO)膜のいずれかと(b)酸化アルミニウム膜、酸化アルミニウムと酸化ジルコニウムとの混合膜のいずれかを、前記(a)膜の上に、前記(b)膜を被覆したことを特徴とするTiZr炭窒化物皮膜被覆工具の製造方法。The method of manufacturing a TiZr carbonitride film-coated tool of claim 1, wherein the surface of the TiZr carbonitride coating of said substrate, further, with any of (a) TiN film, TiC film, Ti (CO) film, ( b) A TiZr carbonitride film-coated tool characterized in that any one of an aluminum oxide film and a mixed film of aluminum oxide and zirconium oxide is coated on the (a) film with the (b) film . Production method. 請求項1又は2記載のTiZr炭窒化物皮膜被覆工具の製造方法において、該基体が超硬合金であることを特徴とするTiZr炭窒化物皮膜被覆工具の製造方法。3. The method for manufacturing a TiZr carbonitride film-coated tool according to claim 1 or 2, wherein the substrate is a cemented carbide.
JP18262299A 1999-06-29 1999-06-29 Method for producing TiZr carbonitride coated tool Expired - Fee Related JP4761335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18262299A JP4761335B2 (en) 1999-06-29 1999-06-29 Method for producing TiZr carbonitride coated tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18262299A JP4761335B2 (en) 1999-06-29 1999-06-29 Method for producing TiZr carbonitride coated tool

Publications (2)

Publication Number Publication Date
JP2001011632A JP2001011632A (en) 2001-01-16
JP4761335B2 true JP4761335B2 (en) 2011-08-31

Family

ID=16121517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18262299A Expired - Fee Related JP4761335B2 (en) 1999-06-29 1999-06-29 Method for producing TiZr carbonitride coated tool

Country Status (1)

Country Link
JP (1) JP4761335B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11623893B2 (en) 2018-10-11 2023-04-11 Mitsubishi Materials Corporation Surface-coated cutting tool in which hard coating layer exhibits exceptional welding resistance, plastic deformation resistance, and anomalous damage resistance

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5023839B2 (en) * 2007-06-27 2012-09-12 三菱マテリアル株式会社 Surface coated cutting tool with excellent wear resistance with high hard coating layer in high speed cutting
JP5023895B2 (en) * 2007-08-31 2012-09-12 三菱マテリアル株式会社 Surface coated cutting tool
JP5023898B2 (en) * 2007-08-31 2012-09-12 三菱マテリアル株式会社 Surface coated cutting tool
JP5023897B2 (en) * 2007-08-31 2012-09-12 三菱マテリアル株式会社 Surface coated cutting tool
JP5023896B2 (en) * 2007-08-31 2012-09-12 三菱マテリアル株式会社 Surface coated cutting tool
JP5170830B2 (en) * 2008-01-18 2013-03-27 三菱マテリアル株式会社 A surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance with a hard coating layer in high-speed interrupted cutting
JP5170828B2 (en) * 2008-01-18 2013-03-27 三菱マテリアル株式会社 A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP5170829B2 (en) * 2008-01-18 2013-03-27 三菱マテリアル株式会社 Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11623893B2 (en) 2018-10-11 2023-04-11 Mitsubishi Materials Corporation Surface-coated cutting tool in which hard coating layer exhibits exceptional welding resistance, plastic deformation resistance, and anomalous damage resistance

Also Published As

Publication number Publication date
JP2001011632A (en) 2001-01-16

Similar Documents

Publication Publication Date Title
JP3678924B2 (en) Aluminum oxide coated tool
JP4832108B2 (en) Surface coated cutting tool
JP4004133B2 (en) Titanium carbonitride coated tool
JP2003025114A (en) Aluminium oxide coated cutting tool
JPH06158325A (en) Cutting tool made of surface-coated cermet having enhanced wear resistance of hard coating layer
JP4761335B2 (en) Method for producing TiZr carbonitride coated tool
JP2003117706A (en) Covered tool
JP3910881B2 (en) Oxide coating tool
JP4351521B2 (en) Surface coated cutting tool
US7820308B2 (en) Surface-coated hard material for cutting tools or wear-resistant tools
JP6039481B2 (en) Surface covering member
JP4114741B2 (en) Titanium chromium compound coating tool
JP2002370105A (en) Aluminum oxide coated-tool
JP2002273607A (en) Multilayer coat tool
JP2003266212A (en) Chrome containing film-coated tool
JP4022042B2 (en) Coated tool and manufacturing method thereof
JP2003266213A (en) Boron containing film-coated tool
JP2001170804A (en) Tool for applying film including zirconium
JPH11114704A (en) Titanium-carbide-covered tool
JPH10263903A (en) Titanium carbide coating tool
JPH0433865B2 (en)
WO2021245878A1 (en) Cutting tool
JP4484500B2 (en) Surface coated cutting tool
JP2002205204A (en) Multilayer covering tool
JP2571772B2 (en) Surface coated cutting tool with excellent fracture resistance

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040913

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090916

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090930

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20091127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4761335

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees