JP4004133B2 - Titanium carbonitride coated tool - Google Patents

Titanium carbonitride coated tool Download PDF

Info

Publication number
JP4004133B2
JP4004133B2 JP07656198A JP7656198A JP4004133B2 JP 4004133 B2 JP4004133 B2 JP 4004133B2 JP 07656198 A JP07656198 A JP 07656198A JP 7656198 A JP7656198 A JP 7656198A JP 4004133 B2 JP4004133 B2 JP 4004133B2
Authority
JP
Japan
Prior art keywords
layer
titanium carbonitride
titanium
coated tool
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07656198A
Other languages
Japanese (ja)
Other versions
JPH11256336A (en
Inventor
敏夫 石井
広志 植田
正幸 権田
順彦 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP07656198A priority Critical patent/JP4004133B2/en
Publication of JPH11256336A publication Critical patent/JPH11256336A/en
Application granted granted Critical
Publication of JP4004133B2 publication Critical patent/JP4004133B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は炭窒化チタン被覆工具に関するものである。
【0002】
【従来の技術】
一般に、被覆工具は超硬質合金、高速度鋼、特殊鋼からなる基体表面に硬質皮膜を化学蒸着法や、物理蒸着法により成膜して作製される。
このような被覆工具は皮膜の耐摩耗性と基体の強靭性とを兼ね備えており、広く実用に供されている。特に、高硬度材を高速で切削する場合、切削工具の刃先温度は1000℃前後まで上がり、被削材との接触による摩耗や断続切削等の機械的衝撃に耐える必要がある。このため、耐摩耗性と強靭性とを兼ね備えた被覆工具が重宝されている。
【0003】
硬質皮膜には、耐摩耗性と靭性に優れた周期律表IVa、Va、VIa族金属の炭化物、窒化物、炭窒化物からなる非酸化膜や耐酸化性に優れた酸化膜が単層あるいは多層膜状に形成されて用いられる。非酸化膜では例えばTiC、TiN、TiCNが利用され、酸化膜では特にα型酸化アルミニウムやκ型酸化アルミニウム等が利用されている。特に、周期律表IVa、Va、VIa族金属の炭窒化物からなる非酸化膜は靭性と耐摩耗性に優れており被覆工具に多用されているが、膜中に発生するクラックを低減する等改善の余地が多く残っている。
【0004】
このため本発明者等は特許公報第2660180号や特願平8−195554により柱状晶の形態を持つ炭窒化膜を提案してきた。また、他にも、特開平6−158324や、特開平6−158325、特開平7−62542、特開平7−100701等が従来より提案されている。
【0005】
しかし、上記従来の提案はチタンの炭窒化物層の膜厚やマクロ組織、X線回折強度等に着目した内容であり、チタンの炭窒化物層の粒界の強度を高めるとともに隣接する他の層との膜密着性を高めることが可能なミクロ組織について言及していない。
【0006】
【発明が解決しようとする課題】
上記従来の非酸化膜被覆工具におけるTiの炭窒化物層の欠点を踏まえて、本発明が解決しようとする課題はチタンの炭窒化物層の粒界の強度を高めるとともにチタンの炭窒化物層上に形成された他の層との膜密着性を高めることにより、従来に比して格段に切削耐久特性に優れた炭窒化チタン被覆工具を提供することである。
【0007】
【課題を解決するための手段】
本発明者らは上記課題を解決するために鋭意研究してきた結果、周期律表IVa、Va、VIa族金属の炭窒化物からなる非酸化膜に双晶構造を持った結晶粒を含有させることにより、さらには特にチタン等の炭窒化物層に双晶構造を持った結晶粒を含有させることにより、これらの皮膜を被覆した工具の切削耐久特性等が優れることを見出し、本発明に想到した。
【0008】
すなわち本発明は、基体表面に周期律表のIVa、Va、VIa族金属の炭化物、窒化物、炭窒化物、炭酸化物、窒酸化物、炭窒酸化物、並びに酸化アルミニウムのいずれか一種の単層皮膜または二種以上の多層皮膜を有しその少なくとも一層がチタンの炭窒化物層からなる炭窒化チタン被覆工具において、前記チタンの炭窒化物層が双晶構造を持った結晶粒を含有する炭窒化チタン被覆工具である。本発明の被覆工具は、チタンの炭窒化物層が双晶構造を持っておりかつ後述の図1、図4、図7からもわかるように双晶を形成する結晶粒が相互に直接接触しておりかつエピタキシャルに成長しているため、粒界の強度が高くなり良好な切削耐久特性が実現されていると判断される。
【0009】
また、本発明は、基体表面に周期律表のIVa、Va、VIa族金属の炭化物、窒化物、炭窒化物、炭酸化物、窒酸化物、炭窒酸化物、並びに酸化アルミニウムのいずれか一種の単層皮膜または二種以上の多層皮膜を有しその少なくとも一層がチタンの炭窒化物層からなる炭窒化チタン被覆工具において、前記チタンの炭窒化物を主とする層はfcc構造を持ち、その格子定数が0.427〜0.430nmである炭窒化チタン被覆工具である。格子定数が0.427nm未満の時はTiN膜(格子定数0.424nm)の特性に近く硬度が低くなり、0.430nmを超えるとTiC膜(格子定数0.4327nm)の特性に近く耐酸化性が低くなり、TiCN膜の特長である耐摩耗・耐酸化性のバランスが悪くなる欠点が生じる。
【0010】
また、本発明の被覆工具のチタンの炭窒化物層のX線回折強度はI(422)が最大であり、かつI(311)、I(220)、I(111)のいずれかがこれに次ぐ場合にチタンの炭窒化物層が双晶構造を持っており、優れた切削耐久特性が実現される。あるいはI(220)が最大であり、かつI(311)、I(422)、I(111)のいずれかがこれに次ぐ場合にチタンの炭窒化物層が双晶構造を持っており、優れた切削耐久特性が実現される。
【0011】
また、本発明の被覆工具はチタンの炭窒化物層の上に形成されている層も双晶構造を持ち、このチタンの炭窒化物層の上に形成されている層まで双晶構造が連続的に形成されている。このようにチタンの炭窒化物層とその上に形成されている層との間が連続的に形成されているので、両層間の密着性が優れるとともに各層内における粒界の強度が高められて優れた切削耐久特性が得られるものと判断される。
【0012】
また、前記チタンの炭窒化物層の上に形成された層がチタンの炭化物、チタンの炭酸化物、チタンの炭窒酸化物、酸化アルミニウム膜のいずれか一種の単層皮膜または二種以上の多層皮膜からなることが好ましい。
【0013】
また、前記チタンの炭窒化物層の上に形成された層が(422)面または(220)面からのX線回折強度が最も大きいことは両層間が何らかの形で連続的に成膜されていることを示し、良好な両層の密着性を実現したものと考えられる。
【0014】
また、チタンの炭窒化物層のPR(hkl)とその表面上に成膜された非酸化膜層のPR(hkl)とが比例することは両層間が何らかの形で連続的に成膜されていることを示し、良好な両層の密着性を実現したものと考えられる。
具体的にいえば、前記チタンの炭窒化物層の等価X線回折強度比(x)と前記チタンの炭窒化物層の上に形成された層の等価X線回折強度比(y)との関係がy=ax+b で線形近似され、a=0.5〜1.5、b=−1〜1で表されるように構成された炭窒化チタン被覆工具が好ましく、また、その相関の強さを示す相関関数R2が0.9以上であることが好ましい。
また、前記チタンの炭窒化物層の上に形成された層が前記チタンの炭窒化物層からエピタキシャルに成長していることが好ましい。
また、前記チタンの炭窒化物層または前記チタンの炭窒化物層の上に形成された層の上にさらにチタンの酸化物層、チタンの炭酸化物層、チタンの窒酸化物層、チタンの炭窒酸化物層、酸化アルミニウム層のいずれか一種の単層皮膜または2種以上の多層皮膜が形成されていてもよい。
また、周期律表のIVa、Va、VIa族金属の炭化物、窒化物、炭窒化物のうちの少なくとも一種以上とFe、Ni、Co、W、Mo、Crのうちの少なくとも一種以上とからなる超硬質合金を基体とすることが実用的である。
【0015】
【発明の実施の形態】
以下に本発明を詳説する。
本発明の被覆工具において、TiCN層のX線回折ピークの同定は、ASTMファイル(Powder Diffraction File Published by JCPDS International Center forDiffraction Data)に記載がないため、TiCとTiNのX線回折データ(ASTMファイルNo.29−1361とNo.38−1420)および本発明品を実測して得たX線回折パターンから求めた表1の数値を用いて行った。なお、TiCNのX線回折強度I0は表2に示したTiCのX線回折強度I0と同一と仮定した。
【0016】
【表1】

Figure 0004004133
【0017】
表2にASTMファイル No.32−1383に記載されているTiCのX線回折強度I0(hkl)とd定数からX線源に上記CuKα1線を用いた時に得られる2θ値を計算した結果をまとめた。X線回折強度I0(hkl)は等方的に配向しているTiC粉末粒子のX線回折強度を表している。
【0018】
【表2】
Figure 0004004133
【0019】
等価X線回折強度比PR(hkl)はTiCN、TiCの(hkl)面からのX線回折ピーク強度を定量的に評価するために次式により定義した。この値は表1、表2に記載された等方粒子のX線回折ピーク強度I0(hkl)に対する実測した皮膜のX線回折ピーク強度I(hkl)の相対強度を示している。PR(hkl)値が大きい程(hkl)面からのX線回折ピーク強度が他のX線回折ピーク強度よりも強く、(hkl)面方向に測定物(皮膜)が配向していることを示している。
PR(hkl)={I(hkl)/I0(hkl)}/[Σ{I(hkl)/I0
(hkl)}/8]・・・・・式(1)
但し、(hkl)=(111)、(200)、(220)、(311)、
(222)、(420)、(422)、(511)
【0020】
本発明の被覆工具を製作するために既知の成膜方法を採用できる。例えば、通常の化学蒸着法(熱CVD)、プラズマを付加した化学蒸着法(PACVD)、イオンプレーティング法等を用いることができる。用途は切削工具に限るものではなく、チタンの炭窒化物層を含む単層あるいは多層の硬質皮膜を被覆した耐摩耗材や金型、溶湯部品等でもよい。
【0021】
本発明の被覆工具において、チタンの炭窒化物層はTiCNに限るものではない。例えばTiCNにCr、Zr、Ta、Mg、Y、Si、Bを単独または二種以上組み合わせて0.3〜10重量%添加した膜でもよい。0.3重量%未満ではこれらを添加する効果が現れず、10重量%を超えるとTiCN膜の耐摩耗、高靭性の効果が低くなる欠点が現れる。
また、チタンの炭窒化物層はCH3CNとTiCl4とを反応させて成膜する所謂MT−TiCN膜に限るものではなく、CH4、N2、TiCl4を反応させて成膜する従来のTiCN膜でもよい。
また、本発明の被覆工具において、チタンの炭窒化物層の上層はTiC、TiCO、TiCNOに限るものではない。例えばTiNあるいは原料ガスにCH3CNガスを用いずにN2ガスを用いて成膜した他のTiCN等の膜でもよく、さらには例えばTiCにCr、Zr、Ta、Mg、Y、Si、Bを単独または二種以上組み合わせて0.3〜10重量%添加した膜でもよい。0.3重量%未満ではこれらを添加する効果が現れず、10重量%を超えるとTiC膜の耐摩耗の効果が低くなる欠点が現れる。
また、上記層には本発明の効果を消失しない範囲で不可避の添加物、不純物を例えば数重量%程度まで含むことが許容される。
また、下地膜はTiNに限るものではなく、例えば下地膜としてTiC膜を成膜した場合も下記実施例と同様の作用効果を得ることができる。
【0022】
本発明の被覆工具に被覆することができる酸化アルミニウム膜としてκ型酸化アルミニウム単相またはα型酸化アルミニウム単相の膜を用いることができる。また、κ型酸化アルミニウムとα型酸化アルミニウムとの混合膜でもよい。また、κ型酸化アルミニウムおよび/またはα型酸化アルミニウムと、γ型酸化アルミニウム、θ型酸化アルミニウム、δ型酸化アルミニウム、χ型酸化アルミニウムの少なくとも一種以上とからなる混合膜でもよい。また、酸化アルミニウムと酸化ジルコニウム等に代表される他の酸化物との混合膜でもよい。
【0023】
本発明の被覆工具において、チタンの炭窒化物層、チタンの炭化物層、チタンの炭酸化物層、チタンの炭窒酸化物層、酸化アルミニウム層は必ずしも最外層である必要はなく、例えばさらにその上に少なくとも一層のチタン化合物(例えばTiN層等)を被覆してもよい。
【0024】
次に本発明の被覆工具を実施例によって具体的に説明するが、これら実施例により本発明が限定されるものでない。
下記の実施例および比較例において、単に%と記しているのは重量%を意味している。
【0025】
(実施例1)
WC72%,TiC8%,(Ta,Nb)C11%,Co9%の組成よりなる切削工具用超硬基板をCVD炉内にセットし、その表面に、化学蒸着法によりH2キャリヤーガスとTiCl4ガスとN2ガスとを原料ガスに用い0.3μm厚さのTiNを900℃でまず形成した。続いて、750〜950℃でTiCl4ガスを0.5〜2.5vol%、CH3CNガスを0.5〜2.5vol%、N2ガスを25〜45vol%、残H2キャリヤーガスで構成された原料ガスを毎分5500mlだけCVD炉内に流し、成膜圧力を20〜100Toorの条件として反応させることにより6μm厚さのTiCN膜を成膜した。その後、950〜1020℃でCH4/TiCl4ガスの容積比を4〜10としたTiCl4ガスとCH4ガスとH2キャリヤーガスとをトータル2,200ml/分で5〜30分間流してまず成膜し、そのまま連続して本構成ガスにさらに2.2〜110ml/分のCO2ガスを追加して5〜30分間成膜することによりチタンの炭化物および炭酸化物からなる層を作製した。
続いてAl金属小片を詰め350℃に保温した小筒中にH2ガス310ml/分とHClガス130ml/分とを流すことにより発生させたAlCl3ガスとH2ガス2l/分とCO2ガス100ml/分とをCVD炉内に流し、1010〜1020℃で反応させることにより所定の厚さのα型酸化アルミニウム膜を成膜し本発明の被覆工具を得た。
【0026】
図1は実施例1の条件で作製した本発明の代表的な被覆工具のミクロ組織の一例を示している。また図2は図1に対応した模式図である。
図1は、チタンの炭窒化物層(図2の11)、チタンの炭化物および炭酸化物からなる層(図2の12)、酸化アルミニウム層(図2の13)部分のミクロ組織を(株)日立製作所製の透過電子顕微鏡(H−9000NA)により5万倍で撮影した写真である。
図1、図2より、チタンの炭窒化物層の結晶粒(図2の11a、11bはその一部)上にチタンの炭化物および炭酸化物からなる層(図2の12a、12bはその一部)が形成されている。さらにその上に酸化アルミニウム層(図2の13aはその一部)が形成されている。図1、図2に示される11a、11b部分の電子線回折像を上記透過電子顕微鏡により照射径25nmで観察した結果、両者はfcc結晶構造を持つとともに(110)面が同一面内(図1の写真面内)にあることがわかった。さらに11aと11bとが11cを境界にして鏡映の関係にあることから本発明の被覆工具はチタンの炭窒化物層11が双晶構造を持った結晶粒を含有していることがわかった。また、その上に成膜されているチタンの炭化物および炭酸化物からなる層中の12a、12bの電子線回折像から両者もfcc結晶構造の(110)面が同一面内(図1の写真面内)にあることがわかった。よって、12a、12bが双晶関係にあることや、チタンの炭窒化物層11a、11b上にチタンの炭化物および炭酸化物からなる層12a、12bがエピタキシャルに成長していることがわかる。また、図1、図2より双晶境界部11cと12cが連続していることがわかる。
ここで、図1の透過電子顕微鏡写真は成膜面の断面を厚さ20μm以下に研磨した後、さらにイオンミリングにより膜断面の厚さを極端に薄くした状態で電子線を膜断面を透過させて撮影したものである。このため、チタンの炭窒化物層および/またはチタンの炭化物層、炭酸化物層の双晶部分が観察される確率は低いと考えられる。したがって、図1のように一視野に一乃至二箇所の双晶部分が観測されるということはかなりの頻度でチタンの炭窒化物層および/またはチタンの炭化物層、炭酸化物層に双晶部分が存在していると判定される。
【0027】
図3は実施例1の条件で作製した本発明品の代表的な皮膜部分を試料面にして理学電気(株)製のX線回折装置(RU−200BH)を用いて2θ−θ走査法により2θ=10〜145度の範囲で測定したX線回折パターンである。X線源にはCuKα1線(λ=0.15405nm)を用い、ノイズ(バックグランド)は装置に内蔵されたソフトにより除去した。
図3のX線回折パターンから、TiCN(チタンの炭窒化物層)の各ピークの2θ値は表1の2θ値とよい符合を示した。なお、図3等のX線回折パターンから実測される2θ値は表1に記載されている2θ値の前後で微妙に異なるため、測定されたX線回折パターンにおけるTiCN(炭窒化チタン)のピークの同定は、2θ値とともに、その前後のWCのピーク、TiCのピーク、TiCNのピーク、TiNのピーク、κ-Al23のピーク、α-Al23のピーク等との位置関係も考慮して決定した。
また、図3から、チタンの炭窒化物層のX線回折強度I(hkl)は面間距離dが0.0875nmの(422)面が最も強く、次に面間距離dが0.1516nmの(220)面あるいは0.1293nmの(311)面、その次に面間距離dが0.2477nmの(111)面の強度が強いことがわかる。
さらに、図3から、本発明品のチタンの炭窒化物層の格子定数を求めたところ、表3の結果が得られた。表3より、測定誤差の非常に小さな2θ≧40度において、本発明品のチタンの炭窒化物層の格子定数は平均値±3σn-1で0.428〜0.429nmの範囲にあった。なお、(111)面は2θが低角度のため測定誤差によって見掛け上格子定数が大きくなっている。また、(400)面は回折ピークが弱く読み取りが困難であり、(511)面は回折ピーク強度が低く、しかもピーク幅が広く、2θ値の読み取りが困難であるため格子定数の計算からは除外した。
【0028】
【表3】
Figure 0004004133
【0029】
次に、実施例1の条件で製作した切削工具5個を用いて鋳物の被削材を以下の条件で1時間連続切削試験した後に、各切削工具のチタンの炭窒化物層や酸化アルミニウム層の剥離状況を倍率200倍の光学顕微鏡により観察し、評価した。
被削材 FC250(HB230)
切削速度 300m/min
送り 0.3mm/rev
切り込み 2.0mm
水溶性切削油使用
この切削試験の結果、上記本発明品はいずれも1時間連続切削後もチタンの炭窒化物層やアルミナ層の剥離が見られず切削工具として耐久性に優れていることが判明した。
【0030】
次に、実施例1の条件で製作した切削工具5個を用いて以下の条件で断続切削し、1,000回衝撃切削後に刃先先端の欠け状況を倍率50倍の実体顕微鏡で観察し、評価した。
被削材 SCM材
切削条件 100 m/min
送り 0.3 mm/rev
切り込み 2.0 mm
この切削試験後の本発明品はいずれも刃先が健全で欠損不良は認められず、切削耐久特性が優れていることがわかった。
【0031】
(従来例1)
チタンの炭窒化物層のミクロ組織と切削特性との相関を明確にするために行った従来例を以下に説明する。
実施例1と同様に組成がWC72%、TiC8%、(Ta、Nb)C11%、Co9%の切削工具用超硬基板の表面に化学蒸着法によりH2キャリヤーガスとTiCl4ガスとN2ガスとを原料ガスに用い0.3μm厚さのTiNを900℃でまず形成した。次に、990℃でTiCl4ガスを1〜2vol%、CH4ガスを3〜6vol%、N2ガスを32vol%、残H2キャリヤーガスで構成された原料ガスを毎分5500mlだけCVD炉内に流し成膜圧力75Toorの条件で反応させることにより6μm厚さのTiCN膜を成膜した。その後、950〜1020℃でCH4/TiCl4ガスの容積比が4〜10のTiCl4ガスとCH4ガスとH2キャリヤーガスとをトータル2,200ml/分で5〜30分間流してまず成膜し、そのまま連続して本構成ガスにさらに2.2〜110ml/分のCO2ガスを追加して5〜30分間成膜することによりチタンの炭化物および炭酸化物からなる層を作製した。
続いてAl金属小片を詰め350℃に保温した小筒中にH2ガスを310ml/分とHClガス130ml/分とを流すことにより発生させたAlCl3ガスとH2ガス2l/分とCO2ガス100ml/分とをCVD炉内に流し1010〜1020℃で反応させることにより所定の厚さのα型酸化アルミニウム層を成膜し従来の炭窒化チタン被覆工具を得た。
この従来の炭窒化チタン被覆工具において、チタンの炭窒化物層近傍を上記と同様に透過電子顕微鏡で観察したが、チタンの炭窒化物層に双晶構造部は見られなかった。
【0032】
次に、従来例1の条件で作製した切削工具5個を用いて実施例1と同一の条件で連続切削試験を行った結果、これら従来例品はいずれも10分間連続切削後にチタンの炭窒化物層や酸化アルミニウム層の剥離が見られた。
また、従来例1の条件で作製した切削工具5個を実施例1と同一条件で断続切削し、1,000回衝撃切削後に刃先先端の欠け状況を倍率50倍の実体顕微鏡で観察した結果、いずれにも大きな欠けが発生しており切削工具として劣っていることが判明した。
上記の連続切削試験および断続切削試験で剥離や欠けを発生した部分をミクロ観察したところ、剥離や欠けのほとんどが粒界部から発生していた。
【0033】
(実施例2)
組成がWC72%,TiC8%,(Ta,Nb)C11%,Co9%の切削工具用超硬基板をCVD炉内にセットし、その表面に化学蒸着法によりH2キャリヤーガスとTiCl4ガスとN2ガスとを原料ガスに用い0.3μm厚さのTiNを900℃でまず形成した。次に、750〜950℃でTiCl4ガスを0.5〜2.5vol%、CH3CNガスを0.5〜2.5vol%、N2ガスを25〜45vol%、残H2キャリヤーガスで構成された原料ガスを毎分5500mlだけCVD炉内に流し成膜圧力を20〜100Toorの条件で反応させることにより6μm厚さのTiCN膜を成膜した。その後、950〜1020℃でCH4/TiCl4ガスの容積比が4〜10のTiCl4ガスとCH4ガスとH2キャリヤーガスとをトータル2,200ml/分で5〜30分間流してまず成膜し、そのまま連続して本構成ガスにさらに2.2〜110ml/分のCO2ガスを追加して5〜30分間成膜することによりチタンの炭化物および炭酸化物からなる層を作製した。
次いで、AlCl3ガスとH2ガス2l/分とCO2ガス100ml/分およびH2Sガス8ml/分とをCVD炉内に流し1010℃でα型酸化アルミニウム膜を成膜した。その後、H2ガス4l/分とTiCl4ガス50ml/分とN2ガス1.3l/分を流し1010℃で窒化チタン膜を形成した本発明の炭窒化チタン被覆工具を作製した。
【0034】
図4は実施例2の条件で製作した本発明の代表的な被覆工具において観察されたチタンの炭窒化物層、チタンの炭化物および炭酸化物からなる層、および酸化アルミニウム層近傍の透過電子顕微鏡写真の一例である。図5は図4に対応した模式図である。
図4、図5において、チタンの炭窒化物層の結晶粒(図5の21a、21bはその一部)上にチタンの炭化物および炭酸化物からなる層(図5の22a、22bはその一部)が形成されており、さらにその上に酸化アルミニウム層(図5の23a、23bはその一部)が形成されている。
図4、図5に示される21a、21b部分の電子線回折像を(株)日立製作所製の透過電子顕微鏡H−9000NAにより照射径25nmで観察した結果、両者はfcc結晶構造を持つとともに(110)面が同一面内(図4の写真面内)にあり、21aと21bとが21cを境界にして鏡映の関係にあることがわかった。すなわち、本発明の被覆工具を構成するチタンの炭窒化物層が双晶構造を持っていることを確認した。また、その上に成膜されているチタンの炭化物および炭酸化物からなる層中の22a、22bからも両者が双晶関係にあることを示す電子線回折像が得られた。さらに、双晶境界部21cと22cとが連続していることがわかった。
【0035】
図6は実施例2の条件で作製した本発明の被覆工具の皮膜部分を試料面にして2θ−θ走査法により測定したX線回折パターンを示している。
図6から、チタンの炭窒化物層のX線回折強度は面間距離dが0.0875nmの(422)面が最も強く、次いで面間距離dが0.1516nmの(220)面あるいは面間距離dが0.2477nmの(111)面の強度が強いことがわかる。
さらに、図6から、本発明品のチタンの炭窒化物層の格子定数を求めたところ、表4の結果が得られた。表4より、測定誤差の非常に小さな2θ≧40度において、本発明品のチタンの炭窒化物層の格子定数は平均値±3σn-1で0.427〜0.430nmの範囲にあった。なお、(111)面は2θが低角度のため測定誤差によって見掛け上格子定数が大きくなっている。また、(400)面は回折ピークが弱く読み取りが困難であり、(511)面は回折ピーク強度が低くしかもピーク幅が広く、2θ値の読み取りが困難であるため格子定数の計算からは除外した。
【0036】
【表4】
Figure 0004004133
【0037】
次に、実施例2の条件で製作した切削工具5個を用いて鋳物の被削材を以下の条件で1時間連続切削試験した後に、各切削工具のチタンの炭窒化物層や酸化アルミニウム層の剥離状況を倍率200倍の光学顕微鏡により観察し、評価した。
被削材 FC25(HB230)
切削速度 300m/min
送り 0.3mm/rev
切り込み 2.0mm
水溶性切削油使用
この切削試験の結果、上記本発明品はいずれも1時間連続切削後もチタンの炭窒化物層や酸化アルミニウム層の剥離が見られず切削耐久特性が優れていることが判明した。
また、実施例2の条件で製作した切削工具5個を以下の条件で断続切削し、1,000回衝撃切削後に刃先先端の欠け状況を倍率50倍の実体顕微鏡で観察し、評価した。
被削材 SCM材
切削条件 100 m/min
送り 0.3 mm/rev
切り込み 2.0 mm
この切削試験後の上記本発明品はいずれも刃先が健全で欠損不良等は全く認められなかった。
【0038】
(従来例2)
チタンの炭窒化物層のミクロ組織と炭窒化チタン被覆工具の切削耐久特性との相関をさらに明確にするために行った従来例を以下に説明する。
上記実施例と同様にWC72%、TiC8%、(Ta、Nb)C11%、Co9%の組成の切削工具用超硬基板の表面に化学蒸着法によりH2キャリヤーガスとTiCl4ガスとN2ガスとを原料ガスに用い0.3μm厚さのTiNを900℃でまず形成した。次に、990℃でTiCl4ガスを1〜2vol%、CH4ガスを3〜6vol%、N2ガスを32vol%、残H2キャリヤーガスで構成された原料ガスを毎分5500mlだけCVD炉内に流し成膜圧力75Toorの条件で反応させることにより6μm厚さのTiCN膜を成膜した。その後、950〜1020℃でCH4/TiCl4ガスの容積比が4〜10のTiCl4ガスとCH4ガスとH2キャリヤーガスとをトータル2,200ml/分で5〜30分間流してまず成膜し、そのまま連続して本構成ガスにさらに2.2〜110ml/分のCO2ガスを追加して5〜30分間成膜することによりチタンの炭化物および炭酸化物からなる層を作製した。
次いで、AlCl3ガスとH2ガス2l/分とCO2ガス100ml/分およびH2Sガス8ml/分とをCVD炉内に流し1010℃でα型酸化アルミニウム膜を成膜した。その後、H2ガス4l/分とTiCl4ガス50ml/分とN2ガス1.3l/分を流し1010℃で窒化チタン膜を形成した従来の炭窒化チタン被覆工具を作製した。
この従来の被覆工具においてチタンの炭窒化物層近傍を実施例2と同様に透過電子顕微鏡で観察したが、チタンの炭窒化物層に双晶構造部は見られなかった。
【0039】
従来例2の条件で作製した切削工具5個を用いて上記実施例と同一の条件で連続切削試験を行った結果、この従来例品はいずれも10分間連続切削後にチタンの炭窒化物層や酸化アルミニウム層の剥離が見られた。
また、従来例2の条件で作製した切削工具5個を実施例2と同一条件で断続切削し、1,000回衝撃切削後に刃先先端の欠け状況を倍率50倍の実体顕微鏡で観察した結果、いずれにも大きな欠けが発生しており、切削工具として耐久性が劣っていることが判明した。
前記の連続切削試験、断続切削試験により発生した剥離、欠けはほとんどが粒界部から発生していた。
【0040】
(実施例3)
WC72%,TiC8%,(Ta,Nb)C11%,Co9%の組成の切削工具用超硬基板をCVD炉内にセットし、その表面に、化学蒸着法によりH2キャリヤーガスとTiCl4ガスとN2ガスとを原料ガスに用い0.3μm厚さのTiNを900℃でまず形成した。次に、750〜950℃でTiCl4ガスを0.5〜2.5vol%、CH3CNガスを0.5〜2.5vol%、N2ガスを25〜45vol%、残H2キャリヤーガスで構成された原料ガスを毎分5500mlだけCVD炉内に流し成膜圧力を20〜100Toorの条件で反応させることにより6μm厚さのTiCN膜を成膜した。その後、950〜1020℃でCH4/TiCl4ガスの容積比が4〜10のTiCl4ガスとCH4ガスとH2キャリヤーガスとをトータル2,200ml/分で120分間流してチタンの炭化物層を成膜した。次いで、AlCl3ガスとH2ガス2l/分とCO、CO2混合ガス150ml/分およびH2Sガス8ml/分とをCVD炉内に60分間流し1010℃でκ型酸化アルミニウムを成膜した。その後、H2ガス4l/分とTiCl4ガス50ml/分とN2ガス1.3l/分を30分間流し1010℃で窒化チタン膜を成膜し本発明の被覆工具を作製した。
【0041】
図7は実施例3の条件で作製した代表的な炭窒化チタン被覆工具において、チタンの炭窒化物層とチタンの炭化物層と酸化アルミニウム層の近傍を(株)日立製作所製の透過電子顕微鏡(H−9000NA)により5万倍で撮影した写真の一例である。図8は図7に対応した模式図である。
図7、図8より、チタンの炭窒化物層内に双晶構造を有する結晶粒(図8の31a、31b)が存在している。さらに、その上に成膜されているチタンの炭化物層にも双晶構造部分(図8の32a、32b)が存在しており、双晶境界部31cと32cとが連続している。このことから両者(31aと32a、31bと32b)が連続して形成されていることがわかる。
【0042】
図9は図7、図8における双晶部分32aの中央近傍の電子線回折像を(株)日立製作所製の透過電子顕微鏡H−9000NAにより照射径25nmで撮影したものである。同様に、図10は双晶部分32bの中央近傍の電子線回折像であり、図11は双晶境界部32cの中央近傍の電子線回折像である。さらに、図12は図9の、図13は図10の、図14は図11の電子線回折スポットの指数付けを各々行ったものである。図9〜図14より双晶部分32a、32bはいずれもfcc構造の(110)面が同一平面内に写っており、32aと32b部分の回折像は2−22、1−11、000、−11−1の各スポットを共有する鏡面になっており32cの粒界を境に32a部分と32b部分とが双晶関係にあることがわかる。
【0043】
また、図15は上記と同様にして図7、図8における双晶部分31aの中央近傍の電子線回折像を撮影したものである。同様に、図16は双晶部分31bの中央近傍の電子線回折像であり、図17は双晶境界部31cの中央近傍の電子線回折像である。さらに、図18は図15の、図19は図16の、図20は図17の電子線回折スポットの指数付けを各々行ったものである。図15〜図20より、上記32a、32b部分と同様に、31a、31b部分の両者もfcc構造の(110)面が同一平面内に写っており、31a部分と31b部分の回折像が2−22、1−11、000、−11−1の各スポットを共有する鏡面になっており31cの粒界を境に31a部分と31b部分とが双晶関係にあることがわかる。さらに、図7〜図20より31a、31bの双晶境界部31cと32a、32bの双晶境界部32cとは連続しており、チタンの炭窒化物層とその上に成膜された層との双晶構造部とが連続していること、また、31aと32aおよび31bと32bとはそれぞれの(110)面が平行に成長しており、32aと32bとは31aと31bとからエピタキシャルに成長していることがわかる。
【0044】
図21は実施例3の条件で作製した代表的な本発明の被覆工具の皮膜部分を上記実施例と同様にして試料面にして理学電気(株)製のX線回折装置(RU−200BH)を用いて2θ−θ法により2θ=10〜145°の範囲で測定したX線回折パターンである。
図21から本発明品のチタンの炭窒化物層のX線回折強度はTiCNの面間距離dが0.1516nmの(220)面が最も強く、次いでTiCNの面間距離dが0.2477nmの(111)面の強度が強いことがわかる。
【0045】
上記本発明品において、TiCN層およびTiC層部分のX線回折強度I(hkl)の測定結果を表5、表6にまとめた。さらに、表7、表8にそれぞれ表5、表6から求めた等価X線回折強度比PR(hkl)をまとめた。
【0046】
【表5】
Figure 0004004133
【0047】
【表6】
Figure 0004004133
【0048】
【表7】
Figure 0004004133
【0049】
【表8】
Figure 0004004133
【0050】
図22は表7、表8の本発明品No.31〜39におけるTiCN膜の等価X線回折強度比PR(hkl)とTiC膜の等価X線回折強度比PR(hkl)との相関を示している。
図22より、本発明品のチタンの炭窒化物層とこの層上に形成されたチタンの炭化物層とは等価X線回折強度比PR(hkl)が比例していることがわかる。すなわち、チタンの炭窒化物層の等価X線回折強度比(x)とこの層の上に形成されたチタンの炭化物層の等価X線回折強度比(y)との関係を線形近似:y=ax+bで求めたとき、a=0.5〜1.5、b=−1〜1の範囲に入ることがわかった。具体例を挙げれば、チタンの炭窒化物層を実質的に構成するTiCNとチタンの炭化物層を実質的に構成するTiCとの間のPR(hkl)の相関において、PR(422)の線形近似では y=0.88x+0.51 でかつ相関係数R2=0.97で表すことができた。また、PR(311)の線形近似でy=1.62x−0.57 でかつ相関係数R2=0.92で表すことができた。
【0051】
次に、図23は表7、表8に示したTiCN層とTiC層の等価X線回折強度比PR(111)、PR(220)、PR(311)、PR(422)を対象として相関を求めたものであり、両者の相関を y=1.03x+0.06 でかつ相関係数R2=0.92で表すことができた。
【0052】
次に、上記図21から、実施例3の条件で製作した本発明の被覆工具を構成するチタンの炭窒化物層の格子定数を求めたところ、表9の結果が得られた。表9より、測定誤差の非常に小さな2θ≧40度において、本発明品のチタンの炭窒化物層の格子定数は平均値±3σn-1で0.428〜0.430nmの範囲にあった。なお、(111)面は2θが低角度のため測定誤差によって見掛け上格子定数が大きくなっている。また、(400)面は回折ピークが弱く読み取りが困難であり、(511)面は回折ピーク強度が低く、しかもピーク幅が広く、2θ値の読み取りが困難であるため格子定数の計算からは除外した。
【0053】
【表9】
Figure 0004004133
【0054】
次に、実施例3の条件で製作した本発明の切削工具5個を用いて鋳物の被削材を以下の条件で1時間連続切削試験した後に、各切削工具のチタンの炭窒化物層や酸化アルミニウム層の剥離状況を倍率200倍の光学顕微鏡により観察した。
被削材 FC25(HB230)
切削速度 300m/min
送り 0.3mm/rev
切り込み 2.0mm
水溶性切削油使用
この切削試験の結果、上記本発明品はいずれも1時間連続切削後もチタンの炭窒化物層や酸化アルミニウム層の剥離が見られず切削工具として優れていることが判明した。
また、実施例3の条件で製作した切削工具5個を以下の条件で断続切削し、1,000回衝撃切削後に刃先先端の欠け状況を倍率50倍の実体顕微鏡で観察し、評価した。
被削材 SCM材
切削条件 100 m/min
送り 0.3 mm/rev
切り込み 2.0 mm
この切削試験後の上記本発明品はいずれも刃先が健全で欠損不良が認められず、切削耐久特性が優れていることがわかった。
【0055】
(従来例3)
本発明品と同様にWC72%、TiC8%、(Ta、Nb)C11%、Co9%の組成の切削工具用超硬基板の表面に化学蒸着法によりH2キャリヤーガスとTiCl4ガスとN2ガスとを原料ガスに用い0.3μm厚さのTiNを900℃でまず形成した。次に、990℃でTiCl4ガスを1〜2vol%、CH4ガスを3〜6vol%、N2ガスを32vol%、残H2キャリヤーガスで構成された原料ガスを毎分5500mlだけCVD炉内に流し成膜圧力75Toorの条件で反応させることにより6μm厚さのTiCN膜を成膜した。その後、950〜1020℃でCH4/TiCl4ガスの容積比が4〜10のTiCl4ガスとCH4ガスとH2キャリヤーガスとをトータル2,200ml/分で120分間流してチタンの炭化物層を成膜した。次いで、AlCl3ガスとH2ガス2l/分とCO、CO2混合ガス150ml/分およびH2Sガス8ml/分とをCVD炉内に60分間流し1010℃でκ型酸化アルミニウムを成膜した。その後、H2ガス4l/分とTiCl4ガス50ml/分とN2ガス1.3l/分を30分間流し1010℃で窒化チタン膜を成膜し従来例品を作製した。
前記従来例品を構成するチタンの炭窒化物層近傍を実施例3と同様にして透過電子顕微鏡で観察したが、チタンの炭窒化物層に双晶構造部は見られなかった。
【0056】
次に、従来例3の条件で作製した切削工具5個を用いて上記実施例3と同一の条件で連続切削試験を行った結果、この従来例品はいずれも10分間連続切削後にチタンの炭窒化物層や酸化アルミニウム層の剥離が見られた。
また、従来例3の条件で作製した切削工具5個を実施例3と同一条件で断続切削し、1,000回衝撃切削後に刃先先端の欠け状況を倍率50倍の実体顕微鏡で観察した結果、いずれにも刃先先端に大きな欠けが発生しており、切削工具として切削耐久特性が劣っていることが判明した。
【0057】
このように、双晶構造を有したチタンの炭窒化物層を被覆した本発明の被覆工具は従来に比して格段に切削耐久特性を改善するものである。
【0058】
【発明の効果】
上述のように、本発明によれば、チタンの炭窒化物層自体の機械強度およびその上に成膜した上層膜との密着性が良く、切削耐久特性に優れた有用な炭窒化チタン被覆工具を実現することができる。
【図面の簡単な説明】
【図1】本発明に係わる炭窒化チタン被覆工具のセラミック材料の組織写真の一例である。
【図2】図1に対応した模式図である。
【図3】本発明に係わる炭窒化チタン被覆工具のX線回折パターンの一例を示す図である。
【図4】本発明に係わる炭窒化チタン被覆工具のセラミック材料の組織写真の一例である。
【図5】図4に対応した模式図である。
【図6】本発明に係わる炭窒化チタン被覆工具のX線回折パターンの一例を示す図である。
【図7】本発明に係わる炭窒化チタン被覆工具のセラミック材料の組織写真の一例である。
【図8】図7に対応した模式図である。
【図9】本発明に係わる炭窒化チタン被覆工具の電子線回折像を透過電子顕微鏡で観察した写真である。
【図10】本発明に係わる炭窒化チタン被覆工具の電子線回折像を透過電子顕微鏡で観察した写真である。
【図11】本発明に係わる炭窒化チタン被覆工具の電子線回折像を透過電子顕微鏡で観察した写真である。
【図12】図9の電子線回折像に指数付けを行った図である。
【図13】図10の電子線回折像に指数付けを行った図である。
【図14】図11の電子線回折像に指数付けを行った図である。
【図15】本発明に係わる炭窒化チタン被覆工具の電子線回折像を透過電子顕微鏡で観察した写真である。
【図16】本発明に係わる炭窒化チタン被覆工具の電子線回折像を透過電子顕微鏡で観察した写真である。
【図17】本発明に係わる炭窒化チタン被覆工具の電子線回折像を透過電子顕微鏡で観察した写真である。
【図18】図15の電子線回折像に指数付けを行った図である。
【図19】図16の電子線回折像に指数付けを行った図である。
【図20】図17の電子線回折像に指数付けを行った図である。
【図21】本発明に係わる炭窒化チタン被覆工具のX線回折パターンの一例を示す図である。
【図22】本発明に係わる炭窒化チタン被覆工具の等価X線回折強度比PRの膜間の相関の一例を示す図である。
【図23】本発明に係わる炭窒化チタン被覆工具の等価X線回折強度比PRの膜間の相関の一例を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a titanium carbonitride coated tool.
[0002]
[Prior art]
In general, a coated tool is produced by forming a hard film on the surface of a substrate made of super hard alloy, high speed steel, or special steel by chemical vapor deposition or physical vapor deposition.
Such a coated tool has both the wear resistance of the coating and the toughness of the substrate, and is widely put into practical use. In particular, when cutting a hard material at high speed, the cutting edge temperature of the cutting tool rises to around 1000 ° C., and it is necessary to withstand mechanical impacts such as wear due to contact with the work material and intermittent cutting. For this reason, a coated tool having both wear resistance and toughness is useful.
[0003]
The hard film may be a single layer of non-oxide film or oxide film made of carbide, nitride or carbonitride of periodic table IVa, Va, VIa group metal excellent in wear resistance and toughness or oxide resistance. Used in the form of a multilayer film. For example, TiC, TiN, or TiCN is used for the non-oxide film, and α-type aluminum oxide, κ-type aluminum oxide, or the like is particularly used for the oxide film. In particular, a non-oxide film made of a carbonitride of group IVa, Va, or VIa group metal is excellent in toughness and wear resistance and is frequently used for coated tools, but it reduces cracks generated in the film, etc. There is plenty of room for improvement.
[0004]
For this reason, the present inventors have proposed a carbonitride film having a columnar crystal form according to Japanese Patent No. 2660180 and Japanese Patent Application No. 8-195554. In addition, JP-A-6-158324, JP-A-6-158325, JP-A-7-62542, JP-A-7-100701, and the like have been proposed.
[0005]
However, the above conventional proposal focuses on the film thickness, macro structure, X-ray diffraction intensity, etc. of the titanium carbonitride layer, and increases the strength of the grain boundary of the titanium carbonitride layer and other adjacent layers. No mention is made of a microstructure that can enhance the film adhesion to the layer.
[0006]
[Problems to be solved by the invention]
In light of the shortcomings of the Ti carbonitride layer in the conventional non-oxide-coated tool, the problem to be solved by the present invention is to increase the strength of the grain boundary of the titanium carbonitride layer and to increase the titanium carbonitride layer. An object of the present invention is to provide a titanium carbonitride-coated tool that has excellent cutting durability characteristics as compared with the prior art by enhancing film adhesion with other layers formed thereon.
[0007]
[Means for Solving the Problems]
As a result of diligent research to solve the above-mentioned problems, the inventors of the present invention include a crystal grain having a twin crystal structure in a non-oxide film made of a carbonitride of group IVa, Va, or VIa group metal. Further, in particular, by including crystal grains having a twin crystal structure in a carbonitride layer such as titanium, the inventors have found that the cutting durability characteristics and the like of tools coated with these films are excellent, and have arrived at the present invention. .
[0008]
That is, according to the present invention, any one of the group IVa, Va, and VIa group metal carbides, nitrides, carbonitrides, carbonates, nitrides, carbonitrides, and aluminum oxides of the periodic table is provided on the substrate surface. In a titanium carbonitride-coated tool comprising a layer coating or two or more types of multilayer coatings, at least one layer of which is a titanium carbonitride layer, the titanium carbonitride layer contains crystal grains having a twinned structure It is a titanium carbonitride coated tool. In the coated tool of the present invention, the titanium carbonitride layer has a twin structure, and as can be seen from FIGS. 1, 4 and 7 described later, the crystal grains forming the twins are in direct contact with each other. Since it grows epitaxially, it is judged that the strength of the grain boundary is high and good cutting durability characteristics are realized.
[0009]
Further, the present invention provides the substrate surface with any one of carbides, nitrides, carbonitrides, carbonates, nitrides, oxynitrides, and aluminum oxides of group IVa, Va and VIa of the periodic table. In a titanium carbonitride-coated tool having a single layer coating or two or more types of multilayer coatings, at least one layer of which is a titanium carbonitride layer, the layer mainly composed of titanium carbonitride has an fcc structure, This is a titanium carbonitride-coated tool having a lattice constant of 0.427 to 0.430 nm. When the lattice constant is less than 0.427 nm, the hardness is close to that of the TiN film (lattice constant: 0.424 nm), and when it exceeds 0.430 nm, the hardness is close to that of the TiC film (lattice constant: 0.4327 nm). This results in a disadvantage that the balance between wear resistance and oxidation resistance, which is a feature of the TiCN film, is deteriorated.
[0010]
Further, the X-ray diffraction intensity of the titanium carbonitride layer of the coated tool of the present invention has a maximum value of I (422), and any one of I (311), I (220), and I (111) In the next case, the titanium carbonitride layer has a twin structure, and excellent cutting durability characteristics are realized. Alternatively, when I (220) is the maximum and any of I (311), I (422), and I (111) follows this, the titanium carbonitride layer has a twinned structure and is excellent. Cutting durability characteristics are realized.
[0011]
In the coated tool of the present invention, the layer formed on the titanium carbonitride layer also has a twin structure, and the twin structure continues to the layer formed on the titanium carbonitride layer. Is formed. Since the titanium carbonitride layer and the layer formed thereon are continuously formed in this way, the adhesion between both layers is excellent and the strength of the grain boundaries in each layer is increased. It is judged that excellent cutting durability characteristics can be obtained.
[0012]
Further, the layer formed on the titanium carbonitride layer is a single layer film of titanium carbide, titanium carbonate, titanium carbonitride oxide, or aluminum oxide film, or two or more multilayers. It is preferable to consist of a film.
[0013]
In addition, the layer formed on the titanium carbonitride layer has the highest X-ray diffraction intensity from the (422) plane or the (220) plane. It is considered that good adhesion between the two layers was realized.
[0014]
In addition, the fact that the PR (hkl) of the titanium carbonitride layer and the PR (hkl) of the non-oxide film formed on the surface are proportional to each other means that both layers are continuously formed in some form. It is considered that good adhesion between the two layers was realized.
Specifically, the equivalent X-ray diffraction intensity ratio (x) of the titanium carbonitride layer and the equivalent X-ray diffraction intensity ratio (y) of the layer formed on the titanium carbonitride layer A titanium carbonitride-coated tool constructed such that the relationship is linearly approximated by y = ax + b and represented by a = 0.5 to 1.5 and b = −1 to 1, is preferred, and the strength of the correlation Correlation function R2Is preferably 0.9 or more.
Preferably, the layer formed on the titanium carbonitride layer is epitaxially grown from the titanium carbonitride layer.
In addition, a titanium oxide layer, a titanium carbonate layer, a titanium nitride oxide layer, a titanium charcoal layer on the titanium carbonitride layer or a layer formed on the titanium carbonitride layer. Either a single layer film of a nitrided oxide layer or an aluminum oxide layer or two or more types of multilayer films may be formed.
Further, a superstructure consisting of at least one or more of carbides, nitrides and carbonitrides of group IVa, Va and VIa metals of the periodic table and at least one or more of Fe, Ni, Co, W, Mo and Cr. It is practical to use a hard alloy as a base.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
In the coated tool of the present invention, the identification of the X-ray diffraction peak of the TiCN layer is not described in the ASTM file (Powder Diffraction File Published by JCPDS International Center for Diffraction Data). Therefore, the X-ray diffraction data of the TiC and TiN (S .29-1361 and No.38-1420) and the numerical values in Table 1 obtained from X-ray diffraction patterns obtained by actually measuring the product of the present invention. The X-ray diffraction intensity I of TiCN0Is the X-ray diffraction intensity I of TiC shown in Table 2.0Is assumed to be the same.
[0016]
[Table 1]
Figure 0004004133
[0017]
Table 2 shows the ASTM file no. X-ray diffraction intensity I of TiC described in 32-13830The results of calculating 2θ values obtained when the CuKα1 line was used as the X-ray source from the (hkl) and d constants are summarized. X-ray diffraction intensity I0(Hkl) represents the X-ray diffraction intensity of isotropically oriented TiC powder particles.
[0018]
[Table 2]
Figure 0004004133
[0019]
The equivalent X-ray diffraction intensity ratio PR (hkl) was defined by the following equation in order to quantitatively evaluate the X-ray diffraction peak intensity from the (hkl) plane of TiCN and TiC. This value is the X-ray diffraction peak intensity I of the isotropic particles described in Tables 1 and 2.0The relative intensity of the measured X-ray diffraction peak intensity I (hkl) of the film with respect to (hkl) is shown. The larger the PR (hkl) value, the stronger the X-ray diffraction peak intensity from the (hkl) plane is than the other X-ray diffraction peak intensities, indicating that the measured object (film) is oriented in the (hkl) plane direction. ing.
PR (hkl) = {I (hkl) / I0(Hkl)} / [Σ {I (hkl) / I0
(Hkl)} / 8] Expression (1)
However, (hkl) = (111), (200), (220), (311),
(222), (420), (422), (511)
[0020]
In order to manufacture the coated tool of the present invention, a known film forming method can be employed. For example, a normal chemical vapor deposition method (thermal CVD), a chemical vapor deposition method with plasma (PACVD), an ion plating method, or the like can be used. The application is not limited to cutting tools, but may be wear-resistant materials, molds, molten metal parts and the like coated with a single or multilayer hard coating including a titanium carbonitride layer.
[0021]
In the coated tool of the present invention, the titanium carbonitride layer is not limited to TiCN. For example, a film obtained by adding 0.3 to 10% by weight of TiCN with Cr, Zr, Ta, Mg, Y, Si, and B alone or in combination of two or more thereof may be used. If it is less than 0.3% by weight, the effect of adding these does not appear, and if it exceeds 10% by weight, there is a drawback that the effects of wear resistance and high toughness of the TiCN film are lowered.
The titanium carbonitride layer is CHThreeCN and TiClFourIs not limited to the so-called MT-TiCN film formed by reacting withFour, N2TiClFourIt may be a conventional TiCN film formed by reacting.
In the coated tool of the present invention, the upper layer of the titanium carbonitride layer is not limited to TiC, TiCO, or TiCNO. For example, TiN or CHThreeN without using CN gas2Other TiCN films formed using gas may be used. Further, for example, Ti, Cr, Zr, Ta, Mg, Y, Si, B may be added alone or in combination of two or more to add 0.3 to 10% by weight. It may be a film. If the amount is less than 0.3% by weight, the effect of adding these does not appear. If the amount exceeds 10% by weight, the wear resistance of the TiC film becomes less effective.
In addition, the above-mentioned layer is allowed to contain unavoidable additives and impurities up to, for example, about several weight% within a range where the effects of the present invention are not lost.
Further, the base film is not limited to TiN. For example, when a TiC film is formed as the base film, the same effects as those of the following embodiments can be obtained.
[0022]
As the aluminum oxide film that can be coated on the coated tool of the present invention, a κ-type aluminum oxide single-phase film or an α-type aluminum oxide single-phase film can be used. Alternatively, a mixed film of κ-type aluminum oxide and α-type aluminum oxide may be used. Alternatively, a mixed film made of κ-type aluminum oxide and / or α-type aluminum oxide and at least one of γ-type aluminum oxide, θ-type aluminum oxide, δ-type aluminum oxide, and χ-type aluminum oxide may be used. Alternatively, a mixed film of aluminum oxide and another oxide typified by zirconium oxide or the like may be used.
[0023]
In the coated tool of the present invention, the titanium carbonitride layer, the titanium carbide layer, the titanium carbonate layer, the titanium carbonitride oxide layer, and the aluminum oxide layer are not necessarily the outermost layer. At least one titanium compound (for example, a TiN layer) may be coated.
[0024]
Next, although the coated tool of this invention is concretely demonstrated by an Example, this invention is not limited by these Examples.
In the following examples and comparative examples, simply “%” means “% by weight”.
[0025]
Example 1
A cemented carbide substrate for a cutting tool having a composition of WC 72%, TiC 8%, (Ta, Nb) C 11%, Co 9% is set in a CVD furnace, and H is formed on the surface by chemical vapor deposition.2Carrier gas and TiClFourGas and N2First, TiN having a thickness of 0.3 μm was formed at 900 ° C. using a gas as a raw material gas. Subsequently, TiCl at 750 to 950 ° C.FourGas 0.5-2.5 vol%, CHThreeCN gas 0.5-2.5 vol%, N225 to 45 vol% of gas, remaining H2A source gas composed of a carrier gas was allowed to flow in a CVD furnace at a rate of 5500 ml per minute, and a TiCN film having a thickness of 6 μm was formed by reacting under a film forming pressure of 20 to 100 Torr. Then, CH at 950-1020 ° CFour/ TiClFourTiCl with gas volume ratio 4-10FourGas and CHFourGas and H2First, a film is formed by flowing a carrier gas at a total flow rate of 2,200 ml / min for 5 to 30 minutes, and then continuously added to the constituent gases as CO 2 to 110 ml / min.2A layer made of titanium carbide and carbonate was prepared by adding a gas and forming a film for 5 to 30 minutes.
Subsequently, H was put in a small tube packed with Al metal pieces and kept at 350 ° C.2AlCl generated by flowing 310 ml / min of gas and 130 ml / min of HCl gasThreeGas and H2Gas 2l / min and CO2An α-type aluminum oxide film having a predetermined thickness was formed by flowing a gas of 100 ml / min into a CVD furnace and reacting at 1010 to 1020 ° C. to obtain a coated tool of the present invention.
[0026]
FIG. 1 shows an example of the microstructure of a typical coated tool of the present invention produced under the conditions of Example 1. FIG. 2 is a schematic diagram corresponding to FIG.
FIG. 1 shows the microstructure of a titanium carbonitride layer (11 in FIG. 2), a layer made of titanium carbide and carbonate (12 in FIG. 2), and an aluminum oxide layer (13 in FIG. 2). It is the photograph image | photographed by 50,000 times with the transmission electron microscope (H-9000NA) made from Hitachi.
1 and 2, a layer made of titanium carbide and carbonate (a part of 12a and 12b in FIG. 2) is formed on a crystal grain of the carbonitride layer of titanium (a part of 11a and 11b in FIG. 2). ) Is formed. Furthermore, an aluminum oxide layer (a part of 13a in FIG. 2) is formed thereon. As a result of observing the electron beam diffraction images of the portions 11a and 11b shown in FIGS. 1 and 2 with the transmission electron microscope at an irradiation diameter of 25 nm, both have an fcc crystal structure and the (110) plane is in the same plane (FIG. 1). In the photo) Furthermore, since 11a and 11b are in a mirrored relationship with 11c as a boundary, it was found that the coated tool of the present invention contains a titanium carbonitride layer 11 containing crystal grains having a twin structure. . Further, from the electron diffraction images of 12a and 12b in the titanium carbide and carbonate layers formed thereon, the (110) plane of the fcc crystal structure is in the same plane (photograph of FIG. 1). It was found that Therefore, it can be seen that 12a and 12b are in a twinning relationship, and that the layers 12a and 12b made of titanium carbide and carbonate are epitaxially grown on the titanium carbonitride layers 11a and 11b. 1 and 2, it can be seen that twin boundaries 11c and 12c are continuous.
Here, in the transmission electron micrograph of FIG. 1, after the cross section of the film formation surface is polished to a thickness of 20 μm or less, the electron beam is transmitted through the film cross section in a state where the thickness of the film cross section is extremely reduced by ion milling. It was taken. For this reason, it is considered that the probability of observing twin portions of the titanium carbonitride layer and / or titanium carbide layer and carbonate layer is low. Accordingly, the fact that one or two twin portions are observed in one field of view as shown in FIG. 1 indicates that the twin portions in the titanium carbonitride layer and / or the titanium carbide layer and the carbonate layer are quite frequently observed. Is determined to exist.
[0027]
FIG. 3 shows a representative film portion of the product of the present invention produced under the conditions of Example 1 as a sample surface by a 2θ-θ scanning method using an X-ray diffractometer (RU-200BH) manufactured by Rigaku Corporation. It is an X-ray diffraction pattern measured in a range of 2θ = 10 to 145 degrees. CuKα1 ray (λ = 0.15405 nm) was used as the X-ray source, and noise (background) was removed by software incorporated in the apparatus.
From the X-ray diffraction pattern of FIG. 3, the 2θ value of each peak of TiCN (titanium carbonitride layer) showed a good agreement with the 2θ value of Table 1. Since the 2θ values actually measured from the X-ray diffraction patterns in FIG. 3 and the like are slightly different before and after the 2θ values described in Table 1, the peak of TiCN (titanium carbonitride) in the measured X-ray diffraction patterns Is identified with 2θ values, WC peak before and after that, TiC peak, TiCN peak, TiN peak, κ-Al2OThreePeak of α-Al2OThreeThe position was determined in consideration of the positional relationship with the peak.
Further, from FIG. 3, the X-ray diffraction intensity I (hkl) of the titanium carbonitride layer is the strongest in the (422) plane having an inter-plane distance d of 0.0875 nm, and then the inter-plane distance d is 0.1516 nm. It can be seen that the (220) plane or the (311) plane of 0.1293 nm, followed by the (111) plane having an interplane distance d of 0.2477 nm is strong.
Further, when the lattice constant of the titanium carbonitride layer of the present invention was determined from FIG. 3, the results shown in Table 3 were obtained. From Table 3, the lattice constant of the titanium carbonitride layer of the present invention is an average value ± 3σ at 2θ ≧ 40 degrees with a very small measurement error.n-1In the range of 0.428 to 0.429 nm. Since the (111) plane has a low angle of 2θ, the apparent lattice constant is increased due to measurement errors. In addition, the (400) plane has a weak diffraction peak and is difficult to read. The (511) plane has a low diffraction peak intensity and a wide peak width, so it is difficult to read 2θ values. did.
[0028]
[Table 3]
Figure 0004004133
[0029]
Next, after 5 hours of continuous cutting test was performed on a cast workpiece under the following conditions using five cutting tools manufactured under the conditions of Example 1, a titanium carbonitride layer and an aluminum oxide layer of each cutting tool were used. The peeling state of was observed and evaluated with an optical microscope with a magnification of 200 times.
Work material FC250 (HB230)
Cutting speed 300m / min
Feed 0.3mm / rev
Notch 2.0mm
Uses water-soluble cutting oil
As a result of this cutting test, it was found that none of the products of the present invention had excellent durability as a cutting tool because no peeling of the titanium carbonitride layer or alumina layer was observed even after continuous cutting for 1 hour.
[0030]
Next, intermittent cutting was performed under the following conditions using five cutting tools manufactured under the conditions of Example 1, and the chipping condition of the tip of the blade edge was observed with a stereomicroscope with a magnification of 50 times after 1,000 times of impact cutting and evaluated. did.
Work material SCM material
Cutting condition 100 m / min
Feed 0.3 mm / rev
Notch 2.0 mm
It was found that all of the products of the present invention after this cutting test had excellent cutting durability characteristics with a sound cutting edge and no defective defects.
[0031]
(Conventional example 1)
A conventional example performed for clarifying the correlation between the microstructure and cutting characteristics of the titanium carbonitride layer will be described below.
As in Example 1, the surface of a cemented carbide substrate for a cutting tool having a composition of WC 72%, TiC 8%, (Ta, Nb) C 11%, and Co 9% was formed by chemical vapor deposition.2Carrier gas and TiClFourGas and N2First, TiN having a thickness of 0.3 μm was formed at 900 ° C. using a gas as a raw material gas. Next, TiCl at 990 ° C.Four1-2 vol% of gas, CHFour3-6 vol% of gas, N232 vol% of gas, remaining H2A source gas composed of a carrier gas was flowed in a CVD furnace at a rate of 5500 ml per minute and reacted under the condition of a film forming pressure of 75 Torr to form a 6 μm thick TiCN film. Then, CH at 950-1020 ° CFour/ TiClFourTiCl with gas volume ratio of 4-10FourGas and CHFourGas and H2First, a film is formed by flowing a carrier gas at a total flow rate of 2,200 ml / min for 5 to 30 minutes, and then continuously added to the constituent gases as CO 2 to 110 ml / min.2A layer made of titanium carbide and carbonate was prepared by adding a gas and forming a film for 5 to 30 minutes.
Subsequently, H was put in a small tube packed with Al metal pieces and kept at 350 ° C.2AlCl generated by flowing 310 ml / min of gas and 130 ml / min of HCl gasThreeGas and H2Gas 2l / min and CO2An α-type aluminum oxide layer having a predetermined thickness was formed by flowing a gas of 100 ml / min into a CVD furnace and reacting at 1010 to 1020 ° C. to obtain a conventional titanium carbonitride-coated tool.
In this conventional titanium carbonitride-coated tool, the vicinity of the titanium carbonitride layer was observed with a transmission electron microscope in the same manner as described above, but no twin structure portion was found in the titanium carbonitride layer.
[0032]
Next, as a result of performing a continuous cutting test under the same conditions as in Example 1 using five cutting tools manufactured under the conditions of Conventional Example 1, all of these conventional products were carbonitrided with titanium after continuous cutting for 10 minutes. Peeling of the physical layer and the aluminum oxide layer was observed.
Further, five cutting tools produced under the conditions of Conventional Example 1 were cut intermittently under the same conditions as in Example 1, and the chipping condition at the tip of the blade edge was observed with a stereomicroscope at a magnification of 50 times after 1,000 impact cuttings. It was found that all of them had large chips and were inferior as cutting tools.
Microscopic observation of the portion where peeling or chipping occurred in the above continuous cutting test and intermittent cutting test revealed that most of the peeling or chipping occurred from the grain boundary portion.
[0033]
(Example 2)
A carbide substrate for a cutting tool having a composition of WC 72%, TiC 8%, (Ta, Nb) C 11%, Co 9% is set in a CVD furnace, and H is formed on the surface by chemical vapor deposition.2Carrier gas and TiClFourGas and N2First, TiN having a thickness of 0.3 μm was formed at 900 ° C. using a gas as a raw material gas. Next, TiCl at 750 to 950 ° C.FourGas 0.5-2.5 vol%, CHThreeCN gas 0.5-2.5 vol%, N225 to 45 vol% of gas, remaining H2A source gas composed of a carrier gas was allowed to flow in a CVD furnace at a rate of 5500 ml / min, and a film formation pressure was allowed to react under the conditions of 20 to 100 Torr to form a 6 μm thick TiCN film. Then, CH at 950-1020 ° CFour/ TiClFourTiCl with gas volume ratio of 4-10FourGas and CHFourGas and H2First, a film is formed by flowing a carrier gas at a total flow rate of 2,200 ml / min for 5 to 30 minutes, and then continuously added to the constituent gases as CO 2 to 110 ml / min.2A layer made of titanium carbide and carbonate was prepared by adding a gas and forming a film for 5 to 30 minutes.
Then AlClThreeGas and H2Gas 2l / min and CO2Gas 100ml / min and H2An α-type aluminum oxide film was formed at 1010 ° C. by flowing S gas at 8 ml / min into the CVD furnace. Then H2Gas 4 l / min and TiClFourGas 50ml / min and N2A titanium carbonitride-coated tool of the present invention in which a titanium nitride film was formed at 1010 ° C. with a gas flow of 1.3 l / min was produced.
[0034]
FIG. 4 is a transmission electron micrograph of the vicinity of a titanium carbonitride layer, a layer made of titanium carbide and carbonate, and an aluminum oxide layer observed in a typical coated tool of the present invention manufactured under the conditions of Example 2. It is an example. FIG. 5 is a schematic diagram corresponding to FIG.
4 and FIG. 5, layers of titanium carbide and carbonate (parts 22a and 22b in FIG. 5) are part of the crystal grains of the titanium carbonitride layer (parts 21a and 21b in FIG. 5). ) And an aluminum oxide layer (a part of 23a and 23b in FIG. 5) is further formed thereon.
As a result of observing electron beam diffraction images of the 21a and 21b portions shown in FIGS. 4 and 5 with a transmission electron microscope H-9000NA manufactured by Hitachi, Ltd. at an irradiation diameter of 25 nm, both have an fcc crystal structure (110 ) Surface is in the same plane (in the photographic plane of FIG. 4), and it has been found that 21a and 21b are in a mirror relationship with 21c as a boundary. That is, it was confirmed that the titanium carbonitride layer constituting the coated tool of the present invention has a twin structure. Further, an electron diffraction image showing that the both are in a twinning relationship was also obtained from 22a and 22b in the titanium carbide and carbonate layers formed thereon. Further, it was found that the twin boundary portions 21c and 22c are continuous.
[0035]
FIG. 6 shows an X-ray diffraction pattern measured by the 2θ-θ scanning method with the film portion of the coated tool of the present invention produced under the conditions of Example 2 as the sample surface.
From FIG. 6, the X-ray diffraction intensity of the titanium carbonitride layer is the strongest in the (422) plane with an interplane distance d of 0.0875 nm, and then the (220) plane or interplane with an interplane distance d of 0.1516 nm. It can be seen that the intensity of the (111) plane having a distance d of 0.2477 nm is strong.
Furthermore, when the lattice constant of the titanium carbonitride layer of the present invention product was determined from FIG. 6, the results in Table 4 were obtained. From Table 4, the lattice constant of the titanium carbonitride layer of the present invention is an average value ± 3σ at 2θ ≧ 40 degrees with a very small measurement error.n-1In the range of 0.427 to 0.430 nm. Since the (111) plane has a low angle of 2θ, the apparent lattice constant is increased due to measurement errors. Further, the (400) plane has a weak diffraction peak and is difficult to read, and the (511) plane has a low diffraction peak intensity and a wide peak width, so it is difficult to read 2θ values, and is excluded from the calculation of the lattice constant. .
[0036]
[Table 4]
Figure 0004004133
[0037]
Next, after performing a continuous cutting test on a cast work material for 5 hours under the following conditions using five cutting tools manufactured under the conditions of Example 2, a titanium carbonitride layer and an aluminum oxide layer of each cutting tool were used. The peeling state of was observed and evaluated with an optical microscope with a magnification of 200 times.
Work material FC25 (HB230)
Cutting speed 300m / min
Feed 0.3mm / rev
Notch 2.0mm
Uses water-soluble cutting oil
As a result of this cutting test, it was found that none of the above-mentioned products of the present invention had excellent cutting endurance characteristics because peeling of the titanium carbonitride layer or aluminum oxide layer was not observed even after continuous cutting for 1 hour.
In addition, five cutting tools manufactured under the conditions of Example 2 were intermittently cut under the following conditions, and the chipping state of the tip of the blade edge was observed and evaluated with a stereomicroscope at a magnification of 50 after 1,000 impact cuttings.
Work material SCM material
Cutting condition 100 m / min
Feed 0.3 mm / rev
Notch 2.0 mm
In all of the products of the present invention after the cutting test, the cutting edge was sound and no defect was found.
[0038]
(Conventional example 2)
A conventional example performed to further clarify the correlation between the microstructure of the titanium carbonitride layer and the cutting durability characteristics of the titanium carbonitride-coated tool will be described below.
In the same manner as in the above example, the surface of a cemented carbide substrate for a cutting tool having a composition of WC 72%, TiC 8%, (Ta, Nb) C 11%, Co 9% was formed by chemical vapor deposition.2Carrier gas and TiClFourGas and N2First, TiN having a thickness of 0.3 μm was formed at 900 ° C. using a gas as a raw material gas. Next, TiCl at 990 ° C.Four1-2 vol% of gas, CHFour3-6 vol% of gas, N232 vol% of gas, remaining H2A source gas composed of a carrier gas was flowed in a CVD furnace at a rate of 5500 ml per minute and reacted under the condition of a film forming pressure of 75 Torr to form a 6 μm thick TiCN film. Then, CH at 950-1020 ° CFour/ TiClFourTiCl with gas volume ratio of 4-10FourGas and CHFourGas and H2First, a film is formed by flowing a carrier gas at a total flow rate of 2,200 ml / min for 5 to 30 minutes, and then continuously added to the constituent gases as CO 2 to 110 ml / min.2A layer made of titanium carbide and carbonate was prepared by adding a gas and forming a film for 5 to 30 minutes.
Then AlClThreeGas and H2Gas 2l / min and CO2Gas 100ml / min and H2An α-type aluminum oxide film was formed at 1010 ° C. by flowing S gas at 8 ml / min into the CVD furnace. Then H2Gas 4 l / min and TiClFourGas 50ml / min and N2A conventional titanium carbonitride-coated tool in which a titanium nitride film was formed at 1010 ° C. with a gas flow of 1.3 l / min was produced.
In this conventional coated tool, the vicinity of the titanium carbonitride layer was observed with a transmission electron microscope in the same manner as in Example 2. However, no twin structure was found in the titanium carbonitride layer.
[0039]
As a result of performing a continuous cutting test under the same conditions as in the above example using five cutting tools manufactured under the conditions of Conventional Example 2, all of the conventional products were continuously cut for 10 minutes. Peeling of the aluminum oxide layer was observed.
In addition, as a result of intermittently cutting five cutting tools produced under the same conditions as in Example 2 under the same conditions as in Example 2 and observing the chipping condition at the tip of the cutting edge with a stereomicroscope with a magnification of 50 times after 1,000 impact cuttings, All of them had large chips, and it was found that the durability as a cutting tool was inferior.
Most of the peeling and chipping generated by the continuous cutting test and the intermittent cutting test occurred from the grain boundary portion.
[0040]
(Example 3)
A carbide substrate for a cutting tool having a composition of WC 72%, TiC 8%, (Ta, Nb) C 11%, and Co 9% is set in a CVD furnace, and H is formed on the surface by chemical vapor deposition.2Carrier gas and TiClFourGas and N2First, TiN having a thickness of 0.3 μm was formed at 900 ° C. using a gas as a raw material gas. Next, at 750 to 950 ° C., TiCl4 gas is added at 0.5 to 2.5 vol%, CHThreeCN gas 0.5-2.5 vol%, N225 to 45 vol% of gas, remaining H2A source gas composed of a carrier gas was flowed in a CVD furnace at a rate of 5500 ml per minute, and a film forming pressure was reacted under the conditions of 20 to 100 Torr to form a 6 μm thick TiCN film. Then, CH at 950-1020 ° CFour/ TiClFourTiCl with gas volume ratio of 4-10FourGas and CHFourGas and H2A carrier gas was flown at a total rate of 2,200 ml / min for 120 minutes to form a titanium carbide layer. Then AlClThreeGas and H2Gas 2l / min and CO, CO2Gas mixture 150ml / min and H2S gas 8 ml / min was allowed to flow through the CVD furnace for 60 minutes to form a κ-type aluminum oxide film at 1010 ° C. Then H2Gas 4 l / min and TiClFourGas 50ml / min and N2A gas of 1.3 l / min was allowed to flow for 30 minutes, and a titanium nitride film was formed at 1010 ° C. to produce a coated tool of the present invention.
[0041]
FIG. 7 shows a transmission electron microscope (manufactured by Hitachi, Ltd.) in the vicinity of a titanium carbonitride layer, a titanium carbide layer, and an aluminum oxide layer in a typical titanium carbonitride-coated tool manufactured under the conditions of Example 3. H-9000NA) is an example of a photograph taken at 50,000 times. FIG. 8 is a schematic diagram corresponding to FIG.
7 and 8, crystal grains having a twin structure (31a and 31b in FIG. 8) are present in the titanium carbonitride layer. Further, the titanium carbide layer formed thereon also has twin structure portions (32a and 32b in FIG. 8), and the twin boundaries 31c and 32c are continuous. From this it can be seen that both (31a and 32a, 31b and 32b) are formed continuously.
[0042]
FIG. 9 is an electron beam diffraction image in the vicinity of the center of the twin portion 32a in FIGS. 7 and 8, taken with a transmission electron microscope H-9000NA manufactured by Hitachi, Ltd. at an irradiation diameter of 25 nm. Similarly, FIG. 10 is an electron diffraction image near the center of the twin portion 32b, and FIG. 11 is an electron diffraction image near the center of the twin boundary 32c. Further, FIG. 12 shows the indexing of the electron beam diffraction spots of FIG. 9, FIG. 13 of FIG. 10, and FIG. 14 of FIG. 9 to 14, the twin portions 32a and 32b have the (110) plane of the fcc structure in the same plane, and the diffraction images of the portions 32a and 32b are 2-22, 1-11,000, − It is a mirror surface sharing each spot of 11-1, and it can be seen that the 32a portion and the 32b portion are in a twinning relationship with the grain boundary of 32c as a boundary.
[0043]
FIG. 15 is a photograph of an electron beam diffraction image near the center of the twin portion 31a in FIGS. 7 and 8 in the same manner as described above. Similarly, FIG. 16 is an electron diffraction image near the center of the twin portion 31b, and FIG. 17 is an electron diffraction image near the center of the twin boundary 31c. Further, FIG. 18 shows the indexing of the electron diffraction spots of FIG. 15, FIG. 19 shows the order of FIG. 16, and FIG. From FIG. 15 to FIG. 20, the (110) plane of the fcc structure is shown in the same plane in both the 31a and 31b portions as in the 32a and 32b portions, and the diffraction images of the 31a and 31b portions are 2- It is a mirror surface sharing each spot of 22, 1-11, 000 and -11-1, and it can be seen that the 31a portion and the 31b portion are twinned with respect to the grain boundary of 31c. Furthermore, from FIG. 7 to FIG. 20, the twin boundaries 31c of 31a and 31b and the twin boundaries 32c of 32a and 32b are continuous, and a titanium carbonitride layer and a layer formed thereon are provided. In addition, the (110) planes of 31a and 32a and 31b and 32b are grown in parallel, and 32a and 32b are epitaxially formed from 31a and 31b. You can see that it is growing.
[0044]
FIG. 21 shows an X-ray diffractometer (RU-200BH) manufactured by Rigaku Denki Co., Ltd. with the coating portion of a representative coated tool of the present invention produced under the conditions of Example 3 as the sample surface in the same manner as in the above example. Is an X-ray diffraction pattern measured in the range of 2θ = 10 to 145 ° by the 2θ-θ method.
From FIG. 21, the X-ray diffraction intensity of the titanium carbonitride layer of the present invention is the strongest in the (220) plane where the interplanar distance d of TiCN is 0.1516 nm, and then the interplanar distance d of TiCN is 0.2477 nm. It can be seen that the strength of the (111) plane is strong.
[0045]
Tables 5 and 6 summarize the measurement results of the X-ray diffraction intensity I (hkl) of the TiCN layer and the TiC layer portion in the product of the present invention. Further, Tables 7 and 8 summarize the equivalent X-ray diffraction intensity ratio PR (hkl) obtained from Tables 5 and 6, respectively.
[0046]
[Table 5]
Figure 0004004133
[0047]
[Table 6]
Figure 0004004133
[0048]
[Table 7]
Figure 0004004133
[0049]
[Table 8]
Figure 0004004133
[0050]
22 shows the product Nos. Of the present invention in Tables 7 and 8. 31 shows the correlation between the equivalent X-ray diffraction intensity ratio PR (hkl) of the TiCN film and the equivalent X-ray diffraction intensity ratio PR (hkl) of the TiC film at 31-39.
FIG. 22 shows that the equivalent X-ray diffraction intensity ratio PR (hkl) is proportional to the titanium carbonitride layer of the present invention and the titanium carbide layer formed on this layer. That is, a linear approximation of the relationship between the equivalent X-ray diffraction intensity ratio (x) of the titanium carbonitride layer and the equivalent X-ray diffraction intensity ratio (y) of the titanium carbide layer formed on this layer: y = When calculated by ax + b, it was found that a = 0.5 to 1.5 and b = −1 to 1. As a specific example, in the correlation of PR (hkl) between TiCN substantially constituting the titanium carbonitride layer and TiC substantially constituting the titanium carbide layer, a linear approximation of PR (422) Then y = 0.88x + 0.51 and the correlation coefficient R2= 0.97. In addition, y = 1.62x−0.57 in the linear approximation of PR (311) and the correlation coefficient R2= 0.92.
[0051]
Next, FIG. 23 shows the correlation for the equivalent X-ray diffraction intensity ratios PR (111), PR (220), PR (311), and PR (422) of the TiCN layer and the TiC layer shown in Tables 7 and 8. The correlation between the two is y = 1.03x + 0.06 and the correlation coefficient R2= 0.92.
[0052]
Next, when the lattice constant of the carbonitride layer of titanium constituting the coated tool of the present invention manufactured under the conditions of Example 3 was determined from FIG. 21, the results shown in Table 9 were obtained. From Table 9, the lattice constant of the titanium carbonitride layer of the present invention is an average value ± 3σ at 2θ ≧ 40 degrees with a very small measurement error.n-1In the range of 0.428 to 0.430 nm. Since the (111) plane has a low angle of 2θ, the apparent lattice constant is increased due to measurement errors. In addition, the (400) plane has a weak diffraction peak and is difficult to read. The (511) plane has a low diffraction peak intensity and a wide peak width, so it is difficult to read 2θ values. did.
[0053]
[Table 9]
Figure 0004004133
[0054]
Next, after five hours of continuous cutting test was performed on a cast workpiece under the following conditions using five cutting tools of the present invention manufactured under the conditions of Example 3, the titanium carbonitride layer of each cutting tool The peeling state of the aluminum oxide layer was observed with an optical microscope having a magnification of 200 times.
Work material FC25 (HB230)
Cutting speed 300m / min
Feed 0.3mm / rev
Notch 2.0mm
Uses water-soluble cutting oil
As a result of this cutting test, it was found that all of the products of the present invention were excellent as a cutting tool because no peeling of the titanium carbonitride layer or aluminum oxide layer was observed even after continuous cutting for 1 hour.
Further, five cutting tools manufactured under the conditions of Example 3 were intermittently cut under the following conditions, and the chipping condition at the tip of the blade edge was observed and evaluated with a stereomicroscope at a magnification of 50 times after 1,000 impact cuttings.
Work material SCM material
Cutting condition 100 m / min
Feed 0.3 mm / rev
Notch 2.0 mm
It was found that all of the products of the present invention after this cutting test had excellent cutting durability characteristics because the cutting edge was sound and no defect was found.
[0055]
(Conventional example 3)
Similarly to the product of the present invention, the surface of a cemented carbide substrate for cutting tools having a composition of WC 72%, TiC 8%, (Ta, Nb) C 11%, Co 9% is formed by chemical vapor deposition.2Carrier gas and TiClFourGas and N2First, TiN having a thickness of 0.3 μm was formed at 900 ° C. using a gas as a raw material gas. Next, TiCl at 990 ° C.Four1-2 vol% of gas, CHFour3-6 vol% of gas, N232 vol% of gas, remaining H2A source gas composed of a carrier gas was flowed in a CVD furnace at a rate of 5500 ml per minute and reacted under the condition of a film forming pressure of 75 Torr to form a 6 μm thick TiCN film. Then, CH at 950-1020 ° CFour/ TiClFourTiCl with gas volume ratio of 4-10FourGas and CHFourGas and H2A carrier gas was flown at a total rate of 2,200 ml / min for 120 minutes to form a titanium carbide layer. Then AlClThreeGas and H2Gas 2l / min and CO, CO2Gas mixture 150ml / min and H2S gas 8 ml / min was allowed to flow through the CVD furnace for 60 minutes to form a κ-type aluminum oxide film at 1010 ° C. Then H2Gas 4 l / min and TiClFourGas 50ml / min and N2A conventional product was prepared by flowing a gas of 1.3 l / min for 30 minutes and forming a titanium nitride film at 1010 ° C.
Although the vicinity of the titanium carbonitride layer constituting the conventional product was observed with a transmission electron microscope in the same manner as in Example 3, no twin structure was found in the titanium carbonitride layer.
[0056]
Next, as a result of performing a continuous cutting test under the same conditions as in Example 3 above using five cutting tools manufactured under the conditions of Conventional Example 3, all of the products of this conventional example were subjected to titanium charcoal after 10 minutes of continuous cutting. Peeling of the nitride layer and the aluminum oxide layer was observed.
In addition, as a result of intermittently cutting five cutting tools produced under the same conditions as in Example 3 under the same conditions as in Example 3, and observing the chipping condition at the tip of the blade edge with a stereomicroscope with a magnification of 50 times after 1,000 impact cuttings, In any case, a large chip occurred at the tip of the blade, and it was found that the cutting durability characteristics were inferior as a cutting tool.
[0057]
As described above, the coated tool of the present invention coated with a titanium carbonitride layer having a twin structure significantly improves the cutting durability characteristics as compared with the conventional one.
[0058]
【The invention's effect】
As described above, according to the present invention, a useful titanium carbonitride-coated tool having excellent mechanical strength of the titanium carbonitride layer itself and good adhesion to the upper layer film formed thereon, and excellent cutting durability characteristics. Can be realized.
[Brief description of the drawings]
FIG. 1 is an example of a structural photograph of a ceramic material of a titanium carbonitride-coated tool according to the present invention.
FIG. 2 is a schematic diagram corresponding to FIG. 1;
FIG. 3 is a diagram showing an example of an X-ray diffraction pattern of a titanium carbonitride-coated tool according to the present invention.
FIG. 4 is an example of a structural photograph of a ceramic material of a titanium carbonitride-coated tool according to the present invention.
FIG. 5 is a schematic diagram corresponding to FIG. 4;
FIG. 6 is a diagram showing an example of an X-ray diffraction pattern of a titanium carbonitride-coated tool according to the present invention.
FIG. 7 is an example of a structural photograph of a ceramic material of a titanium carbonitride-coated tool according to the present invention.
FIG. 8 is a schematic diagram corresponding to FIG. 7;
FIG. 9 is a photograph of an electron diffraction pattern of a titanium carbonitride coated tool according to the present invention observed with a transmission electron microscope.
FIG. 10 is a photograph of an electron beam diffraction image of the titanium carbonitride-coated tool according to the present invention observed with a transmission electron microscope.
FIG. 11 is a photograph of an electron diffraction pattern of a titanium carbonitride-coated tool according to the present invention observed with a transmission electron microscope.
12 is a diagram obtained by indexing the electron diffraction image of FIG. 9;
13 is a diagram obtained by indexing the electron beam diffraction image of FIG.
14 is a diagram obtained by indexing the electron diffraction pattern of FIG.
FIG. 15 is a photograph of an electron diffraction image of a titanium carbonitride-coated tool according to the present invention observed with a transmission electron microscope.
FIG. 16 is a photograph of an electron beam diffraction image of a titanium carbonitride-coated tool according to the present invention observed with a transmission electron microscope.
FIG. 17 is a photograph of an electron diffraction pattern of a titanium carbonitride-coated tool according to the present invention observed with a transmission electron microscope.
18 is a diagram obtained by indexing the electron diffraction image of FIG.
19 is a diagram obtained by indexing the electron diffraction image of FIG. 16;
20 is a diagram obtained by indexing the electron diffraction image of FIG.
FIG. 21 is a diagram showing an example of an X-ray diffraction pattern of a titanium carbonitride-coated tool according to the present invention.
FIG. 22 is a diagram showing an example of a correlation between equivalent X-ray diffraction intensity ratios PR of a titanium carbonitride-coated tool according to the present invention.
FIG. 23 is a diagram showing an example of a correlation between films of equivalent X-ray diffraction intensity ratio PR of a titanium carbonitride-coated tool according to the present invention.

Claims (12)

基体表面に周期律表のIVa、Va、VIa族金属の炭化物、窒化物、炭窒化物、炭酸化物、窒酸化物、炭窒酸化物、並びに酸化アルミニウムのいずれか一種の単層皮膜または二種以上の多層皮膜を有しその少なくとも一層がチタンの炭窒化物層からなる炭窒化チタン被覆工具において、前記チタンの炭窒化物層が双晶構造を持った結晶粒を含有することを特徴とする炭窒化チタン被覆工具。  Single-layer film or two kinds of carbide, nitride, carbonitride, carbonate, nitride oxide, carbonitride oxide, and aluminum oxide of group IVa, Va, and VIa metals of the periodic table on the substrate surface A titanium carbonitride-coated tool comprising the above multilayer coating, at least one layer of which is composed of a titanium carbonitride layer, wherein the titanium carbonitride layer contains crystal grains having a twin structure. Titanium carbonitride coated tool. 前記チタンの炭窒化物層がfcc構造を持ち、格子定数が0.427〜0.430nmである請求項1に記載の炭窒化チタン被覆工具。  The titanium carbonitride-coated tool according to claim 1, wherein the titanium carbonitride layer has an fcc structure and has a lattice constant of 0.427 to 0.430 nm. 前記チタンの炭窒化物層が(422)面または(220)面からのX線回折強度が最も大きい請求項1または2に記載の炭窒化チタン被覆工具。  The titanium carbonitride-coated tool according to claim 1 or 2, wherein the titanium carbonitride layer has the highest X-ray diffraction intensity from the (422) plane or the (220) plane. 前記チタンの炭窒化物層の上に双晶構造を持った結晶粒を含有する層が形成されている請求項1乃至3のいずれかに記載の炭窒化チタン被覆工具。  The titanium carbonitride-coated tool according to any one of claims 1 to 3, wherein a layer containing crystal grains having a twin crystal structure is formed on the titanium carbonitride layer. 前記チタンの炭窒化物層の上に形成された層の双晶境界部が下地である前記チタンの炭窒化物層の双晶境界部から連続している請求項4に記載の炭窒化チタン被覆工具。  5. The titanium carbonitride coating according to claim 4, wherein a twin boundary of a layer formed on the titanium carbonitride layer is continuous from a twin boundary of the titanium carbonitride layer as a base. tool. 前記チタンの炭窒化物層の上に形成された層がチタンの炭酸化物、チタンの炭窒酸化物のいずれか一種の単層皮膜または二種以上の多層皮膜からなる請求項4または5に記載の炭窒化チタン被覆工具。Layer formed on the carbonitride layer of the titanium, carbonates of titanium, to claim 4 or 5 made of any kind of monolayer film or two or more of the multilayer film of titanium oxycarbonitride The titanium carbonitride coated tool described. 前記チタンの炭窒化物層の上に形成された層が(422)面または(220)面からのX線回折強度が最も大きい請求項4乃至6のいずれかに記載の炭窒化チタン被覆工具。  The titanium carbonitride-coated tool according to any one of claims 4 to 6, wherein a layer formed on the titanium carbonitride layer has the highest X-ray diffraction intensity from the (422) plane or the (220) plane. 前記チタンの炭窒化物層の等価X線回折強度比と前記チタンの炭窒化物層の上に形成された層の等価X線回折強度比とが比例している請求項4乃至7のいずれかに記載の炭窒化チタン被覆工具。  The equivalent X-ray diffraction intensity ratio of the titanium carbonitride layer is proportional to the equivalent X-ray diffraction intensity ratio of a layer formed on the titanium carbonitride layer. The titanium carbonitride coated tool described in 1. 前記チタンの炭窒化物層の等価X線回折強度比(x)と前記チタンの炭窒化物層の上に形成された層の等価X線回折強度比(y)との関係がy=ax+bで線形近似され、a=0.5〜1.5、b=−1〜1である請求項4乃至8のいずれかに記載の炭窒化チタン被覆工具。  The relationship between the equivalent X-ray diffraction intensity ratio (x) of the titanium carbonitride layer and the equivalent X-ray diffraction intensity ratio (y) of the layer formed on the titanium carbonitride layer is y = ax + b. The titanium carbonitride-coated tool according to any one of claims 4 to 8, which is linearly approximated and a = 0.5 to 1.5 and b = −1 to 1. 前記チタンの炭窒化物層の上に形成された層がエピタキシャルに成長している請求項4乃至9のいずれかに記載の炭窒化チタン被覆工具。  The titanium carbonitride-coated tool according to any one of claims 4 to 9, wherein a layer formed on the titanium carbonitride layer is epitaxially grown. 前記チタンの炭窒化物層または前記チタンの炭窒化物層の上に形成された層の上にさらにチタンの酸化物層、チタンの炭酸化物層、チタンの窒酸化物層、チタンの炭窒酸化物層、酸化アルミニウム層のいずれかの単層皮膜または二種以上からなる多層皮膜が形成されている請求項4乃至10のいずれかに記載の炭窒化チタン被覆工具。  On the titanium carbonitride layer or the layer formed on the titanium carbonitride layer, a titanium oxide layer, a titanium carbonate layer, a titanium nitride oxide layer, and a titanium carbonitride oxidation The titanium carbonitride-coated tool according to any one of claims 4 to 10, wherein a single layer film of any of a physical layer and an aluminum oxide layer or a multilayer film composed of two or more types is formed. 周期律表のIVa、Va、VIa族金属の炭化物、窒化物、炭窒化物のうちの少なくとも一種以上とFe、Ni、Co、W、Mo、Crのうちの少なくとも一種以上とからなる超硬質合金を基体とする請求項1乃至11のいずれかに記載の炭窒化チタン被覆工具。  A super-hard alloy comprising at least one of carbides, nitrides, and carbonitrides of group IVa, Va, and VIa metals of the periodic table and at least one of Fe, Ni, Co, W, Mo, and Cr The titanium carbonitride-coated tool according to any one of claims 1 to 11, wherein the tool is a base.
JP07656198A 1998-03-10 1998-03-10 Titanium carbonitride coated tool Expired - Lifetime JP4004133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07656198A JP4004133B2 (en) 1998-03-10 1998-03-10 Titanium carbonitride coated tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07656198A JP4004133B2 (en) 1998-03-10 1998-03-10 Titanium carbonitride coated tool

Publications (2)

Publication Number Publication Date
JPH11256336A JPH11256336A (en) 1999-09-21
JP4004133B2 true JP4004133B2 (en) 2007-11-07

Family

ID=13608668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07656198A Expired - Lifetime JP4004133B2 (en) 1998-03-10 1998-03-10 Titanium carbonitride coated tool

Country Status (1)

Country Link
JP (1) JP4004133B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102612417A (en) * 2009-11-06 2012-07-25 株式会社图格莱 Coated tool

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3846221B2 (en) * 2000-07-14 2006-11-15 株式会社村田製作所 Surface acoustic wave device
SE528109C2 (en) * 2004-07-12 2006-09-05 Sandvik Intellectual Property Phantom inserts, especially for phase milling of steel sheet for oil pipes, and ways of manufacturing the same
JP4534790B2 (en) * 2005-02-23 2010-09-01 三菱マテリアル株式会社 A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4645983B2 (en) * 2005-04-12 2011-03-09 三菱マテリアル株式会社 Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP4716250B2 (en) * 2005-04-19 2011-07-06 三菱マテリアル株式会社 Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting
JP4793750B2 (en) * 2005-04-19 2011-10-12 三菱マテリアル株式会社 Surface coated cermet cutting tool with excellent chipping resistance in high-speed intermittent cutting of hard steel with excellent hard coating layer
JP4730522B2 (en) * 2005-05-25 2011-07-20 三菱マテリアル株式会社 Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer
JP4756453B2 (en) * 2005-06-01 2011-08-24 三菱マテリアル株式会社 Surface coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high speed heavy cutting
JP4655308B2 (en) * 2005-09-13 2011-03-23 三菱マテリアル株式会社 Surface coated cermet throwaway tip for rotary cutting tools that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting
JP4756469B2 (en) * 2006-02-17 2011-08-24 三菱マテリアル株式会社 Surface-coated cermet cutting throwaway tip that exhibits excellent chipping resistance due to high-speed cutting of hardened steel
JP4756471B2 (en) * 2006-03-22 2011-08-24 三菱マテリアル株式会社 Surface-coated cermet cutting throwaway tip that provides excellent chipping resistance in high-speed heavy cutting of hardened steel
JP5029099B2 (en) * 2006-09-01 2012-09-19 三菱マテリアル株式会社 Surface coated cutting tool with excellent wear resistance with high hard coating layer in high speed cutting
JP5003308B2 (en) * 2007-06-27 2012-08-15 三菱マテリアル株式会社 Surface coated cutting tool
JP2009095907A (en) 2007-10-15 2009-05-07 Sumitomo Electric Hardmetal Corp Blade edge replaceable cutting chip
JP5187570B2 (en) * 2007-12-28 2013-04-24 三菱マテリアル株式会社 Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP5309698B2 (en) * 2008-05-30 2013-10-09 三菱マテリアル株式会社 Surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance with a hard coating layer in high-speed heavy cutting
JP5309697B2 (en) * 2008-05-30 2013-10-09 三菱マテリアル株式会社 Surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting
JP5187571B2 (en) * 2008-06-20 2013-04-24 三菱マテリアル株式会社 Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP5585929B2 (en) * 2010-01-27 2014-09-10 三菱マテリアル株式会社 Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5560513B2 (en) * 2010-03-23 2014-07-30 三菱マテリアル株式会社 Surface-coated cutting tool with excellent fracture resistance due to hard coating layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102612417A (en) * 2009-11-06 2012-07-25 株式会社图格莱 Coated tool

Also Published As

Publication number Publication date
JPH11256336A (en) 1999-09-21

Similar Documents

Publication Publication Date Title
JP4004133B2 (en) Titanium carbonitride coated tool
JP3678924B2 (en) Aluminum oxide coated tool
JP3418066B2 (en) Alumina-coated tool and manufacturing method thereof
KR101739088B1 (en) Coated bodies made of metal, hard metal, cermet or ceramic material and method for coating such bodies
KR100204399B1 (en) Alumina coated sintered body
KR101104493B1 (en) Coating materials for a cutting tool or an abrasion resistance tool
JP3560303B2 (en) Aluminum oxide coated tool and method of manufacturing the same
JP3808648B2 (en) Titanium carbonitride film coating tool
JP3768136B2 (en) Coated tool
JP3901477B2 (en) Aluminum oxide coated tool
JP3678945B2 (en) Titanium carbonitride coated tool
JPH11335870A (en) Titanium carbonitride-aluminum oxide-coated tool
JP4107433B2 (en) α-type aluminum oxide coated member
JP2002370105A (en) Aluminum oxide coated-tool
JP2002273607A (en) Multilayer coat tool
JPH11114704A (en) Titanium-carbide-covered tool
JP2003039207A (en) Clad tool
JP4022042B2 (en) Coated tool and manufacturing method thereof
JP3818961B2 (en) Aluminum oxide coated tools
JP2004148503A (en) Aluminum oxide coated tool
JP3781006B2 (en) Aluminum oxide coated tools
JP2001170804A (en) Tool for applying film including zirconium
JP2002205204A (en) Multilayer covering tool
JP3347031B2 (en) Titanium carbide coated tool
JPH10263903A (en) Titanium carbide coating tool

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070821

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term