JP3808648B2 - Titanium carbonitride film coating tool - Google Patents

Titanium carbonitride film coating tool Download PDF

Info

Publication number
JP3808648B2
JP3808648B2 JP35070098A JP35070098A JP3808648B2 JP 3808648 B2 JP3808648 B2 JP 3808648B2 JP 35070098 A JP35070098 A JP 35070098A JP 35070098 A JP35070098 A JP 35070098A JP 3808648 B2 JP3808648 B2 JP 3808648B2
Authority
JP
Japan
Prior art keywords
film
titanium carbonitride
carbonitride oxide
oxide film
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35070098A
Other languages
Japanese (ja)
Other versions
JP2000158209A (en
Inventor
敏夫 石井
正幸 権田
広志 植田
史郎 岡山
順彦 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP35070098A priority Critical patent/JP3808648B2/en
Publication of JP2000158209A publication Critical patent/JP2000158209A/en
Application granted granted Critical
Publication of JP3808648B2 publication Critical patent/JP3808648B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は炭窒酸化チタン被覆工具に関するものである。
【0002】
【従来の技術】
一般に、硬質皮膜被覆工具は超硬合金、高速度鋼、特殊鋼のうちの一種または二種以上からなる基体表面に硬質皮膜を化学蒸着法や、物理蒸着法により成膜して作製される。
このような被覆工具は皮膜の耐摩耗性と基体の強靭性とを兼ね備えており、広く実用に供されている。特に、高速で切削する場合や切削液を用いずに旋削加工する場合には、切削工具の刃先温度は1000℃前後まで上がり、被削材との接触による摩耗や断続切削等の機械的衝撃に耐える必要があり、耐摩耗性と強靭性とを兼ね備えた被覆工具が重宝されている。
【0003】
上記の硬質皮膜には、耐摩耗性と靭性とに優れる、周期律表IVa、Va、VIa族金属の炭化物、窒化物、炭窒化物、炭酸化物、窒酸化物、炭窒酸化物からなる膜と、耐酸化性に優れる酸化アルミニウム膜のうちのいずれか一種の単層皮膜あるいは二種以上の多層皮膜が用いられている。
【0004】
周期律表IVa、Va、VIa族金属の炭窒化物からなる膜として炭窒化チタン膜が主に用いられている。炭窒化チタン膜は靭性と耐摩耗性とをバランス良く有することから工具用被覆膜として多用されており、本発明者等は特許第2660180や特開平10−15711、特願平10−76561により柱状晶の形態を持つ炭窒化膜を提案してきた。この柱状晶形態の炭窒化膜の特長は、粒状の炭窒化膜に比べて、各結晶粒が膜厚方向に細長いため、膜厚に比べて横方向の結晶粒幅が小さく、クラックが発生し難いことである。また、他にも、(220)面にX線回折最強ピークが現れるチタンの炭窒化膜(特開昭56−156767)、(422)面のX線回折ピーク強度が最強である炭窒化膜(特開平6−158325や特開平7−62542)、あるいは(311)面のX線回折ピーク強度が最強である炭窒化膜(特開平5−269606)が提案されている。更に、テーパー形状の柱状結晶粒を持つ炭窒化膜の平均結晶粒幅と膜厚との関係を規定した特開平8−71814等が提案されている。
【0005】
しかし、これらは柱状晶形態の炭窒化膜のみを検討しており、炭窒酸化膜に関しては検討していない。例えば、特開平6−158325では(422)面においてX線回折最強ピーク強度を示す炭窒化チタン膜を提案しているが、同時に成膜されている炭窒酸化膜は炭窒化チタン膜とは別個の膜として扱っており、炭窒酸化膜のX線回折最強ピーク強度は検討していない。
【0006】
炭窒酸化チタン膜に関しては、特開平8−257808では(111)面、(220)面、(200)面からのX線回折ピーク強度IがI(111)>I(220)>I(200)であるチタンの炭窒酸化物層が被覆された切削工具が提案され、特開平8−269719ではI(220)>I(111)>I(200)であるチタンの炭窒酸化物層が被覆された切削工具が提案されている。また、X線回折で(220)面に最強ピークが現れるTiの炭窒化膜を提案した先述の特開昭56−156767に対して、特許第2535866では、X線回折で(220)面に最強ピークが現れるTiの炭窒酸化物の単層、また、Tiの炭窒酸化物とTiの炭化物および炭窒化物のうちの一種もしくは二種を複層被覆した切削工具が開示されている。また、特開平8−47999では、TiCxyz(但し0.7≦x+y+z≦1.3、0.2<y<0.8)からなる第2層上に、TiCx1-x(但し0≦x≦1)からなる第3層を被覆した被覆超硬質焼結合金物品が提案されている。
【0007】
しかし、前記従来の炭窒酸化物膜は、(111)面または(220)面のX線回折ピーク強度が最強であり、(311)面や(422)面のX線回折ピーク強度が最強である炭窒酸化物膜については言及していない。
【0008】
炭窒酸化物膜は750〜950℃と比較的低温で成膜でき、膜硬度が高く、耐腐食性が優れ、摩擦係数が低い利点を有しており、上記のように種々の検討がなされているが、膜厚増加とともに膜表面の結晶粒幅が大きくなる欠点と、膜表面に粗大結晶粒からなる局所的な突起が形成される欠点があった。
【0009】
【発明が解決しようとする課題】
上記従来の炭窒酸化チタン膜の欠点を踏まえて、本発明が解決しようとする課題は、膜厚増加とともに膜表面の結晶粒幅が粗大化せず、局所的な突起の形成を抑えた炭窒酸化チタン膜を実現し、従来に比して格段に切削耐久特性の優れる炭窒酸化チタン被覆工具を提供することである。
【0010】
【課題を解決するための手段】
本発明者らは上記課題を解決するために鋭意研究してきた結果、(311)面または(422)面のX線回折ピーク強度が最強であり、酸素原子を0.05〜3.02質量%含有する周期律表IVa、Va、VIa族金属の炭窒酸化物からなる柱状晶形態の強い膜を被覆することにより切削耐久特性の優れる工具を実現できることを見出し、本発明に想到した。
【0011】
すなわち本発明は、基体表面に周期律表のIVa、Va、VIa族金属の炭化物、窒化物、炭窒化物、炭酸化物、窒酸化物、炭窒酸化物、並びに酸化アルミニウムのいずれか一種の単層皮膜または二種以上の多層皮膜を有し、該単層皮膜または該多層皮膜中の少なくとも一層が炭窒酸化チタン膜からなる炭窒酸化チタン被覆工具において、前記炭窒酸化チタン膜の膜厚が2〜18μmであり、前記炭窒酸化チタン膜のX線回折ピーク最強度面が、(422)面または(311)面であり、前記炭窒酸化チタン膜中の酸素量が0.05〜3.02質量%であることを特徴とする炭窒酸化チタン被覆工具である。後に詳説するように、X線回折ピーク最強度面が(422)面または(311)面であることにより、炭窒酸化チタン膜は、膜厚増加によっても膜表面の結晶粒幅が粗大化せず、局所的な突起が形成されない。また、前記炭窒酸化チタン膜の結晶性が高く粒界の強度が上がるとともに、膜表面の起伏が大きくなり上層膜との密着性が高まり、良好な切削耐久特性が実現されていると判断される。スローアウェイインサート型の切削工具の場合、X線回折強度は工具側面等の平坦部で測定する。
【0012】
本発明において、前記炭窒酸化チタン膜の結晶構造が立方晶であり、格子定数が0.428〜0.431nmであることを特徴とする。前記炭窒酸化チタン膜の結晶構造が立方晶であり、格子定数が0.428〜0.431nmであることにより、特願平10−76561で規定したように、結晶構造が面心立方晶であり、格子定数が0.428〜0.431nmである炭窒化チタン膜の炭素と窒素の原子位置に酸素原子が入ることになり、緻密で結晶性の高い炭窒酸化チタン膜が実現でき、優れた切削耐久特性が実現されていると判断される。
【0013】
また、本発明において、前記炭窒酸化チタン膜表面またはその近傍の平均結晶粒幅が、前記炭窒酸化チタン膜の膜厚が2μm以上5μm未満の時は0.3μm以下、より好ましくは0.2μm以下であり、膜厚が5μm以上10μm未満の時は0.6μm以下、より好ましくは、0.4μm以下であり、膜厚が10μm以上の時は1μm以下、より好ましくは、0.6μm以下であることがよい。ここで、炭窒酸化チタン膜の膜厚と膜表面またはその近傍の平均結晶粒幅とは、膜破断面を用い、後述の方法で測定されるものである。特に、スローアウェイインサート型の切削工具の場合、炭窒酸化チタンの膜厚と表面またはその近傍の平均結晶粒径は、切削時に最も重要である工具刃先のホーニング部で測定する。これは、ホーニング部は基体表面の面粗さが小さく、炭窒酸化チタン膜本来の特性が現われ易いためでもある。前記炭窒酸化チタン膜表面またはその近傍の平均結晶粒幅が上記特定範囲を超えると、炭窒酸化チタン膜が粗大結晶粒化するため、クラックが入り易くなり、本発明の効果が現れなくなる。また、膜厚が2μm以上5μm未満の時は0.2μm以下、膜厚が5μm以上10μm未満の時は0.4μm以下、膜厚が15μmを超える時は0.6μm以下に前記平均結晶粒幅を制御することにより、炭窒酸化チタン膜の靭性を良好に維持しつつより膜を厚くでき、更に良好な切削耐久特性が実現されていると判断される。
【0014】
また、本発明前記炭窒酸化チタン膜中の酸素量が0.05〜3.02質量%であり、好ましくは上限が3質量%、更に好ましくは0.1〜2質量%、更に好ましくは0.3〜1質量%であることがよい。酸素量が0.05〜3.02質量%であることにより、炭窒酸化チタン膜の(422)面または(311)面配向が強くなり、かつ膜の柱状晶形態が強くなるとともに膜表面の平均結晶粒幅が小さくなり、優れた切削耐久特性が実現される。酸素量が0.05質量%未満では酸素元素の効果が現れず、3.02質量%を超えると炭窒酸化チタン膜自体の機械強度が低下し脆くなる欠点が生じる。酸素量が0.1〜2質量%の時に上記酸素元素の効果がより顕著であり、酸素量が0.3〜1質量%の時に酸素元素の効果が特に顕著に現れる。
【0015】
また、本発明において、前記炭窒酸化チタン膜中の塩素量が0.01〜2質量%、より好ましくは0.1〜1質量%であることがよい。塩素量が0.01〜2質量%であることにより、炭窒酸化チタン膜の(422)面または(311)面配向が強くなり、かつ膜の柱状晶形態が強くなるとともに膜表面の平均結晶粒幅が小さくなり、優れた切削耐久特性が実現される。塩素量が0.01質量%未満では塩素元素の効果が現れず、塩素量が2質量%を超えると炭窒酸化チタン膜の硬度が低下し、工具耐摩耗性が低下する。塩素量が0.1〜1質量%の時に塩素元素の効果がより顕著であり、炭窒酸化チタン膜の(422)面または(311)面の配向が更に強くなると同時に耐摩耗性がより向上し、更に優れた切削耐久特性が実現される。
【0016】
【発明の実施の形態】
以下に本発明を詳説する。
本発明の被覆工具において、炭窒酸化チタン(TiCNO)膜のX線回折ピークの同定は、JCPDSファイル(Powder Diffraction File Published by JCPDS InternationalCenter for Diffraction Data)に記載がないため、TiCとTiNのX線回折データ(ASTMファイルNo.29−1361とNo.38−1420)および本発明品を実測して得たX線回折パターンから求めた表1の数値を用いて行った。また、炭窒酸化チタンのX線回折強度I0は表2に示したTiCのX線回折強度I0と同一と仮定した。
【0017】
【表1】

Figure 0003808648
【0018】
【表2】
Figure 0003808648
【0019】
本発明の被覆工具を製作するために既知の成膜方法を採用できる。例えば、通常の化学蒸着法(熱CVD)、プラズマを付加した化学蒸着法(PACVD)、イオンプレーティング法等を用いることができる。用途は切削工具に限るものではなく、炭窒酸化チタン膜を含む単層あるいは多層の硬質皮膜を被覆した耐摩耗材や金型、溶湯部品等でもよい。
【0020】
本発明の被覆工具において、炭窒酸化チタン膜はTiCNOに限るものではない。例えばTiCNOにCr、Zr、Ta、Mg、Y、Si、Bのうちの一種または二種以上を0.3〜10重量%添加した膜でもよい。0.3重量%未満ではこれらを添加する効果が現れず、10重量%を超えるとTiCNO膜の耐摩耗、高靭性の効果が低くなる欠点が現れる。
また、炭窒酸化チタン膜はCH3CNとTiCl4とCO2、COの混合ガスを反応させて成膜する膜に限るものではなく、CH4、N2、TiCl4とCO2、COの混合ガスとを反応させて成膜するTiCNO膜でもよい。
また、本発明の被覆工具において、炭窒酸化チタン膜の上膜はTiC膜、TiCO膜あるいはTiCNO膜に限るものではない。例えばTiN膜、TiCN膜、あるいは原料ガスにCH3CNガスを用いずにN2ガスを用いて成膜した他のTiCNO膜等の膜でもよい。更には、例えばTiCにCr、Zr、Ta、Mg、Y、Si、Bのうちの一種または二種以上を0.3〜10重量%添加した膜でもよい。0.3重量%未満ではこれらを添加する効果が現れず、10重量%を超えるとTiC膜の耐摩耗の効果が低くなる欠点が現れる。また、炭窒酸化チタン膜の上に直接酸化アルミニウムを主とする下記の酸化膜を成膜するのも有効である。
また、上記膜には本発明の効果を消失しない範囲で不可避の不純物を例えば数質量%程度まで含むことが許容される。
また、下地膜はTiNに限るものではなく、例えば下地膜としてTiC膜および/またはTiCN膜を成膜した場合も本発明に含まれることは勿論である。
【0021】
本発明の被覆工具に被覆する酸化アルミニウム膜としてκ型酸化アルミニウム単相またはα型酸化アルミニウム単相の膜を用いることができる。また、κ型酸化アルミニウムとα型酸化アルミニウムとの混合膜でもよい。また、κ型酸化アルミニウムおよび/またはα型酸化アルミニウムと、γ型酸化アルミニウム、θ型酸化アルミニウム、δ型酸化アルミニウム、χ型酸化アルミニウムの少なくとも一種以上とからなる混合膜でもよい。また、酸化アルミニウムと酸化ジルコニウム等に代表される他の酸化物との混合膜でもよい。
【0022】
本発明の被覆工具において、炭窒酸化チタン膜、炭窒化チタン膜、炭化チタン膜、炭酸化チタン膜、炭窒酸化チタン膜、酸化アルミニウム膜は必ずしも最外膜である必要はなく、例えばさらにその上に少なくとも一膜のチタン化合物(例えばTiN膜、TiCN膜または前記膜を組み合わせた多層膜等)を被覆してもよい。
【0023】
次に本発明の被覆工具を実施例によって具体的に説明するが、これら実施例により本発明が限定されるものでない。
【0024】
(実施例1)
質量%で、WC72%,TiC8%,(Ta,Nb)C11%,Co9%の組成よりなるスローアウェイインサート型の切削工具用超硬合金基板をCVD炉内にセットし、その表面に、化学蒸着法によりH2キャリヤーガスとTiCl4ガスとN2ガスとを原料ガスに用い0.3μm厚さのTiN膜を900℃でまず形成した。続いて、750〜980℃でTiCl4ガスを0.5〜2.5vol%、CH3CNガスを0.5〜2.5vol%、N2ガスを25〜45vol%、CO2とCOの混合ガスを0.5〜10vol%、残H2キャリヤーガスで構成された原料ガスを毎分5500mlだけCVD炉内に流し、成膜圧力を20〜100Toorの条件で反応させることにより6μm厚さのTiCNO膜を成膜した。その後、950〜1020℃でTiCl4ガスとCH4ガスとH2キャリヤーガスとをトータル2,200ml/分で60分間流して成膜し、そのまま連続して本構成ガスにさらに2.2〜550ml/分のCO2とCOの混合ガスを追加して5〜30分間成膜することによりチタンの炭化物および炭酸化物からなる膜を作製した。続いてAl金属小片を詰め350℃に保温した小筒中にH2ガス310ml/分とHClガス130ml/分とを流すことにより発生させたAlCl3ガスおよびH2ガス2l/分とCO2とCOの混合ガス500ml/分とをCVD炉内に流し、1010〜1020℃で2時間反応させることにより所定の厚さの酸化アルミニウム膜を成膜した。
【0025】
図1は実施例1の条件で作製した本発明品の代表的な工具側面平坦部の皮膜部分を試料面にして、理学電気(株)製のX線回折装置(RU−200BH)を用いて2θ−θ走査法により2θ=10〜145度の範囲で測定したX線回折パターンである。X線源にはCuKα1線(λ=0.15405nm)を用い、ノイズ(バックグランド)は装置に内蔵されたソフトにより除去した。
図1のX線回折パターンから求めた、本発明品の炭窒酸化チタン(TiCNO)膜の各ピークの2θ値とX線回折強度および各2θ値から求めた格子定数とを表3にまとめて示した。炭窒酸化チタンのX線回折ピークの同定は、特願平10−76561で求めた炭窒化チタン膜のX線回折ピーク位置と、その前後のWCのX線回折ピーク(ASTMファイルNo.25−1047)、TiCのX線回折ピーク(同No.32−1383)、TiNのX線回折ピーク(同No.38−1420)、κ型酸化アルミニウムのX線回折ピーク(同No.4−878)、α型酸化アルミニウム(同No.10−173)のX線回折ピーク等との位置関係も考慮して決定した。
表3より、炭窒酸化チタン膜の結晶構造が立方晶であり格子定数が0.429nmであるとして計算した各X線回折ピーク位置と本発明品の実測値とが良く一致することがわかる。各X線回折ピークにおいて決定した立方晶の面指数を表3の右欄に記した。なお、(111)面のX線回折ピーク位置は2θが低角度のため測定誤差が大きく、上記の格子定数の計算からは除外した。(400)面はX線回折ピークが弱く読み取りが困難だった。また、(511)面はX線回折ピーク強度が低く、かつピーク幅も広いため、2θ値の読み取りが困難だった。
同様にして、他の本発明品の炭窒化チタン膜の格子定数を測定した結果、本発明品の格子定数は0.428〜0.431nmの範囲にあった。
【0026】
【表3】
Figure 0003808648
【0027】
図1と表3から、本発明品の、炭窒酸化チタン膜のX線回折強度I(hkl)は(422)面が最も強く、次に(311)面、その次に(111)面が強いことがわかる。
【0028】
図2は、本発明の代表的な被覆工具の皮膜部の破断面を走査型電子顕微鏡装置(SEM)により撮影した写真、図3は炭窒酸化チタン膜表面部の平均結晶粒幅の測定方法を図示したものであり、図2に対応する。本発明品はスローアウェイインサート型切削工具であるため、炭窒酸化チタンの膜厚と表面の平均結晶粒幅は、切削時に最も重要である工具刃先のホーニング部で測定した。炭窒酸化チタン膜表面の平均結晶粒幅は、図3に示す通り、炭窒酸化チタン膜表面部近傍に、基体(基板)表面と平行に横線を引き、横線内に含まれる結晶粒数から(1)式を用いて求めた。
平均結晶粒幅=測定長さ 17μm/測定長内の結晶粒数 …(1)
本測定方法により、図2に示す本発明品の炭窒酸化チタン膜は、膜厚13μm、平均結晶粒幅が0.4μmであることが確認された。
【0029】
本発明品の膜断面を研摩し、炭窒酸化チタン膜断面の研摩面中の5点に含まれる酸素量と塩素量とを電子プローブマイクロアナライザー(EPMA、日本電子(株)製JXA−8900R)を用い、加速電圧15KV、試料電流0.2μAで分析した結果、5点平均の酸素量は0.62質量%、塩素量は0.58質量%であった。
【0030】
表4は、同様にして測定した、実施例1で作製した代表的な本発明品の炭窒酸化チタン膜のX線回折強度最強面、膜厚と平均結晶粒幅、膜中酸素量(質量%)、膜中塩素量(質量%)と、後述の連続切削時の工具寿命と断続切削可能回数とをまとめて示したものである。膜厚は小数点以下第一位を四捨五入し、平均結晶粒幅は小数点以下第二位を四捨五入した。
表4より、本発明品の炭窒酸化チタン膜のX線回折強度最強面は(311)面または(422)面であること、また、平均結晶粒幅は、膜厚が5μm未満の時は0.3μm以下、膜厚が5μm以上10μm未満の時は0.6μm以下、膜厚が10μm以上の時は1μm以下であることがわかる。また、本発明品の炭窒酸化チタン膜中の酸素量は0.05〜3質量%であり、塩素量は0.01〜2質量%であることがわかる。
【0031】
【表4】
Figure 0003808648
【0032】
表4において、連続切削寿命は、実施例1の条件で製作した切削工具5個を用いて、以下の条件で連続切削し、平均逃げ面摩耗量が0.4mm、クレーター摩耗が0.1mmのどちらかに達した時間を連続切削寿命と判断し求めた。
被削材 S53C(HS35)
切削速度 200m/分
送り 0.3mm/rev
切り込み 2.0mm
水溶性切削油使用
表4より、上記本発明品は、炭窒酸化チタンの膜厚が2μmの時、連続切削寿命が20分と長く、膜厚増加に比例して工具寿命も伸びており、切削工具として連続切削時の耐久性に優れていることがわかる。なお、表4の場合、炭窒酸化チタンの膜厚T(μm)と工具寿命L(分)とは、L=3.58T+19.35、R2=0.91で表せる。
【0033】
また、表4に示した断続切削回数は、実施例1の条件で製作した切削工具5個を用いて、以下の条件で断続切削し、欠損に至るまでの断続切削回数を評価した。刃先先端の欠け状況は倍率50倍の実体顕微鏡で観察した。
被削材 S53C 溝入材(HS38)
切削条件 220 m/分
送り 0. 2 mm/rev
切り込み 2.0 mm
切削液 使用せず(乾式切削)
本発明品は、炭窒酸化チタンの膜厚が2μmの時、5000回迄断続切削後も刃先が健全で欠損不良は認められず、切削工具として断続切削時の耐久性に優れていることがわかる。
【0034】
次に、表4より、本発明品はいずれも連続切削寿命が20分以上であり、かつ断続切削も1000回以上可能であり、切削耐久特性が優れていることがわかる。
また、膜厚がともに4μmであるNo.2、3の本発明品や、膜厚が9μmのNo.7〜14の本発明品および膜厚が15μmであるNo.18〜20の本発明品の切削試験結果、特に断続切削試験結果から、膜厚が5μm未満の時は平均結晶粒幅が0.2μm以下、膜厚が5μm以上10μm未満の時は0.4μm以下、膜厚が10μm以上の時は0.6μm以下で特に切削耐久特性が優れていることがわかる。
また、例えば、膜厚9μmのNo.8〜10の断続切削回数をNo.7およびNo.11〜14の断続切削回数と比較することにより、炭窒酸化チタン膜中の酸素含有量が0.1〜2質量%の時、切削耐久特性が特に優れており、0.3〜1質量%の時には更に切削耐久特性が優れていることがわかる。
また、例えば、膜厚9μmのNo.8〜11の断続切削回数をNo.7およびNo.12〜14の断続切削回数と比較することにより、炭窒酸化チタン膜中の塩素量が0.1〜1質量%の時、切削耐久特性が特に優れていることがわかる。
【0035】
(従来例1)
炭窒酸化チタン膜の配向、平均結晶粒幅、酸素元素含有量の差違による切削耐久特性への影響を明らかにするために、本発明品と同様に、質量%でWC72%,TiC8%,(Ta,Nb)C11%,Co9%の組成よりなるスローアウェイインサート型の切削工具用超硬合金基板をCVD炉内にセットし、その表面に、化学蒸着法によりH2キャリヤーガスとTiCl4ガスとN2ガスとを原料ガスに用い0.3μm厚さのTiN膜を900℃でまず形成した。続いて、TiCl4ガスを0.5〜2.5vol%、CH3CNガスを0.5〜2.5vol%、N2ガスを25〜45vol%、残H2キャリヤーガスで構成された原料ガスを毎分5500mlだけCVD炉内に流し、成膜温度750〜980℃、成膜圧力20〜100Toorで反応させることにより6μm厚さのTiCN膜を、あるいは、同範囲量のTiCl4ガス、CH3CNガス、N2ガスと、CO2とCOの混合ガス0.5〜10vol%、残H2キャリヤーガスで構成された原料ガスを毎分5500mlだけCVD炉内に流し、成膜温度980〜1020℃、成膜圧力20〜100Toorで反応させることにより6μm厚さのTiCNO膜を成膜した。
その後、950〜1020℃でTiCl4ガスとCH4ガスとH2キャリヤーガスとをトータル2,200ml/分で60分間流して成膜し、そのまま連続して本構成ガスにさらに2.2〜110ml/分のCO2ガスを追加して5〜30分間成膜することによりチタンの炭化物および炭酸化物からなる膜を作製した。続いてAl金属小片を詰め350℃に保温した小筒中にH2ガス310ml/分とHClガス130ml/分とを流すことにより発生させたAlCl3ガスとH2ガス2l/分とCO2とCOの混合ガス500ml/分とをCVD炉内に流し、1010〜1020℃で2時間反応させることにより所定の厚さの酸化アルミニウム膜を成膜し、従来例品を作製した。
【0036】
作製した従来例品のX線回折最強度面は(422)面や(311)面ではなく、(220)面や(111)面等であった。
【0037】
図4(a)、(b)は、従来例で作製した被覆工具と同一条件で、切削工具用超硬合金基板表面に窒化チタン膜、炭窒酸化チタン膜迄を成膜した後、皮膜の破断面と膜表面部分とを走査型電子顕微鏡装置(SEM)により撮影した写真である。この場合、炭窒酸化チタン膜の表面には炭化チタン膜、炭酸化チタン膜、酸化アルミニウム膜は成膜されていない。図4(a)、(b)から、従来例品の炭窒酸化チタン膜には粗大な結晶粒が発生しており、炭窒酸化チタン膜表面に局所的に粗大な突起ができていることや、その結晶粒表面の凹凸が少なく平滑であり、上層膜の密着性が劣る可能性が高いことがわかる。図4(b)の膜破断面から測定した炭窒酸化チタン膜の膜厚は9μm、膜表面の平均結晶粒幅は0.7μmである。なお、図4(a)の膜表面のSEM写真から測定される平均結晶粒径は1.4μmであり、膜破断面から測定される平均結晶粒幅は、膜表面から測定される平均結晶粒径の約半分であることがわかる。
【0038】
表5は、本発明品と同様にして測定した、従来の炭窒化チタン膜または炭窒酸化チタン膜のX線回折最強度面、膜厚と平均結晶粒幅、第二層を構成する膜の炭窒化チタン膜または炭窒酸化チタン膜の区別、および連続切削時の工具寿命と断続切削可能回数とをまとめて示したものである。
表5より、従来の炭窒化チタン膜または炭窒酸化チタン膜の平均結晶粒幅は、膜厚が5μm未満の時は0.3μm超、膜厚が5μm以上10μm未満の時は0.6μm超、膜厚が10μm以上の時は1μm超であることがわかる。また、炭窒酸化チタン膜のX線回折最強度面は(220)面または(111)面であることがわかる。
【0039】
【表5】
Figure 0003808648
【0040】
表5には、従来例1の条件で作製した切削工具各5個を用いて実施例1と同一の条件で切削試験した結果もまとめて示した。
いずれの従来例品も、各膜厚において、表4に示した本発明品の連続切削寿命時間よりも大幅に短く、本発明品に比べて劣ることがわかる。特に、断続切削回数はいずれも1000回未満と短く、従来例品の切削耐久特性が本発明品より劣ることがわかる。
【0041】
【発明の効果】
上述のように、本発明によれば、炭窒酸化チタン膜の膜厚が2〜18μmであり、且つ、X線回折ピーク最強度面が、(422)面または(311)面であり、かつ、前記炭窒酸化チタン膜中の酸素量が0.05〜3.02質量%であり、結晶性が高く、かつ膜表面が起伏に富んでおり、しかも、炭窒酸化チタン膜の平均結晶粒幅が小さいため、炭窒酸化チタン膜自体の機械強度と上層膜との密着性が良く、切削耐久特性に優れた有用な炭窒酸化チタン被覆工具を実現することができる。
【図面の簡単な説明】
【図1】本発明に係わる炭窒酸化チタン被覆工具のX線回折パターンの一例を示す図である。
【図2】本発明に係わる炭窒酸化チタン被覆工具のセラミック材料の組織写真の一例を示す図である。
【図3】本発明に係わる炭窒酸化チタン被覆工具の平均結晶粒幅の測定方法を示す模式図である。
【図4】従来例に係わる炭窒酸化チタン被覆工具のセラミック材料の組織写真である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a titanium carbonitride coated tool.
[0002]
[Prior art]
In general, a hard film-coated tool is produced by forming a hard film on a substrate surface made of one or more of cemented carbide, high speed steel, and special steel by chemical vapor deposition or physical vapor deposition.
Such a coated tool has both the wear resistance of the coating and the toughness of the substrate, and is widely put into practical use. In particular, when cutting at high speed or when turning without using cutting fluid, the cutting edge temperature of the cutting tool rises to around 1000 ° C, resulting in mechanical impacts such as wear due to contact with the work material and intermittent cutting. It is necessary to endure, and a coated tool having both wear resistance and toughness is useful.
[0003]
The hard film is a film made of a carbide, nitride, carbonitride, carbonate, nitride, or carbonitride of periodic table IVa, Va, or VIa group metal having excellent wear resistance and toughness. In addition, one kind of single-layer film or two or more kinds of multilayer films among aluminum oxide films having excellent oxidation resistance are used.
[0004]
A titanium carbonitride film is mainly used as a film made of carbonitrides of periodic table IVa, Va, VIa group metals. The titanium carbonitride film is widely used as a coating film for tools because it has a good balance between toughness and wear resistance, and the present inventors have disclosed in Japanese Patent No. 2660180, Japanese Patent Application Laid-Open No. 10-15711, and Japanese Patent Application No. 10-76561. Carbonitride films with columnar crystal morphology have been proposed. The feature of this columnar carbonitride film is that each crystal grain is elongated in the film thickness direction compared to a granular carbonitride film, so that the lateral crystal grain width is smaller than the film thickness and cracks are generated. It is difficult. In addition, a titanium carbonitride film in which the X-ray diffraction strongest peak appears on the (220) plane (Japanese Patent Laid-Open No. 56-156767), and a carbonitride film having the strongest X-ray diffraction peak intensity on the (422) plane ( JP-A-6-158325, JP-A-7-62542), or a carbonitride film (JP-A-5-269606) having the strongest X-ray diffraction peak intensity on the (311) plane has been proposed. Further, Japanese Patent Laid-Open No. 8-71814 or the like that defines the relationship between the average grain width and film thickness of carbonitride films having tapered columnar crystal grains has been proposed.
[0005]
However, only the columnar crystal carbonitride film is examined, and the carbonitride oxide film is not examined. For example, Japanese Patent Laid-Open No. 6-158325 proposes a titanium carbonitride film exhibiting the strongest peak intensity of X-ray diffraction on the (422) plane. The carbon carbonitride oxide film formed simultaneously is different from the titanium carbonitride film. The X-ray diffraction strongest peak intensity of the carbonitride oxide film has not been studied.
[0006]
Regarding the titanium carbonitride oxide film, in Japanese Patent Laid-Open No. 8-257808, the X-ray diffraction peak intensity I from the (111) plane, the (220) plane, and the (200) plane is I (111)> I (220)> I (200 ), A cutting tool coated with a titanium oxycarbonitride layer is proposed. In JP-A-8-269719, a titanium oxycarbonitride layer of I (220)> I (111)> I (200) is provided. Coated cutting tools have been proposed. In contrast to the above-mentioned JP-A-56-156767, which proposed a Ti carbonitride film in which the strongest peak appears in the (220) plane by X-ray diffraction, in Japanese Patent No. 2535866, the strongest in the (220) plane by X-ray diffraction. A cutting tool in which a single layer of Ti carbonitride oxide in which a peak appears and a multilayer of one or two of Ti carbonitride, Ti carbide, and carbonitride is coated is disclosed. In JP-A-8-47999, TiC x O y N z (Wherein 0.7 ≦ x + y + z ≦ 1.3, 0.2 <y <0.8) x N 1-x There has been proposed a coated ultra-hard sintered alloy article coated with a third layer (where 0 ≦ x ≦ 1).
[0007]
However, the conventional carbonitride oxide film has the strongest X-ray diffraction peak intensity on the (111) plane or the (220) plane, and the strongest X-ray diffraction peak intensity on the (311) plane or the (422) plane. There is no mention of a carbonitride film.
[0008]
The carbonitride oxide film can be formed at a relatively low temperature of 750 to 950 ° C., has the advantages of high film hardness, excellent corrosion resistance, and low friction coefficient, and various studies have been made as described above. However, there is a drawback that the crystal grain width on the film surface becomes larger as the film thickness increases, and a local protrusion made of coarse crystal grains is formed on the film surface.
[0009]
[Problems to be solved by the invention]
In light of the disadvantages of the conventional titanium carbonitride oxide film, the problem to be solved by the present invention is that carbon grains that prevent the formation of local protrusions are suppressed without increasing the crystal grain width on the film surface as the film thickness increases. It is to provide a titanium carbonitride-coated tool that realizes a titanium nitride oxide film and has excellent cutting durability characteristics as compared with conventional ones.
[0010]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the inventors of the present invention have the strongest X-ray diffraction peak intensity on the (311) plane or the (422) plane, and oxygen atoms of 0.05 to 3.02 The inventors have found that a tool having excellent columnar crystal form can be realized by coating a strong film having a columnar crystal form composed of a carbonitride oxide of a periodic table IVa, Va, or VIa group metal containing mass%, and the present invention has been conceived.
[0011]
That is, according to the present invention, any one of IVa, Va, and VIa group metal carbides, nitrides, carbonitrides, carbonates, nitrides, carbonitrides, and aluminum oxides of the periodic table is provided on the substrate surface. It has a layer film or two or more types of multilayer films, In the single layer coating or the multilayer coating In the titanium carbonitride oxide-coated tool in which at least one layer of the carbonitrous oxide film comprises The thickness of the titanium carbonitride oxide film is 2 to 18 μm, X-ray diffraction peak maximum intensity surface of the titanium carbonitride oxide film is (422) plane or (311) plane And the amount of oxygen in the titanium carbonitride oxide film is 0.05 to 3.02 mass%. It is a titanium carbonitride oxide-coated tool characterized by being. As will be described in detail later, when the maximum intensity surface of the X-ray diffraction peak is the (422) plane or the (311) plane, the titanium carbonitride oxide film has a coarse crystal grain width even when the film thickness increases. Therefore, local protrusions are not formed. In addition, the crystallinity of the titanium carbonitride oxide film is high, the strength of the grain boundary is increased, the undulation of the film surface is increased, the adhesion with the upper film is increased, and it is judged that good cutting durability characteristics are realized. The In the case of a throw-away insert type cutting tool, the X-ray diffraction intensity is measured at a flat portion such as a side surface of the tool.
[0012]
In the present invention, the titanium carbonitride oxide film has a cubic crystal structure and a lattice constant of 0.428 to 0.431 nm. Since the titanium carbonitride oxide film has a cubic crystal structure and a lattice constant of 0.428 to 0.431 nm, the crystal structure is a face-centered cubic crystal as defined in Japanese Patent Application No. 10-76561. Yes, oxygen atoms will enter the carbon and nitrogen atom positions of the titanium carbonitride film having a lattice constant of 0.428 to 0.431 nm, and a dense and highly crystalline titanium carbonitride oxide film can be realized. It is judged that the cutting durability characteristics are realized.
[0013]
In the present invention, the average crystal grain width at or near the surface of the titanium carbonitride oxide film is such that the film thickness of the titanium carbonitride oxide film is 2 μm or more When it is less than 5 μm, it is 0.3 μm or less, more preferably 0.2 μm or less, and when the film thickness is 5 μm or more and less than 10 μm, it is 0.6 μm or less, more preferably 0.4 μm or less, and the film thickness is 10 μm. In the above case, it is 1 μm or less, more preferably 0.6 μm or less. Here, the film thickness of the titanium carbonitride oxide film and the average crystal grain width at or near the film surface are measured by the method described later using the film fracture surface. In particular, in the case of a throw-away insert type cutting tool, the film thickness of titanium carbonitride and the average crystal grain size at or near the surface are measured at the honing portion of the tool edge, which is most important during cutting. This is also because the honing part has a small surface roughness on the surface of the substrate and the original characteristics of the titanium carbonitride oxide film tend to appear. If the average crystal grain width at or near the surface of the titanium carbonitride oxide film exceeds the specified range, the titanium carbonitride oxide film becomes coarse crystal grains, so that cracks easily occur and the effects of the present invention do not appear. The film thickness is 2 μm or more By controlling the average grain width to 0.2 μm or less when the film thickness is less than 5 μm, 0.4 μm or less when the film thickness is 5 μm or more and less than 10 μm, and 0.6 μm or less when the film thickness exceeds 15 μm, It is judged that the film can be made thicker while maintaining the toughness of the titanium oxynitride film well, and further excellent cutting durability characteristics are realized.
[0014]
In addition, the present invention Is The amount of oxygen in the titanium carbonitride oxide film is 0.05 to 3.02 mass% Preferably, the upper limit is 3% by mass, Preferably it is 0.1-2 mass%, More preferably, it is 0.3-1 mass%. When the amount of oxygen is 0.05 to 3.02% by mass, the (422) plane or (311) plane orientation of the titanium carbonitride oxide film is strengthened, the columnar crystal form of the film is strengthened, and the film surface The average grain width is reduced, and excellent cutting durability characteristics are realized. If the amount of oxygen is less than 0.05% by mass, the effect of oxygen element does not appear, 3.02 When it exceeds mass%, the mechanical strength of the titanium carbonitride oxide film itself is lowered, resulting in a drawback that it becomes brittle. The effect of the oxygen element is more remarkable when the oxygen amount is 0.1 to 2% by mass, and the effect of the oxygen element is particularly remarkable when the oxygen amount is 0.3 to 1% by mass.
[0015]
Moreover, in this invention, it is good that the chlorine content in the said titanium carbonitride oxide film | membrane is 0.01-2 mass%, More preferably, it is 0.1-1 mass%. When the chlorine content is 0.01 to 2% by mass, the (422) plane or (311) plane orientation of the titanium carbonitride oxide film becomes strong, the columnar crystal form of the film becomes strong, and the average crystal on the film surface. The grain width is reduced, and excellent cutting durability characteristics are realized. When the amount of chlorine is less than 0.01% by mass, the effect of elemental chlorine does not appear. When the amount of chlorine exceeds 2% by mass, the hardness of the titanium carbonitride oxide film decreases and the tool wear resistance decreases. When the amount of chlorine is 0.1 to 1% by mass, the effect of elemental chlorine is more remarkable, and the orientation of the (422) plane or (311) plane of the titanium carbonitride oxide film is further enhanced and at the same time the wear resistance is further improved. In addition, superior cutting durability characteristics are realized.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
In the coated tool of the present invention, the identification of the X-ray diffraction peak of the titanium carbonitride oxide (TiCNO) film is not described in the JCPDS file (Powder Diffraction File Published by JCPDS International Diffraction Data). The diffraction data (ASTM files No. 29-1361 and No. 38-1420) and the numerical values in Table 1 obtained from the X-ray diffraction pattern obtained by actually measuring the product of the present invention were used. Further, the X-ray diffraction intensity I0 of titanium carbonitride oxide was assumed to be the same as the X-ray diffraction intensity I0 of TiC shown in Table 2.
[0017]
[Table 1]
Figure 0003808648
[0018]
[Table 2]
Figure 0003808648
[0019]
In order to manufacture the coated tool of the present invention, a known film forming method can be employed. For example, a normal chemical vapor deposition method (thermal CVD), a chemical vapor deposition method with plasma (PACVD), an ion plating method, or the like can be used. The application is not limited to a cutting tool, but may be a wear-resistant material, a mold, a molten metal part, or the like coated with a single or multilayer hard film including a titanium carbonitride oxide film.
[0020]
In the coated tool of the present invention, the titanium carbonitride oxide film is not limited to TiCNO. For example, a film obtained by adding 0.3 to 10% by weight of one or more of Cr, Zr, Ta, Mg, Y, Si, and B to TiCNO may be used. If the amount is less than 0.3% by weight, the effect of adding these does not appear. If the amount exceeds 10% by weight, the effect of wear resistance and high toughness of the TiCNO film is lowered.
The titanium carbonitride film is CH Three CN and TiCl Four And CO 2 The film is not limited to a film formed by reacting a mixed gas of CO. Four , N 2 TiCl Four And CO 2 Alternatively, a TiCNO film formed by reacting with a mixed gas of CO may be used.
In the coated tool of the present invention, the upper film of the titanium carbonitride oxide film is not limited to a TiC film, a TiCO film, or a TiCNO film. For example, TiN film, TiCN film, or CH as source gas Three N without using CN gas 2 Another film such as a TiCNO film formed using a gas may be used. Furthermore, for example, a film obtained by adding 0.3 to 10% by weight of one or more of Cr, Zr, Ta, Mg, Y, Si, and B to TiC may be used. If the amount is less than 0.3% by weight, the effect of adding these does not appear. If the amount exceeds 10% by weight, the wear resistance of the TiC film becomes less effective. It is also effective to directly form the following oxide film mainly composed of aluminum oxide on the titanium carbonitride oxide film.
In addition, the above-described film is allowed to contain, for example, up to several mass% of inevitable impurities as long as the effects of the present invention are not lost.
Further, the base film is not limited to TiN, and for example, a case where a TiC film and / or a TiCN film is formed as the base film is also included in the present invention.
[0021]
As the aluminum oxide film to be coated on the coated tool of the present invention, a κ-type aluminum oxide single-phase film or an α-type aluminum oxide single-phase film can be used. Alternatively, a mixed film of κ-type aluminum oxide and α-type aluminum oxide may be used. Alternatively, a mixed film made of κ-type aluminum oxide and / or α-type aluminum oxide and at least one of γ-type aluminum oxide, θ-type aluminum oxide, δ-type aluminum oxide, and χ-type aluminum oxide may be used. Alternatively, a mixed film of aluminum oxide and another oxide typified by zirconium oxide or the like may be used.
[0022]
In the coated tool of the present invention, the titanium carbonitride oxide film, the titanium carbonitride film, the titanium carbide film, the titanium carbonate film, the titanium carbonitride oxide film, and the aluminum oxide film do not necessarily need to be the outermost film. At least one titanium compound (for example, a TiN film, a TiCN film, or a multilayer film combining the films) may be coated thereon.
[0023]
Next, although the coated tool of this invention is concretely demonstrated by an Example, this invention is not limited by these Examples.
[0024]
Example 1
A throwaway insert type cemented carbide substrate for a cutting tool composed of WC 72%, TiC 8%, (Ta, Nb) C 11%, and Co 9% in mass% is set in a CVD furnace, and chemical vapor deposition is performed on the surface. A TiN film having a thickness of 0.3 .mu.m was first formed at 900.degree. C. by using the H.sub.2 carrier gas, TiCl.sub.4 gas and N.sub.2 gas as raw material gases. Subsequently, at 750 to 980 ° C., the TiCl4 gas is 0.5 to 2.5 vol%, the CH3CN gas is 0.5 to 2.5 vol%, the N2 gas is 25 to 45 vol%, and the mixed gas of CO2 and CO is 0.5. A source gas composed of 10 vol% and remaining H2 carrier gas was flowed in a CVD furnace at a rate of 5500 ml per minute, and a 6 μm thick TiCNO film was formed by reacting under a film forming pressure of 20 to 100 Torr. After that, TiCl4 gas, CH4 gas, and H2 carrier gas were flown at a total of 2,200 ml / min for 60 minutes at 950 to 1020 ° C., and the film was further continuously added to this constituent gas at 2.2 to 550 ml / min. A film made of titanium carbide and carbonate was prepared by adding a mixed gas of CO2 and CO for 5 to 30 minutes. Subsequently, AlCl3 gas generated by flowing 310 ml / min of H2 gas and 130 ml / min of HCl gas through a small tube filled with Al metal pieces and kept at 350 ° C., 500 ml of a mixed gas of CO2 and CO, 2 l / min of H2 gas. / Min was allowed to flow in a CVD furnace and reacted at 1010 to 1020 ° C. for 2 hours to form an aluminum oxide film having a predetermined thickness.
[0025]
FIG. 1 shows an X-ray diffractometer (RU-200BH) manufactured by Rigaku Denki Co., Ltd., with a film portion of a typical tool side flat portion of the product of the present invention produced under the conditions of Example 1 as a sample surface. It is an X-ray diffraction pattern measured in the range of 2θ = 10 to 145 degrees by the 2θ-θ scanning method. CuKα1 ray (λ = 0.15405 nm) was used as an X-ray source, and noise (background) was removed by software built in the apparatus.
Table 2 summarizes the 2θ value of each peak of the titanium carbonitride oxide (TiCNO) film of the present invention, the X-ray diffraction intensity, and the lattice constant obtained from each 2θ value, obtained from the X-ray diffraction pattern of FIG. Indicated. The identification of the X-ray diffraction peak of titanium carbonitride oxide was carried out with respect to the X-ray diffraction peak position of the titanium carbonitride film obtained in Japanese Patent Application No. 10-76561 and the WC X-ray diffraction peaks before and after that (ASTM file No. 25- 1047), X-ray diffraction peak of TiC (No. 32-1383), TiN X-ray diffraction peak (No. 38-1420), X-ray diffraction peak of κ-type aluminum oxide (No. 4-878) The α-type aluminum oxide (No. 10-173) was determined in consideration of the positional relationship with the X-ray diffraction peak and the like.
From Table 3, it can be seen that the X-ray diffraction peak positions calculated on the assumption that the crystal structure of the titanium carbonitride oxide film is cubic and the lattice constant is 0.429 nm agree well with the actually measured values of the product of the present invention. The cubic index determined at each X-ray diffraction peak is shown in the right column of Table 3. The X-ray diffraction peak position on the (111) plane had a large measurement error because 2θ was a low angle and was excluded from the calculation of the lattice constant. The (400) plane had a weak X-ray diffraction peak and was difficult to read. Further, since the (511) plane had a low X-ray diffraction peak intensity and a wide peak width, it was difficult to read 2θ values.
Similarly, as a result of measuring the lattice constant of other titanium carbonitride films of the present invention, the lattice constant of the present invention was in the range of 0.428 to 0.431 nm.
[0026]
[Table 3]
Figure 0003808648
[0027]
From FIG. 1 and Table 3, the X-ray diffraction intensity I (hkl) of the titanium carbonitride oxide film of the present invention is the strongest in the (422) plane, the (311) plane, and then the (111) plane. I understand that it is strong.
[0028]
FIG. 2 is a photograph obtained by photographing a fracture surface of a film portion of a typical coated tool of the present invention with a scanning electron microscope (SEM), and FIG. 3 is a method for measuring the average grain width of the titanium carbonitride oxide film surface portion. This corresponds to FIG. Since the product of the present invention is a throw-away insert type cutting tool, the film thickness of titanium carbonitride and the average crystal grain width on the surface were measured at the honing part of the tool edge, which is most important during cutting. As shown in FIG. 3, the average crystal grain width on the surface of the titanium carbonitride oxide film draws a horizontal line in the vicinity of the surface of the titanium carbonitride oxide film parallel to the surface of the substrate (substrate), and from the number of crystal grains contained in the horizontal line. It calculated | required using (1) Formula.
Average crystal grain width = measured length 17 μm / number of crystal grains within the measured length (1)
By this measurement method, it was confirmed that the titanium carbonitride oxide film of the present invention shown in FIG. 2 has a film thickness of 13 μm and an average crystal grain width of 0.4 μm.
[0029]
The film cross section of the product of the present invention is polished, and the oxygen amount and chlorine amount contained in 5 points in the polished surface of the titanium carbonitride oxide film cross section are measured with an electron probe microanalyzer (EPMA, JXA-8900R manufactured by JEOL Ltd.) As a result of analysis at an accelerating voltage of 15 KV and a sample current of 0.2 μA, the 5-point average oxygen content was 0.62 mass% and the chlorine content was 0.58 mass%.
[0030]
Table 4 shows the X-ray diffraction intensity strongest surface, film thickness and average crystal grain width, and oxygen content in the film (mass by mass) of the representative titanium carbonitride oxide film of the present invention produced in Example 1, measured in the same manner. %), The amount of chlorine in the film (% by mass), the tool life during continuous cutting described later, and the number of possible intermittent cuttings are collectively shown. The film thickness was rounded to the first decimal place, and the average grain width was rounded to the second decimal place.
From Table 4, the strongest X-ray diffraction intensity surface of the titanium carbonitride oxide film of the present invention is the (311) plane or (422) plane, and the average crystal grain width is when the film thickness is less than 5 μm. When the film thickness is 0.3 μm or less, the film thickness is 5 μm or more and less than 10 μm, it is 0.6 μm or less, and when the film thickness is 10 μm or more, it is 1 μm or less. Moreover, it turns out that the oxygen amount in the titanium carbonitride oxide film | membrane of this invention product is 0.05-3 mass%, and the chlorine amount is 0.01-2 mass%.
[0031]
[Table 4]
Figure 0003808648
[0032]
In Table 4, the continuous cutting life is the continuous cutting under the following conditions using 5 cutting tools manufactured under the conditions of Example 1, the average flank wear amount is 0.4 mm, and the crater wear is 0.1 mm. The time which reached either was determined as the continuous cutting life.
Work Material S53C (HS35)
Cutting speed 200m / min
Feed 0.3mm / rev
Notch 2.0mm
Uses water-soluble cutting oil
From Table 4, the product of the present invention has a long continuous cutting life of 20 minutes when the film thickness of titanium carbonitride oxide is 2 μm, and the tool life also increases in proportion to the increase in film thickness. It turns out that it is excellent in durability at the time. In the case of Table 4, the film thickness T (μm) of titanium carbonitride oxide and the tool life L (minute) are L = 3.58T + 19.35, R 2 = 0.91.
[0033]
In addition, the number of intermittent cuttings shown in Table 4 was evaluated by using the five cutting tools manufactured under the conditions of Example 1 to perform intermittent cutting under the following conditions and leading to chipping. The chipping state of the blade tip was observed with a stereomicroscope with a magnification of 50 times.
Work Material S53C Groove Material (HS38)
Cutting conditions 220 m / min
Feeding 0.2 mm / rev
Notch 2.0 mm
Cutting fluid not used (dry cutting)
When the thickness of the titanium carbonitride oxide film is 2 μm, the product of the present invention has a good cutting edge even after intermittent cutting up to 5000 times, no defect is found, and is excellent in durability during intermittent cutting as a cutting tool. Recognize.
[0034]
Next, it can be seen from Table 4 that all of the products of the present invention have a continuous cutting life of 20 minutes or longer, can perform intermittent cutting 1000 times or more, and have excellent cutting durability characteristics.
In addition, No. having a film thickness of 4 μm. Nos. 2 and 3 and No. 1 with a film thickness of 9 μm. Nos. 7 to 14 of the present invention and No. 7 having a film thickness of 15 μm. From the cutting test results of the present invention products of 18-20, especially the intermittent cutting test results, when the film thickness is less than 5 μm, the average grain width is 0.2 μm or less, and when the film thickness is 5 μm or more and less than 10 μm, 0.4 μm. Hereinafter, it can be seen that when the film thickness is 10 μm or more, the cutting durability characteristics are particularly excellent at 0.6 μm or less.
Further, for example, No. 9 having a film thickness of 9 μm. The number of intermittent cuts of 8-10 is No. 7 and no. By comparing with the number of intermittent cuttings of 11 to 14, when the oxygen content in the titanium carbonitride oxide film is 0.1 to 2% by mass, the cutting durability characteristics are particularly excellent, and 0.3 to 1% by mass It can be seen that at the time of cutting, the cutting durability characteristics are further excellent.
Further, for example, No. 9 having a film thickness of 9 μm. The number of intermittent cuts of 8-11 is No. 7 and no. By comparing with the number of intermittent cuttings of 12 to 14, it can be seen that the cutting durability characteristics are particularly excellent when the amount of chlorine in the titanium carbonitride oxide film is 0.1 to 1% by mass.
[0035]
(Conventional example 1)
In order to clarify the influence on the cutting durability characteristics due to the difference in the orientation, average crystal grain width, and oxygen element content of the titanium carbonitride oxide film, as in the present invention product, WC 72%, TiC 8%, ( A throwaway insert type cemented carbide substrate for cutting tools composed of Ta, Nb) C11% and Co9% is set in a CVD furnace, and H2 carrier gas, TiCl4 gas and N2 gas are formed on the surface by chemical vapor deposition. A TiN film having a thickness of 0.3 μm was first formed at 900 ° C. Subsequently, TiCl4 gas is 0.5 to 2.5 vol%, CH3CN gas is 0.5 to 2.5 vol%, N2 gas is 25 to 45 vol%, and the source gas composed of the remaining H2 carrier gas is only 5500 ml per minute. By flowing in a CVD furnace and reacting at a film forming temperature of 750 to 980 ° C. and a film forming pressure of 20 to 100 Toor, a 6 μm thick TiCN film, or TiCl 4 gas, CH 3 CN gas, N 2 gas, and CO 2 in the same range amount are used. A source gas composed of 0.5 to 10 vol% of a mixed gas of CO and CO and a residual H2 carrier gas is allowed to flow in a CVD furnace at a rate of 5500 ml per minute and reacted at a film forming temperature of 980 to 1020 ° C. and a film forming pressure of 20 to 100 Toor. As a result, a TiCNO film having a thickness of 6 μm was formed.
After that, TiCl4 gas, CH4 gas, and H2 carrier gas were flowed at a total of 2,200 ml / min for 60 minutes at 950 to 1020 ° C., and the film was continuously added to this constituent gas as 2.2 to 110 ml / min. A film made of titanium carbide and carbonate was prepared by adding CO2 gas and forming a film for 5 to 30 minutes. Subsequently, AlCl3 gas, H2 gas 2 l / min, CO2 and CO mixed gas 500 ml generated by flowing 310 ml / min of H2 gas and 130 ml / min of HCl gas into a small tube filled with Al metal pieces and kept at 350 ° C. / Min was allowed to flow in a CVD furnace and reacted at 1010 to 1020 ° C. for 2 hours to form an aluminum oxide film having a predetermined thickness to produce a conventional product.
[0036]
The X-ray diffraction maximum intensity surface of the manufactured conventional example product was not the (422) plane or the (311) plane but the (220) plane or the (111) plane.
[0037]
4 (a) and 4 (b) are the same conditions as the coated tool produced in the conventional example, and after forming a titanium nitride film and a titanium carbonitride oxide film on the surface of the cemented carbide substrate for a cutting tool, It is the photograph which image | photographed the torn surface and the film | membrane surface part with the scanning electron microscope apparatus (SEM). In this case, a titanium carbide film, a titanium carbonate film, and an aluminum oxide film are not formed on the surface of the titanium carbonitride oxide film. 4 (a) and 4 (b), coarse crystal grains are generated in the conventional titanium oxycarbonitride film, and locally large protrusions are formed on the surface of the titanium oxycarbonitride film. In addition, it can be seen that the surface of the crystal grain is smooth with few irregularities, and the possibility of poor adhesion of the upper layer film is high. The film thickness of the titanium carbonitride oxide film measured from the film fracture surface of FIG. 4B is 9 μm, and the average crystal grain width on the film surface is 0.7 μm. The average crystal grain size measured from the SEM photograph of the film surface in FIG. 4A is 1.4 μm, and the average crystal grain width measured from the film fracture surface is the average crystal grain measured from the film surface. It can be seen that it is about half the diameter.
[0038]
Table 5 shows the X-ray diffraction maximum intensity surface, the film thickness and the average crystal grain width, and the film constituting the second layer of the conventional titanium carbonitride film or titanium carbonitride oxide film, measured in the same manner as the product of the present invention. This table summarizes the distinction between a titanium carbonitride film or a titanium carbonitride oxide film, and the tool life during continuous cutting and the number of possible intermittent cuts.
From Table 5, the average crystal grain width of the conventional titanium carbonitride film or titanium carbonitride oxide film exceeds 0.3 μm when the film thickness is less than 5 μm, and exceeds 0.6 μm when the film thickness is 5 μm or more and less than 10 μm. It can be seen that when the film thickness is 10 μm or more, it exceeds 1 μm. It can also be seen that the X-ray diffraction maximum intensity surface of the titanium carbonitride oxide film is the (220) plane or the (111) plane.
[0039]
[Table 5]
Figure 0003808648
[0040]
Table 5 also shows the results of a cutting test under the same conditions as in Example 1 using five cutting tools manufactured under the conditions of Conventional Example 1.
It can be seen that each of the conventional products is much shorter than the continuous cutting life time of the product of the present invention shown in Table 4 at each film thickness and is inferior to the product of the present invention. In particular, the number of intermittent cuttings is as short as less than 1000, and it can be seen that the cutting durability characteristics of the conventional products are inferior to those of the present invention.
[0041]
【The invention's effect】
As described above, according to the present invention, the titanium carbonitride oxide film The film thickness is 2 to 18 μm, the X-ray diffraction peak maximum intensity surface is the (422) plane or the (311) plane, and the oxygen amount in the titanium carbonitride oxide film is 0.05 to 3 0.02 mass%, Since the crystallinity is high and the film surface is rich in undulations, and the average grain width of the titanium carbonitride oxide film is small, the mechanical strength of the titanium carbonitride oxide film itself and the adhesion with the upper layer film are good, A useful titanium carbonitride oxide coated tool having excellent cutting durability characteristics can be realized.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of an X-ray diffraction pattern of a titanium carbonitride oxide-coated tool according to the present invention.
FIG. 2 is a diagram showing an example of a structure photograph of a ceramic material of a titanium carbonitride oxide-coated tool according to the present invention.
FIG. 3 is a schematic view showing a method for measuring an average crystal grain width of a titanium carbonitride oxide-coated tool according to the present invention.
FIG. 4 is a structural photograph of a ceramic material of a titanium carbonitride oxide-coated tool according to a conventional example.

Claims (4)

基体表面に周期律表のIVa、Va、VIa族金属の炭化物、窒化物、炭窒化物、炭酸化物、窒酸化物、炭窒酸化物、並びに酸化アルミニウムのいずれか一種の単層皮膜または二種以上の多層皮膜を有し、該単層皮膜または該多層皮膜中の少なくとも一層が炭窒酸化チタン膜からなる炭窒酸化チタン被覆工具において、前記炭窒酸化チタン膜の膜厚が2〜18μmであり、前記炭窒酸化チタン膜のX線回折ピーク最強度面が、(422)面または(311)面であり、前記炭窒酸化チタン膜中の酸素量が0.05〜3.02質量%であることを特徴とする炭窒酸化チタン被覆工具。  Single-layer film or two kinds of carbide, nitride, carbonitride, carbonate, nitride oxide, carbonitride oxide, and aluminum oxide of group IVa, Va, and VIa metals of the periodic table on the substrate surface In the titanium carbonitride oxide-coated tool having the above multilayer coating, wherein at least one layer of the single layer coating or the multilayer coating is composed of a titanium carbonitride oxide film, the thickness of the titanium carbonitride oxide film is 2 to 18 μm. The maximum intensity surface of the X-ray diffraction peak of the titanium carbonitride oxide film is the (422) plane or the (311) plane, and the oxygen amount in the titanium carbonitride oxide film is 0.05 to 3.02 mass%. A titanium carbonitride-coated tool characterized by the above. 前記炭窒酸化チタン膜の結晶構造が立方晶であり、格子定数が0.428〜0.431nmであり、且つ、前記炭窒酸化チタン被覆工具の皮膜部の破断面において、前記炭窒酸化チタン膜表面側の界面直下に、その少なくとも一部が該界面に接しかつ基体表面に平行である直線を引き、該直線の長さを該直線内に含まれる結晶粒数で除することにより求めた前記炭窒酸化チタン膜の平均結晶粒幅が、前記炭窒酸化チタン膜の膜厚が2μm以上5μm未満の時は0.3μm以下、膜厚が5μm以上10μm未満の時は0.6μm以下、膜厚が10μm以上の時は1μm以下である請求項1に記載の炭窒酸化チタン被覆工具。The crystal structure of the titanium carbonitride oxide film is cubic, the lattice constant is 0.428 to 0.431 nm, and the titanium carbonitride oxide film is formed on the fracture surface of the coating portion of the titanium carbonitride oxide-coated tool. A straight line that is at least partially in contact with the interface and parallel to the substrate surface is drawn immediately below the interface on the film surface side, and the length of the straight line is divided by the number of crystal grains contained in the straight line. The average grain width of the titanium carbonitride oxide film is 0.3 μm or less when the thickness of the titanium carbonitride oxide film is 2 μm or more and less than 5 μm, and 0.6 μm or less when the film thickness is 5 μm or more and less than 10 μm. The titanium carbonitride oxide-coated tool according to claim 1, which is 1 μm or less when the film thickness is 10 μm or more. 前記炭窒酸化チタン被覆工具の皮膜部の破断面において、前記炭窒酸化チタン膜表面側の界面直下に、その少なくとも一部が該界面に接しかつ基体表面に平行である直線を引き、該直線の長さを該直線内に含まれる結晶粒数で除することにより求めた前記炭窒酸化チタン膜の平均結晶粒幅が、前記炭窒酸化チタン膜の膜厚が2μm以上5μm未満の時は0.3μm以下、膜厚が5μm以上10μm未満の時は0.6μm以下、膜厚が10μm以上の時は1μm以下である請求項1に記載の炭窒酸化チタン被覆工具。In the fracture surface of the coating part of the titanium carbonitride oxide-coated tool, a straight line is drawn immediately below the interface on the titanium carbonitride oxide film surface side, at least part of which is in contact with the interface and parallel to the substrate surface, When the average crystal grain width of the titanium carbonitride oxide film obtained by dividing the length of the film by the number of crystal grains contained in the straight line is 2 μm or more and less than 5 μm 2. The titanium carbonitride oxide-coated tool according to claim 1, which is 0.3 μm or less, 0.6 μm or less when the film thickness is 5 μm or more and less than 10 μm, and 1 μm or less when the film thickness is 10 μm or more. 前記炭窒酸化チタン膜中の塩素量が0.01〜2質量%である請求項2または3のいずれかに記載の炭窒酸化チタン被覆工具。  4. The titanium carbonitride oxide-coated tool according to claim 2, wherein the amount of chlorine in the titanium carbonitride oxide film is 0.01 to 2 mass%.
JP35070098A 1998-11-25 1998-11-25 Titanium carbonitride film coating tool Expired - Fee Related JP3808648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35070098A JP3808648B2 (en) 1998-11-25 1998-11-25 Titanium carbonitride film coating tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35070098A JP3808648B2 (en) 1998-11-25 1998-11-25 Titanium carbonitride film coating tool

Publications (2)

Publication Number Publication Date
JP2000158209A JP2000158209A (en) 2000-06-13
JP3808648B2 true JP3808648B2 (en) 2006-08-16

Family

ID=18412262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35070098A Expired - Fee Related JP3808648B2 (en) 1998-11-25 1998-11-25 Titanium carbonitride film coating tool

Country Status (1)

Country Link
JP (1) JP3808648B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013031952A1 (en) 2011-08-31 2013-03-07 三菱マテリアル株式会社 Surface-coated cutting tool

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4616213B2 (en) * 2001-06-19 2011-01-19 株式会社神戸製鋼所 Hard coating for cutting tools
JP4951101B2 (en) * 2001-06-19 2012-06-13 株式会社神戸製鋼所 Method for producing hard coating with excellent wear resistance
WO2005099945A1 (en) 2004-04-13 2005-10-27 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool
JP4888771B2 (en) * 2006-11-17 2012-02-29 三菱マテリアル株式会社 Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP2008173737A (en) * 2007-01-22 2008-07-31 Hitachi Tool Engineering Ltd Aluminum oxide coated tool
JP2009095907A (en) * 2007-10-15 2009-05-07 Sumitomo Electric Hardmetal Corp Blade edge replaceable cutting chip
JP5110377B2 (en) * 2008-03-28 2012-12-26 三菱マテリアル株式会社 Surface coated cutting tool
JP5110376B2 (en) * 2008-03-28 2012-12-26 三菱マテリアル株式会社 Surface coated cutting tool
JP5472529B2 (en) * 2011-03-31 2014-04-16 日立ツール株式会社 Hard film coating member and blade-tip-exchange-type rotary tool having the same
EP2604720A1 (en) * 2011-12-14 2013-06-19 Sandvik Intellectual Property Ab Coated cutting tool and method of manufacturing the same
JP6039481B2 (en) * 2013-03-27 2016-12-07 京セラ株式会社 Surface covering member
JP6548072B2 (en) * 2014-05-30 2019-07-24 三菱マテリアル株式会社 Surface coated cutting tool

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013031952A1 (en) 2011-08-31 2013-03-07 三菱マテリアル株式会社 Surface-coated cutting tool
US9636748B2 (en) 2011-08-31 2017-05-02 Mitsubishi Materials Corporation Surface-coated cutting tool

Also Published As

Publication number Publication date
JP2000158209A (en) 2000-06-13

Similar Documents

Publication Publication Date Title
RU2062260C1 (en) Sintered article
JP3678924B2 (en) Aluminum oxide coated tool
JP3418066B2 (en) Alumina-coated tool and manufacturing method thereof
US9945029B2 (en) Coated cutting tool and method of manufacturing the same
JP4004133B2 (en) Titanium carbonitride coated tool
US20040144302A1 (en) Oxide coated cutting tool
KR20120073322A (en) Coated tool
JP4832108B2 (en) Surface coated cutting tool
JP3808648B2 (en) Titanium carbonitride film coating tool
JP6519057B2 (en) Method of manufacturing surface coated cutting tool
JP3560303B2 (en) Aluminum oxide coated tool and method of manufacturing the same
JP3768136B2 (en) Coated tool
JP3962300B2 (en) Aluminum oxide coated tool
JP6786763B1 (en) Cutting tools
JP3901477B2 (en) Aluminum oxide coated tool
JP3678945B2 (en) Titanium carbonitride coated tool
JP3910881B2 (en) Oxide coating tool
JPH11335870A (en) Titanium carbonitride-aluminum oxide-coated tool
JP4022042B2 (en) Coated tool and manufacturing method thereof
JPH11114704A (en) Titanium-carbide-covered tool
JP2001170804A (en) Tool for applying film including zirconium
JP3347031B2 (en) Titanium carbide coated tool
JP3818961B2 (en) Aluminum oxide coated tools
JP7009718B1 (en) Cutting tools
JP7301970B2 (en) Coated tool and cutting tool with the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040723

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050722

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060123

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060518

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees