JP4888771B2 - Surface coated cutting tool with excellent chipping resistance due to hard coating layer - Google Patents

Surface coated cutting tool with excellent chipping resistance due to hard coating layer Download PDF

Info

Publication number
JP4888771B2
JP4888771B2 JP2006312095A JP2006312095A JP4888771B2 JP 4888771 B2 JP4888771 B2 JP 4888771B2 JP 2006312095 A JP2006312095 A JP 2006312095A JP 2006312095 A JP2006312095 A JP 2006312095A JP 4888771 B2 JP4888771 B2 JP 4888771B2
Authority
JP
Japan
Prior art keywords
layer
phase
mixed oxide
hard coating
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006312095A
Other languages
Japanese (ja)
Other versions
JP2008126342A (en
Inventor
興平 冨田
晃 長田
惠滋 中村
尚志 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2006312095A priority Critical patent/JP4888771B2/en
Publication of JP2008126342A publication Critical patent/JP2008126342A/en
Application granted granted Critical
Publication of JP4888771B2 publication Critical patent/JP4888771B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Description

この発明は、各種の鋼や鋳鉄などの被削材の切削加工を、高い発熱を伴うとともに切刃に断続的かつ衝撃的な高負荷がかかる高速断続切削条件で行った場合にも、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   The present invention provides a hard coating even when cutting various materials such as steel and cast iron under high-speed intermittent cutting conditions that cause high heat generation and intermittent and impactful loads on the cutting edge. The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent chipping resistance.

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、硬質被覆層として、
(a)下部層が、Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなるTi化合物層、
(b)上部層が、化学蒸着した状態でα型またはκ型の結晶構造の酸化アルミニウム(以下、Alで示す)と酸化ジルコニウム(以下、ZrOで示す)の2相混合酸化物組織を有し、かつ、0.1〜10重量%のZrOがAl素地に分散した2相混合酸化物層(以下、単に「従来2相混合酸化物層」という)、
を蒸着形成してなる被覆工具が、例えば各種の鋼や鋳鉄などの切削加工に用いられることは良く知られている。
Conventionally, generally on the surface of a substrate (hereinafter collectively referred to as a tool substrate) composed of a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet. As a hard coating layer,
(A) The lower layer is a Ti carbide (hereinafter referred to as TiC) layer, a nitride (hereinafter also referred to as TiN) layer, a carbonitride (hereinafter referred to as TiCN) layer, a carbon oxide (hereinafter referred to as TiCO). And a Ti compound layer composed of one or more of a carbonitride oxide (hereinafter referred to as TiCNO) layer,
(B) Two-phase mixed oxide of aluminum oxide (hereinafter referred to as Al 2 O 3 ) and zirconium oxide (hereinafter referred to as ZrO 2 ) having an α-type or κ-type crystal structure in a state where the upper layer is chemically vapor-deposited A two-phase mixed oxide layer having a structure and 0.1 to 10% by weight of ZrO 2 dispersed in an Al 2 O 3 substrate (hereinafter simply referred to as “conventional two-phase mixed oxide layer”),
It is well known that a coated tool formed by vapor-depositing is used for cutting various steels and cast irons, for example.

また、上記の従来被覆工具において、硬質被覆層の下部層を構成するTi化合物層のTiCN層を、層自身の強度向上を目的として、通常の化学蒸着装置にて、反応ガスとして有機炭窒化物を含む混合ガスを使用し、700〜950℃の中温温度域で化学蒸着することにより形成して縦長成長結晶組織をもつようにすることも知られている。
特開2001−38504号公報 特開平6−8010号公報
Further, in the conventional coated tool, the TiCN layer of the Ti compound layer constituting the lower layer of the hard coating layer is formed as an organic carbonitride as a reaction gas in a normal chemical vapor deposition apparatus for the purpose of improving the strength of the layer itself. It is also known to form a vertically elongated crystal structure by chemical vapor deposition at a medium temperature range of 700 to 950 ° C. using a mixed gas containing benzene.
JP 2001-38504 A Japanese Patent Laid-Open No. 6-8010

近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高速化の傾向にあるが、上記の従来被覆工具においては、これを鋼や鋳鉄などの通常の条件での連続切削加工や断続切削加工に用いた場合には問題はないが、特にこれを高い発熱を伴うと共に、切刃に断続的かつ衝撃的な高負荷がかかる高速断続切削加工に用いた場合には、硬質被覆層の上部層を構成する従来2相混合酸化物層における粒界強度が十分でないために、そこから生じたクラックによりチッピングが発生しやすくなり、これが原因で比較的短時間で使用寿命に至るのが現状である。   In recent years, the performance of cutting machines has been remarkable. On the other hand, there has been a strong demand for labor saving and energy saving and further cost reduction for cutting work. In the case of tools, there is no problem when this is used for continuous or intermittent cutting under normal conditions such as steel or cast iron. However, this is accompanied by high heat generation and intermittent and impact on the cutting edge. When used for high-speed intermittent cutting that requires a heavy load, the grain boundary strength in the conventional two-phase mixed oxide layer that constitutes the upper layer of the hard coating layer is not sufficient, so chipping is caused by cracks generated from the grain boundary strength. Is likely to occur, and due to this, the service life is reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、上記の従来2相混合酸化物層が硬質被覆層の上部層を構成する被覆工具に着目し、特に、高速断続切削加工における硬質被覆層の耐チッピング性の向上を図るべく研究を行った結果、
(a)従来被覆工具の硬質被覆層を構成する上部層としての従来2相混合酸化物層は、すぐれた高温硬さと所定の高温強度を備えており、この層は、例えば、通常の化学蒸着装置にて、
反応ガス組成(容量%)
AlCl: 1〜10 %、
ZrCl: 0.01〜10 %、
CO2 : 1〜30 %、
HCl: 1〜30 %、
S: 0.01〜1 %、
2:残り、
(ロ)反応雰囲気温度 : 900〜1050 ℃、
(ハ)反応雰囲気圧力 : 4〜70 kPa
の条件(通常条件という)で、従来被覆工具の下部層であるTi化合物層上に蒸着形成されるが、このような従来2相混合酸化物層からなる上部層では、既に述べたように、Al相とZrO相間の結晶粒界強度が十分でないため、高速断続切削加工において満足できる耐チッピング性を示さないこと。
In view of the above, the present inventors have focused on the coated tool in which the above-described conventional two-phase mixed oxide layer constitutes the upper layer of the hard coating layer, and in particular, the hard coating layer in high-speed intermittent cutting. As a result of research to improve chipping resistance,
(A) The conventional two-phase mixed oxide layer as the upper layer constituting the hard coating layer of the conventional coated tool has excellent high-temperature hardness and a predetermined high-temperature strength. In the device
Reaction gas composition (volume%)
AlCl 3 : 1 to 10%,
ZrCl 4: 0.01~10%,
CO 2: 1~30%,
HCl: 1-30%,
H 2 S: 0.01~1%,
H 2 : Remaining
(B) Reaction atmosphere temperature: 900 to 1050 ° C.
(C) Reaction atmosphere pressure: 4 to 70 kPa
Under the above conditions (referred to as normal conditions), it is formed by vapor deposition on the Ti compound layer which is the lower layer of the conventional coated tool. However, in the upper layer composed of such a conventional two-phase mixed oxide layer, as already described, Since the grain boundary strength between the Al 2 O 3 phase and the ZrO 2 phase is not sufficient, it does not exhibit satisfactory chipping resistance in high-speed intermittent cutting.

(b)そこで、蒸着形成した硬質被覆層の下部層であるTi化合物層上に、通常の化学蒸着装置にて、
(イ)まず、第1段階として、
反応ガス組成(容量%);AlCl:0.1〜0.9%、ZrCl:0.1〜0.3%、HCl:0.1〜1.9%、CO:0.4〜1.2%、H2:残り、
反応雰囲気温度; 950〜960 ℃、
反応雰囲気圧力; 5〜7 kPa、
の条件で、5〜30分コーティングして2相混合酸化物層を形成し、
(ロ)次に、第2段階として、
反応ガス組成(容量%);AlCl:1〜1.8%、ZrCl:0.4〜0.6%、HCl:2〜4%、CO:1.4〜2%、HS:0.05〜0.1%、H2:残り、
反応雰囲気温度; 960〜980 ℃、
反応雰囲気圧力; 8〜10 kPa、
の条件で、5〜30分コーティングして2相混合酸化物層を形成し、
(ハ)最後に第3段階として、
反応ガス組成(容量%);AlCl:1.8〜4%、ZrCl:0.6〜1.2%、HCl:2〜4%、CO:2〜6%、HS:0.1〜0.6%、H2:残り、
反応雰囲気温度; 980〜1100 ℃、
反応雰囲気圧力; 10〜50 kPa、
の条件で、2相混合酸化物層を形成し、
蒸着時の反応ガス組成、反応雰囲気温度および反応雰囲気圧力を上記(イ)〜(ハ)の条件にしたがい段階的に変化させて成膜を行い、2〜15μmの平均層厚の2相混合酸化物層(以下、「改質2相混合酸化物層」という)からなる上部層を形成すると、この条件で形成された上部層は、ZrOがAl素地(α型Alが素地の主体であるが、微量のκ型Alも存在する。)に均一に分散した2相混合酸化物組織を有し、そして、該層におけるAlとの合量に占めるZrの含有割合をX(但し、原子比)とした場合に、X=0.003〜0.2を満足し、また、上記改質2相混合酸化物層における分散相であるZrOは(−111)面に配向した単斜晶を示し、さらに、上記改質2相混合酸化物層における素地を構成するAl相についてX線回折を行った場合、素地の主体であるα型Al相からの(01−12)面からの回折強度I(01−12)の値及び(11−20)面からの回折強度I(11−20)の値は、1番目、2番目に大きい値を示し、かつ、前記回折強度値の比の値I(01−12)/I(11−20)は1〜3の値を示すこと。
なお、上記(01−12)面および(11−20)面とは、それぞれと等価な面を含み、また、回折強度値I(01−12)は、(01−12)面およびそれと等価な面からの回折強度の合計値をいい、回折強度値I(11−20)は、(11−20)面およびそれと等価な面からの回折強度の合計値をいう。
(B) Therefore, on the Ti compound layer, which is the lower layer of the hard coating layer formed by vapor deposition, with a normal chemical vapor deposition apparatus,
(A) First, as the first stage,
Reaction gas composition (volume%); AlCl 3 : 0.1 to 0.9%, ZrCl 4 : 0.1 to 0.3%, HCl: 0.1 to 1.9%, CO 2 : 0.4 to 1.2%, H 2 : remaining,
Reaction atmosphere temperature: 950-960 ° C.
Reaction atmosphere pressure; 5-7 kPa,
Under these conditions, coating for 5 to 30 minutes to form a two-phase mixed oxide layer,
(B) Next, as the second stage,
Reaction gas composition (volume%); AlCl 3: 1~1.8% , ZrCl 4: 0.4~0.6%, HCl: 2~4%, CO 2: 1.4~2%, H 2 S : 0.05~0.1%, H 2: remainder,
Reaction atmosphere temperature; 960-980 ° C.,
Reaction atmosphere pressure; 8-10 kPa,
Under these conditions, coating for 5 to 30 minutes to form a two-phase mixed oxide layer,
(C) Finally, as the third stage,
Reaction gas composition (volume%): AlCl 3 : 1.8 to 4 %, ZrCl 4 : 0.6 to 1.2%, HCl: 2 to 4%, CO 2 : 2 to 6%, H 2 S: 0 .1 to 0.6%, H 2 : remaining,
Reaction atmosphere temperature; 980-1100 ° C.
Reaction atmosphere pressure; 10-50 kPa,
Under the conditions, a two-phase mixed oxide layer is formed,
Two-phase mixed oxidation with an average layer thickness of 2 to 15 μm is performed by changing the reaction gas composition, the reaction atmosphere temperature and the reaction atmosphere pressure during vapor deposition stepwise according to the above conditions (a) to (c). object layer (hereinafter, referred to as "modified two-phase mixed oxide layer") to form a top layer consisting of an upper layer formed in this condition, ZrO 2 is Al 2 O 3 matrix (alpha-type Al 2 O 3 Is a main component of the substrate, but a small amount of κ-type Al 2 O 3 is also present.) Has a uniformly dispersed two-phase mixed oxide structure, and Zr accounts for the total amount of Al in the layer When the content ratio is X (however, the atomic ratio), X = 0.003 to 0.2 is satisfied, and ZrO 2 which is a dispersed phase in the modified two-phase mixed oxide layer is (−111). ) Shows monoclinic crystals oriented in the plane, and further the substrate in the modified two-phase mixed oxide layer If the Al 2 O 3 phase constituting X-ray diffraction was performed, the value of the diffraction intensity from the (01-12) plane of the α-type Al 2 O 3 phase which is mainly the matrix I (01-12) and ( The value of the diffraction intensity I (11-20) from the (11-20) plane shows the first and second largest values, and the value I (01-12) / I (11) of the ratio of the diffraction intensity values. −20) indicates a value of 1 to 3.
The (01-12) plane and the (11-20) plane include planes equivalent to each other, and the diffraction intensity value I (01-12) is equivalent to the (01-12) plane and the same. The diffraction intensity value I (11-20) is the total value of diffraction intensities from the (11-20) plane and its equivalent surface.

(c)上記(b)の化学蒸着条件で蒸着形成された改質2相混合酸化物層からなる上部層は、特に、分散相であるZrO相と素地相であるAl相間の結晶粒界強度が高められ、さらに、潤滑性と耐熱性も高められるため、前記(a)の通常条件で形成された従来被覆工具の従来2相混合酸化物層の備えるすぐれた高温硬さに加えて、さらに、一段とすぐれた高温強度、潤滑性、耐熱性を具備するようになることから、これを硬質被覆層の上部層として備えた硬質被覆層は、高い発熱を伴い断続的かつ衝撃的な高負荷のかかる高速断続切削という厳しい条件下での切削加工に用いた場合にも、従来被覆工具に比して、硬質被覆層が一段とすぐれた耐チッピング性を発揮し、また、長期にわたってすぐれた耐摩耗性を発揮すること。
以上(a)〜(c)に示される研究結果を得たのである。
(C) The upper layer composed of the modified two-phase mixed oxide layer formed by vapor deposition under the chemical vapor deposition conditions of (b) above is particularly between the ZrO 2 phase as a dispersed phase and the Al 2 O 3 phase as a base phase. Since the grain boundary strength is increased and the lubricity and heat resistance are also improved, the excellent high-temperature hardness of the conventional two-phase mixed oxide layer of the conventional coated tool formed under the normal conditions of (a) above. In addition, since it has excellent high-temperature strength, lubricity, and heat resistance, the hard coating layer provided with this as the upper layer of the hard coating layer is intermittent and shocking with high heat generation. Even when used for cutting under severe conditions such as high-speed interrupted cutting with a heavy load, the hard coating layer exhibits superior chipping resistance compared to conventional coated tools, and it is superior over a long period of time. Demonstrate wear resistance.
The research results shown in (a) to (c) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、
「炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a)下部層が、3〜20μmの全体平均層厚を有するTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなるTi化合物層、
(b)上部層が、2〜15μmの平均層厚および化学蒸着された状態で六方晶の結晶構造を有するα型酸化アルミニウムを主体とする酸化アルミニウム相と酸化ジルコニウム相の2相混合酸化物層からなり、該混合酸化物におけるジルコニウムの含有割合は、アルミニウムとの合量に対して0.003〜0.2(但し、原子比)であり、また、該混合酸化物層において、(−111)面に配向した単斜晶の酸化ジルコニウム相が酸化アルミニウム相中に均一に分散し、さらに、酸化アルミニウム相についてX線回折を行ったときのα型酸化アルミニウムの(01−12)面からの回折強度I(01−12)の値及び(11−20)面からの回折強度I(11−20)の値が1番目、2番目に大きい回折強度値を示し、かつ、前記回折強度値の比の値I(01−12)/I(11−20)が1〜3の値を満足する酸化アルミニウム相と酸化ジルコニウム相の2相混合酸化物層、
以上(a)、(b)で構成された硬質被覆層を蒸着形成してなる、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具(被覆工具)。」
に特徴を有するものである。
This invention was made based on the above research results,
“On the surface of the tool base made of tungsten carbide base cemented carbide or titanium carbonitride base cermet,
(A) The lower layer is one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer, and carbonitride oxide layer having an overall average layer thickness of 3 to 20 μm. A Ti compound layer comprising:
(B) The upper layer is a two-phase mixed oxide layer of an aluminum oxide phase and a zirconium oxide phase mainly composed of α-type aluminum oxide having an average layer thickness of 2 to 15 μm and a chemical vapor deposited state and having a hexagonal crystal structure The content ratio of zirconium in the mixed oxide is 0.003 to 0.2 (however, atomic ratio) with respect to the total amount with aluminum. In the mixed oxide layer, (−111 ) The monoclinic zirconium oxide phase oriented in the plane is uniformly dispersed in the aluminum oxide phase. Further, the X-ray diffraction of the aluminum oxide phase from the (01-12) plane of the α-type aluminum oxide The value of the diffraction intensity I (01-12) and the value of the diffraction intensity I (11-20) from the (11-20) plane indicate the first and second largest diffraction intensity values, and ratio The value I (01-12) / I (11-20) is a two-phase mixed oxide layer of aluminum oxide phase and the zirconium oxide phase which satisfies a value of 1 to 3,
A surface-coated cutting tool (coated tool) which is formed by vapor-depositing the hard coating layer composed of (a) and (b) and exhibits excellent chipping resistance. "
It has the characteristics.

以下に、この発明の被覆工具の硬質被覆層の構成層について、より詳細に説明する。
(a)下部層(Ti化合物層)
Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなるTi化合物層は、硬質被覆層の下部層として存在し、自身の具備するすぐれた高温強度によって硬質被覆層の高温強度向上に寄与するほか、工具基体と改質2相混合酸化物層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する接合強度を向上させる作用を有するが、その平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方その平均層厚が20μmを越えると、特に高熱発生を伴う高速断続切削では熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その平均層厚を3〜20μmと定めた。
Below, the constituent layer of the hard coating layer of the coated tool of this invention is demonstrated in detail.
(A) Lower layer (Ti compound layer)
Ti compound layer composed of one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer, and carbonitride layer exists as a lower layer of the hard coating layer, In addition to contributing to improving the high temperature strength of the hard coating layer due to its excellent high temperature strength, it adheres firmly to both the tool base and the modified two-phase mixed oxide layer, so that the hard coating layer is bonded to the tool base. Although it has an effect of improving the strength, if the average layer thickness is less than 3 μm, the above-mentioned effect cannot be sufficiently exhibited. On the other hand, if the average layer thickness exceeds 20 μm, particularly in high-speed intermittent cutting with high heat generation. Since it becomes easy to cause thermoplastic deformation, which causes uneven wear, the average layer thickness was determined to be 3 to 20 μm.

(b)上部層(改質2相混合酸化物層)
化学蒸着された状態で六方晶の結晶構造を有するα型酸化アルミニウムを主体とする酸化アルミニウム相と酸化ジルコニウム相の改質2相混合酸化物層の構成成分であるAl成分は、層の高温硬さおよび耐熱性を向上させ、同Zr成分は、層中に微量(Alとの合量に占める割合で、Zr/(Al+Zr)が0.003〜0.2(但し、原子比))含有されることにより、上部層(改質2相混合酸化物層)の高温強度、潤滑性、耐熱性の向上に寄与するが、Zr成分の含有割合が0.003未満では、上記作用を期待することはできず、一方、Zr成分の含有割合が0.2を超えた場合には、酸化ジルコニウム相が粗大化し、欠損が生じやすくなるため、Al成分との合量に占めるZr成分の含有割合(Zr/(Al+Zr)の比の値)を0.003〜0.2(但し、原子比))と定めた。
(B) Upper layer (modified two-phase mixed oxide layer)
The Al component, which is a component of the modified two-phase mixed oxide layer of the aluminum oxide phase and the zirconium oxide phase mainly composed of α-type aluminum oxide having a hexagonal crystal structure in the state of chemical vapor deposition, The Zr component is contained in the layer in a trace amount (percentage of the total amount of Al, Zr / (Al + Zr) is 0.003 to 0.2 (atomic ratio)). This contributes to the improvement of the high temperature strength, lubricity and heat resistance of the upper layer (modified two-phase mixed oxide layer), but the above effect is expected when the Zr component content is less than 0.003. On the other hand, when the content ratio of the Zr component exceeds 0.2, the zirconium oxide phase becomes coarse and defects are likely to occur. Therefore, the content ratio of the Zr component in the total amount with the Al component ( Zr / (Al + Zr) ratio value) is 0 003 to 0.2 (provided that an atomic ratio) was defined as).

Al23相素地中にZrO2相が均一に分散した組織の2相混合酸化物層を化学蒸着で形成するためには、蒸着時の反応ガス組成、反応雰囲気温度および反応雰囲気圧力の各条件を、以下の条件(イ)〜(ハ)にしたがって段階的に変化させながら化学蒸着することによって形成することができる。
即ち、
(イ)まず、第1段階として、
反応ガス組成(容量%);AlCl:0.1〜0.9%、ZrCl:0.1〜0.3%、HCl:0.1〜1.9%、CO:0.4〜1.2%、H2:残り、
反応雰囲気温度; 950〜960 ℃、
反応雰囲気圧力; 5〜7 kPa、
の条件で、5〜30分コーティングして2相混合酸化物層を形成し、
(ロ)次に、第2段階として、
反応ガス組成(容量%);AlCl:1〜1.8%、ZrCl:0.4〜0.6%、HCl:2〜4%、CO:1.4〜2%、HS:0.05〜0.1%、H2:残り、
反応雰囲気温度; 960〜980 ℃、
反応雰囲気圧力; 8〜10 kPa、
の条件で、5〜30分コーティングして2相混合酸化物層を形成し、
(ハ)最後に第3段階として、
反応ガス組成(容量%);AlCl:1.8〜4%、ZrCl:0.6〜1.2%、HCl:2〜4%、CO:2〜6%、HS:0.1〜0.6%、H2:残り、
反応雰囲気温度; 980〜1100 ℃、
反応雰囲気圧力; 10〜50 kPa、
の条件で、2〜15μmの平均層厚の2相混合酸化物層を形成する。
上記(イ)〜(ハ)の条件にしたがって、蒸着条件を段階的に変化させながら化学蒸着することによって、最終的に、Al23相(α型Al23を主体とするが、微量のκ型Al23も存在する)素地中にZrO2相が均一に分散した2相混合酸化物組織の2〜15μmの平均層厚の改質2相混合酸化物層を形成することができる。
In order to form a two-phase mixed oxide layer having a structure in which the ZrO 2 phase is uniformly dispersed in the Al 2 O 3 phase substrate by chemical vapor deposition, each of the reaction gas composition, reaction atmosphere temperature and reaction atmosphere pressure at the time of vapor deposition is used. It can be formed by performing chemical vapor deposition while changing the conditions stepwise according to the following conditions (a) to (c).
That is,
(A) First, as the first stage,
Reaction gas composition (volume%); AlCl 3 : 0.1 to 0.9%, ZrCl 4 : 0.1 to 0.3%, HCl: 0.1 to 1.9%, CO 2 : 0.4 to 1.2%, H 2 : remaining,
Reaction atmosphere temperature: 950-960 ° C.
Reaction atmosphere pressure; 5-7 kPa,
Under these conditions, coating for 5 to 30 minutes to form a two-phase mixed oxide layer,
(B) Next, as the second stage,
Reaction gas composition (volume%); AlCl 3: 1~1.8% , ZrCl 4: 0.4~0.6%, HCl: 2~4%, CO 2: 1.4~2%, H 2 S : 0.05~0.1%, H 2: remainder,
Reaction atmosphere temperature; 960-980 ° C.,
Reaction atmosphere pressure; 8-10 kPa,
Under these conditions, coating for 5 to 30 minutes to form a two-phase mixed oxide layer,
(C) Finally, as the third stage,
Reaction gas composition (volume%): AlCl 3 : 1.8 to 4 %, ZrCl 4 : 0.6 to 1.2%, HCl: 2 to 4%, CO 2 : 2 to 6%, H 2 S: 0 .1 to 0.6%, H 2 : remaining,
Reaction atmosphere temperature; 980-1100 ° C.
Reaction atmosphere pressure; 10-50 kPa,
Under these conditions, a two-phase mixed oxide layer having an average layer thickness of 2 to 15 μm is formed.
According to the above conditions (a) to (c), by performing chemical vapor deposition while changing the vapor deposition conditions stepwise, finally, the Al 2 O 3 phase (mainly α-type Al 2 O 3 , Forming a modified two-phase mixed oxide layer having an average layer thickness of 2 to 15 μm in a two-phase mixed oxide structure in which the ZrO 2 phase is uniformly dispersed in the substrate (a small amount of κ-type Al 2 O 3 is also present) Can do.

そして、上記蒸着条件(イ)〜(ハ)で蒸着形成された改質2相混合酸化物層において、分散相であるZrO2相は、(−111)面に配向した単斜晶の結晶構造を示し、その摩擦係数が低くまた熱伝導性も低いことから、上記ZrO2相が素地中に均一に分散していることによって、改質2相混合酸化物層の潤滑性が高められ、また、耐熱性も高められる。
また、上記改質2相混合酸化物層の素地を構成するAl23相(主体はα型Al23であるが、微量のκ型Al23も存在する。)は、α型Al23の(01−12)面からの回折強度I(01−12)の値、(11−20)面からの回折強度I(11−20)の値が1〜2番目に大きい値を示し、さらに、回折強度値の比の値I(01−12)/I(11−20)が1〜3であることによって、Al23相とZrO2相間の結晶粒界強度が強化されるため、高速断続切削加工という厳しい切削条件の下、硬質被覆層の上部層を構成する改質2相混合酸化物層中にクラックが発生することを抑え、また、仮にクラックが発生したとしても、クラックの成長・伝播を防止し、その結果として、硬質被覆層の耐チッピング性向上に寄与することになる。
ただ、上部層の層厚が2μm未満では、上記回折強度値の比の値I(01−12)/I(11−20)が1〜3とはならないため、Al23相とZrO2相間の結晶粒界の強化作用を期待できず、一方、上部層の層厚が15μmを超えるとチッピングが発生しやすくなることから、上部層の平均層厚を2〜15μmと定めた。
In the modified two-phase mixed oxide layer formed by vapor deposition under the above vapor deposition conditions (a) to (c), the ZrO 2 phase as the dispersed phase has a monoclinic crystal structure oriented in the (−111) plane. Since the ZrO 2 phase is uniformly dispersed in the substrate, the lubricity of the modified two-phase mixed oxide layer is improved, and the friction coefficient is low and the thermal conductivity is low. Heat resistance is also improved.
Further, the Al 2 O 3 phase constituting the substrate of the modified two-phase mixed oxide layer (mainly α-type Al 2 O 3 but a trace amount of κ-type Al 2 O 3 also exists) is α. The value of the diffraction intensity I (01-12) from the (01-12) plane of the type Al 2 O 3 and the value of the diffraction intensity I (11-20) from the (11-20) plane are the first to second largest. And the ratio of the diffraction intensity values I (01-12) / I (11-20) is 1 to 3, so that the grain boundary strength between the Al 2 O 3 phase and the ZrO 2 phase is increased. Because it is strengthened, it is possible to suppress the occurrence of cracks in the modified two-phase mixed oxide layer that constitutes the upper layer of the hard coating layer under severe cutting conditions such as high-speed intermittent cutting. However, it prevents crack growth / propagation and, as a result, contributes to improving the chipping resistance of the hard coating layer. To become.
However, when the thickness of the upper layer is less than 2 μm, the ratio I (01-12) / I (11-20) of the diffraction intensity value does not become 1 to 3, so that the Al 2 O 3 phase and the ZrO 2 Since the strengthening action of the crystal grain boundary between phases cannot be expected, on the other hand, chipping tends to occur when the layer thickness of the upper layer exceeds 15 μm. Therefore, the average layer thickness of the upper layer is set to 2 to 15 μm.

硬質被覆層の上部層が、従来2相混合酸化物層からなる従来被覆工具においては、分散相であるZrO2相は、単斜晶の(110)面、(−111)面及び正方晶の(111)面にX線回折のピークがでており、また、素地のAl23相は、(01−12)面および(11−20)面にピークがでているものの、回折強度値の比の値I(01−12)/I(11−20)は1よりはるかに小さな値となっており(図2参照)、このようなZrO2相とAl23相との混合酸化物層では、Al23相とZrO2相間の結晶粒界強度が十分でなく、また、上部層の高温強度も十分でないために、高速断続切削加工という厳しい切削条件の下では、上部層(従来2相混合酸化物層)にクラックが発生しやすく、また、発生したクラックの成長・伝播を抑えることもできないため、従来被覆工具の硬質被覆層の耐チッピング性は劣ったものとなる。 In the conventional coated tool in which the upper layer of the hard coating layer is a conventional two-phase mixed oxide layer, the dispersed phase ZrO 2 phase is composed of monoclinic (110) plane, (−111) plane and tetragonal crystal. Although the X-ray diffraction peak appears on the (111) plane, and the Al 2 O 3 phase of the substrate has peaks on the (01-12) plane and the (11-20) plane, the diffraction intensity value The ratio value I (01-12) / I (11-20) is much smaller than 1 (see FIG. 2), and such mixed oxidation of the ZrO 2 phase and the Al 2 O 3 phase is performed. In the physical layer, the grain boundary strength between the Al 2 O 3 phase and the ZrO 2 phase is not sufficient, and the high temperature strength of the upper layer is not sufficient, so that under the severe cutting condition of high-speed intermittent cutting, the upper layer Cracks are likely to occur in the (conventional two-phase mixed oxide layer), and the growth and propagation of the generated cracks Can not be suppressed, chipping resistance of the hard coating layer of the conventional coated tool is consequently deteriorating.

改質2相混合酸化物層あるいは従来2相混合酸化物層についての、X線回折による測定条件は次のとおりである。
即ち、通常のX線回折装置を用い、X線管中に設置されたCu陽極(ターゲット)に対して、電圧40kV、電流350mAの条件で金属Wフィラメントから発生させた熱電子を加速照射することにより、前記Cu陽極表面から0.154nmの波長を有する特性X線であるCu−Kα線を発生させ、前記特性X線を2相混合酸化物層表面に照射し、該層から散乱したX線のうち、該層表面に対するX線入射角度θと等しい角度で回折したX線の強度をX線検出器にて測定することにより行った。また、このときの測定範囲は、θ=7.5〜65°である。そして、上記の測定により、改質2相混合酸化物層の素地を構成する酸化アルミニウム相のα型酸化アルミニウムの(01−12)、(11−20)面からの回折強度が、1番目および2番目に大きなピークの値を示し、また、素地中に均一分散する酸化ジルコニウム相からは、(−111)面の回折ピークが得られた。
なお、この発明においては、面指数、例えば、(αβγδ)で表される面は、(αβγδ)面だけではなくこれと等価な面を含み、また、回折強度値I(αβγδ)とは、(αβγδ)面およびこれと等価な面からの回折強度の合計値をいう。
The measurement conditions by X-ray diffraction for the modified two-phase mixed oxide layer or the conventional two-phase mixed oxide layer are as follows.
That is, using a normal X-ray diffractometer, the Cu anode (target) installed in the X-ray tube is acceleratedly irradiated with thermoelectrons generated from the metal W filament under conditions of a voltage of 40 kV and a current of 350 mA. To generate Cu-Kα rays, which are characteristic X-rays having a wavelength of 0.154 nm, from the surface of the Cu anode, and irradiate the surface of the two-phase mixed oxide layer with the characteristic X-rays. Of these, the X-ray intensity diffracted at an angle equal to the X-ray incident angle θ with respect to the surface of the layer was measured by an X-ray detector. The measurement range at this time is θ = 7.5 to 65 °. As a result of the above measurement, the diffraction intensity from the (01-12) and (11-20) planes of the α-type aluminum oxide of the aluminum oxide phase constituting the base of the modified two-phase mixed oxide layer is first and The diffraction peak of (−111) plane was obtained from the zirconium oxide phase which showed the second largest peak value and was uniformly dispersed in the substrate.
In the present invention, the plane index, for example, the plane represented by (αβγδ) includes not only the (αβγδ) plane but also a plane equivalent thereto, and the diffraction intensity value I (αβγδ) is ( The total value of diffraction intensities from the (αβγδ) plane and its equivalent plane.

上記のとおり、この発明の被覆工具は、上部層を構成する酸化アルミニウムと酸化ジルコニウムの改質2相混合酸化物層について、(−111)面に配向した単斜晶の結晶構造のZrO2相がAl23相(α型Al23が主体であるが、微量のκ型Al23も存在)からなる素地に分散分布すると共に、Al23相をX線回折した場合に、α型Al23の(01−12)面、(11−20)面からの回折強度が1〜2番目に大きな値を示し、かつ、回折強度の値の比の値I(01−12)/I(11−20)が1〜3の値を満足することにより、従来被覆工具の従来2相混合酸化物層のもつすぐれた高温硬さに加えて、一段とすぐれた高温強度、潤滑性、耐熱性を具備し、各種の鋼や鋳鉄などを、高い発熱と断続的かつ衝撃的な負荷がかかる高速断続切削条件下で用いた場合にも、硬質被覆層がすぐれた耐チッピング性を発揮し、使用寿命の一層の延命化を可能とするものである。 As described above, the coated tool of the present invention is a ZrO 2 phase having a monoclinic crystal structure oriented in the (−111) plane of the modified two-phase mixed oxide layer of aluminum oxide and zirconium oxide constituting the upper layer. Is dispersed and distributed in a substrate made of Al 2 O 3 phase (mainly α-type Al 2 O 3 , but a small amount of κ-type Al 2 O 3 is present), and the Al 2 O 3 phase is X-ray diffracted In addition, the diffraction intensity from the (01-12) plane and the (11-20) plane of α-type Al 2 O 3 is the 1-2th largest value, and the value I (01 -12) / I (11-20) satisfies the value of 1 to 3, in addition to the excellent high temperature hardness of the conventional two-phase mixed oxide layer of the conventional coated tool, It has lubricity and heat resistance, and it has high heat generation and intermittent and shock loads on various steels and cast irons. That even when used in high-speed intermittent cutting conditions, exhibits chipping resistance of the hard coating layer is superior, and makes it possible to further life extension of service life.

つぎに、この発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも2〜4μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG160412に規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体A〜Fをそれぞれ製造した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 2 to 4 μm are prepared as raw material powders. These raw material powders were blended into the composition shown in Table 1, added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and pressed into a green compact with a predetermined shape at a pressure of 98 MPa. The green compact was vacuum sintered at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour in a vacuum of 5 Pa. After sintering, the cutting edge portion was R: 0.07 mm honing By processing, tool bases A to F made of a WC-based cemented carbide having a throwaway tip shape defined in ISO · CNMG 160412 were produced.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG160412のチップ形状をもったTiCN基サーメット製の工具基体a〜fを形成した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after the sintering, the cutting edge portion was subjected to a honing process of R: 0.07 mm. Tool bases a to f made of TiCN-based cermet having standard / CNMG 160412 chip shapes were formed.

ついで、これらの工具基体A〜Fおよび工具基体a〜fのそれぞれを、通常の化学蒸着装置に装入し、まず、表3(表3中のl−TiCNは特開平6−8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)に示される条件にて、表5に示される組み合わせおよび目標層厚でTi化合物層を硬質被覆層の下部層として蒸着形成した。
次に、表4に示されるような第1、2、3段階の蒸着条件の組み合わせにより、同じく表5に示される目標層厚の改質2相混合酸化物層を硬質被覆層の上部層として蒸着形成することにより本発明被覆工具1〜13をそれぞれ製造した。
Next, each of the tool bases A to F and the tool bases a to f was charged into a normal chemical vapor deposition apparatus. First, Table 3 (l-TiCN in Table 3 is disclosed in JP-A-6-8010). The combinations shown in Table 5 under the conditions shown in Table 5 are the conditions for forming the TiCN layer having the vertically grown crystal structure described, and the other conditions for forming the normal granular crystal structure. And Ti compound layer was vapor-deposited as a lower layer of a hard coating layer with target layer thickness.
Next, the modified two-phase mixed oxide layer having the target layer thickness shown in Table 5 is used as the upper layer of the hard coating layer by combining the first, second, and third stage deposition conditions as shown in Table 4. The coated tools 1 to 13 of the present invention were manufactured by vapor deposition.

また、比較の目的で、硬質被覆層の上部層として、表4に示される条件で、表6に示される目標層厚で従来2相混合酸化物層を形成することにより比較被覆工具1〜13をそれぞれ製造した。   For comparison purposes, comparative coating tools 1 to 13 are formed by forming a conventional two-phase mixed oxide layer with the target layer thickness shown in Table 6 under the conditions shown in Table 4 as the upper layer of the hard coating layer. Were manufactured respectively.

ついで、上記の本発明被覆工具1〜13の硬質被覆層の上部層を構成する改質2相混合酸化物層および比較被覆工具1〜13の硬質被覆層の上部層を構成する従来2相混合酸化物層のそれぞれのAl23相について、X線回折により各結晶面の回折強度を測定し、1番目及び2番目の回折強度が得られた結晶面を表5、6に示し、さらに、(01−12)面からの回折強度値I(01−12)、(11−20)面からの回折強度値I(11−20)の比の値I(01−12)/I(11−20)を同じく表5、6に示した。
また、ZrO2相についてもX線回折を行い、最強のX線回折強度値が得られた面を同じく表5、6に示す。
なお、本発明被覆工具1〜13の硬質被覆層の上部層を構成する改質2相混合酸化物層については、透過型電子顕微鏡により調査したところ、Al23相の素地中にZrO2相が均一に分散していることが確認されている。
本発明被覆工具4のAl23相およびZrO2相についてのX線回折チャートを図1に示し、また、比較被覆工具5のAl23相およびZrO2相についてのX線回折チャートを図2に示す。
Subsequently, the modified two-phase mixed oxide layer constituting the upper layer of the hard coating layer of the present invention-coated tools 1 to 13 and the conventional two-phase mixing constituting the upper layer of the hard coating layer of the comparative coating tools 1 to 13 For each Al 2 O 3 phase of the oxide layer, the diffraction intensity of each crystal plane was measured by X-ray diffraction, and the crystal planes from which the first and second diffraction intensities were obtained are shown in Tables 5 and 6, and , The value I (01-12) / I (11) of the ratio of the diffraction intensity value I (01-12) from the (01-12) plane and the diffraction intensity value I (11-20) from the (11-20) plane −20) is also shown in Tables 5 and 6.
Tables 5 and 6 also show the surfaces on which the ZrO 2 phase was subjected to X-ray diffraction and the strongest X-ray diffraction intensity values were obtained.
The modified two-phase mixed oxide layer constituting the upper layer of the hard coating layer of the coated tools 1 to 13 of the present invention was examined by a transmission electron microscope. As a result, ZrO 2 was found in the Al 2 O 3 phase substrate. It has been confirmed that the phases are uniformly dispersed.
An X-ray diffraction chart for the Al 2 O 3 phase and the ZrO 2 phase of the coated tool 4 of the present invention is shown in FIG. 1, and an X-ray diffraction chart for the Al 2 O 3 phase and the ZrO 2 phase of the comparative coated tool 5 is shown. As shown in FIG.

表5,6にそれぞれ示される通り、本発明被覆工具の改質2相混合酸化物層は、X線回折において、Al23相の、(01−12)面および(11−20)面からの回折強度が1〜2番目に大きいピーク値を示し、その回折強度値の比の値I(01−12)/I(11−20)は1〜3の値を満足し、また、ZrO2相は、(−111)面に配向する単斜晶構造のものとして存在するのに対して、比較被覆工具のAl23相では、I(01−12)、I(11−20)が1〜2番目に大きいピーク値を示すことはなく、また、I(01−12)/I(11−20)の値も1〜3を外れるものであり、さらに、ZrO2相についても、単斜晶以外(正方晶)のZrO2相のピークが検出されたり、(−111)面以外の回折強度が強くなっており、(−111)面の配向性は低いものであった。 As shown in Tables 5 and 6, respectively, the modified two-phase mixed oxide layer of the coated tool according to the present invention has (01-12) plane and (11-20) plane of Al 2 O 3 phase in X-ray diffraction. The diffraction intensity from 1 shows the second highest peak value, and the ratio I (01-12) / I (11-20) of the diffraction intensity value satisfies the value of 1 to 3, and ZrO The two phases exist as monoclinic structures oriented in the (−111) plane, whereas in the Al 2 O 3 phase of the comparative coated tool, I (01-12), I (11-20) Does not show the 1st to 2nd largest peak value, and the value of I (01-12) / I (11-20) also deviates from 1 to 3, and also for the ZrO 2 phase, ZrO 2 phase peaks other than monoclinic (tetragonal) are detected, and diffraction intensity other than the (−111) plane is strong. Thus, the orientation of the (−111) plane was low.

また、本発明被覆工具1〜13および比較被覆工具1〜13の硬質被覆層の構成層の厚さを、走査型電子顕微鏡を用いて測定(縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。   Further, when the thicknesses of the constituent layers of the hard coating layers of the present coated tools 1 to 13 and the comparative coated tools 1 to 13 were measured using a scanning electron microscope (longitudinal cross section measurement), both of them were the target layer thickness. The substantially same average layer thickness (average value of 5-point measurement) was shown.

つぎに、上記の本発明被覆工具1〜13および比較被覆工具1〜13の各種の被覆工具について、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
[切削条件A]
被削材:JIS・SNCM439の長さ方向等間隔4本縦溝入の丸棒、
切削速度: 360 m/min、
切り込み: 1.5 mm、
送り: 0.3 mm/rev、
切削時間: 5 分、
の条件でのニッケルクロムモリブデン鋼の乾式高速断続切削試験(通常の切削速度は、200m/min)、
[切削条件B]
被削材:JIS・FCD500の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 380 m/min、
切り込み: 1.7 mm、
送り: 0.3 mm/rev、
切削時間: 5 分、
の条件での鋳鉄の乾式高速断続切削試験(通常の切削速度は、180m/min)、
[切削条件C]
被削材:JIS・S25Cの長さ方向等間隔4本縦溝入の丸棒、
切削速度: 370 m/min、
切り込み: 2.0 mm、
送り: 0.45 mm/rev、
切削時間: 5 分、
の条件での炭素鋼の乾式高速断続切削試験(通常の切削速度は、250m/min)
を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表7に示した。
Next, for the various coated tools of the present invention coated tools 1-13 and comparative coated tools 1-13, all are screwed to the tip of the tool steel tool with a fixing jig,
[Cutting conditions A]
Work material: JIS / SNCM439 round bars with four equal grooves in the longitudinal direction,
Cutting speed: 360 m / min,
Cutting depth: 1.5 mm,
Feed: 0.3 mm / rev,
Cutting time: 5 minutes,
Dry high-speed intermittent cutting test of nickel chrome molybdenum steel under normal conditions (normal cutting speed is 200 m / min),
[Cutting conditions B]
Work material: JIS / FCD500 lengthwise equidistant 4 round bars with vertical grooves,
Cutting speed: 380 m / min,
Cutting depth: 1.7 mm,
Feed: 0.3 mm / rev,
Cutting time: 5 minutes,
Cast iron dry high-speed intermittent cutting test under the conditions (normal cutting speed is 180 m / min),
[Cutting conditions C]
Work material: JIS-S25C round bars with four equal grooves in the longitudinal direction,
Cutting speed: 370 m / min,
Cutting depth: 2.0 mm,
Feed: 0.45 mm / rev,
Cutting time: 5 minutes,
Carbon steel dry high-speed intermittent cutting test under normal conditions (normal cutting speed is 250 m / min)
In each cutting test, the flank wear width of the cutting edge was measured. The measurement results are shown in Table 7.

Figure 0004888771
Figure 0004888771

Figure 0004888771
Figure 0004888771

Figure 0004888771
Figure 0004888771

Figure 0004888771
Figure 0004888771

Figure 0004888771
Figure 0004888771

Figure 0004888771
Figure 0004888771

Figure 0004888771
Figure 0004888771

表5〜7に示される結果から、本発明被覆工具1〜13は、硬質被覆層の上部層が、六方晶の結晶構造を有するα型Al23を主体とするAl23相とZrO2相の2相混合酸化物組織からなる改質2相混合酸化物層として蒸着形成され、さらに、該改質2相混合酸化物層中では、(−111)面に配向した単斜晶のZrO2相がAl23相素地中に均一に分散し、さらに、Al23相についてX線回折を行ったとき、α型Al23の(01−12)面及び(11−20)面からの回折強度の値が1〜2番目に大きい値を示し、かつ、前記回折強度値の比の値I(01−12)/I(11−20)が1〜3の値を満足するものであることから、すぐれた高温硬さ、粒界強度、潤滑性、耐熱性を備え、高い発熱を伴い、かつ、切刃に対する断続的かつ衝撃的な負荷がかかる鋼や鋳鉄の高速断続切削でも、硬質被覆層の下部層を形成するTi化合物層の有する高温強度と高い接合強度に加え、前記改質2相混合酸化物層が具備するすぐれた高温硬さ、高温強度、潤滑性、耐熱性により、硬質被覆層の耐チッピング性が著しく改善され、長期にわたってすぐれた工具特性を示すのに対して、硬質被覆層の上部層として従来2相混合酸化物層が蒸着形成された比較被覆工具1〜13においては、高速断続切削という厳しい切削条件下では、硬質被覆層の特に高温強度が不十分であるために、硬質被覆層にチッピングが発生し、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 5 to 7, according to the present invention coated tools 1 to 13, the upper layer of the hard coating layer is an Al 2 O 3 phase mainly composed of α-type Al 2 O 3 having a hexagonal crystal structure. A monoclinic crystal formed by vapor deposition as a modified two-phase mixed oxide layer composed of a two-phase mixed oxide structure of ZrO 2 phase, and oriented in the (−111) plane in the modified two-phase mixed oxide layer When the ZrO 2 phase of ZrO 2 is uniformly dispersed in the Al 2 O 3 phase substrate and X-ray diffraction is performed on the Al 2 O 3 phase, the (01-12) plane of the α-type Al 2 O 3 and (11 −20) The value of the diffraction intensity from the surface is the first to second largest value, and the ratio I (01-12) / I (11-20) of the diffraction intensity values is a value of 1 to 3. Therefore, it has excellent high temperature hardness, grain boundary strength, lubricity, heat resistance, high heat generation, and against cutting edges. The modified two-phase mixed oxide layer in addition to the high-temperature strength and high joint strength of the Ti compound layer that forms the lower layer of the hard coating layer even in high-speed intermittent cutting of steel and cast iron that are subjected to continuous and shock loads The superior high-temperature hardness, high-temperature strength, lubricity, and heat resistance of the material significantly improves the chipping resistance of the hard coating layer, and exhibits excellent tool properties over a long period of time. In the comparative coated tools 1 to 13 in which the conventional two-phase mixed oxide layer is formed by vapor deposition, the hard coating layer has a particularly high temperature strength under severe cutting conditions such as high-speed intermittent cutting. It is clear that chipping occurs and the service life is reached in a relatively short time.

上述のように、この発明の被覆工具は、各種の鋼や鋳鉄などの通常の条件での切削加工は勿論のこと、特に高い発熱を伴い断続的かつ衝撃的な負荷がかかる高速断続切削加工でも硬質被覆層がすぐれた耐チッピング性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention can be used not only for cutting under normal conditions such as various types of steel and cast iron, but also for high-speed intermittent cutting with high heat generation and intermittent and impact load. Since the hard coating layer exhibits excellent chipping resistance and exhibits excellent cutting performance over a long period of time, it is sufficient for improving the performance of cutting equipment, saving labor and energy, and reducing costs It can respond to satisfaction.

本発明被覆工具4の硬質被覆層の上部層を構成する改質2相混合酸化物層のAl23相、ZrO2相のX線回折チャートである。4 is an X-ray diffraction chart of the Al 2 O 3 phase and the ZrO 2 phase of the modified two-phase mixed oxide layer constituting the upper layer of the hard coating layer of the present coated tool 4. 比較被覆工具5の硬質被覆層の上部層を構成する従来2相混合酸化物層のAl23相、ZrO2相のX線回折チャートである。4 is an X-ray diffraction chart of an Al 2 O 3 phase and a ZrO 2 phase of a conventional two-phase mixed oxide layer constituting an upper layer of a hard coating layer of a comparative coating tool 5.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a)下部層が、3〜20μmの全体平均層厚を有するTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなるTi化合物層、
(b)上部層が、2〜15μmの平均層厚および化学蒸着された状態で六方晶の結晶構造を有するα型酸化アルミニウムを主体とする酸化アルミニウム相と酸化ジルコニウム相の2相混合酸化物層からなり、該混合酸化物におけるジルコニウムの含有割合は、アルミニウムとの合量に対して0.003〜0.2(但し、原子比)であり、また、該混合酸化物層において、(−111)面に配向した単斜晶の酸化ジルコニウム相が酸化アルミニウム相中に均一に分散し、さらに、酸化アルミニウム相についてX線回折を行ったときのα型酸化アルミニウムの(01−12)面からの回折強度I(01−12)の値及び(11−20)面からの回折強度I(11−20)の値が1番目、2番目に大きい回折強度値を示し、かつ、前記回折強度値の比の値I(01−12)/I(11−20)が1〜3の値を満足する酸化アルミニウム相と酸化ジルコニウム相の2相混合酸化物層、
以上(a)、(b)で構成された硬質被覆層を蒸着形成してなる、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具。
On the surface of the tool base composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(A) The lower layer is one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer, and carbonitride oxide layer having an overall average layer thickness of 3 to 20 μm. A Ti compound layer comprising:
(B) The upper layer is a two-phase mixed oxide layer of an aluminum oxide phase and a zirconium oxide phase mainly composed of α-type aluminum oxide having an average layer thickness of 2 to 15 μm and a chemical vapor deposited state and having a hexagonal crystal structure The content ratio of zirconium in the mixed oxide is 0.003 to 0.2 (however, atomic ratio) with respect to the total amount with aluminum. In the mixed oxide layer, (−111 ) The monoclinic zirconium oxide phase oriented in the plane is uniformly dispersed in the aluminum oxide phase. Further, the X-ray diffraction of the aluminum oxide phase from the (01-12) plane of the α-type aluminum oxide The value of the diffraction intensity I (01-12) and the value of the diffraction intensity I (11-20) from the (11-20) plane indicate the first and second largest diffraction intensity values, and ratio The value I (01-12) / I (11-20) is a two-phase mixed oxide layer of aluminum oxide phase and the zirconium oxide phase which satisfies a value of 1 to 3,
A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer formed by vapor-depositing the hard coating layer constituted by (a) and (b).
JP2006312095A 2006-11-17 2006-11-17 Surface coated cutting tool with excellent chipping resistance due to hard coating layer Active JP4888771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006312095A JP4888771B2 (en) 2006-11-17 2006-11-17 Surface coated cutting tool with excellent chipping resistance due to hard coating layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006312095A JP4888771B2 (en) 2006-11-17 2006-11-17 Surface coated cutting tool with excellent chipping resistance due to hard coating layer

Publications (2)

Publication Number Publication Date
JP2008126342A JP2008126342A (en) 2008-06-05
JP4888771B2 true JP4888771B2 (en) 2012-02-29

Family

ID=39552698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006312095A Active JP4888771B2 (en) 2006-11-17 2006-11-17 Surface coated cutting tool with excellent chipping resistance due to hard coating layer

Country Status (1)

Country Link
JP (1) JP4888771B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4836202B2 (en) * 2007-07-20 2011-12-14 日立ツール株式会社 Coated tool
JP5286619B2 (en) * 2008-08-01 2013-09-11 住友電工ハードメタル株式会社 Surface coated cutting tool
JP5252276B2 (en) * 2008-08-01 2013-07-31 住友電工ハードメタル株式会社 Surface coated cutting tool
JP4973880B2 (en) * 2008-11-12 2012-07-11 住友電工ハードメタル株式会社 Surface coated cutting tool
JP5838789B2 (en) * 2011-12-22 2016-01-06 三菱マテリアル株式会社 Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
CN103205728B (en) * 2012-01-17 2015-04-08 株洲钻石切削刀具股份有限公司 Surface-modified coated cutting tool and preparation method thereof
JP5999350B2 (en) * 2012-11-13 2016-09-28 三菱マテリアル株式会社 Surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance with a hard coating layer in high-speed intermittent cutting
US11326252B2 (en) * 2018-03-22 2022-05-10 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool and method for manufacturing same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5952954B2 (en) * 1980-08-14 1984-12-22 住友電気工業株式会社 Coated cemented carbide member and its manufacturing method
JPS61201778A (en) * 1985-03-01 1986-09-06 Sumitomo Electric Ind Ltd Coated sintered hard alloy
CA1328580C (en) * 1987-01-20 1994-04-19 Gte Valenite Corporation Composite coatings
SE514177C2 (en) * 1995-07-14 2001-01-15 Sandvik Ab Coated cemented carbide inserts for intermittent machining in low alloy steel
JP3678924B2 (en) * 1998-11-05 2005-08-03 日立ツール株式会社 Aluminum oxide coated tool
JP3808648B2 (en) * 1998-11-25 2006-08-16 日立ツール株式会社 Titanium carbonitride film coating tool
JP3994590B2 (en) * 1999-08-02 2007-10-24 三菱マテリアル株式会社 Surface coated cemented carbide cutting tool with excellent chipping resistance with high efficiency cutting and hard coating layer

Also Published As

Publication number Publication date
JP2008126342A (en) 2008-06-05

Similar Documents

Publication Publication Date Title
JP6677932B2 (en) Surface coated cutting tool that demonstrates excellent chipping and wear resistance in heavy interrupted cutting
JP4888771B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP4946333B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP4822120B2 (en) Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting
JP5907406B2 (en) Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP5099490B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5263514B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5187571B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP5029825B2 (en) Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high speed heavy cutting
JP4888709B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP4756453B2 (en) Surface coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high speed heavy cutting
JP4474643B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP4720418B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP5023896B2 (en) Surface coated cutting tool
JP5170828B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP5286930B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting
JP5176787B2 (en) Surface coated cutting tool with excellent chipping resistance and wear resistance due to hard coating layer
JP5023895B2 (en) Surface coated cutting tool
JP5158560B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer in heavy cutting
JP5088476B2 (en) Surface coated cutting tool
JP4474644B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP4888710B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5892335B2 (en) Surface coated cutting tool with excellent chipping resistance with hard coating layer
JP4747338B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP5019258B2 (en) Surface coated cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111201

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4888771

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3