JP5907406B2 - Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting - Google Patents

Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting Download PDF

Info

Publication number
JP5907406B2
JP5907406B2 JP2011261615A JP2011261615A JP5907406B2 JP 5907406 B2 JP5907406 B2 JP 5907406B2 JP 2011261615 A JP2011261615 A JP 2011261615A JP 2011261615 A JP2011261615 A JP 2011261615A JP 5907406 B2 JP5907406 B2 JP 5907406B2
Authority
JP
Japan
Prior art keywords
layer
upper layer
crystal
crystal grains
interface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011261615A
Other languages
Japanese (ja)
Other versions
JP2013111720A (en
Inventor
正樹 奥出
正樹 奥出
五十嵐 誠
誠 五十嵐
長田 晃
晃 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2011261615A priority Critical patent/JP5907406B2/en
Priority to CN201210499427.1A priority patent/CN103128326B/en
Publication of JP2013111720A publication Critical patent/JP2013111720A/en
Application granted granted Critical
Publication of JP5907406B2 publication Critical patent/JP5907406B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Description

この発明は、各種の鋼や鋳鉄などの切削加工を、高速かつ切刃に断続的・衝撃的負荷が作用する断続切削条件で行った場合でも、硬質被覆層がすぐれた付着強度を示すと同時にすぐれた耐チッピング性を示し、長期に亘ってすぐれた切削性能を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   The present invention shows that the hard coating layer exhibits excellent adhesion strength even when various types of cutting work such as steel and cast iron are performed at high speed and under intermittent cutting conditions in which intermittent and impact loads are applied to the cutting edge. The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent chipping resistance and exhibits excellent cutting performance over a long period of time.

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)下部層が、Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなるTi化合物層、
(b)上部層が、化学蒸着した状態でα型の結晶構造を有する酸化アルミニウム層(以下、Al層で示す。)あるいは、α型の結晶構造を有し、微量のZrを含有させたZr含有酸化アルミニウム層(以下、Zr含有Al層で示す)、
以上(a)および(b)で構成された硬質被覆層を蒸着形成してなる被覆工具が知られている。
Conventionally, generally on the surface of a substrate (hereinafter collectively referred to as a tool substrate) composed of a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet. ,
(A) The lower layer is a Ti carbide (hereinafter referred to as TiC) layer, a nitride (hereinafter also referred to as TiN) layer, a carbonitride (hereinafter referred to as TiCN) layer, a carbon oxide (hereinafter referred to as TiCO). And a Ti compound layer composed of one or more of a carbonitride oxide (hereinafter referred to as TiCNO) layer,
(B) The upper layer has an α-type crystal structure in the state of chemical vapor deposition (hereinafter referred to as an Al 2 O 3 layer) or an α-type crystal structure and contains a trace amount of Zr. A Zr-containing aluminum oxide layer (hereinafter referred to as a Zr-containing Al 2 O 3 layer),
A coated tool formed by vapor-depositing the hard coating layer constituted by (a) and (b) is known.

しかし、上記従来の被覆工具は、例えば各種の鋼や鋳鉄などの連続切削や断続切削では優れた耐摩耗性を発揮するが、これを、高速断続切削に用いた場合には、被覆層のチッピングが発生しやすく、工具寿命が短命になるという問題点があった。
そこで、被覆層の耐チッピング性、耐剥離性、耐摩耗性等を改善するために、硬質被覆層に種々の改良を加えた被覆工具が提案されている。
例えば、特許文献1に示すように、Al層からなる上部層の層厚方向の結晶粒径の大きさを調整することにより、耐剥離性と耐摩耗性を改善した被覆工具が提案されているが、この被覆工具は、上部層を構成するAl結晶粒の大きさの調整にあたり、蒸着速度を低下させることが必要とされるため、被覆工具の生産性に劣るという欠点があった。
また、Zr含有Al層からなる上部層の耐チッピング性改善に関するものとしては、例えば、特許文献2に示すように、構成原子共有格子点分布グラフにおいて、Σ3に最高ピークが存在し、かつΣ3の分布割合が60〜80%である構成原子共有格子点分布グラフを示すZr含有Al層で上部層を構成した被覆工具が提案されているが、この被覆工具は、耐チッピング性には優れるものの、上部層−下部層間の層間密着性が十分ではなく、切削加工の条件によっては剥離が生じやすいという問題点があった。
However, the above conventional coated tools exhibit excellent wear resistance in continuous cutting and intermittent cutting of various steels and cast irons, for example, but when this is used for high-speed intermittent cutting, chipping of the coating layer is performed. There is a problem that tool life is likely to occur and the tool life is shortened.
Therefore, in order to improve the chipping resistance, peel resistance, wear resistance, and the like of the coating layer, coating tools obtained by adding various improvements to the hard coating layer have been proposed.
For example, as shown in Patent Document 1, a coated tool with improved peeling resistance and wear resistance by adjusting the crystal grain size in the layer thickness direction of the upper layer composed of an Al 2 O 3 layer is proposed. However, this coated tool is disadvantageous in that the productivity of the coated tool is inferior because it is necessary to reduce the deposition rate in adjusting the size of the Al 2 O 3 crystal grains constituting the upper layer. was there.
As for the chipping resistance improvement of the upper layer composed of the Zr-containing Al 2 O 3 layer, for example, as shown in Patent Document 2, in the constituent atom shared lattice point distribution graph, the highest peak exists in Σ3, In addition, a coated tool in which an upper layer is composed of a Zr-containing Al 2 O 3 layer showing a constituent atomic shared lattice point distribution graph in which the distribution ratio of Σ3 is 60 to 80% has been proposed. Although it is excellent in the properties, there is a problem that the interlayer adhesion between the upper layer and the lower layer is not sufficient, and peeling is likely to occur depending on cutting conditions.

特開昭57−137460号公報JP-A-57-137460 特開2006−289557号公報JP 2006-289557 A

近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は一段と高速化すると共に、切刃に高負荷が作用する傾向にあるが、上記の従来被覆工具においては、これを鋼や鋳鉄などの通常の条件での連続切削や断続切削に用いた場合には問題はないが、特にこれを高熱発生を伴い、切刃に断続的・衝撃的負荷が作用する高速断続切削条件で用いた場合には、硬質被覆層を構成するTi化合物層からなる下部層とZr含有Al層からなる上部層の密着強度が不十分となり、上部層と下部層間での剥離、チッピング等の異常損傷の発生により、比較的短時間で使用寿命に至るのが現状である。 In recent years, the performance of cutting machines has been remarkable. On the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for cutting work. As a result, cutting speed has been further increased and the load on the cutting blade has been increased. Although there is no problem with the above-mentioned conventional coated tools when used for continuous cutting or intermittent cutting under normal conditions such as steel or cast iron, this is particularly accompanied by high heat generation. When used under high-speed intermittent cutting conditions in which an intermittent / impact load is applied to the cutting edge, the lower layer composed of the Ti compound layer and the upper layer composed of the Zr-containing Al 2 O 3 layer constituting the hard coating layer The present situation is that the adhesive strength becomes insufficient and the service life is reached in a relatively short time due to occurrence of abnormal damage such as peeling and chipping between the upper layer and the lower layer.

そこで、本発明者等は、上述のような観点から、Ti化合物層からなる下部層とZr含有Al層からなる上部層の密着性を改善し、もって、剥離、チッピング等の異常損傷の発生を防止するとともに、工具寿命の長寿命化を図るべく鋭意研究を行った結果、
Ti化合物層からなる下部層とZr含有Al層からなる上部層とを被覆形成した被覆工具において、Zr含有Al層の層厚方向の粒径を制御するとともに、Zr含有Al結晶粒の配向性を制御することで、上部層と下部層の密着性を向上させ得るとともに、上部層全体の高温硬さと高温強度を維持することができるため、切刃に断続的・衝撃的負荷が作用する高速断続切削に用いた場合でも、上部層と下部層間での剥離、チッピング等の異常損傷の発生を抑制し得るとともに、長期の使用にわたってすぐれた切削性能を発揮する被覆工具を得られることを見出したのである。
Therefore, the present inventors have improved the adhesion between the lower layer made of the Ti compound layer and the upper layer made of the Zr-containing Al 2 O 3 layer from the above-mentioned viewpoints, thereby causing abnormal damage such as peeling and chipping. As a result of diligent research to prevent tooling and to increase tool life,
In a coated tool in which a lower layer made of a Ti compound layer and an upper layer made of a Zr-containing Al 2 O 3 layer are coated, the grain size in the layer thickness direction of the Zr-containing Al 2 O 3 layer is controlled, and the Zr-containing Al By controlling the orientation of 2 O 3 crystal grains, the adhesion between the upper layer and the lower layer can be improved, and the high temperature hardness and high temperature strength of the entire upper layer can be maintained. -Even when used for high-speed intermittent cutting where impact load is applied, it is possible to suppress the occurrence of abnormal damage such as peeling and chipping between the upper layer and the lower layer and to provide excellent cutting performance over a long period of use They found that they could get a tool.

この発明は、上記知見に基づいてなされたものであって、
「 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a)下部層は、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなり、かつ、3〜20μmの合計平均層厚を有するTi化合物層、
(b)上部層は、2〜15μmの平均層厚およびα型の結晶構造を有するZr含有α型Al層(但し、原子比で、Zr/(Al+Zr+O)の比の値は0.0001〜0.003)、
上記(a)、(b)からなる硬質被覆層が設けられた表面被覆切削工具であって、
(c)上記下部層の最表面層が、少なくとも500nm以上の層厚を有するTi炭窒化物層からなり、該Ti炭窒化物層と上部層との界面から、該Ti炭窒化物層の層厚方向に500nmまでの深さ領域にのみ酸素が含有されており、かつ、該深さ領域に含有される平均酸素含有量は、該深さ領域に含有されるTi,C,N,Oの合計含有量の0.5〜3原子%であり、
(d)上記下部層と上記上部層との界面直上における上記上部層のZr含有α型Alについて、電子線後方散乱回折装置を用いて、その断面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射することにより、上記Zr含有α型Al結晶粒の粒径を測定した場合、界面から上部層の膜厚方向1μm未満の領域におけるZr含有α型Al結晶粒の横方向平均粒径は0.1〜0.3μmであり、一方、界面から上部層の膜厚方向1μm以上の領域におけるZr含有α型Al結晶粒の横方向平均粒径は0.5〜1.0μmであって、膜厚方向に成長した柱状結晶組織を有し、
(e)上部層全体の上記Zr含有α型Al結晶粒について、電子線後方散乱回折装置を用いて、その断面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記工具基体の表面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定した場合、その傾斜角が0〜10度の範囲内にある結晶粒の面積割合が、全体で45面積%以上、界面から上部層の膜厚1μm未満の領域では(0001)配向が10%未満、(02−21)配向が30%以上であることを特徴とする表面被覆切削工具。」
に特徴を有するものである。
This invention has been made based on the above findings,
"On the surface of the tool base made of tungsten carbide base cemented carbide or titanium carbonitride base cermet,
(A) The lower layer is composed of one or more of a Ti carbide layer, a nitride layer, a carbonitride layer, a carbonate layer, and a carbonitride layer, and a total of 3 to 20 μm A Ti compound layer having an average layer thickness;
(B) an upper layer, Zr-containing α-type the Al 2 O 3 layer having an average layer thickness and α-type crystal structure of 2 to 15 [mu] m (where, in terms of atomic ratio, the value of the ratio of Zr / (Al + Zr + O ) is 0.0001 to 0.003),
A surface-coated cutting tool provided with a hard coating layer comprising the above (a) and (b),
(C) The outermost surface layer of the lower layer is made of a Ti carbonitride layer having a layer thickness of at least 500 nm, and the Ti carbonitride layer is formed from the interface between the Ti carbonitride layer and the upper layer. Oxygen is contained only in the depth region up to 500 nm in the thickness direction, and the average oxygen content contained in the depth region is that of Ti, C, N, O contained in the depth region. 0.5-3 atomic% of the total content,
(D) The Zr-containing α-type Al 2 O 3 of the upper layer immediately above the interface between the lower layer and the upper layer is within the measurement range of the cross-section polished surface using an electron beam backscattering diffractometer. When the grain size of the Zr-containing α-type Al 2 O 3 crystal grain is measured by irradiating each crystal grain having a hexagonal crystal lattice with an electron beam, in a region less than 1 μm in the thickness direction of the upper layer from the interface The average transverse grain size of the Zr-containing α-type Al 2 O 3 crystal grains is 0.1 to 0.3 μm, while the Zr-containing α-type Al 2 O 3 in the region of 1 μm or more in the film thickness direction of the upper layer from the interface. The average grain size in the transverse direction of the crystal grains is 0.5 to 1.0 μm, and has a columnar crystal structure grown in the film thickness direction,
(E) With respect to the Zr-containing α-type Al 2 O 3 crystal grains of the entire upper layer, each crystal grain having a hexagonal crystal lattice existing within the measurement range of the cross-sectional polished surface using an electron beam backscattering diffractometer When the inclination angle formed by the normal of the (0001) plane, which is the crystal plane of the crystal grain, is measured with respect to the normal of the surface of the tool base, the inclination angle is 0 to In the region where the area ratio of the crystal grains within the range of 10 degrees is 45 area% or more as a whole and the film thickness of the upper layer from the interface is less than 1 μm, the (0001) orientation is less than 10% and the (02-21) orientation is 30. A surface-coated cutting tool characterized by being at least%. "
It has the characteristics.

以下に、この発明の被覆工具の硬質被覆層の構成層について詳細に説明する。
(a)Ti化合物層(下部層):
Ti化合物層(例えば、TiC層、TiN層、TiCN層、TiCO層およびTiCNO層)は、基本的にはZr含有α型Al(以下、Zr含有Alという)層の下部層として存在し、自身の具備するすぐれた高温強度によって硬質被覆層が高温強度を具備するようになるほか、工具基体、Zr含有Al層のいずれにも密着し、硬質被覆層の工具基体に対する密着性を維持する作用を有するが、その合計平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方その合計平均層厚が20μmを越えると、特に高熱発生を伴う高速断続切削では熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その合計平均層厚を3〜20μmと定めた。
Hereinafter, the constituent layers of the hard coating layer of the coated tool of the present invention will be described in detail.
(A) Ti compound layer (lower layer):
The Ti compound layer (for example, TiC layer, TiN layer, TiCN layer, TiCO layer and TiCNO layer) is basically a lower layer of a Zr-containing α-type Al 2 O 3 (hereinafter referred to as Zr-containing Al 2 O 3 ) layer. The hard coating layer has high temperature strength due to its excellent high temperature strength, and the tool substrate of the hard coating layer is in close contact with both the tool substrate and the Zr-containing Al 2 O 3 layer. However, if the total average layer thickness is less than 3 μm, the above-mentioned effect cannot be sufficiently exerted. On the other hand, if the total average layer thickness exceeds 20 μm, particularly high heat generation occurs. In high-speed intermittent cutting, it becomes easy to cause thermoplastic deformation, which causes uneven wear. Therefore, the total average layer thickness is set to 3 to 20 μm.

(b)下部層の最表面層:
この発明における下部層の最表面層は、例えば、以下のようにして形成する。
即ち、まず、通常の化学蒸着装置を使用して、TiC層、TiN層、TiCN層、TiCO層およびTiCNO層のうちの1層または2層以上からなる種々のTi化合物層を蒸着形成(なお、TiCN層のみを蒸着形成することも勿論可能である)した後、同じく通常の化学蒸着装置を使用して、
反応ガス組成(容量%):TiCl 2.5〜10%、CHCN 0.5〜1.0%、N 40〜60%、残部H
反応雰囲気温度:800〜900℃、
反応雰囲気圧力:6〜10kPa、
の条件で化学蒸着して、下部層の最表面層として、例えば、酸素を含有するTiCN(以下、酸素含有TiCNという)層を形成する。
この際、所定層厚を得るに必要とされる蒸着時間終了前の5分〜30分の間は、全反応ガス量に対して1〜5容量%となるようにCOガスを添加して化学蒸着を行うことにより、層厚方向に500nmまでの深さ領域にのみ0.5〜3原子%の酸素を含有する酸素含有TiCN層を蒸着形成する。
(B) The outermost surface layer of the lower layer:
The outermost surface layer of the lower layer in the present invention is formed as follows, for example.
That is, first, using a normal chemical vapor deposition apparatus, various Ti compound layers consisting of one or more of TiC layer, TiN layer, TiCN layer, TiCO layer and TiCNO layer are formed by vapor deposition (in addition, (It is of course possible to vapor-deposit only the TiCN layer), and then using a normal chemical vapor deposition apparatus,
Reaction gas composition (volume%): TiCl 4 2.5 to 10%, CH 3 CN 0.5 to 1.0%, N 2 40 to 60%, balance H 2 ,
Reaction atmosphere temperature: 800 to 900 ° C.
Reaction atmosphere pressure: 6 to 10 kPa,
For example, a TiCN layer containing oxygen (hereinafter referred to as oxygen-containing TiCN) layer is formed as the outermost surface layer of the lower layer.
At this time, for 5 to 30 minutes before the end of the deposition time required to obtain a predetermined layer thickness, the chemical gas is added by adding CO gas so as to be 1 to 5% by volume with respect to the total reaction gas amount. By performing vapor deposition, an oxygen-containing TiCN layer containing 0.5 to 3 atomic% of oxygen is vapor-deposited only in the depth region up to 500 nm in the layer thickness direction.

酸素含有TiCN層からなる上記下部層の最表面層は、例えば、その上に、好ましいZr含有Al結晶粒を形成するためには(後記(c)参照)、少なくとも500nm以上の層厚として形成するとともに、さらに、該酸素含有TiCN層と上部層との界面から、該酸素含有TiCN層の層厚方向に500nmまでの深さ領域にのみ、0.5〜3原子%の酸素を含有させ、500nmを超える深さ領域には酸素を含有させていない酸素含有TiCN層で構成することが望ましい。
ここで、酸素含有TiCN層の500nmまでの深さ領域における平均酸素含有量を上記のように限定したのは、膜の深さ方向に500nmより深い領域において酸素が含有されていると、TiCN最表面の組織形態が柱状組織から粒状組織に変化するとともに、下部層の最表面層直上のZr含有Al結晶粒の配向性を所望のものとできなくなるばかりか、上部層と下部層の界面から上部層の膜厚方向1μm未満の領域(以下、下部層直上ともいう)において、工具基体表面と平行な面に沿って測定したZr含有Al結晶粒の粒径(以下、横方向粒径という)を0.1〜0.3μmの微細なものにすることができないためである。
また、深さ領域500nmまでの平均酸素含有量が0.5原子%未満では、上部層と下部層TiCNの付着強度の向上を望むことはできず、一方、該深さ領域における平均酸素含有量が3原子%を超えると、界面直上の上部層Zr含有Alにおいて、(0001)配向Zr含有Al結晶粒(なお、(0001)配向Zr含有Al結晶粒については、後記する。)の占める面積割合が、上部層全体のAlの全面積に対して45面積%未満となり、上部層の高温強度が低下するからである。
ここで、平均酸素含有量は、下部層の最表面層を構成する上記TiCN層と上部層との界面から、該TiCN層の層厚方向に500nmまでの深さ領域におけるチタン(Ti),炭素(C),窒素(N)及び酸素(O)の合計含有量に占める酸素(O)含有量を原子%(=O/(Ti+C+N+O)×100)で表したものをいう。
The uppermost surface layer of the lower layer composed of the oxygen-containing TiCN layer is, for example, a layer thickness of at least 500 nm or more in order to form preferable Zr-containing Al 2 O 3 crystal grains thereon (see (c) below). And 0.5 to 3 atomic% of oxygen only in the depth region from the interface between the oxygen-containing TiCN layer and the upper layer up to 500 nm in the thickness direction of the oxygen-containing TiCN layer. It is desirable that the depth region exceeding 500 nm is composed of an oxygen-containing TiCN layer not containing oxygen.
Here, the average oxygen content in the depth region up to 500 nm of the oxygen-containing TiCN layer is limited as described above because when oxygen is contained in a region deeper than 500 nm in the depth direction of the film, As the surface texture changes from a columnar structure to a granular structure, the orientation of the Zr-containing Al 2 O 3 crystal grains immediately above the outermost surface layer of the lower layer cannot be made desired, and the upper layer and the lower layer In a region of the upper layer from the interface in the film thickness direction of less than 1 μm (hereinafter also referred to as just above the lower layer), the grain size of the Zr-containing Al 2 O 3 crystal grains measured along the plane parallel to the tool base surface (hereinafter referred to as horizontal) This is because the directional particle size cannot be as fine as 0.1 to 0.3 μm.
Further, if the average oxygen content up to a depth region of 500 nm is less than 0.5 atomic%, it is not possible to improve the adhesion strength between the upper layer and the lower layer TiCN, while the average oxygen content in the depth region Exceeds 3 atomic%, in the upper layer Zr-containing Al 2 O 3 immediately above the interface, (0001) -oriented Zr-containing Al 2 O 3 crystal grains (in addition, (0001) -oriented Zr-containing Al 2 O 3 crystal grains This is because the area ratio occupied by the upper layer is less than 45 area% with respect to the total area of Al 2 O 3 of the entire upper layer, and the high-temperature strength of the upper layer is reduced.
Here, the average oxygen content is determined from titanium (Ti) and carbon in a depth region up to 500 nm in the layer thickness direction of the TiCN layer from the interface between the TiCN layer and the upper layer constituting the outermost surface layer of the lower layer. The oxygen (O) content in the total content of (C), nitrogen (N) and oxygen (O) is expressed in atomic% (= O / (Ti + C + N + O) × 100).

(c)上部層のZr含有Al結晶粒:
上記(b)で成膜した0.5〜3原子%の酸素を含有する酸素含有TiCN層の表面に、例えば、
反応ガス組成(容量%):CO 5〜10%、CO 5〜10%、残部H
雰囲気温度:900〜980℃、
雰囲気圧力:5〜15kPa、
という条件で、COとCO混合ガスによる酸化処理を行うことによって、α-Al核生成に必要なAl化合物の核をTi化合物層最表面に均一分散させることで、Al核生成前の工程において、Ti化合物層最表面にα-Al核を均一分散させることができる。
ついで、
反応ガス組成(容量%):AlCl 1〜3%、CO 1〜5%、ZrCl 0.2〜1.0%、残部H
反応雰囲気温度:900〜980℃、
反応雰囲気圧力:5〜15kPa、
時間:5〜30min、
の条件でZr含有Alを蒸着し、
ついで、
反応ガス組成(容量%):AlCl 1〜5%、ZrCl 0.2〜1.0%、CO 3〜10%、HCl 1〜5%、HS 0.1〜0.5%、残部H
反応雰囲気温度:900〜980℃、
反応雰囲気圧力:5〜15kPa、
時間:(目標とする上部層層厚になるまで)
という条件で上部層を蒸着することにより、
上部層と下部層の界面直上(下部層と上部層の界面から上部層の膜厚方向1μm未満の領域)には、Zr含有Al結晶粒の横方向平均粒径(工具基体表面と平行な面に沿って測定したZr含有Al結晶粒の平均粒径)が0.1〜0.3μmであり、また、界面から上部層の膜厚方向1μm以上の領域においては、横方向平均粒径が0.5〜1.0μmであるZr含有Al結晶粒からなる上部層が蒸着形成される。
しかも、この上部層は、膜厚方向に成長した柱状結晶組織を有し、さらに、上部層の全Zr含有α型Al結晶粒に占める面積割合が、全体で45面積%以上、界面から上部層の膜厚1μm未満の範囲内にある結晶粒の(0001)配向が10%未満、(02−21)配向が30%以上を占めるZr含有Al層から構成される。
(C) Zr-containing Al 2 O 3 crystal grains in the upper layer:
On the surface of the oxygen-containing TiCN layer containing 0.5 to 3 atomic% of oxygen formed in the above (b), for example,
Reaction gas composition (volume%): CO 5-10%, CO 2 5-10%, balance H 2 ,
Atmospheric temperature: 900-980 ° C.
Atmospheric pressure: 5-15 kPa,
With the proviso that, by performing oxidation treatment with CO and CO 2 mixed gas, alpha-Al 2 O 3 nuclei nuclear Al compound required to generate it to uniformly disperse the Ti compound layer outermost surface, Al 2 O 3 In the step before nucleation, α-Al 2 O 3 nuclei can be uniformly dispersed on the outermost surface of the Ti compound layer.
Next,
Reaction gas composition (volume%): AlCl 3 1-3%, CO 2 1-5%, ZrCl 4 0.2-1.0%, balance H 2 ,
Reaction atmosphere temperature: 900-980 ° C.,
Reaction atmosphere pressure: 5 to 15 kPa,
Time: 5-30 min
Zr-containing Al 2 O 3 was vapor-deposited under the following conditions:
Next,
Reaction gas composition (volume%): AlCl 3 1-5%, ZrCl 4 0.2-1.0%, CO 2 3-10%, HCl 1-5%, H 2 S 0.1-0.5% , Balance H 2 ,
Reaction atmosphere temperature: 900-980 ° C.,
Reaction atmosphere pressure: 5 to 15 kPa,
Time: (until the target upper layer thickness is reached)
By evaporating the upper layer under the conditions
Immediately above the interface between the upper layer and the lower layer (a region less than 1 μm in the film thickness direction of the upper layer from the interface between the lower layer and the upper layer), the lateral average grain size of the Zr-containing Al 2 O 3 crystal grains (on the surface of the tool substrate) The average particle diameter of Zr-containing Al 2 O 3 crystal grains measured along parallel planes) is 0.1 to 0.3 μm, and in the region of 1 μm or more in the film thickness direction of the upper layer from the interface, An upper layer made of Zr-containing Al 2 O 3 crystal grains having a directional average grain size of 0.5 to 1.0 μm is formed by vapor deposition.
Moreover, the upper layer has a columnar crystal structure grown in the film thickness direction, and the area ratio of the upper layer to the total Zr-containing α-type Al 2 O 3 crystal grains is 45% by area or more in total. To Zr-containing Al 2 O 3 layer in which (0001) orientation of the crystal grains in the range of less than 1 μm is less than 10% and (02-21) orientation is 30% or more.

上記(c)のZr含有Al層は、その構成成分であるAlが、該層の高温硬さおよび耐熱性を向上させ、また、層中に微量(AlとOとの合量に占める割合で、Zr/(Al+Zr+O)が0.0001〜0.003(但し、原子比))含有されたZr成分が、Zr含有Al層自身の結晶粒界強度・高温強度を向上させるが、Zr成分の含有割合が0.0001未満では、上記作用を期待することはできず、一方、Zr成分の含有割合が0.003を超えた場合には、層中にジルコニウム酸化物粒子が析出することによって粒界強度が低下するため、Al成分とO成分との合量に占めるZr成分の含有割合(Zr/(Al+Zr+O)の比の値)は0.0001〜0.003(但し、原子比)と定めた。 In the Zr-containing Al 2 O 3 layer of (c) above, Al, which is a constituent component, improves the high-temperature hardness and heat resistance of the layer, and a small amount (in the total amount of Al and O in the layer). Zr component containing Zr / (Al + Zr + O) in a ratio of 0.0001 to 0.003 (however, atomic ratio) improves the grain boundary strength and high-temperature strength of the Zr-containing Al 2 O 3 layer itself. However, when the content ratio of the Zr component is less than 0.0001, the above-described effect cannot be expected. On the other hand, when the content ratio of the Zr component exceeds 0.003, zirconium oxide particles are contained in the layer. Since the grain boundary strength decreases due to precipitation, the content ratio of the Zr component in the total amount of the Al component and the O component (value of the ratio of Zr / (Al + Zr + O)) is 0.0001 to 0.003 (however, Atomic ratio).

上記(c)のZr含有Al結晶粒は、層厚方向に縦長柱状組織として成長するが、上部層の層厚方向の位置によって、Zr含有Al結晶粒の横方向平均粒径は異なっている。
そして、Zr含有Al結晶粒の横方向平均粒径は、主として、下部層のTi化合物表面の粒径や上部層のZr含有Alの反応条件によって影響され、Ti化合物表面の粒径が微粒である場合には、下部層直上のZr含有Al結晶粒の横方向平均粒径は小さくなり、一方、Ti化合物表面の粒径が粗粒である場合には、下部層直上のZr含有Al結晶粒の横方向平均粒径は大きくなる。ただ、上部層と下部層の界面直上のZr含有Al結晶粒の横方向平均粒径が0.1μm未満になると、相対的にZr含有Al結晶粒の粒径が小さすぎるため、下部層直上Ti化合物表面の凹凸との結合性が悪くなるため、上部層Zr含有Al結晶粒との付着強度が弱くなる。逆に、界面直上のZr含有Al結晶粒の横方向平均粒径が0.3μmを超えると上部層のZr含有Alが粗粒化し、耐チッピング性が低下してしまうことから、上部層と下部層の界面直上のZr含有Al結晶粒の横方向平均粒径(工具基体表面と平行な面に沿って測定したZr含有Al結晶粒の平均粒径)は、下部層のTi化合物表面の粒径を調整することによって、0.1〜0.3μmとすることが必要である。下部層のTi化合物表面の粒径を調整するには、下部層(b)最表面層の成長時にTiClとCHCNの比およびCOガス量を調整することにより、下部層(b)最表面層の粒径を0.1〜0.3μm程度にすることで、所望のZr含有Al結晶粒の横方向平均粒径を得ることができる。
そして、上部層と下部層の界面直上に、0.1〜0.3μmという微細な横方向平均粒径のZr含有Al結晶粒が形成されていることによって、下部層と上部層の層間付着強度が向上し、高熱発生を伴い、切れ刃に断続的・衝撃的負荷が作用する高速断続切削条件下における被覆工具の耐剥離性、耐チッピング性を高めることができる。
なお、上部層と下部層の界面から上部層の膜厚方向1μm以上の領域において、Zr含有Al結晶粒の横方向平均粒径が0.5μm未満になると上部層Zr含有Al結晶粒との付着強度が弱くなり、逆に、1.0μmを超えるとZr含有Alの粗粒化により、耐チッピング性が低下してしまうことから、Zr含有Al結晶粒の横方向平均粒径は0.5〜1.0μmとすることが必要である。
The Zr-containing Al 2 O 3 crystal grains of (c) above grow as a vertically elongated columnar structure in the layer thickness direction. Depending on the position of the upper layer in the layer thickness direction, the transverse average grains of the Zr-containing Al 2 O 3 crystal grains The diameter is different.
The lateral average grain size of the Zr-containing Al 2 O 3 crystal grains is mainly influenced by the grain size of the Ti compound surface of the lower layer and the reaction conditions of the Zr-containing Al 2 O 3 of the upper layer. When the grain size is fine, the transverse average grain size of the Zr-containing Al 2 O 3 crystal grains immediately above the lower layer is small, while when the grain size of the Ti compound surface is coarse, The average lateral grain size of the Zr-containing Al 2 O 3 crystal grains immediately above the layer is increased. However, when the average transverse grain size of the Zr-containing Al 2 O 3 crystal grains immediately above the interface between the upper layer and the lower layer is less than 0.1 μm, the grain size of the Zr-containing Al 2 O 3 crystal grains is relatively too small. For this reason, the bonding strength with the irregularities on the surface of the Ti compound directly above the lower layer is deteriorated, so that the adhesion strength with the upper layer Zr-containing Al 2 O 3 crystal grains is weakened. On the contrary, if the average grain size in the transverse direction of the Zr-containing Al 2 O 3 crystal grains immediately above the interface exceeds 0.3 μm, the Zr-containing Al 2 O 3 in the upper layer is coarsened and chipping resistance is reduced. From the average lateral grain size of the Zr-containing Al 2 O 3 crystal grains immediately above the interface between the upper layer and the lower layer (the average grain diameter of the Zr-containing Al 2 O 3 crystal grains measured along a plane parallel to the tool substrate surface) ) Needs to be 0.1 to 0.3 μm by adjusting the particle size of the surface of the Ti compound in the lower layer. To adjust the particle size of the Ti compound surface of the lower layer, the ratio of TiCl 4 and CH 3 CN and the amount of CO gas during the growth of the uppermost surface layer of the lower layer (b) can be adjusted. By setting the particle size of the surface layer to about 0.1 to 0.3 μm, it is possible to obtain the desired transverse average particle size of the desired Zr-containing Al 2 O 3 crystal grains.
Then, Zr-containing Al 2 O 3 crystal grains having a fine lateral average grain size of 0.1 to 0.3 μm are formed immediately above the interface between the upper layer and the lower layer, so that the lower layer and the upper layer are Interlayer adhesion strength is improved, high heat generation is accompanied, and it is possible to improve the peeling resistance and chipping resistance of the coated tool under high-speed intermittent cutting conditions in which intermittent and impact loads are applied to the cutting edge.
Incidentally, in the film thickness direction 1μm or more regions of the upper layer from the interface between the upper layer and the lower layer, the upper layer when the lateral average particle size of the Zr-containing Al 2 O 3 crystal grains is less than 0.5 [mu] m Zr-containing Al 2 O 3 adhesion strength between the crystal grains is weakened, conversely, the grain coarsening of the Zr-containing Al 2 O 3 exceeds 1.0 .mu.m, since the chipping resistance is lowered, Zr-containing Al 2 O 3 crystals The average particle size in the transverse direction of the grains needs to be 0.5 to 1.0 μm.

上記Zr含有Al結晶粒の横方向平均粒径は、上部層と下部層の界面から上部層の膜厚方向1μm未満の領域(界面直上)において、また、上部層と下部層の界面から上部層の膜厚方向1μm以上の領域において、電子線後方散乱回折装置を用いて、その断面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射することにより測定し、その測定値の平均値を算出することにより、下部層直上のZr含有Al結晶粒の横方向平均粒径および上部層と下部層の界面から上部層の膜厚方向1μm以上の領域におけるZr含有Al結晶粒の横方向平均粒径を求めることができる。 The average grain size in the transverse direction of the Zr-containing Al 2 O 3 crystal grains is in a region (immediately above the interface) between the upper layer and the lower layer in the film thickness direction of less than 1 μm, and between the upper layer and the lower layer. Irradiating an electron beam to each crystal grain having a hexagonal crystal lattice existing within the measurement range of the cross-sectional polished surface using an electron beam backscattering diffraction device in a region of 1 μm or more in the film thickness direction of the upper layer from The average value of the Zr-containing Al 2 O 3 crystal grains immediately above the lower layer and the film thickness direction of the upper layer from the interface between the upper layer and the lower layer are 1 μm. The average lateral grain size of the Zr-containing Al 2 O 3 crystal grains in the above region can be determined.

上記(c)のZr含有Al結晶粒は、上部層全体のZr含有Al結晶粒に対して(0001)配向Zr含有Al結晶粒の面積割合が、全体として45面積%以上、界面から上部層の膜厚1μm未満の領域では(0001)配向が10%未満、(02−21)配向が30%以上を占めるが、(02−21)配向Zr含有Al結晶粒の面積割合は、上記蒸着条件のうちの、AlClガスとCOガス量が影響する。(02−21)配向が30%未満である場合は、Zr含有Al結晶粒の(0001)配向柱状組織が層厚方向から傾いた方向に成長し、所望の(0001)配向の面積割合を得ることができない。
界面から上部層の膜厚1μm未満の領域で(0001)配向が10%未満、(02−21)配向が30%以上であることで、上部層のZr含有Alと下部層との付着強度が向上する。
そして、(0001)配向Zr含有Al結晶粒の面積割合が、全体として45面積%以上を占める場合に、上部層のZr含有Alの高温硬さ、高温強度が維持されることから、本発明では、上部層の(0001)配向Zr含有Al結晶粒の面積割合を、45面積%以上と定めた。
The Zr-containing Al 2 O 3 crystal grains of (c), the area ratio of the top layer across the Zr-containing Al 2 O 3 grains relative to (0001) orientation Zr-containing Al 2 O 3 crystal grains, 45 as a whole (0001) orientation is less than 10% and (02-21) orientation occupies 30% or more in the area of area% or more and the thickness of the upper layer less than 1 μm from the interface, but (02-21) orientation Zr-containing Al 2 O The area ratio of the three crystal grains is affected by the amount of AlCl 3 gas and CO 2 gas among the above deposition conditions. When the (02-21) orientation is less than 30%, the (0001) -oriented columnar structure of the Zr-containing Al 2 O 3 crystal grains grows in a direction inclined from the layer thickness direction, and the area of the desired (0001) orientation I can't get a percentage.
When the (0001) orientation is less than 10% and the (02-21) orientation is 30% or more in the region where the film thickness of the upper layer is less than 1 μm from the interface, the Zr-containing Al 2 O 3 of the upper layer and the lower layer Adhesion strength is improved.
And when the area ratio of (0001) oriented Zr-containing Al 2 O 3 crystal grains occupies 45% by area or more as a whole, the high-temperature hardness and high-temperature strength of Zr-containing Al 2 O 3 in the upper layer are maintained. Therefore, in the present invention, the area ratio of the (0001) -oriented Zr-containing Al 2 O 3 crystal grains in the upper layer is set to 45 area% or more.

上記(0001)および(02−21)配向Zr含有Al結晶粒の面積割合は、電子線後方散乱回折装置を用いて、上部層の断面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、工具基体の表面の法線に対して、前記結晶粒の結晶面である(0001)および(02−21)面の法線がなす傾斜角を測定し、その傾斜角が0〜10度であるZr含有Al結晶粒が、上部層の全Zr含有Al結晶粒に占める面積割合の測定平均値として求めることができる。
なお、Zr含有Al結晶粒からなる上部層全体の平均層厚が、2μm未満であると長期の使用にわたってすぐれた高温強度および高温硬さを発揮することができず、一方、15μmを越えると、チッピングが発生し易くなることから、上部層の平均層厚は2〜15μmと定めた。
The area ratio of the (0001) and (02-21) -oriented Zr-containing Al 2 O 3 crystal grains is determined by using an electron beam backscattering diffractometer and hexagonal crystals existing within the measurement range of the cross-section polished surface of the upper layer. Inclination angles formed by the normal lines of the (0001) and (02-21) planes, which are crystal planes of the crystal grains, with respect to the normal lines of the surface of the tool base by irradiating individual crystal grains having a lattice. The Zr-containing Al 2 O 3 crystal grains having an inclination angle of 0 to 10 degrees can be obtained as a measurement average value of the area ratio of all the Zr-containing Al 2 O 3 crystal grains in the upper layer.
In addition, when the average layer thickness of the entire upper layer composed of the Zr-containing Al 2 O 3 crystal grains is less than 2 μm, excellent high-temperature strength and high-temperature hardness cannot be exhibited over a long period of use, while 15 μm If it exceeds the upper limit, chipping is likely to occur. Therefore, the average thickness of the upper layer is set to 2 to 15 μm.

この発明の被覆工具は、硬質被覆層の下部層最表面に、酸素含有TiCN層を形成することにより、上部層と下部層の界面直上のZr含有Al結晶粒の横方向平均粒径を0.1〜0.3μmに調整し、また、上部層と下部層の界面から上部層の膜厚方向1μm以上の領域においては、Zr含有Al結晶粒の横方向平均粒径を0.5〜1.0μmに調整し、さらに、上部層のZr含有Al結晶粒の(0001)配向の面積割合を45面積%以上と定めていることから、上部層と下部層の付着強度を高めることができるとともに、上部層の高温硬さ、高温強度を維持することができるので、各種の鋼や鋳鉄などの切削加工を高速で、かつ切れ刃に対して断続的・衝撃的負荷が作用する高速断続切削条件で行っても、すぐれた高温強度と高温硬さを示し、硬質被覆層のチッピング、剥離の発生もなく、長期の使用にわたってすぐれた切削性能を発揮するものである。 In the coated tool of the present invention, by forming an oxygen-containing TiCN layer on the outermost surface of the lower layer of the hard coating layer, the transverse average particle diameter of the Zr-containing Al 2 O 3 crystal grains immediately above the interface between the upper layer and the lower layer Is adjusted to 0.1 to 0.3 μm, and in the region of 1 μm or more in the film thickness direction of the upper layer from the interface between the upper layer and the lower layer, the transverse average particle size of the Zr-containing Al 2 O 3 crystal grains is set to Since the area ratio of (0001) orientation of the Zr-containing Al 2 O 3 crystal grains of the upper layer is set to 45 area% or more, the upper layer and the lower layer are adjusted to 0.5 to 1.0 μm. Adhesion strength can be increased, and high temperature hardness and high temperature strength of the upper layer can be maintained, so cutting of various steels and cast irons can be performed at high speed and intermittently / impact on the cutting edge. Excellent even under high-speed intermittent cutting conditions where the load acts Shows the high-temperature strength and high-temperature hardness, chipping of the hard coating layer, without the occurrence of delamination, in which exhibit cutting performance with superior long-term use.

つぎに、この発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG120408に規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体A〜Eをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, and Co powder each having an average particle diameter of 1 to 3 μm are prepared. The raw material powder is blended in the blending composition shown in Table 1, added with wax, ball mill mixed in acetone for 24 hours, dried under reduced pressure, and press-molded into a green compact of a predetermined shape at a pressure of 98 MPa. The green compact is vacuum-sintered in a vacuum of 5 Pa at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour. After sintering, the cutting edge is subjected to a honing process of R: 0.07 mm. Thus, tool bases A to E made of a WC-based cemented carbide having a throwaway tip shape specified in ISO · CNMG120408 were manufactured.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分に幅:0.1mm、角度:20度のチャンファーホーニング加工を施すことによりISO規格・CNMG120408のチップ形状をもったTiCN基サーメット製の工具基体a〜eを形成した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after sintering, a chamfer with a width of 0.1 mm and an angle of 20 degrees at the cutting edge portion. By performing honing, tool bases a to e made of TiCN-based cermet having a chip shape of ISO standard / CNMG120408 were formed.

ついで、これらの工具基体A〜Eおよび工具基体a〜eのそれぞれを、通常の化学蒸着装置に装入し、
(a)まず、表3(表3中のl−TiCNは特開平6−8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)に示される条件にて、表6に示される目標層厚のTi化合物層を蒸着形成した。
(b)表4に示される条件にて、下部層の最表面層としての酸素含有TiCN層(即ち、該層の表面から500nmまでの深さ領域にのみ、0.5〜3原子%(O/(Ti+C+N+O)×100)の酸素が含有される)を表6に示される目標層厚で形成し、
(c)ついで、表5に示される条件にて、上部層のZr含有Al層を表6に示される目標層厚で形成することにより、
本発明被覆工具1〜10をそれぞれ製造した。
Then, each of these tool bases A to E and tool bases a to e is charged into a normal chemical vapor deposition apparatus,
(A) First, Table 3 (l-TiCN in Table 3 indicates the conditions for forming a TiCN layer having a vertically elongated crystal structure described in JP-A-6-8010, and the other conditions are ordinary granularity. The Ti compound layer having the target layer thickness shown in Table 6 was formed by vapor deposition under the conditions shown in FIG.
(B) Under the conditions shown in Table 4, the oxygen-containing TiCN layer as the outermost surface layer of the lower layer (i.e., 0.5 to 3 atomic% (O 2 only in the depth region from the surface of the layer to 500 nm) / (Ti + C + N + O) × 100) containing oxygen) with the target layer thickness shown in Table 6,
(C) Next, under the conditions shown in Table 5, by forming the Zr-containing Al 2 O 3 layer of the upper layer with the target layer thickness shown in Table 6,
The present coated tools 1 to 10 were produced, respectively.

また、比較の目的で、上記本発明被覆工具1,2,6,7の上記工程(b)を行わずに、その他は本発明被覆工具1,2,6,7と同一の条件で成膜することにより、表7に示す比較被覆工具1,2,6,7を製造した。
さらに、比較のため、上記本発明被覆工具3〜5,8〜10の上記工程(b)から外れた条件(表4で、本発明外として示す)で酸素を含有させ,また、同じく(c)から外れた条件(表5で、本発明外として示す)でZr含有Al層を形成し、その他は本発明被覆工具3〜5,8〜10と同一の条件で成膜することにより、表7に示す比較被覆工具3〜5,8〜10を製造した。
Further, for the purpose of comparison, the above-described step (b) of the present coated tool 1, 2, 6, 7 is not performed, and the others are formed under the same conditions as the present coated tool 1, 2, 6, 7 As a result, comparative coated tools 1, 2, 6, and 7 shown in Table 7 were manufactured.
Further, for comparison, oxygen was contained under the conditions (shown as outside of the present invention in Table 4) outside the above step (b) of the above coated tools 3-5, 8-10 of the present invention. The Zr-containing Al 2 O 3 layer is formed under conditions that deviate from the above) (shown as outside the present invention in Table 5), and the others are formed under the same conditions as the coated tools 3-5, 8-10 of the present invention. Thus, comparative coated tools 3-5, 8-10 shown in Table 7 were produced.

ついで、上記の本発明被覆工具1〜10と比較被覆工具1〜10については、下部層の最表面層を構成するTiCN層について、該TiCN層の層厚方向に500nmまでの深さ領域における平均酸素含有量(=O/(Ti+C+N+O)×100)、さらに、500nmを超える深さ領域における平均酸素含有量(=O/(Ti+C+N+O)×100)を、オージェ電子分光分析器を用い、被覆工具の断面研磨面に下部層Ti炭窒化物層の最表面からTi炭化物層の膜厚相当の距離の範囲に直径10nmの電子線を照射させていき、Ti,C,N,Oのオージェピークの強度を測定し、それらのピーク強度の総和からOのオージェピークの割合から算出した。
表6,7にこれらの値を示す。
Next, for the above-described inventive coated tools 1-10 and comparative coated tools 1-10, the TiCN layer constituting the outermost surface layer of the lower layer is averaged in a depth region up to 500 nm in the layer thickness direction of the TiCN layer. The oxygen content (= O / (Ti + C + N + O) × 100), and the average oxygen content (= O / (Ti + C + N + O) × 100) in a depth region exceeding 500 nm were determined using an Auger electron spectrometer. The cross-sectional polished surface is irradiated with an electron beam having a diameter of 10 nm from the outermost surface of the lower Ti carbonitride layer to a distance corresponding to the thickness of the Ti carbide layer, and the intensity of the Auger peaks of Ti, C, N, and O Was calculated from the ratio of O Auger peaks from the sum of the peak intensities.
Tables 6 and 7 show these values.

また、上記の本発明被覆工具1〜10と比較被覆工具1〜10について、下部層と上部層の界面直上におけるZr含有Al結晶粒の横方向粒径と、下部層と上部層の界面から上部層の膜厚方向1μm以上の領域におけるZr含有Al結晶粒の横方向粒径を、電子線後方散乱回折装置を用いて測定し、測定値の平均から、それぞれの横方向平均粒径を求めた。
より具体的には、以下のとおりである。
下部層と上部層の界面直上(界面から上部層の膜厚方向1μm未満の領域)におけるZr含有Al結晶粒について、電子線後方散乱回折装置を用い、断面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、観察倍率10,000倍で測定し、その菊池線回折図形から、Zr含有α型Al層の各結晶粒のおける横方向の線分測定点10箇所の測定値の平均から、横方向平均粒径を求めた。
同様にして、下部層と上部層の界面から上部層の膜厚方向1μm以上の領域におけるZr含有Al結晶粒についても、測定点10箇所の測定値の平均から、横方向平均粒径を求めた。
表6,7にこれらの値を示す。
Further, the comparison coated tool 10 with the above the present invention coated tools 1 to 10, the Zr-containing Al 2 O 3 crystal grains directly above the interface between the lower layer and the upper layer and the lateral particle size, the lower layer and the upper layer The lateral grain size of the Zr-containing Al 2 O 3 crystal grains in the region of 1 μm or more in the thickness direction of the upper layer from the interface is measured using an electron beam backscattering diffractometer. The average particle size was determined.
More specifically, it is as follows.
With respect to the Zr-containing Al 2 O 3 crystal grains immediately above the interface between the lower layer and the upper layer (the region less than 1 μm in the film thickness direction from the interface), using an electron beam backscattering diffractometer, within the measurement range of the cross-section polished surface Each crystal grain having an existing hexagonal crystal lattice is irradiated with an electron beam and measured at an observation magnification of 10,000 times. From the Kikuchi diffraction pattern, each crystal grain of the Zr-containing α-type Al 2 O 3 layer is measured. The average particle size in the horizontal direction was determined from the average of the measured values at the 10 measurement points in the horizontal line segment.
Similarly, for the Zr-containing Al 2 O 3 crystal grains in the region of 1 μm or more in the film thickness direction of the upper layer from the interface between the lower layer and the upper layer, the average particle size in the lateral direction is determined from the average of the measured values at 10 measurement points. Asked.
Tables 6 and 7 show these values.

つぎに、本発明被覆工具1〜10、比較被覆工具1〜10の硬質被覆層の上部層全体の(0001)配向Zr含有Al結晶粒の面積割合および下部層と上部層の界面直上(界面から上部層の膜厚方向1μm未満の領域)における(0001)または(02−21)配向の面積割合については、電子線後方散乱回折装置を用い、前記と同様、その断面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、工具基体の表面の法線に対して、前記結晶粒の結晶面である(0001)および(02−21)面の法線がなす傾斜角を測定し、その傾斜角が0〜10度である結晶粒((0001)または(02−21)配向Zr含有Al結晶粒)の面積割合を測定することによって求めた。
なお、ここでいう「上部層全体」とは、下部層と上部層との界面から上部層最表面までの上部層全ての測定範囲をいう。
表6,7にこれらの値を示す。
Next, the area ratio of (0001) -oriented Zr-containing Al 2 O 3 crystal grains in the entire upper layer of the hard coating layer of the present coated tools 1 to 10 and comparative coated tools 1 to 10 and immediately above the interface between the lower layer and the upper layer Regarding the area ratio of the (0001) or (02-21) orientation in the region from the interface to the upper layer in the film thickness direction of less than 1 μm, the cross-sectional polished surface was measured in the same manner as described above using an electron beam backscatter diffractometer. Each crystal grain having a hexagonal crystal lattice existing in the range is irradiated with an electron beam, and is a crystal plane of the crystal grain with respect to the normal of the surface of the tool base (0001) and (02-21) The inclination angle formed by the normal of the surface is measured, and the area ratio of the crystal grains ((0001) or (02-21) oriented Zr-containing Al 2 O 3 crystal grains) whose inclination angle is 0 to 10 degrees is measured. Was determined by
Here, “the entire upper layer” refers to the measurement range of the entire upper layer from the interface between the lower layer and the upper layer to the outermost surface of the upper layer.
Tables 6 and 7 show these values.

また、本発明被覆工具1〜10、比較被覆工具1〜10の硬質被覆層の各構成層の厚さを、走査型電子顕微鏡を用いて観察倍率2,000倍にて観察(縦断面測定)を行い、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。
また、上部層Zr含有Al結晶粒中のZr含有割合については、二次イオン質量分析装置を用いて、鏡面研磨加工した断面を測定し、観察倍率10,000倍での異なる視野5点の平均値を実測値とした。
In addition, the thickness of each constituent layer of the hard coating layer of the present coated tool 1 to 10 and comparative coated tool 1 to 10 is observed with a scanning electron microscope at an observation magnification of 2,000 times (longitudinal section measurement). In all cases, the average layer thickness (average value of 5-point measurement) substantially the same as the target layer thickness was shown.
Further, regarding the Zr content ratio in the upper layer Zr-containing Al 2 O 3 crystal grains, a mirror-polished cross section was measured using a secondary ion mass spectrometer, and a different field of view 5 at an observation magnification of 10,000 times. The average value of the points was taken as the actual measurement value.








つぎに、上記の本発明被覆工具1〜10、比較被覆工具1〜10の各種の被覆工具について、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・S30Cの長さ方向等間隔8本縦溝入り、
切削速度:410m/min.、
切り込み:1.8mm、
送り:0.4mm/rev.、
切削時間:5分、
の条件(切削条件Aという)での炭素鋼の湿式高速断続切削試験(通常の切削速度は、250m/min.、)、
被削材:JIS・SCM445の長さ方向等間隔8本縦溝入り、
切削速度:390m/min.、
切り込み:2.5mm、
送り:0.3mm/rev.、
切削時間:5分、
の条件(切削条件Bという)でのニッケルクロムモリブデン合金鋼の乾式高速断続切削試験(通常の切削速度は、200m/min.)、
被削材:JIS・FCD450の長さ方向等間隔8本縦溝入り、
切削速度:410m/min.、
切り込み:2.8mm、
送り:0.4mm/rev.、
切削時間:5分、
の条件(切削条件Cという)でのダクタイル鋳鉄の乾式高速高切込切削試験(通常の切削速度は、180m/min.)、
を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。
表8にこの測定結果を示した。
Next, for the various coated tools of the present invention coated tools 1 to 10 and comparative coated tools 1 to 10, all of them are screwed with a fixing jig to the tip of the tool steel tool,
Work material: Eight longitudinally spaced grooves in the length direction of JIS / S30C,
Cutting speed: 410 m / min. ,
Cutting depth: 1.8mm,
Feed: 0.4 mm / rev. ,
Cutting time: 5 minutes
Wet high-speed intermittent cutting test of carbon steel under the conditions (cutting condition A) (normal cutting speed is 250 m / min.),
Work material: Eight longitudinally spaced grooves in the length direction of JIS / SCM445,
Cutting speed: 390 m / min. ,
Incision: 2.5mm,
Feed: 0.3 mm / rev. ,
Cutting time: 5 minutes
Dry high speed intermittent cutting test of nickel chrome molybdenum alloy steel under the conditions (cutting condition B) (normal cutting speed is 200 m / min.),
Work material: JIS / FCD450 lengthwise equidistant, 8 vertical grooves,
Cutting speed: 410 m / min. ,
Cutting depth: 2.8 mm,
Feed: 0.4 mm / rev. ,
Cutting time: 5 minutes
Dry high-speed high-cut cutting test of ductile cast iron under the following conditions (referred to as cutting condition C) (normal cutting speed is 180 m / min.),
In each cutting test, the flank wear width of the cutting edge was measured.
Table 8 shows the measurement results.


表6〜8に示される結果から、本発明被覆工具1〜10は、いずれも、下部層の最表面に酸素含有TiCN結晶粒が形成され、下部層と上部層の界面直上のZr含有Al結晶粒の横方向平均粒径が0.1〜0.3μmと微細であって、かつ、上部層全体のZr含有Al結晶粒に占める(0001)配向Zr含有Al結晶粒の面積割合は45面積%以上であることから、上部層−下部層間の付着強度に優れ、しかも、上部層はすぐれた高温硬さと高温強度を有するので、各種の鋼や鋳鉄などの切削加工を高速でかつ切れ刃に対して断続的・衝撃的負荷が作用する高速断続切削条件で行っても、チッピング、剥離の発生はなく、長期の使用にわたってすぐれた切削性能を発揮する。
しかるに、比較被覆工具1〜10では、高速断続切削加工においては、硬質被覆層のチッピング発生、剥離発生により、比較的短時間で使用寿命に至ることが明らかである。
From the results shown in Tables 6 to 8, all of the inventive coated tools 1 to 10 have oxygen-containing TiCN crystal grains formed on the outermost surface of the lower layer, and Zr-containing Al 2 immediately above the interface between the lower layer and the upper layer. The average grain size in the transverse direction of the O 3 crystal grains is as fine as 0.1 to 0.3 μm, and the (0001) -oriented Zr-containing Al 2 O 3 occupies the Zr-containing Al 2 O 3 crystal grains in the entire upper layer. Since the area ratio of crystal grains is 45% by area or more, it has excellent adhesion strength between the upper layer and lower layer, and the upper layer has excellent high temperature hardness and high temperature strength, so it can cut various steels and cast irons. Even when machining is performed under high-speed intermittent cutting conditions in which intermittent and impact loads are applied to the cutting edge, chipping and peeling do not occur, and excellent cutting performance is demonstrated over a long period of use.
However, it is apparent that the comparative coated tools 1 to 10 reach the service life in a relatively short time due to occurrence of chipping and peeling of the hard coating layer in high-speed intermittent cutting.

上述のように、この発明の被覆工具は、各種鋼や鋳鉄などの通常の条件での連続切削や断続切削は勿論のこと、高熱発生を伴い、かつ、切刃に断続的・衝撃的負荷が作用する高速断続切削という厳しい切削条件下でも、硬質被覆層のチッピング、剥離が発生することはなく、長期の使用に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention has high heat generation as well as continuous cutting and intermittent cutting under normal conditions such as various steels and cast iron, and the cutting blade has intermittent and impact loads. Even under severe cutting conditions such as high-speed intermittent cutting that acts, chipping and peeling of the hard coating layer will not occur, and excellent cutting performance will be demonstrated over a long period of use. In addition, it is possible to sufficiently satisfy the labor-saving and energy-saving of the cutting process and the cost reduction.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a)下部層は、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなり、かつ、3〜20μmの合計平均層厚を有するTi化合物層、
(b)上部層は、2〜15μmの平均層厚およびα型の結晶構造を有するZr含有α型Al層(但し、原子比で、Zr/(Al+Zr+O)の比の値は0.0001〜0.003)、
上記(a)、(b)からなる硬質被覆層が設けられた表面被覆切削工具であって、
(c)上記下部層の最表面層が、少なくとも500nm以上の層厚を有するTi炭窒化物層からなり、該Ti炭窒化物層と上部層との界面から、該Ti炭窒化物層の層厚方向に500nmまでの深さ領域にのみ酸素が含有されており、かつ、該深さ領域に含有される平均酸素含有量は、該深さ領域に含有されるTi,C,N,Oの合計含有量の0.5〜3原子%であり、
(d)上記下部層と上記上部層との界面における上記上部層のZr含有α型Alについて、電子線後方散乱回折装置を用いて、その断面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射することにより、上記Zr含有α型Al結晶粒の粒径を測定した場合、界面から上部層の膜厚方向1μm未満の領域におけるZr含有α型Al結晶粒の横方向平均粒径は0.1〜0.3μmであり、一方、界面から上部層の膜厚方向1μm以上の領域におけるZr含有α型Al結晶粒の横方向平均粒径は0.5〜1.0μmであって、膜厚方向に成長した柱状結晶組織を有し、
(e)上部層全体の上記Zr含有α型Al結晶粒について、電子線後方散乱回折装置を用いて、その断面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記工具基体の表面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定した場合、その傾斜角が0〜10度の範囲内にある結晶粒の面積割合が、全体で45面積%以上、界面から上部層の膜厚1μm未満の領域では(0001)配向が10%未満、(02−21)配向が30%以上であることを特徴とする表面被覆切削工具。
On the surface of the tool base composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(A) The lower layer is composed of one or more of a Ti carbide layer, a nitride layer, a carbonitride layer, a carbonate layer, and a carbonitride layer, and a total of 3 to 20 μm A Ti compound layer having an average layer thickness;
(B) an upper layer, Zr-containing α-type the Al 2 O 3 layer having an average layer thickness and α-type crystal structure of 2 to 15 [mu] m (where, in terms of atomic ratio, the value of the ratio of Zr / (Al + Zr + O ) is 0.0001 to 0.003),
A surface-coated cutting tool provided with a hard coating layer comprising the above (a) and (b),
(C) The outermost surface layer of the lower layer is made of a Ti carbonitride layer having a layer thickness of at least 500 nm, and the Ti carbonitride layer is formed from the interface between the Ti carbonitride layer and the upper layer. Oxygen is contained only in the depth region up to 500 nm in the thickness direction, and the average oxygen content contained in the depth region is that of Ti, C, N, O contained in the depth region. 0.5-3 atomic% of the total content,
(D) About the Zr-containing α-type Al 2 O 3 of the upper layer at the interface between the lower layer and the upper layer, using the electron beam backscattering diffractometer, the hexagon existing in the measurement range of the cross-section polished surface When the grain size of the Zr-containing α-type Al 2 O 3 crystal grains is measured by irradiating each crystal grain having a crystal lattice with an electron beam, the Zr in the region less than 1 μm in the thickness direction of the upper layer from the interface The transverse direction average grain size of the contained α-type Al 2 O 3 crystal grains is 0.1 to 0.3 μm, while the Zr-containing α-type Al 2 O 3 crystal in the region of 1 μm or more in the film thickness direction of the upper layer from the interface. The lateral average particle size of the grains is 0.5 to 1.0 μm, and has a columnar crystal structure grown in the film thickness direction,
(E) With respect to the Zr-containing α-type Al 2 O 3 crystal grains of the entire upper layer, each crystal grain having a hexagonal crystal lattice existing within the measurement range of the cross-sectional polished surface using an electron beam backscattering diffractometer When the inclination angle formed by the normal of the (0001) plane, which is the crystal plane of the crystal grain, is measured with respect to the normal of the surface of the tool base, the inclination angle is 0 to In the region where the area ratio of the crystal grains within the range of 10 degrees is 45 area% or more as a whole and the film thickness of the upper layer from the interface is less than 1 μm, the (0001) orientation is less than 10% and the (02-21) orientation is 30. A surface-coated cutting tool characterized by being at least%.
JP2011261615A 2011-11-30 2011-11-30 Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting Active JP5907406B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011261615A JP5907406B2 (en) 2011-11-30 2011-11-30 Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
CN201210499427.1A CN103128326B (en) 2011-11-30 2012-11-29 Hard coating layer plays the excellent resistance to surface-coated cutting tool collapsing cutter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011261615A JP5907406B2 (en) 2011-11-30 2011-11-30 Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting

Publications (2)

Publication Number Publication Date
JP2013111720A JP2013111720A (en) 2013-06-10
JP5907406B2 true JP5907406B2 (en) 2016-04-26

Family

ID=48489138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011261615A Active JP5907406B2 (en) 2011-11-30 2011-11-30 Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting

Country Status (2)

Country Link
JP (1) JP5907406B2 (en)
CN (1) CN103128326B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6198176B2 (en) * 2013-02-26 2017-09-20 三菱マテリアル株式会社 Surface coated cutting tool
JP6171800B2 (en) * 2013-09-30 2017-08-02 三菱マテリアル株式会社 Surface coated cutting tool with excellent chipping resistance due to hard coating layer
CN104801941A (en) * 2014-01-29 2015-07-29 三菱综合材料株式会社 Surface coating cutting tool
CN104816141B (en) * 2014-01-31 2018-06-19 三菱综合材料株式会社 Surface-coated cutting tool
KR20170046672A (en) 2014-09-03 2017-05-02 미쓰비시 마테리알 가부시키가이샤 Surface-coated cutting tool and manufacturing method thereof
US10682707B2 (en) * 2015-11-28 2020-06-16 Kyocera Corporation Cutting tool
CN110114196B (en) * 2016-12-26 2021-04-20 京瓷株式会社 Cutting tool
CN115397587A (en) 2021-03-22 2022-11-25 住友电工硬质合金株式会社 Cutting tool
JP7205039B1 (en) * 2021-03-22 2023-01-17 住友電工ハードメタル株式会社 Cutting tools
CN115379913A (en) 2021-03-22 2022-11-22 住友电工硬质合金株式会社 Cutting tool

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE503038T1 (en) * 2003-12-22 2011-04-15 Mitsubishi Materials Corp COATED CERMET CUTTING TOOL WITH HARD COATING LAYER WITH EXCELLENT IMPACT RESISTANCE.
JP4518260B2 (en) * 2005-01-21 2010-08-04 三菱マテリアル株式会社 Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
SE0602723L (en) * 2006-06-16 2007-12-17 Sandvik Intellectual Property Coated insert
JP5187570B2 (en) * 2007-12-28 2013-04-24 三菱マテリアル株式会社 Surface coated cutting tool with excellent wear resistance due to hard coating layer
EP2497590B1 (en) * 2009-11-06 2017-03-01 Tungaloy Corporation Coated tool
JP5594572B2 (en) * 2010-01-27 2014-09-24 三菱マテリアル株式会社 Surface-coated cutting tool with excellent peel resistance, chipping resistance, and wear resistance with excellent hard coating layer
CN102380629B (en) * 2010-09-01 2016-08-03 三菱综合材料株式会社 Hard coating layer plays resistance to the cutting property of excellence, the surface-coated cutting tool of wearability

Also Published As

Publication number Publication date
JP2013111720A (en) 2013-06-10
CN103128326A (en) 2013-06-05
CN103128326B (en) 2016-11-16

Similar Documents

Publication Publication Date Title
JP5907406B2 (en) Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP5831707B2 (en) Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP6677932B2 (en) Surface coated cutting tool that demonstrates excellent chipping and wear resistance in heavy interrupted cutting
JP5257535B2 (en) Surface coated cutting tool
JP6548072B2 (en) Surface coated cutting tool
JP6657594B2 (en) Surface coated cutting tool
JP4946333B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5838789B2 (en) Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP5263514B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5187571B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP2019005867A (en) Surface-coated cutting tool with hard coating layer exhibiting excellent anti-chipping properties
JP6853450B2 (en) Surface coating cutting tool
JP5861982B2 (en) Surface coated cutting tool whose hard coating layer exhibits excellent peeling resistance in high-speed intermittent cutting
JP4474643B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP4888709B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5892472B2 (en) A surface-coated cutting tool with a hard coating layer that exhibits excellent peeling and chipping resistance in high-speed intermittent cutting.
JP5176787B2 (en) Surface coated cutting tool with excellent chipping resistance and wear resistance due to hard coating layer
JP6853449B2 (en) Surface coating cutting tool
JP2018051674A (en) Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance and peeling resistance
JP5488829B2 (en) Surface coated cutting tool with excellent peeling resistance and wear resistance with excellent hard coating layer
JP7016462B2 (en) Surface covering cutting tool
JP4474644B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP2006000970A (en) Surface-coated cermet cutting tool with hard coating layer exerting excellent abrasion resistance in high-speed cutting
JP4747386B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent wear resistance in high speed cutting
JP5187573B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance with a hard coating layer in high-speed heavy cutting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160310

R150 Certificate of patent (=grant) or registration of utility model

Ref document number: 5907406

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150