JP5488829B2 - Surface coated cutting tool with excellent peeling resistance and wear resistance with excellent hard coating layer - Google Patents
Surface coated cutting tool with excellent peeling resistance and wear resistance with excellent hard coating layer Download PDFInfo
- Publication number
- JP5488829B2 JP5488829B2 JP2010206502A JP2010206502A JP5488829B2 JP 5488829 B2 JP5488829 B2 JP 5488829B2 JP 2010206502 A JP2010206502 A JP 2010206502A JP 2010206502 A JP2010206502 A JP 2010206502A JP 5488829 B2 JP5488829 B2 JP 5488829B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- upper layer
- particles
- cutting tool
- coated cutting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Chemical Vapour Deposition (AREA)
Description
この発明は、例えば合金鋼や炭素鋼などの、高熱発生を伴い、切刃に高負荷が連続的に作用する高速重切削加工に用いた場合にも、硬質被覆層がすぐれた密着強度を有するため、切刃にチッピング(微小欠け)や皮膜の剥離の発生なく、長期の使用に亘ってすぐれた切削性能を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。 The present invention has excellent adhesion strength even when used in high-speed heavy cutting, such as alloy steel and carbon steel, which generates high heat and causes a continuous high load on the cutting edge. Therefore, the present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent cutting performance over a long period of use without occurrence of chipping (microchips) or peeling of a film on the cutting edge.
従来、炭化タングステン基超硬合金製基体(以下、超硬基体という)あるいはTiCN基サーメット基体(以下、サーメット基体という。また、超硬基体とサーメット基体とを総称して、工具基体という)の表面に、
(a)下部層が、3〜20μmの全体平均層厚を有するTiC層、TiN層、TiCN層、TiCO層およびTiCNO層のうちの1層または2層以上からなるTi化合物層、
(b)上部層が、1〜15μmの平均層厚を有し、化学蒸着形成された状態でα型の結晶構造を有する酸化アルミニウム(以下、α型Al2O3で示す)層、
上記(a)、(b)からなる硬質被覆層を蒸着形成した被覆工具が広く知られており、そして、上部層のα型Al2O3層の結晶方位を調整することによって、鋼や鋳鉄などの切削加工において、すぐれた耐摩耗性を発揮するようになることも知られている。
また、下部層−上部層間の層間密着性を向上させるために、下部層と上部層との間に、特定の結晶方位を有するTi2O3からなる所定層厚の中間層を設けた被覆工具(特許文献1)が提案されており、また、被覆工具の耐摩耗性を向上させるため、硬質被覆層を5層構造で構成し、そのうちの一つの層を特定の結晶方位を有するTi2O3層、他の一つの層を特定の結晶方位を有するAl2O3層とした被覆工具(特許文献2)も提案されており、さらに、上記Ti2O3からなる中間層に代えて、Al2O3とCr2O3との固溶体(以下、(Al,Cr)2O3で示す)からなる中間層を、下部層と上部層間に介在形成することにより、層間剥離を防止するようにした被覆工具(特許文献3)も提案されている。
Conventionally, the surface of a tungsten carbide-based cemented carbide substrate (hereinafter referred to as a cemented carbide substrate) or a TiCN-based cermet substrate (hereinafter referred to as a cermet substrate. The cemented carbide substrate and the cermet substrate are collectively referred to as a tool substrate). In addition,
(A) a Ti compound layer composed of one or more of a TiC layer, a TiN layer, a TiCN layer, a TiCO layer, and a TiCNO layer having a total average layer thickness of 3 to 20 μm,
(B) an aluminum oxide (hereinafter referred to as α-type Al 2 O 3 ) layer having an average layer thickness of 1 to 15 μm and having an α-type crystal structure in a state where the upper layer is formed by chemical vapor deposition;
A coated tool in which a hard coating layer comprising the above (a) and (b) is vapor-deposited is widely known, and by adjusting the crystal orientation of the upper α-type Al 2 O 3 layer, steel or cast iron It is also known that it exhibits excellent wear resistance in such cutting processes.
In addition, in order to improve interlayer adhesion between the lower layer and the upper layer, a coated tool in which an intermediate layer having a predetermined layer thickness made of Ti 2 O 3 having a specific crystal orientation is provided between the lower layer and the upper layer. (Patent Document 1) has been proposed, and in order to improve the wear resistance of the coated tool, the hard coating layer is constituted by a five-layer structure, and one of the layers is Ti 2 O having a specific crystal orientation. A coating tool (Patent Document 2) in which three layers and another one layer are made of an Al 2 O 3 layer having a specific crystal orientation has also been proposed. Further, in place of the intermediate layer made of Ti 2 O 3 , An intermediate layer made of a solid solution of Al 2 O 3 and Cr 2 O 3 (hereinafter referred to as (Al, Cr) 2 O 3 ) is interposed between the lower layer and the upper layer to prevent delamination. A covered tool (Patent Document 3) has also been proposed.
近年の切削加工の省力化および省エネ化に対する要求は強く、これに伴い、切削加工はますます高速化、高効率化の傾向にあるが、下部層としてTi化合物層、上部層としてα型Al2O3層からなる硬質被覆層を形成した被覆工具において、Ti2O3層を中間層として介在形成した場合(特許文献1、2)には、α型Al2O3とTi2O3は、同一結晶構造を有し、結晶成長の整合性が改善されるものの、Ti2O3自体が脆弱であるため層間付着強度の向上が十分であるとはいえず、また、中間層として(Al,Cr)2O3層を設けたものにおいても、高い層間密着強度が得られるが、α型Al2O3層と比較した場合、高温強度が劣り、層間付着強度と耐摩耗性が十分であるとはいえないため、例えば合金鋼の連続切削を高速高送り条件で行うと、切刃部に加わる連続的高負荷によりチッピング等の異常損傷を生じやすく、また、切削時に発生する高熱によって耐摩耗性が低下しやすく、これらを原因として、比較的短時間で使用寿命に至るのが現状である。 In recent years, there has been a strong demand for labor saving and energy saving in cutting, and along with this, cutting tends to be faster and more efficient, but the Ti compound layer as the lower layer and α-type Al 2 as the upper layer In a coated tool in which a hard coating layer composed of an O 3 layer is formed, when the Ti 2 O 3 layer is formed as an intermediate layer (Patent Documents 1 and 2), α-type Al 2 O 3 and Ti 2 O 3 are Although it has the same crystal structure and the consistency of crystal growth is improved, it can not be said that the improvement in interlayer adhesion strength is sufficient because Ti 2 O 3 itself is fragile. , Cr) 2 O 3 layer also provides high interlayer adhesion strength, but when compared with α-type Al 2 O 3 layer, high temperature strength is inferior, and interlayer adhesion strength and wear resistance are sufficient. For example, continuous cutting of alloy steel Is performed under high-speed and high-feed conditions, it is easy to cause abnormal damage such as chipping due to continuous high load applied to the cutting edge, and wear resistance tends to decrease due to high heat generated during cutting. At present, the service life is reached in a short time.
そこで、本発明者等は、層間付着強度を向上させることにより、耐チッピング性の向上を図り、あるいは、さらに、上部層の結晶方位分布の制御を行うことにより耐摩耗性の向上を図るべく鋭意研究を行ったところ、次のような知見を得た。 Therefore, the present inventors have eagerly attempted to improve the chipping resistance by improving the interlayer adhesion strength, or to further improve the wear resistance by controlling the crystal orientation distribution of the upper layer. As a result of research, the following findings were obtained.
被覆工具の硬質被覆層のうち、TiC層、TiN層、TiCN層、TiCO層およびTiCNO層のうちの1層または2層以上から形成されるTi化合物層からなる下部層は、それ自身の具備するすぐれた高温強度によって硬質被覆層の高温強度向上に寄与し、また、α型Al2O3層からなる上部層は、耐酸化性と熱的安定性にすぐれ、さらに高硬度を有するが、高熱発生を伴い、切刃に高負荷が作用する高速重切削では、下部層−上部層間の密着強度が十分とは言えず、また、耐摩耗性の向上を目的としてα型Al2O3層からなる上部層の結晶方位分布を調整した場合には、下部層−上部層間の密着強度の低下を招くことがあるため、下部層−上部層間の密着強度の向上と耐摩耗性の両立を図ることは困難であった。 Of the hard coating layer of the coated tool, the lower layer made of a Ti compound layer formed of one or more of the TiC layer, TiN layer, TiCN layer, TiCO layer and TiCNO layer is itself provided. Excellent high-temperature strength contributes to improving the high-temperature strength of the hard coating layer, and the upper layer made of α-type Al 2 O 3 layer has excellent oxidation resistance and thermal stability, and has high hardness, In high-speed heavy cutting in which a high load acts on the cutting edge with the occurrence, the adhesion strength between the lower layer and the upper layer cannot be said to be sufficient, and from the α-type Al 2 O 3 layer for the purpose of improving wear resistance. If the crystal orientation distribution of the upper layer is adjusted, the adhesion strength between the lower layer and the upper layer may be reduced. Therefore, both the improvement of the adhesion strength between the lower layer and the upper layer and the wear resistance should be achieved. Was difficult.
そこで、本発明者らは、下部層と上部層との界面に、所定層厚をもったいわゆる中間層を形成するのではなく(特許文献1〜3では、中間層の層厚は、それぞれ、0.1〜5μm、0.1〜2μm、0.3〜0.8μm)、中間層を形成するには至らない程度に微量、かつ、微粒のCr2O3粒子を、下部層と上部層との界面に、島状に点在分布させた場合には、α型Al2O3層からなる上部層の結晶方位分布制御を行った場合であっても、α型Al2O3とCr2O3とは、同一結晶構造であって構造的ミスマッチが小さく、しかも、格子定数も近く格子定数ミスマッチも小さいため、Ti化合物からなる下部層とα型Al2O3層からなる上部層との付着強度を向上させることができ、さらに、上部層として、特定の結晶方位分布を有するα型Al2O3層を形成することができるため、高速重切削加工においても、硬質被覆層の耐剥離性、耐摩耗性を向上させることができることを見出したのである。 Therefore, the present inventors do not form a so-called intermediate layer having a predetermined layer thickness at the interface between the lower layer and the upper layer (in Patent Documents 1 to 3, the layer thickness of the intermediate layer is 0.1 to 5 [mu] m, 0.1-2 .mu.m, 0.3 to 0.8 [mu] m), trace about does not result in forming the intermediate layer, and a Cr 2 O 3 particles of fine, lower layer and an upper layer When the crystal orientation distribution control of the upper layer composed of the α-type Al 2 O 3 layer is performed, the α-type Al 2 O 3 and Cr 2 O 3 has the same crystal structure and a small structural mismatch, and also has a small lattice constant and a small lattice constant mismatch. Therefore, a lower layer made of a Ti compound and an upper layer made of an α-type Al 2 O 3 layer The adhesion strength of the material can be improved and, as the upper layer, the specific crystal orientation component It is possible to form a α-type the Al 2 O 3 layer having a high speed even in heavy cutting, peeling resistance of the hard coating layer, it was found that it is possible to improve the wear resistance.
この発明は、上記知見に基づいてなされたものであって、
「(1) 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
チタンの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、かつ、3〜20μmの合計平均層厚を有するTi化合物層からなる下部層、及び、2〜15μmの平均層厚を有するα型酸化アルミニウム層からなる上部層、
上記の下部層と上部層からなる硬質被覆層が蒸着形成された表面被覆切削工具において、
上記Ti化合物層からなる下部層と上記α型酸化アルミニウム層からなる上部層との界面において、平均粒径5〜100nmのクロム酸化物粒子が、界面単位長さ当り30〜80%の線分割合で島状に点在分布していることを特徴とする表面被覆切削工具。
(2) 上記のα型酸化アルミニウム層からなる上部層について、電界放出型走査電子顕微鏡を用い、六方晶結晶格子を有する結晶粒個々に電子線を照射して、表面研磨面の法線に対して前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうちの0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで表わした場合、0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の60%以上の割合を占める傾斜角度数分布グラフを示すことを特徴とする前記(1)に記載の表面被覆切削工具。」
に特徴を有するものである。
This invention has been made based on the above findings,
“(1) On the surface of a tool base made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
Ti compound layer composed of one or more of titanium carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride oxide layer, and having a total average layer thickness of 3 to 20 μm A lower layer made of, and an upper layer made of an α-type aluminum oxide layer having an average layer thickness of 2 to 15 μm,
In the surface-coated cutting tool in which the hard coating layer composed of the lower layer and the upper layer is formed by vapor deposition,
At the interface between the lower layer made of the Ti compound layer and the upper layer made of the α-type aluminum oxide layer, the chromium oxide particles having an average particle size of 5 to 100 nm are 30% to 80% of the line segment ratio per unit length of the interface. A surface-coated cutting tool characterized by being distributed in islands.
(2) With respect to the upper layer composed of the α-type aluminum oxide layer, a field emission scanning electron microscope is used to irradiate each crystal grain having a hexagonal crystal lattice with an electron beam so that the normal to the surface polished surface is normal. The inclination angle formed by the normal line of the (0001) plane which is the crystal plane of the crystal grain is measured, and the measurement inclination angle within the range of 0 to 45 degrees of the measurement inclination angles is set to a pitch of 0.25 degrees. When it is divided by each and is represented by the inclination angle distribution graph obtained by counting the frequencies existing in each section, the total of the frequencies existing in the range of 0 to 10 degrees is the frequency in the inclination angle distribution graph. The surface-coated cutting tool according to (1) above, which shows an inclination angle number distribution graph occupying a ratio of 60% or more of the whole. "
It has the characteristics.
以下に、この発明の被覆工具の硬質被覆層について、より詳細に説明する。 Below, the hard coating layer of the coated tool of this invention is demonstrated in detail.
下部層(Ti化合物層):
Tiの炭化物(TiC)層、窒化物(TiN)層、炭窒化物(TiCN)層、炭酸化物(TiCO)層および炭窒酸化物(TiCNO)層のうちの1層または2層以上からなるTi化合物層は、硬質被覆層の下部層として存在し、自身の具備するすぐれた高温強度によって硬質被覆層の高温強度向上に寄与するほか、工具基体と中間層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する接合強度を向上させる作用を有するが、その平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方その平均層厚が20μmを越えると、特に高熱発生を伴う高速重切削では熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その平均層厚を3〜20μmと定めた。
Lower layer (Ti compound layer):
Ti composed of one or more of Ti carbide (TiC) layer, nitride (TiN) layer, carbonitride (TiCN) layer, carbonate (TiCO) layer and carbonitride oxide (TiCNO) layer The compound layer exists as a lower layer of the hard coating layer, and contributes to the improvement of the high temperature strength of the hard coating layer due to its excellent high-temperature strength, and also firmly adheres to both the tool base and the intermediate layer. Although it has the effect of improving the bonding strength of the hard coating layer to the tool substrate, if the average layer thickness is less than 3 μm, the above-mentioned effect cannot be sufficiently exerted, while if the average layer thickness exceeds 20 μm, High-speed heavy cutting with high heat generation is likely to cause thermoplastic deformation, which causes uneven wear. Therefore, the average layer thickness is determined to be 3 to 20 μm.
下部層と上部層の界面に存在するクロム酸化物(以下、Cr2O3で示す)粒子:
Ti化合物層からなる下部層とα型Al2O3層からなる上部層との界面には、平均粒径5〜50nmのCr2O3粒子が、界面単位長さ当り30〜80%の線分割合で島状に点在分布していることが必要である。
Cr2O3粒子を下部層と上部層との界面に形成するための処理は、例えば、以下のように行うことができる。
すなわち、Ti化合物層からなる下部層を通常の化学蒸着で工具基体表面に蒸着形成した後、
反応ガス組成 : 容量%で、
CrCl3 2.0〜4.0%、
CO2 4.5〜7.0%、
HCl 2.5〜5.0%、
残部H2
工具基体温度: 850〜920℃
反応圧力 : 12〜20 kPa
処理時間 : 3〜10 分
という蒸着条件で処理することにより、下部層表面に、平均粒径5〜100nmの Cr2O3粒子を、界面単位長さ当たり30〜80%の線分割合で島状に点在分布させることができる。
Chromium oxide (hereinafter referred to as Cr 2 O 3 ) particles present at the interface between the lower layer and the upper layer:
At the interface between the lower layer made of the Ti compound layer and the upper layer made of the α-type Al 2 O 3 layer, Cr 2 O 3 particles having an average particle diameter of 5 to 50 nm are lines of 30 to 80% per unit length of the interface. It is necessary to have an island-like distribution in proportion.
The treatment for forming Cr 2 O 3 particles at the interface between the lower layer and the upper layer can be performed, for example, as follows.
That is, after forming a lower layer made of a Ti compound layer on the surface of the tool base by ordinary chemical vapor deposition,
Reaction gas composition: In volume%,
CrCl 3 2.0-4.0%,
CO 2 4.5~7.0%,
HCl 2.5-5.0%,
Remainder H 2
Tool substrate temperature: 850 to 920 ° C.
Reaction pressure: 12-20 kPa
Treatment time: Treated under deposition conditions of 3 to 10 minutes, Cr 2 O 3 particles having an average particle diameter of 5 to 100 nm are formed on the surface of the lower layer at a line segment ratio of 30 to 80% per interface unit length. Can be distributed in the form of dots.
ここで、Cr2O3粒子の平均粒径は、前記蒸着条件のうちの特に、処理時間によって影響を受けるが、Cr2O3粒子の平均粒径が5nm未満では、Cr2O3粒子が不安定で、前記下部層−上部層間の密着強度を向上させるといった作用を十分に発揮させることができず、一方、Cr2O3粒子の平均粒径が100nmを超えると下部層と上部層の界面において空隙が発生し密着強度を低下させ、更にはCr2O3粒子上に成長する上部層Al2O3が粒成長を起こし、硬質被覆層にチッピングが発生しやすくなるため、Cr2O3粒子の平均粒径が5〜100nmとなるように蒸着条件のうちの特に処理時間を制御する。
また、下部層表面におけるCr2O3粒子の分布の形態、即ち、上部層を形成した後の下部層と上部層との界面において、Cr2O3粒子が島状に点在分布するか否か、さらに、界面単位長さに占めるCr2O3粒子の線分割合は、前記蒸着条件のうちの特に、圧力によって影響を受けるが、Cr2O3粒子が島状に点在分布し、その界面単位長さ当たりの線分割合が30%未満の場合には、上部層と下部層の界面に発生する結晶成長歪みを十分に緩和できず、一方、Cr2O3粒子が島状に点在分布するものの、界面単位長さ当たりの線分割合が80%を超える場合には、製造上の理由からCr2O3粒子の平均粒径が比較的大きくなり、Cr2O3粒子上に成長する上部層Al2O3が粒成長を起こし、硬質被覆層にチッピングが発生しやすくなる。またCr2O3は相対的に高温強度が低いものであるために、その割合が過剰になるとそれを起点として硬質被覆層の上部層との界面にクラックが発生し易くなることから、下部層表面(上部層を形成した後の下部層と上部層との界面)に島状に点在分布するCr2O3粒子の界面単位長さ当たりの線分割合は30〜80%となるように、蒸着条件のうち特に圧力を制御する。
Here, the average particle size of Cr 2 O 3 particles, in particular of the deposition conditions is affected by the treatment time, the average particle size is less than 5nm of Cr 2 O 3 particles, the Cr 2 O 3 particles It is unstable and cannot sufficiently exert the effect of improving the adhesion strength between the lower layer and the upper layer. On the other hand, if the average particle size of the Cr 2 O 3 particles exceeds 100 nm, the lower layer and the upper layer Since voids are generated at the interface to reduce the adhesion strength, and the upper layer Al 2 O 3 grown on the Cr 2 O 3 particles causes grain growth and chipping is likely to occur in the hard coating layer, the Cr 2 O 3 particles In particular, the processing time is controlled among the deposition conditions so that the average particle diameter is 5 to 100 nm.
Further, the form of the distribution of Cr 2 O 3 particles on the surface of the lower layer, that is, whether or not the Cr 2 O 3 particles are scattered in the form of islands at the interface between the lower layer and the upper layer after forming the upper layer. In addition, the line segment ratio of the Cr 2 O 3 particles occupying the interface unit length is influenced by the pressure, in particular, among the vapor deposition conditions, but the Cr 2 O 3 particles are scattered in an island shape, When the line segment ratio per unit length of the interface is less than 30%, the crystal growth strain generated at the interface between the upper layer and the lower layer cannot be sufficiently relaxed, while the Cr 2 O 3 particles are in the form of islands. although dotted distribution, when the line segment ratio per surface unit length is more than 80%, the average particle size of Cr2O3 particles for manufacturing reasons is relatively large, grown on Cr 2 O 3 particles It undergoes grain growth upper layer Al 2 O 3, chip hard coating layer Packaging is likely to occur. In addition, since Cr 2 O 3 has a relatively low high-temperature strength, if the ratio is excessive, cracks are likely to occur at the interface with the upper layer of the hard coating layer, and the lower layer. The line segment ratio per unit unit length of Cr 2 O 3 particles scattered in the form of islands on the surface (interface between the lower layer and the upper layer after forming the upper layer) is 30 to 80%. In particular, the pressure is controlled among the deposition conditions.
ここで、Cr2O3粒子の平均粒径、分布の形態、界面単位長さ当たりの線分割合は、透過型電子顕微鏡とエネルギー分散形X線分析装置を用いてプローブ径5nmで解析することによって、下部層と上部層との界面の一部に、Cr2O3粒子の存在を検出することができる。
また、Cr2O3粒子の平均粒径およびその存在割合については、高分解能透過型電子顕微鏡において、加速電圧200kV、倍率20000倍、プローブ径5nmの条件にて、例えば、界面長さ10μmについてエネルギー分散型X線分析装置測定を行い、Cr2O3粒子の粒径を測定するとともに、測定界面長さに存在するCr2O3粒子の占める線分長さをカウントすることにより、Cr2O3粒子の平均粒径およびその線分割合を求めた。
なお、Cr2O3粒子の平均粒径およびその線分割合は、いずれも、10点測定を行った場合の平均値である。
Here, the average particle diameter of Cr 2 O 3 particles, the form of distribution, and the line segment ratio per unit length of the interface should be analyzed using a transmission electron microscope and an energy dispersive X-ray analyzer at a probe diameter of 5 nm. Thus, the presence of Cr 2 O 3 particles can be detected at a part of the interface between the lower layer and the upper layer.
The average particle size of Cr 2 O 3 particles and the existence ratio thereof are, for example, energy for an interface length of 10 μm under the conditions of an acceleration voltage of 200 kV, a magnification of 20000 times, and a probe diameter of 5 nm in a high-resolution transmission electron microscope. perform dispersive X-ray analyzer measurement, while measuring the particle size of the Cr 2 O 3 particles, by counting the line segment length occupied by the Cr 2 O 3 particles present in the measurement interface length, Cr 2 O The average particle diameter of 3 particles and the line segment ratio were determined.
The average particle size and the line segment ratio of Cr 2 O 3 particles are each an average value in the case of performing 10-point measurement.
上部層(α型Al2O3層):
上部層を構成するα型Al2O3層は、高温硬さおよび耐熱性にすぐれ、高熱発生を伴う高速重切削加工において、基本的な役割として耐摩耗性を維持する。
この発明では、下部層と上部層との間の界面に、所定の平均粒径のCr2O3粒子を所定割合で島状に点在分布せしめているため、上部層を蒸着形成する際に、Cr2O3粒子の上に形成されたα型Al2O3層であるか、Cr2O3粒子の存在しない下部層(Ti化合物層)の上に形成されたα型Al2O3層であるかによって、α型Al2O3結晶粒の成長形態が異なるものとる。
Upper layer (α-type Al 2 O 3 layer):
The α-type Al 2 O 3 layer constituting the upper layer is excellent in high-temperature hardness and heat resistance, and maintains wear resistance as a fundamental role in high-speed heavy cutting with high heat generation.
In the present invention, Cr 2 O 3 particles having a predetermined average particle diameter are scattered in an island shape at a predetermined ratio at the interface between the lower layer and the upper layer. , Cr 2 O 3 or a α-type Al 2 O 3 layer formed on the particles, Cr 2 O 3 does not exist a lower layer of particles α type formed on the (Ti compound layer) Al 2 O 3 The α-type Al 2 O 3 crystal grains grow differently depending on whether they are layers.
図1に本発明被覆工具1の下部層−上部層界面の顕微鏡写真より作成した模式図を示す。Cr2O3とα型Al2O3は、同一結晶構造であって構造的ミスマッチが小さく、しかも、格子定数も近く格子定数ミスマッチも小さいため、特に、上部層として結晶方位分布を制御したα型Al2O3層を蒸着形成した場合には、Cr2O3粒子表面上に成長するα型Al2O3層は、特定の結晶方位分布を維持したまま成膜されるとともに、Cr2O3粒子は、下部層と上部層との界面に発生する結晶成長歪みを緩和する作用を果たす。
その結果、下部層−上部層間の密着強度は向上するとともに、上部層として、特定の結晶方位分布を有するα型Al2O3層を形成した場合には、すぐれた耐摩耗性を発揮することから、高熱発生を伴うとともに、切刃に高負荷が連続的に作用する高速重切削加工においても、硬質被覆層の耐剥離性、耐摩耗性を向上させることができる。
FIG. 1 shows a schematic diagram created from a micrograph of the lower layer-upper layer interface of the coated tool 1 of the present invention. Since Cr 2 O 3 and α-type Al 2 O 3 have the same crystal structure and a small structural mismatch, and since the lattice constant is close and the lattice constant mismatch is also small, in particular, α When the type Al 2 O 3 layer is formed by vapor deposition, the α-type Al 2 O 3 layer grown on the Cr 2 O 3 particle surface is formed while maintaining a specific crystal orientation distribution, and Cr 2 The O 3 particles serve to alleviate crystal growth distortion generated at the interface between the lower layer and the upper layer.
As a result, the adhesion strength between the lower layer and the upper layer is improved, and when the α-type Al 2 O 3 layer having a specific crystal orientation distribution is formed as the upper layer, it exhibits excellent wear resistance. Therefore, it is possible to improve the peeling resistance and wear resistance of the hard coating layer even in high-speed heavy cutting with high heat generation and high load acting continuously on the cutting edge.
ここで、上部層として、この発明で規定する特定の結晶方位分布を有するα型Al2O3層を蒸着形成するための処理は、例えば、次のように行うことができる。
即ち、通常の化学蒸着装置を用い、
第1段階として、
反応ガス組成 :容量%で、
AlCl3 4.0〜7.0%、
CO2 11〜20%、
HCl 2.0〜9.0%、
H2S 0.1〜0.2%、
H2:残り、
反応雰囲気温度:1000〜1030℃、
反応雰囲気圧力:13〜15kPa、
反応時間 : 5〜30分
という条件(但し、第1段階の進行とともに、AlCl3の含有割合を徐々に減少させ、CO2の含有割合は、AlCl3/CO2の流量比を一定に保ちつつ徐々に減少させ、その反面、H2Sの含有割合を徐々に増加させ、また、反応雰囲気温度も徐々に高める)で蒸着を行い、
次いで、第2段階として、通常の蒸着条件(例えば、表3のα型Al2O3層の蒸着条件参照)でα型Al2O3層を成膜すると、このα型Al2O3層について、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで表わした場合、図2に例示されるように、傾斜角区分0〜10度の範囲内に存在する度数の合計は、傾斜角度数分布グラフにおける度数全体の60%以上の割合を占めるようになり、このようなα型Al2O3層は、この発明で規定する特定の結晶方位分布を有し、すぐれた耐摩耗性を発揮する。
なお、α型Al2O3層からなる上部層の平均層厚が2μm未満では、長期使用における工具寿命の長寿命化を期待することができず、また、上部層の平均層厚が15μmを超えるようになると、切刃部にチッピング、欠損、剥離等が発生し易くなることから、上部層の平均層厚は、2〜15μmと定めた。
Here, the process for vapor-depositing an α-type Al 2 O 3 layer having a specific crystal orientation distribution defined in the present invention as the upper layer can be performed, for example, as follows.
That is, using normal chemical vapor deposition equipment,
As the first step,
Reaction gas composition: In volume%
AlCl 3 4.0-7.0%,
CO 2 11~20%,
HCl 2.0-9.0%,
H 2 S 0.1~0.2%,
H 2 : Remaining
Reaction atmosphere temperature: 1000 to 1030 ° C.
Reaction atmosphere pressure: 13-15 kPa,
Reaction time: condition of 5-30 minutes (although, with the progress of the first stage, gradually decreasing the proportion of AlCl 3, the content of CO 2, while maintaining the flow rate of AlCl 3 / CO 2 at a constant Decrease gradually, on the other hand, gradually increase the content ratio of H 2 S, and also gradually increase the reaction atmosphere temperature),
Then, as a second stage, the normal deposition conditions (e.g., see Table deposition conditions of α type the Al 2 O 3 layer of 3) forming the α type the Al 2 O 3 layer in this α-type the Al 2 O 3 layer About, using a field emission scanning electron microscope, irradiating an electron beam to each crystal grain having a hexagonal crystal lattice existing in the measurement range of the surface polished surface, the normal to the surface polished surface, The inclination angle formed by the normal line of the (0001) plane, which is the crystal plane of the crystal grain, is measured, and the measurement inclination angle within the range of 0 to 45 degrees out of the measurement inclination angles is set every pitch of 0.25 degrees. As shown in FIG. 2, the frequency of the frequencies existing in the range of 0 to 10 degrees as shown in FIG. The total accounts for 60% or more of the total frequency in the slope angle distribution graph. It becomes so that such α-type Al 2 O 3 layer has a specific crystal orientation distribution defined in the present invention, exhibits excellent wear resistance.
In addition, if the average layer thickness of the upper layer composed of the α-type Al 2 O 3 layer is less than 2 μm, it is not possible to expect a long tool life in long-term use, and the average layer thickness of the upper layer is 15 μm. If it exceeds the upper limit, chipping, chipping, peeling, and the like are likely to occur at the cutting edge, so the average layer thickness of the upper layer was determined to be 2 to 15 μm.
この発明の被覆工具は、Ti化合物層からなる下部層とAl2 O3 層からなる上部層との界面に、平均粒径5〜100nmのクロム酸化物粒子を、界面単位長さ当り30〜80%の線分割合で島状に点在分布させることによって、下部層−上部層間の密着強度が向上するとともに、上部層が特定の結晶方位分布を有することによって、例えば合金鋼や炭素鋼などの、高熱発生を伴い、切刃に高負荷が連続的に作用する高速重切削加工に用いた場合にも、硬質被覆層がすぐれた密着強度を有するため、剥離の発生はなく、かつ、耐摩耗性もすぐれるため、長期の使用に亘ってすぐれた切削性能を発揮することができる In the coated tool of the present invention, chromium oxide particles having an average particle diameter of 5 to 100 nm are provided at the interface between the lower layer made of the Ti compound layer and the upper layer made of the Al 2 O 3 layer at 30 to 80 per interface unit length. %, The adhesion strength between the lower layer and the upper layer is improved, and the upper layer has a specific crystal orientation distribution, such as alloy steel or carbon steel. Even when used for high-speed heavy cutting with high heat generation and high load acting continuously on the cutting edge, the hard coating layer has excellent adhesion strength, so there is no peeling and wear resistance Excellent cutting performance can be achieved over a long period of use.
つぎに、この発明の被覆工具を実施例により具体的に説明する。 Next, the coated tool of the present invention will be specifically described with reference to examples.
原料粉末として、いずれも2〜4μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr3C2粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG190612に規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体A〜Fをそれぞれ製造した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 2 to 4 μm are prepared as raw material powders. These raw material powders were blended into the composition shown in Table 1, added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and pressed into a green compact with a predetermined shape at a pressure of 98 MPa. The green compact was vacuum sintered at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour in a vacuum of 5 Pa. After sintering, the cutting edge portion was R: 0.07 mm honing By performing the processing, tool bases A to F made of a WC-base cemented carbide having a throwaway tip shape specified in ISO · CNMG190612 were manufactured.
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG190612のチップ形状をもったTiCN基サーメット製の工具基体a〜fを形成した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after the sintering, the cutting edge portion was subjected to a honing process of R: 0.07 mm. Tool bases a to f made of TiCN-based cermet having standard / CNMG190612 chip shapes were formed.
ついで、これらの工具基体A〜Fおよび工具基体a〜fのそれぞれを、通常の化学蒸着装置に装入し、まず、表3(表3中のl−TiCNは特開平6−8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)に示される条件にて、表6に示される組み合わせおよび目標層厚でTi化合物層を硬質被覆層の下部層として蒸着形成し、
ついで、表4に示される条件にて、下部層表面に微量のCr2O3粒子を形成し、
ついで、表5に示される条件にて、表6に示される組み合わせおよび目標層厚で、Al2 O3 層を上部層として蒸着形成する、
ことにより本発明被覆工具1〜13をそれぞれ製造した。
Next, each of the tool bases A to F and the tool bases a to f was charged into a normal chemical vapor deposition apparatus. First, Table 3 (l-TiCN in Table 3 is disclosed in JP-A-6-8010). The combinations shown in Table 6 under the conditions shown in Table 6 are the conditions for forming the TiCN layer having the vertically elongated crystal structure described, and other conditions for forming the normal granular crystal structure. And forming a Ti compound layer as a lower layer of the hard coating layer with a target layer thickness,
Next, a small amount of Cr 2 O 3 particles are formed on the surface of the lower layer under the conditions shown in Table 4,
Next, under the conditions shown in Table 5, with the combination and target layer thickness shown in Table 6, the Al 2 O 3 layer is deposited as an upper layer.
By this, this invention coated tool 1-13 was manufactured, respectively.
また、比較の目的で、下部層の最表面に、Cr2O3粒子を形成せず直接表3に示される条件でAl2 O3 層を形成したものを比較被覆工具1〜7として、下部層の表面にCr2O3粒子を形成せず直接表5に示される条件でAl2 O3 層を形成したものを比較被覆工具8〜9として、下部層の表面に、表4に示される条件にて、本発明で規定する範囲外のCr2O3粒子を形成し、その後、表5に示される条件でAl2 O3 層を形成したものを比較被覆工具10〜13としてそれぞれ製造した。
比較被覆工具1〜13の下部層(Ti化合物層)、上部層(Al2 O3 層)およびCr2O3粒子については、表7に示す。
For comparison purposes, a comparative coating tool 1-7 was prepared by forming an Al 2 O 3 layer directly on the outermost surface of the lower layer without forming Cr 2 O 3 particles under the conditions shown in Table 3. Table 2 shows the surface of the lower layer as a comparative coating tool 8-9, in which the Al 2 O 3 layer was formed directly under the conditions shown in Table 5 without forming Cr 2 O 3 particles on the surface of the layer. Under the conditions, Cr 2 O 3 particles outside the range specified in the present invention were formed, and then an Al 2 O 3 layer formed under the conditions shown in Table 5 was produced as comparative coated tools 10-13, respectively. .
Table 7 shows the lower layer (Ti compound layer), upper layer (Al 2 O 3 layer) and Cr 2 O 3 particles of the comparative coated tools 1 to 13.
次に、上記の本発明被覆工具1〜13の硬質被覆層の下部層と上部層との界面について、透過型電子顕微鏡とエネルギー分散形X線分析装置(Noran社製VoyagerIV)を用いてプローブ径5nmで解析したところ、下部層と上部層との界面の一部に、Cr2O3の存在を検出することができた。
Cr2O3粒子の平均粒径およびその存在形態については、高分解能透過型電子顕微鏡において、加速電圧200kV、倍率20000倍、プローブ径5nmの条件にて界面長さ10μmについてエネルギー分散型X線分析装置測定を行い、Cr2O3の粒径を測定するとともに、測定界面長さに存在するCr2O3粒子の占める線分長さをカウントすることにより、Cr2O3粒子の平均粒径およびその線分割合を求めた。
なお、Cr2O3粒子の平均粒径およびその線分割合ともに、10点測定を行った場合の平均値である。
表6に、上記測定で求めたCr2O3粒子の平均粒径およびその線分割合を示す。
なお、比較被覆工具10〜13については、本発明被覆工具と同様にして、Cr2O3粒子の平均粒径およびその線分割合を求めた。
表7に、上記測定で求めたCr2O3粒子の平均粒径およびその線分割合を示す。
Next, the probe diameter of the interface between the lower layer and the upper layer of the hard coating layer of the above-described coated tools 1 to 13 of the present invention is measured using a transmission electron microscope and an energy dispersive X-ray analyzer (Voyager IV manufactured by Noran). When analyzed at 5 nm, it was possible to detect the presence of Cr 2 O 3 at a part of the interface between the lower layer and the upper layer.
Regarding the average particle size of Cr 2 O 3 particles and the form of their existence, energy dispersive X-ray analysis was performed for an interface length of 10 μm under conditions of an acceleration voltage of 200 kV, a magnification of 20000 times, and a probe diameter of 5 nm in a high-resolution transmission electron microscope. perform device measurements, along with the particle size measured in Cr 2 O 3, by counting the line segment length occupied by the Cr 2 O 3 particles present in the measurement interface length, the average particle size of Cr 2 O 3 particles And the line segment ratio.
Incidentally, the average particle size and the line segment ratio both of Cr 2 O 3 particles, the average value in the case of performing 10-point measurement.
Table 6 shows the average particle diameter of Cr 2 O 3 particles determined by the above measurement and the line segment ratio.
In Comparative coated tool 10-13, in the same manner as the present invention coated tool, to obtain an average particle size and the line segment ratio of Cr 2 O 3 particles.
Table 7 shows the average particle diameter of Cr 2 O 3 particles determined by the above measurement and the line segment ratio.
また、本発明被覆工具1〜13および比較被覆工具1〜13の硬質被覆層の各構成層の厚さを、走査型電子顕微鏡を用いて測定(縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。 Moreover, when the thickness of each structural layer of the hard coating layer of this invention coating tool 1-13 and the comparison coating tool 1-13 was measured using the scanning electron microscope (longitudinal section measurement), all were target layer thickness. The average layer thickness (average value of 5-point measurement) was substantially the same.
つぎに、上記の本発明被覆工具1〜13および比較被覆工具1〜13の各種の被覆工具について、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
[切削条件A]
被削材:JIS・FCD450の丸棒、
切削速度: 400 m/min、
切り込み: 5.0 mm、
送り: 0.35 mm/rev、
切削時間: 5 分、
の条件でのダクタイル鋳鉄の乾式高速重切削試験(通常の切削速度及び送りは、それぞれ200m/min、0.3mm/rev)、
[切削条件B]
被削材:JIS・SCM440の丸棒、
切削速度: 380 m/min、
切り込み: 4.5 mm、
送り: 0.35 mm/rev、
切削時間: 5 分、
の条件でのクロムモリブデン鋼の乾式高速重切削試験(通常の切削速度及び送りは、それぞれ220m/min、0.3mm/rev)、
[切削条件C]
被削材:JIS・S30Cの丸棒、
切削速度: 380 m/min、
切り込み: 4.5 mm、
送り: 0.40 mm/rev、
切削時間: 5 分、
の条件での炭素鋼の乾式高速重切削試験(通常の切削速度及び送りは、それぞれ250m/min、0.3mm/rev)
を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。
この測定結果を表8に示した。
Next, for the various coated tools of the present invention coated tools 1-13 and comparative coated tools 1-13, all are screwed to the tip of the tool steel tool with a fixing jig,
[Cutting conditions A]
Work material: JIS / FCD450 round bar,
Cutting speed: 400 m / min,
Cutting depth: 5.0 mm,
Feed: 0.35 mm / rev,
Cutting time: 5 minutes,
Dry high-speed heavy cutting test of ductile cast iron under the conditions (normal cutting speed and feed are 200 m / min and 0.3 mm / rev, respectively)
[Cutting conditions B]
Work material: JIS / SCM440 round bar,
Cutting speed: 380 m / min,
Cutting depth: 4.5 mm,
Feed: 0.35 mm / rev,
Cutting time: 5 minutes,
Dry high-speed heavy cutting test of chrome molybdenum steel under the conditions (normal cutting speed and feed are 220 m / min and 0.3 mm / rev, respectively)
[Cutting conditions C]
Work material: JIS / S30C round bar,
Cutting speed: 380 m / min,
Cutting depth: 4.5 mm,
Feed: 0.40 mm / rev,
Cutting time: 5 minutes,
Carbon steel dry high-speed heavy cutting test under normal conditions (normal cutting speed and feed are 250 m / min and 0.3 mm / rev, respectively)
In each cutting test, the flank wear width of the cutting edge was measured.
The measurement results are shown in Table 8.
表6〜8に示される結果から、本発明被覆工具1〜13は、硬質被覆層の下部層と上部層との界面に微量の所定平均粒径のCr2O3粒子が所定割合で存在し、下部層と上部層間の密着強度を高めるとともに、下部層と上部層間の界面歪みを緩和し、さらに、上部層が特定の結晶方位分布を有していることから、高い発熱を伴い、かつ、切刃に対して連続的な高負荷が作用する合金鋼や炭素鋼の高速重切削でも、硬質被覆層の剥離発生を防止することができ、長期にわたってすぐれた耐摩耗性を発揮する。
しかるに、硬質被覆層の下部層と上部層との界面に、Cr2O3粒子が存在しない比較被覆工具、あるいは、Cr2O3粒子が存在しても本発明で規定する範囲外のCr2O3粒子であるような比較被覆工具においては、高速重切削という厳しい切削条件下では、硬質被覆層の層間密着強度が不十分であるために、硬質被覆層に剥離、チッピングが発生したり、あるいは、耐摩耗性が劣る等の理由から、比較的短時間で使用寿命に至ることが明らかである。
From the results shown in Tables 6 to 8, the present invention coated tools 1 to 13 have a small amount of Cr 2 O 3 particles having a predetermined average particle diameter at a predetermined ratio at the interface between the lower layer and the upper layer of the hard coating layer. In addition, the adhesion strength between the lower layer and the upper layer is increased, the interface strain between the lower layer and the upper layer is relaxed, and the upper layer has a specific crystal orientation distribution. Even in high-speed heavy cutting of alloy steel and carbon steel in which a continuous high load acts on the cutting edge, it is possible to prevent occurrence of peeling of the hard coating layer and to exhibit excellent wear resistance over a long period of time.
However, the interface between the lower layer and the upper layer of the hard coating layer, Cr 2 O 3 comparative coated tool particles do not exist or, outside the range of Cr 2 defining even if there is Cr 2 O 3 particles in the present invention In comparative coated tools such as O 3 particles, the hard coating layer has insufficient interlayer adhesion strength under severe cutting conditions such as high-speed heavy cutting. Alternatively, it is apparent that the service life is reached in a relatively short time due to inferior wear resistance.
上述のように、この発明の被覆工具は、特に高い発熱を伴い連続的かつ高負荷がかかる高速重切削加工においてすぐれた耐剥離性、耐摩耗性を示すものであるが、各種の鋼や鋳鉄などの通常の条件での切削加工にも使用できることは勿論であって、この場合にも、長期の使用に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化が十分期待できるものである。 As described above, the coated tool of the present invention exhibits excellent peeling resistance and wear resistance particularly in high-speed heavy cutting with high heat generation and continuous and high load. Of course, it can also be used for cutting under normal conditions such as, and in this case as well, it exhibits excellent cutting performance over a long period of use. It can be expected that labor saving and energy saving of processing and cost reduction will be sufficient.
Claims (2)
チタンの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、かつ、3〜20μmの合計平均層厚を有するTi化合物層からなる下部層、及び、2〜15μmの平均層厚を有するα型酸化アルミニウム層からなる上部層、
上記の下部層と上部層からなる硬質被覆層が蒸着形成された表面被覆切削工具において、
上記Ti化合物層からなる下部層と上記α型酸化アルミニウム層からなる上部層との界面において、平均粒径5〜100nmのクロム酸化物粒子が、界面単位長さ当り30〜80%の線分割合で島状に点在分布していることを特徴とする表面被覆切削工具。 On the surface of the tool base composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
Ti compound layer composed of one or more of titanium carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride oxide layer, and having a total average layer thickness of 3 to 20 μm A lower layer made of, and an upper layer made of an α-type aluminum oxide layer having an average layer thickness of 2 to 15 μm,
In the surface-coated cutting tool in which the hard coating layer composed of the lower layer and the upper layer is formed by vapor deposition,
At the interface between the lower layer made of the Ti compound layer and the upper layer made of the α-type aluminum oxide layer, the chromium oxide particles having an average particle size of 5 to 100 nm are 30% to 80% of the line segment ratio per unit length of the interface. A surface-coated cutting tool characterized by being distributed in islands.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010206502A JP5488829B2 (en) | 2010-09-15 | 2010-09-15 | Surface coated cutting tool with excellent peeling resistance and wear resistance with excellent hard coating layer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010206502A JP5488829B2 (en) | 2010-09-15 | 2010-09-15 | Surface coated cutting tool with excellent peeling resistance and wear resistance with excellent hard coating layer |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012061537A JP2012061537A (en) | 2012-03-29 |
JP5488829B2 true JP5488829B2 (en) | 2014-05-14 |
Family
ID=46057810
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010206502A Expired - Fee Related JP5488829B2 (en) | 2010-09-15 | 2010-09-15 | Surface coated cutting tool with excellent peeling resistance and wear resistance with excellent hard coating layer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5488829B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6555514B2 (en) * | 2015-07-06 | 2019-08-07 | 三菱マテリアル株式会社 | Surface coated cutting tool |
JP6550661B2 (en) * | 2016-02-04 | 2019-07-31 | 住友電工ハードメタル株式会社 | Method of manufacturing surface coated cutting tool |
-
2010
- 2010-09-15 JP JP2010206502A patent/JP5488829B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2012061537A (en) | 2012-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6677932B2 (en) | Surface coated cutting tool that demonstrates excellent chipping and wear resistance in heavy interrupted cutting | |
JP5187570B2 (en) | Surface coated cutting tool with excellent wear resistance due to hard coating layer | |
JP5257535B2 (en) | Surface coated cutting tool | |
JP5831707B2 (en) | Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting | |
JP5907406B2 (en) | Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting | |
JP4946333B2 (en) | Surface coated cutting tool with excellent chipping resistance due to hard coating layer | |
JP4888771B2 (en) | Surface coated cutting tool with excellent chipping resistance due to hard coating layer | |
WO2016148056A1 (en) | Surface-coated cutting tool with rigid coating layers exhibiting excellent chipping resistance | |
JP5019255B2 (en) | Surface coated cutting tool | |
JP5263514B2 (en) | Surface coated cutting tool with excellent chipping resistance due to hard coating layer | |
JP5187571B2 (en) | Surface coated cutting tool with excellent wear resistance due to hard coating layer | |
JP5838789B2 (en) | Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting | |
JP5240668B2 (en) | Surface-coated cutting tool with excellent chipping resistance in high-speed intermittent cutting of hard alloy steel | |
JP2010214557A (en) | Surface coated cutting tool with hard coating layer exerting excellent chipping resistance | |
JP5488829B2 (en) | Surface coated cutting tool with excellent peeling resistance and wear resistance with excellent hard coating layer | |
JP4888709B2 (en) | Surface coated cutting tool with excellent chipping resistance due to hard coating layer | |
JP5023896B2 (en) | Surface coated cutting tool | |
JP2006198740A (en) | Cutting tool made of surface coated cermet with hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting | |
JP5892472B2 (en) | A surface-coated cutting tool with a hard coating layer that exhibits excellent peeling and chipping resistance in high-speed intermittent cutting. | |
JP6774649B2 (en) | Surface coating cutting tool with excellent chipping resistance and peeling resistance with a hard coating layer | |
JP5176787B2 (en) | Surface coated cutting tool with excellent chipping resistance and wear resistance due to hard coating layer | |
JP2011104690A (en) | Surface coated cutting tool exhibiting excellent chipping resistance in hard coating layer | |
JP4474644B2 (en) | Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting | |
JP5187573B2 (en) | Surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance with a hard coating layer in high-speed heavy cutting | |
JP5370919B2 (en) | Surface coated cutting tool with excellent chipping resistance due to hard coating layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130329 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140122 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140129 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140211 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5488829 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |