JP5892472B2 - A surface-coated cutting tool with a hard coating layer that exhibits excellent peeling and chipping resistance in high-speed intermittent cutting. - Google Patents

A surface-coated cutting tool with a hard coating layer that exhibits excellent peeling and chipping resistance in high-speed intermittent cutting. Download PDF

Info

Publication number
JP5892472B2
JP5892472B2 JP2012137413A JP2012137413A JP5892472B2 JP 5892472 B2 JP5892472 B2 JP 5892472B2 JP 2012137413 A JP2012137413 A JP 2012137413A JP 2012137413 A JP2012137413 A JP 2012137413A JP 5892472 B2 JP5892472 B2 JP 5892472B2
Authority
JP
Japan
Prior art keywords
layer
inclination angle
crystal
crystal grains
degrees
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012137413A
Other languages
Japanese (ja)
Other versions
JP2014000634A (en
Inventor
正樹 奥出
正樹 奥出
五十嵐 誠
誠 五十嵐
長田 晃
晃 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2012137413A priority Critical patent/JP5892472B2/en
Priority to CN201310225231.8A priority patent/CN103506639B/en
Publication of JP2014000634A publication Critical patent/JP2014000634A/en
Application granted granted Critical
Publication of JP5892472B2 publication Critical patent/JP5892472B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/148Composition of the cutting inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/141Specially shaped plate-like cutting inserts, i.e. length greater or equal to width, width greater than or equal to thickness
    • B23B27/145Specially shaped plate-like cutting inserts, i.e. length greater or equal to width, width greater than or equal to thickness characterised by having a special shape
    • B23B27/146Means to improve the adhesion between the substrate and the coating

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Description

この発明は、各種の鋼や鋳鉄などの切削加工を、高速で、かつ、切刃に断続的・衝撃的負荷が作用する断続切削条件で行った場合でも、硬質被覆層がすぐれた耐剥離性と耐チッピング性を発揮し、長期に亘ってすぐれた耐摩耗性を示す表面被覆切削工具(以下、被覆工具という)に関するものである。   This invention has excellent resistance to peeling even when various cutting processes such as steel and cast iron are performed at high speed and under intermittent cutting conditions in which intermittent and impact loads are applied to the cutting edge. The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits chipping resistance and exhibits excellent wear resistance over a long period of time.

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)下部層が、Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなるTi化合物層、
(b)上部層が、化学蒸着した状態でα型の結晶構造を有する酸化アルミニウム層(以下、Al層で示す)、
以上(a)および(b)で構成された硬質被覆層を蒸着形成してなる被覆工具が知られている。
Conventionally, generally on the surface of a substrate (hereinafter collectively referred to as a tool substrate) composed of a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet. ,
(A) The lower layer is a Ti carbide (hereinafter referred to as TiC) layer, a nitride (hereinafter also referred to as TiN) layer, a carbonitride (hereinafter referred to as TiCN) layer, a carbon oxide (hereinafter referred to as TiCO). And a Ti compound layer composed of one or more of a carbonitride oxide (hereinafter referred to as TiCNO) layer,
(B) an aluminum oxide layer (hereinafter referred to as an Al 2 O 3 layer) having an α-type crystal structure in a state where the upper layer is chemically vapor-deposited
A coated tool formed by vapor-depositing the hard coating layer constituted by (a) and (b) is known.

しかし、上記従来の被覆工具は、例えば各種の鋼や鋳鉄などの連続切削や断続切削では優れた耐摩耗性を発揮するが、これを、高速重切削、高速断続切削に用いた場合には、被覆層の剥離、チッピングが発生しやすく、工具寿命が短命になるという問題点があった。
そこで、被覆層のチッピングを抑制することを目的として、硬質被覆層の層構造については各種の提案がなされている。
However, the above conventional coated tools exhibit excellent wear resistance in continuous cutting and intermittent cutting of various steels and cast irons, for example, but when this is used for high-speed heavy cutting and high-speed intermittent cutting, There was a problem that peeling and chipping of the coating layer were likely to occur, and the tool life was shortened.
Therefore, various proposals have been made for the layer structure of the hard coating layer for the purpose of suppressing chipping of the coating layer.

例えば、特許文献1に示すように、工具基体の表面に、下部層としてのTi化合物層、上部層としてのAl層を被覆した被覆工具において、電界放出型走査電子顕微鏡を用い、表面研磨面の法線に対して、上部層のAl結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、傾斜角度数分布グラフを作成した場合、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占めるAl層で上部層を構成することにより、耐チッピング性の向上を図ることが提案されている。 For example, as shown in Patent Document 1, in a coated tool in which the surface of a tool base is coated with a Ti compound layer as a lower layer and an Al 2 O 3 layer as an upper layer, a field emission scanning electron microscope is used, When the inclination angle formed by the normal of the (0001) plane, which is the crystal plane of the Al 2 O 3 crystal grains of the upper layer, is measured with respect to the normal of the polished surface, Al 2 occupies a ratio of 45% or more of the total frequency in the inclination angle distribution graph, with the highest peak existing in the inclination angle section within the range of 10 degrees and the total frequency existing in the range of 0 to 10 degrees. It has been proposed to improve the chipping resistance by forming the upper layer with an O 3 layer.

また、例えば、特許文献2に示すように、工具基体の表面に、下部層としてのTi化合物層、上部層としてのAl層を被覆した被覆工具において、電界放出型走査電子顕微鏡を用い、表面研磨面の法線に対して、上部層のAl結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、傾斜角度数分布グラフを作成した場合、12〜22度の範囲内の傾斜角区分に最高ピークが存在すると共に、12〜22度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占めるAl層で上部層を構成することにより、上部層のAl層を厚膜化した場合であっても、耐チッピング性の向上を図り得ることが知られている。 Further, for example, as shown in Patent Document 2, a field emission scanning electron microscope is used in a coated tool in which the surface of a tool base is coated with a Ti compound layer as a lower layer and an Al 2 O 3 layer as an upper layer. When the inclination angle formed by the normal line of the (0001) plane which is the crystal plane of the Al 2 O 3 crystal grains of the upper layer is measured with respect to the normal line of the surface polished surface, and an inclination angle number distribution graph is created, The highest peak is present in the inclination angle section within the range of 12 to 22 degrees, and the total of the frequencies existing within the range of 12 to 22 degrees occupies a ratio of 45% or more of the entire degrees in the inclination angle frequency distribution graph. by constituting the upper layer in the Al 2 O 3 layer, also the Al 2 O 3 layer of the upper layer in a case where it is thicker, it is known to obtain aim to improve the chipping resistance.

さらに、例えば、特許文献3に示すように、工具基体の表面に、下部層としてのTi化合物層、上部層としてのAl層を被覆し、さらに、下部層と上部層との間にAl層からなる補強層を介在形成した被覆工具において、上部層は、電界放出型走査電子顕微鏡を用い、表面研磨面の法線に対して、上部層のAl結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、傾斜角度数分布グラフを作成した場合、0〜15度の範囲内の傾斜角区分に最高ピークが存在すると共に、0〜15度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の50%以上の割合を占めるAl層で構成し、さらに、補強層は、同じく表面研磨面の法線に対して、(0001)面の法線がなす傾斜角を測定し、傾斜角度数分布グラフ作成した場合、75〜90度の範囲内の傾斜角区分に最高ピークが存在すると共に、75〜90度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の50%以上の割合を占めるAl層で構成することにより、耐チッピング性の向上を図ることが提案されている。 Further, for example, as shown in Patent Document 3, the surface of the tool base is coated with a Ti compound layer as a lower layer and an Al 2 O 3 layer as an upper layer, and further, between the lower layer and the upper layer. In the coated tool in which the reinforcing layer composed of the Al 2 O 3 layer is interposed, the upper layer is formed by using a field emission scanning electron microscope, and the Al 2 O 3 crystal grains of the upper layer with respect to the normal line of the surface polished surface. When the inclination angle formed by the normal of the (0001) plane which is a crystal plane is measured and an inclination angle number distribution graph is created, the highest peak exists in the inclination angle section within the range of 0 to 15 degrees, and The total frequency within the range of 15 degrees is composed of an Al 2 O 3 layer that accounts for 50% or more of the total frequency in the tilt angle frequency distribution graph, and the reinforcing layer is also a surface polished surface method. The inclination of the normal of the (0001) plane to the line When the angle is measured and the inclination angle number distribution graph is created, the highest peak exists in the inclination angle section in the range of 75 to 90 degrees, and the total of the frequencies existing in the range of 75 to 90 degrees is the inclination angle. It has been proposed to improve chipping resistance by forming the Al 2 O 3 layer that accounts for 50% or more of the total frequency in the number distribution graph.

特開2005−205586号公報JP-A-2005-205586 特開2006−305639号公報JP 2006-305639 A 特開2007−185751号公報JP 2007-185751 A

近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は一段と高速化すると共に、断続切削等で切刃に高負荷が作用する傾向にあるが、上記の従来被覆工具においては、これを鋼や鋳鉄などの通常の条件での連続切削や断続切削に用いた場合には問題はないが、特にこれを高速断続切削条件で用いた場合には、硬質被覆層を構成するTi化合物層からなる下部層とAl層からなる上部層の付着強度が不十分となり、上部層と下部層間での剥離、チッピング等の異常損傷の発生により、比較的短時間で使用寿命に至るのが現状である。 In recent years, the performance of cutting machines has been dramatically improved, while on the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for cutting work. However, in the above-mentioned conventional coated tool, there is no problem when it is used for continuous cutting or intermittent cutting under normal conditions such as steel or cast iron. When used under high-speed interrupted cutting conditions, the adhesion strength between the lower layer composed of the Ti compound layer and the upper layer composed of the Al 2 O 3 layer constituting the hard coating layer becomes insufficient, and peeling between the upper layer and the lower layer occurs. At present, the service life is reached in a relatively short time due to the occurrence of abnormal damage such as chipping.

そこで、本発明者等は、上述のような観点から、Ti化合物層からなる下部層とAl層からなる上部層の付着強度を改善し、もって、剥離、チッピング等の異常損傷の発生を防止するとともに、工具寿命の長寿命化を図るべく鋭意研究を行った結果、
Ti化合物層からなる下部層とAl層からなる上部層とを被覆形成した被覆工具において、下部層の最表面層直上のAl結晶粒の結晶方位傾斜角度分布性を制御することで、上部層と下部層の付着強度を向上させ得るとともに、さらに、上部層全体のAl結晶粒についての結晶方位傾斜角度分布性を制御することで、上部層全体の高温硬さと高温強度を維持することができるため、切刃に高負荷・衝撃的負荷が作用する高速断続切削に用いた場合でも、上部層と下部層間での剥離、チッピング等の異常損傷の発生が抑え、長期の使用にわたってすぐれた切削性能を発揮する被覆工具を得られることを見出したのである。
In view of the above, the present inventors have improved the adhesion strength of the lower layer made of the Ti compound layer and the upper layer made of the Al 2 O 3 layer, thereby causing abnormal damage such as peeling and chipping. As a result of earnest research to improve tool life and prevent tool life,
In a coated tool formed by coating a lower layer made of a Ti compound layer and an upper layer made of an Al 2 O 3 layer, the crystal orientation inclination angle distribution of Al 2 O 3 crystal grains immediately above the outermost surface layer of the lower layer is controlled. Thus, the adhesion strength between the upper layer and the lower layer can be improved, and furthermore, the crystal orientation tilt angle distribution of the Al 2 O 3 crystal grains of the entire upper layer is controlled, thereby increasing the high-temperature hardness of the entire upper layer. Since high temperature strength can be maintained, even when used for high-speed intermittent cutting where a high load / impact load acts on the cutting blade, the occurrence of abnormal damage such as peeling and chipping between the upper and lower layers is suppressed, It has been found that a coated tool that exhibits excellent cutting performance over a long period of use can be obtained.

この発明は、上記知見に基づいてなされたものであって、
「 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a)下部層として、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(b)上部層として、2〜15μmの平均層厚を有し、化学蒸着した状態でα型の結晶構造を有するAl層、
上記(a)、(b)からなる硬質被覆層を蒸着形成した表面被覆切削工具において、
(c)下部層の最表面層と上部層との界面における上部層のAl結晶粒について、電界放出型走査電子顕微鏡と電子線後方散乱回折装置を用い、その断面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記工具基体の表面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうちの0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで表わした場合、その傾斜角が25〜35度の範囲内にあるAl結晶粒の該傾斜角区分に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の30〜70%の割合を占め、
(d)上部層全体のAl結晶粒について、電界放出型走査電子顕微鏡と電子線後方散乱回折装置を用い、その断面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記工具基体の表面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定した場合、前記測定傾斜角のうちの0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで表わした場合、その傾斜角が0〜10度の範囲内にあるAl結晶粒の該傾斜角区分に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の60%以上であることを特徴とする表面被覆切削工具。」
に特徴を有するものである。
This invention has been made based on the above findings,
"On the surface of the tool base made of tungsten carbide base cemented carbide or titanium carbonitride base cermet,
(A) As a lower layer, it is composed of one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride oxide layer, and a total average layer of 3 to 20 μm A Ti compound layer having a thickness;
(B) As an upper layer, an Al 2 O 3 layer having an average layer thickness of 2 to 15 μm and having an α-type crystal structure in a state of chemical vapor deposition,
In the surface-coated cutting tool in which the hard coating layer composed of the above (a) and (b) is formed by vapor deposition,
(C) About the Al 2 O 3 crystal grains of the upper layer at the interface between the outermost surface layer and the upper layer of the lower layer, using a field emission scanning electron microscope and an electron beam backscatter diffractometer, the measurement range of the cross-section polished surface Each crystal grain having a hexagonal crystal lattice existing therein is irradiated with an electron beam, and the normal line of the (0001) plane which is the crystal plane of the crystal grain is formed with respect to the normal line of the surface of the tool base. The tilt angle is measured, and the measured tilt angles within the range of 0 to 45 degrees of the measured tilt angles are divided for each pitch of 0.25 degrees, and the frequencies existing in each section are totaled. When represented by an inclination angle frequency distribution graph, the total of the frequencies existing in the inclination angle section of the Al 2 O 3 crystal grains having an inclination angle in the range of 25 to 35 degrees is the entire frequency in the inclination angle frequency distribution graph. Of 30-70% of
(D) About the Al 2 O 3 crystal grains of the entire upper layer, using a field emission scanning electron microscope and an electron beam backscatter diffractometer, the crystal grains having a hexagonal crystal lattice existing within the measurement range of the cross-section polished surface When the inclination angle formed by the normal of the (0001) plane, which is the crystal plane of the crystal grain, is measured with respect to the normal of the surface of the tool base, individually with the electron beam, When the measurement inclination angle within the range of 0 to 45 degrees is divided into pitches of 0.25 degrees and the frequency existing in each division is represented by an inclination angle number distribution graph, The total of the frequencies existing in the tilt angle section of the Al 2 O 3 crystal grains having the tilt angle in the range of 0 to 10 degrees is 60% or more of the total power in the tilt angle frequency distribution graph. Surface coated cutting tool. "
It has the characteristics.

以下に、この発明の被覆工具の硬質被覆層の構成層について詳細に説明する。
(a)Ti化合物層(下部層):
Ti化合物層(例えば、TiC層、TiN層、TiCN層、TiCO層およびTiCNO層)は、基本的にはα型の結晶構造を有するAl(以下、単に「Al」で示す)層の下部層として存在し、自身の具備するすぐれた高温強度によって硬質被覆層が高温強度を具備するようになるほか、工具基体、Al層のいずれにも密着し、硬質被覆層の工具基体に対する密着性を維持する作用を有するが、その合計平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方その合計平均層厚が20μmを越えると、特に高熱発生を伴う高速断続切削では熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その合計平均層厚を3〜20μmと定めた。
Hereinafter, the constituent layers of the hard coating layer of the coated tool of the present invention will be described in detail.
(A) Ti compound layer (lower layer):
The Ti compound layer (eg, TiC layer, TiN layer, TiCN layer, TiCO layer, and TiCNO layer) is basically Al 2 O 3 having an α-type crystal structure (hereinafter simply referred to as “Al 2 O 3 ”). ) Existing as a lower layer of the layer, the hard coating layer has high temperature strength due to its excellent high temperature strength, and also adheres to both the tool base and the Al 2 O 3 layer, and the hard coating layer However, if the total average layer thickness is less than 3 μm, the above-mentioned effect cannot be sufficiently exerted. On the other hand, if the total average layer thickness exceeds 20 μm, particularly high heat In high-speed intermittent cutting with generation, it becomes easy to cause thermoplastic deformation, which causes uneven wear. Therefore, the total average layer thickness is set to 3 to 20 μm.

(b)下部層の最表面層:
この発明では、下部層の最表面層に、例えば、以下のような処理を施すことにより、下部層表面直上に形成される上部層のAl結晶粒を、所定の結晶方位傾斜角度分布形態(後記参照)になるよう蒸着することができる。
即ち、まず、通常の化学蒸着装置を使用して、TiC層、TiN層、TiCN層、TiCO層およびTiCNO層のうちの1層または2層以上からなる種々のTi化合物層を蒸着形成した後、
反応ガス組成(容量%):CO 5〜10%、CO 5〜10%、残部H
雰囲気温度:980〜1040 ℃、
雰囲気圧力:5〜15 kPa、
時間:1〜5min、
という条件でCOとCO混合ガスによる酸化処理を行うことによって、次のAl層成膜工程におけるAl核生成に際し、所定の方位のAl核を分散形成せしめることができる。
(B) The outermost surface layer of the lower layer:
In the present invention, the uppermost Al 2 O 3 crystal grains formed immediately above the surface of the lower layer are subjected to, for example, the following treatment on the uppermost surface layer of the lower layer, and a predetermined crystal orientation tilt angle distribution Vapor deposition can be performed in the form (see below).
That is, first, after forming various Ti compound layers composed of one or more of TiC layer, TiN layer, TiCN layer, TiCO layer and TiCNO layer by vapor deposition using a normal chemical vapor deposition apparatus,
Reaction gas composition (volume%): CO 5-10%, CO 2 5-10%, balance H 2 ,
Atmospheric temperature: 980-1040 ° C.,
Atmospheric pressure: 5-15 kPa,
Time: 1-5 min
By performing an oxidation treatment with a CO and CO 2 mixed gas under the conditions: Al 2 O 3 nuclei in a predetermined orientation are dispersedly formed when the Al 2 O 3 nuclei are generated in the next Al 2 O 3 layer forming step. Can do.

(c)下部層の最表面層直上のAl結晶粒:
上記(b)で成膜した下部層の表面に、例えば、
反応ガス組成(容量%):AlCl 1〜3%、CO 1〜3%、残部H
反応雰囲気温度:980〜1040 ℃、
反応雰囲気圧力:5〜15 kPa、
時間:5〜30 min、
の条件でAlを蒸着することにより、下部層の最表面層直上に、所定の結晶方位傾斜角度分布形態を有するAl核を分散形成することができる。
(C) Al 2 O 3 crystal grains immediately above the outermost surface layer of the lower layer:
On the surface of the lower layer formed in (b) above, for example,
Reaction gas composition (volume%): AlCl 3 1-3%, CO 2 1-3%, balance H 2 ,
Reaction atmosphere temperature: 980 to 1040 ° C.
Reaction atmosphere pressure: 5 to 15 kPa,
Time: 5-30 min,
By depositing Al 2 O 3 in conditions, can be directly outermost surface layer of the lower layer, it is dispersed form Al 2 O 3 nuclei having a predetermined crystal orientation inclination angle distribution form.

下部層の最表面層直上(上部層と下部層の界面直上)に形成した上記(c)のAl結晶粒について、電界放出型走査電子顕微鏡と電子線後方散乱回折装置を用いて、その断面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射することにより、工具基体の表面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、下部層の最表面層から膜厚方向1μm以内のAl結晶粒について、その傾斜角が25〜35度の範囲内にある結晶粒の各区分内に存在する度数を集計してなる傾斜角度数分布グラフで表わした場合、上記結晶方位傾斜角度分布形態(以下、「界面方位形態」という)を有するAl結晶粒の度数の合計は、Ti化合物層の最上層の表面組織および、上記蒸着条件のうちの、特に、COガス比によって影響されるが、上記界面方位形態を有するAl結晶粒が傾斜角度数分布グラフでの度数の合計の30%未満であると、上部層Al結晶粒の縦長柱状組織が層厚方向に対して、傾斜した状態で形成され、微細な縦長柱状結晶粒でなくなり、上部層Alと下部層との付着強度が低下する。一方、上記界面方位形態を有するAl結晶粒の傾斜角度数分布グラフでの度数の合計が70%を超えると、上部層Alの(0001)方位傾斜角度分布を有するAl結晶粒(後記する)の傾斜角度数分布グラフでの度数の合計が上部層全体のAl結晶粒の全度数に対して60%未満となり、上部層Alの高温強度が低下する。
したがって、上部層と下部層との界面直上における上部層のAl結晶粒について、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで表わした場合、上記界面形態を有するAl結晶粒の度数の合計を30〜70%と定めた。
図1に、下部層と上部層の界面直上のAl結晶粒について測定した界面方位形態のAl結晶粒の傾斜角度数分布グラフの一例を示す。
For the Al 2 O 3 crystal grains formed in (c) just above the outermost surface layer of the lower layer (immediately above the interface between the upper layer and the lower layer), using a field emission scanning electron microscope and an electron beam backscatter diffraction device, By irradiating each crystal grain having a hexagonal crystal lattice existing within the measurement range of the cross-section polished surface with an electron beam, the crystal plane of the crystal grain is normal to the surface of the tool base (0001). ) The inclination angle formed by the normal of the surface is measured, and about the Al 2 O 3 crystal grains within 1 μm in the film thickness direction from the outermost surface layer of the lower layer, the inclination angle is within the range of 25 to 35 degrees. When represented by an inclination angle distribution graph obtained by counting the frequencies existing in each section, the frequency of Al 2 O 3 crystal grains having the above crystal orientation inclination angle distribution form (hereinafter referred to as “interface orientation form”) is shown. Total is the surface group of the top layer of the Ti compound layer And, of the above deposition conditions, in particular, is affected by CO 2 gas ratio, Al 2 O 3 crystal grains is the sum less than 30% of the power in the inclination angle frequency distribution graph having the interface orientation form In addition, the vertical columnar structure of the upper layer Al 2 O 3 crystal grains is formed in an inclined state with respect to the layer thickness direction, and is not a fine vertical columnar crystal grain, and the upper layer Al 2 O 3 and the lower layer are attached to each other. Strength decreases. On the other hand, when the sum of the frequencies in the inclination angle number distribution graph of the Al 2 O 3 crystal grains having the interface orientation form exceeds 70%, Al 2 having the (0001) orientation inclination angle distribution of the upper layer Al 2 O 3. The total frequency in the gradient angle distribution graph of O 3 crystal grains (described later) is less than 60% with respect to the total frequency of Al 2 O 3 crystal grains in the entire upper layer, and the high temperature strength of the upper layer Al 2 O 3 Decreases.
Therefore, when the upper layer Al 2 O 3 crystal grains immediately above the interface between the upper layer and the lower layer are represented by an inclination angle number distribution graph obtained by counting the frequencies existing in each section, the above-described interface form is obtained. The total frequency of Al 2 O 3 crystal grains was determined to be 30 to 70%.
FIG. 1 shows an example of an inclination angle number distribution graph of Al 2 O 3 crystal grains in the interface orientation mode measured for Al 2 O 3 crystal grains immediately above the interface between the lower layer and the upper layer.

(d)上部層のAl結晶粒:
下部層の最表面層直上に上記(c)のAl核を蒸着形成した後、上部層のAl結晶粒を以下の条件で形成する。
即ち、上記(c)でAl核を蒸着形成した後、
反応ガス組成(容量%):AlCl 1〜3%、HCl 1〜3%、CO 5〜10%、HS 0.1〜0.5%、残部H
反応雰囲気温度:980〜1040 ℃、
反応雰囲気圧力:5〜15 kPa、
時間:(目標とする上部層層厚になるまで)
という条件で蒸着することにより、層厚方向とほぼ平行に成長した微細な縦長柱状Al結晶粒で構成された上部層が成膜される。
(D) Al 2 O 3 crystal grains in the upper layer:
After the Al 2 O 3 nucleus of (c) is deposited on the uppermost surface layer of the lower layer, the upper layer Al 2 O 3 crystal grains are formed under the following conditions.
That is, after forming the Al 2 O 3 nucleus by vapor deposition in the above (c),
Reaction gas composition (volume%): AlCl 3 1-3%, HCl 1-3%, CO 2 5-10%, H 2 S 0.1-0.5%, balance H 2
Reaction atmosphere temperature: 980 to 1040 ° C.
Reaction atmosphere pressure: 5 to 15 kPa,
Time: (until the target upper layer thickness is reached)
By vapor deposition under the conditions, an upper layer composed of fine vertical columnar Al 2 O 3 crystal grains grown almost parallel to the layer thickness direction is formed.

上記(d)のAl結晶粒は、層厚方向とほぼ平行な方向に微細な縦長柱状Al結晶粒として成長する。しかも、工具基体の表面の法線に対して、Al結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで表し、その傾斜角が0〜10度の範囲内にあるAl結晶粒の度数の合計を求めた場合、上記結晶方位傾斜角度分布形態(以下、「(0001)方位傾斜角度分布」という)を有するAl結晶粒の度数の合計は、上部層全体のAl結晶粒の全度数に対して60%以上を占める。
上記(0001)方位傾斜角度分布を有するAl結晶粒の度数の合計は、上記蒸着条件のうちの、特に、反応雰囲気温度およびCO、HSガス比によって影響される。
そして、(0001)方位傾斜角度分布を有するAl結晶粒の度数の合計が、60%以上を占める場合に、上部層Alの高温硬さ、高温強度が維持されることから、本発明では、上部層の(0001)方位傾斜角度分布を有するAl結晶粒の度数の合計を、60%以上と定めた。
The Al 2 O 3 crystal grains in (d) above grow as fine vertical columnar Al 2 O 3 crystal grains in a direction substantially parallel to the layer thickness direction. In addition, the inclination angle formed by the normal line of the (0001) plane, which is the crystal plane of the Al 2 O 3 crystal grain, is measured with respect to the normal line of the surface of the tool base, and the frequencies existing in each section are tabulated. When the sum of the frequencies of Al 2 O 3 crystal grains having an inclination angle in the range of 0 to 10 degrees is obtained, the crystal orientation inclination angle distribution form (hereinafter referred to as “(0001 The total frequency of Al 2 O 3 crystal grains having “) orientation tilt angle distribution” occupies 60% or more of the total frequency of Al 2 O 3 crystal grains in the entire upper layer.
The total frequency of the Al 2 O 3 crystal grains having the (0001) azimuth tilt angle distribution is influenced by the reaction atmosphere temperature and the CO 2 , H 2 S gas ratio among the above deposition conditions.
And when the total frequency of the Al 2 O 3 crystal grains having the (0001) orientation tilt angle distribution occupies 60% or more, the high-temperature hardness and high-temperature strength of the upper layer Al 2 O 3 are maintained. In the present invention, the total frequency of the Al 2 O 3 crystal grains having the (0001) orientation tilt angle distribution of the upper layer is determined to be 60% or more.

上記(0001)方位傾斜角度分布を有するAl結晶粒の度数の合計は、上部層全体のAl結晶粒について、電界放出型走査電子顕微鏡と電子線後方散乱回折装置を用いて、その断面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、工具基体の表面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、その傾斜角が0〜10度である結晶粒((0001)方位傾斜角度分布を有するAl結晶粒)の度数の合計として求められる。
図2に、上部層全体について測定した(0001)方位傾斜角度分布を有するAl結晶粒の傾斜角度数分布グラフの一例を示す。
なお、上部層全体の層厚が、2μm未満であると長期の使用にわたってすぐれた高温強度および高温硬さを発揮することができず、一方、15μmを越えると、チッピングが発生し易くなることから、上部層の層厚は2〜15μmと定めた。
The total frequency of the Al 2 O 3 crystal grains having the (0001) azimuth tilt angle distribution is calculated using a field emission scanning electron microscope and an electron beam backscatter diffraction apparatus for the Al 2 O 3 crystal grains of the entire upper layer. Then, each crystal grain having a hexagonal crystal lattice existing within the measurement range of the cross-sectional polished surface is irradiated with an electron beam, and is a crystal plane of the crystal grain with respect to the normal of the surface of the tool base (0001 The tilt angle formed by the normal of the surface) is measured, and is determined as the sum of the frequencies of crystal grains (Al 2 O 3 crystal grains having a (0001) orientation tilt angle distribution) whose tilt angle is 0 to 10 degrees.
FIG. 2 shows an example of an inclination angle number distribution graph of Al 2 O 3 crystal grains having a (0001) orientation inclination angle distribution measured for the entire upper layer.
If the thickness of the entire upper layer is less than 2 μm, excellent high-temperature strength and high-temperature hardness cannot be exhibited over a long period of use, whereas if it exceeds 15 μm, chipping is likely to occur. The layer thickness of the upper layer was determined to be 2 to 15 μm.

この発明の被覆工具は、硬質被覆層の下部層最表面に、例えば、酸化処理を施すことにより、下部層と上部層の界面直上には、所定の度数の合計の界面方位形態を有するAl結晶粒を形成し、さらに、上部層全体として所定の度数の合計を有する(0001)方位傾斜角度分布Al結晶粒を有する上部層を形成することにより、下部層と上部層の付着強度を高めることができるため、各種の鋼や鋳鉄などの切削加工を高速で、かつ切れ刃に対して衝撃的負荷が作用する高速断続切削条件で行っても、すぐれた高温強度と高温硬さを示し、硬質被覆層の剥離・チッピングの発生もなく、長期の使用にわたってすぐれた切削性能を発揮する。 In the coated tool of the present invention, for example, by subjecting the outermost surface of the lower layer of the hard coating layer to an oxidation treatment, Al 2 having a total interface orientation of a predetermined frequency immediately above the interface between the lower layer and the upper layer. By forming O 3 crystal grains, and further forming an upper layer having (0001) orientation tilt angle distribution Al 2 O 3 crystal grains having a total of predetermined frequencies as the entire upper layer, the lower layer and the upper layer Adhesion strength can be increased, so excellent high-temperature strength and high-temperature hardness can be achieved even when cutting various steels and cast irons at high speed and under high-speed intermittent cutting conditions in which an impact load is applied to the cutting edge. It shows excellent cutting performance over a long period of use without the occurrence of peeling or chipping of the hard coating layer.

本発明被覆工具1の下部層と上部層の界面直上について測定した界面方位形態Al結晶粒の傾斜角度数分布グラフを示す。It shows the inclination angle frequency distribution graph of the present invention the coating was measured for just above the interface between the lower layer and the upper layer of the tool 1 interfacial orientation form Al 2 O 3 crystal grains. 本発明被覆工具1の上部層全体について測定したの(0001)方位傾斜角度分布を有するAl結晶粒の傾斜角度数分布グラフを示す。It shows the inclination angle frequency distribution graph of the Al 2 O 3 crystal grains having a (0001) orientation inclination angle distribution of the measured for the entire top layer of the present invention coated tools 1.

つぎに、この発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG120408に規定するインサート形状をもったWC基超硬合金製の工具基体A〜Fをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, ZrC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder and Co powder all having an average particle diameter of 1 to 3 μm are prepared. Then, blended into the composition shown in Table 1, added with wax, ball mill mixed in acetone for 24 hours, dried under reduced pressure, and then press-molded into a green compact of a predetermined shape at a pressure of 98 MPa. Is vacuum-sintered at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour in a vacuum of 5 Pa. After sintering, the cutting edge is subjected to honing of R: 0.07 mm. -WC base cemented carbide tool bases A to F each having an insert shape specified in CNMG120408 were manufactured.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分に幅:0.1mm、角度:20度のチャンファーホーニング加工を施すことによりISO規格・CNMG160412のインサート形状をもったTiCN基サーメット製の工具基体a〜fを形成した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after sintering, a chamfer with a width of 0.1 mm and an angle of 20 degrees at the cutting edge portion. By performing honing, tool bases a to f made of TiCN base cermet having an insert shape of ISO standard / CNMG 160412 were formed.

ついで、これらの工具基体A〜Fおよび工具基体a〜fのそれぞれを、通常の化学蒸着装置に装入し、
(a)まず、表3(表3中のl−TiCNは特開平6−8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)に示される条件にて、表6,7に示される目標層厚のTi化合物層を蒸着形成した。
(b)ついで、表4に示される条件にて、下部層の最表面のTi化合物層にCOとCO混合ガスによる酸化処理を行い、
(c)ついで、上記(b)の処理を施したTi化合物層の表面に、表5に示される二段階の条件にて、上部層のAl層を表6に示される目標層厚で形成することにより、
本発明被覆工具1〜13をそれぞれ製造した。
Then, each of these tool bases A to F and tool bases a to f is charged into a normal chemical vapor deposition apparatus,
(A) First, Table 3 (l-TiCN in Table 3 indicates the conditions for forming a TiCN layer having a vertically elongated crystal structure described in JP-A-6-8010, and the other conditions are ordinary granularity. The Ti compound layer having the target layer thickness shown in Tables 6 and 7 was formed by vapor deposition under the conditions shown in Table 6 and 7.
(B) Then, under the conditions shown in Table 4, the outermost Ti compound layer of the lower layer is subjected to an oxidation treatment with a CO and CO 2 mixed gas,
(C) Next, on the surface of the Ti compound layer subjected to the treatment of (b) above, the upper Al 2 O 3 layer is formed in the target layer thickness shown in Table 6 under the two-stage conditions shown in Table 5. By forming with
The present coated tools 1 to 13 were produced, respectively.

また、比較の目的で、上記本発明被覆工具1〜13の上記工程(b),(c)を行わずに、あるいは、本発明から外れる条件(表4、5で、それぞれ本発明外として示す)で行うことにより、表7に示す比較被覆工具1〜13を製造した。   Moreover, for the purpose of comparison, the above steps (b) and (c) of the coated tools 1 to 13 of the present invention are not performed, or the conditions deviating from the present invention (Tables 4 and 5 are shown as outside the present invention, respectively). ) To produce comparative coated tools 1 to 13 shown in Table 7.

ついで、硬質被覆層の下部層と上部層との界面直上のAlについて、界面方位形態Al結晶粒の(0001)面の法線がなす傾斜角度分布割合を、電界放出型走査電子顕微鏡と電子線後方散乱回折装置を用いて測定した。
すなわち、上記の本発明被覆工具1〜13、比較被覆工具1〜13の下部層と上部層との界面から上部層の深さ方向へ0.3μm、また、工具基体表面と平行方向に50μmの断面研磨面の測定範囲(0.3μm×50μm)を、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、それぞれの前記研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に照射して、電界放出型走査電子顕微鏡と電子線後方散乱回折装置を用いて、下部層の最表面層から膜厚方向1μm以内のAl結晶粒について、0.3×50μmの測定領域を0.1μm/stepの間隔で、前記工具基体の表面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで表し、この測定結果に基づいて、前記測定傾斜角が25〜35度である結晶粒(界面方位形態Al結晶粒)の度数の合計を測定することによって求めた。
表6、表7にこれらの値を示す。
また、図1に、本発明被覆工具1について測定した界面方位形態Al結晶粒の傾斜角度数分布グラフを示す。
Next, with respect to Al 2 O 3 immediately above the interface between the lower layer and the upper layer of the hard coating layer, the inclination angle distribution ratio formed by the normal of the (0001) plane of the interface orientation form Al 2 O 3 crystal grains is expressed as a field emission type. The measurement was performed using a scanning electron microscope and an electron beam backscatter diffraction apparatus.
That is, 0.3 μm in the depth direction of the upper layer from the interface between the lower layer and the upper layer of the present invention coated tools 1 to 13 and comparative coated tools 1 to 13, and 50 μm in the direction parallel to the tool base surface. The measurement range (0.3 μm × 50 μm) of the cross-section polished surface is set in a lens barrel of a field emission scanning electron microscope, and the polishing surface is irradiated with an electron beam with an acceleration voltage of 15 kV at an incident angle of 70 degrees and 1 nA. By irradiating each crystal grain having a hexagonal crystal lattice existing within the measurement range of each polished surface with an electric current, using a field emission scanning electron microscope and an electron beam backscatter diffractometer, the outermost layer of the lower layer is irradiated. With respect to Al 2 O 3 crystal grains within a thickness direction of 1 μm from the surface layer, the crystal grains are measured with respect to the normal of the surface of the tool base at a measurement area of 0.3 × 50 μm at intervals of 0.1 μm / step. Of the (0001) plane which is the crystal plane of An inclination angle formed by a line is measured and expressed in an inclination angle number distribution graph obtained by aggregating the frequencies existing in each section. Based on the measurement result, a crystal grain having a measurement inclination angle of 25 to 35 degrees ( It was determined by measuring the total frequency of the interface orientation form (Al 2 O 3 crystal grains).
Tables 6 and 7 show these values.
Further, in FIG. 1, showing the inclination angle frequency distribution graph of the interfacial orientation form Al 2 O 3 crystal grains were measured for the present invention coated tools 1.

さらに、本発明被覆工具1〜13、比較被覆工具1〜13の硬質被覆層の上部層全体の(0001)方位傾斜角度分布を有するAl結晶粒の(0001)面の法線がなす傾斜角度分布割合については、上部層全体のAl結晶粒について、電界放出型走査電子顕微鏡と電子線後方散乱回折装置を用いて、前記と同様、その断面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記工具基体の表面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、その傾斜角が0〜10度である結晶粒((0001)方位傾斜角度分布を有するAl結晶粒)の度数の合計を測定することによって求めた。
なお、ここでいう「上部層全体」とは、下部層と上部層との界面から上部層最表面までの測定範囲をいい、界面直上の界面方位形態Al結晶粒の測定範囲も含む。
表6、表7にこれらの値を示す。
また、図2に、本発明被覆工具1について測定した(0001)方位傾斜角度分布を有するAl結晶粒の傾斜角度数分布グラフを示す。
Furthermore, the normal line of the (0001) plane of the Al 2 O 3 crystal grains having the (0001) orientation inclination angle distribution of the entire upper layer of the hard coating layer of the present coated tools 1 to 13 and comparative coated tools 1 to 13 is formed. As for the tilt angle distribution ratio, Al 2 O 3 crystal grains in the entire upper layer exist within the measurement range of the cross-section polished surface as described above using a field emission scanning electron microscope and an electron beam backscatter diffraction apparatus. Each crystal grain having a hexagonal crystal lattice is irradiated with an electron beam, and an inclination angle formed by a normal line of the (0001) plane which is a crystal plane of the crystal grain with respect to a normal line of the surface of the tool base measured, was determined by measuring the sum of the frequencies of the inclination angle is 0 degrees grains ((0001) orientation inclination angle distribution Al 2 O 3 crystal grains having a).
The “overall upper layer” as used herein refers to the measurement range from the interface between the lower layer and the upper layer to the uppermost surface of the upper layer, and includes the measurement range of the interface orientation form Al 2 O 3 crystal grains immediately above the interface. .
Tables 6 and 7 show these values.
FIG. 2 shows an inclination angle number distribution graph of Al 2 O 3 crystal grains having a (0001) orientation inclination angle distribution measured for the coated tool 1 of the present invention.

また、本発明被覆工具1〜13、比較被覆工具1〜13の硬質被覆層の各構成層の厚さを、走査型電子顕微鏡を用いて測定(縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。   Moreover, when the thickness of each structural layer of the hard coating layer of this invention coated tool 1-13 and comparative coating tool 1-13 was measured using the scanning electron microscope (longitudinal section measurement), all are target layer thickness. The average layer thickness (average value of 5-point measurement) was substantially the same.








つぎに、上記の本発明被覆工具1〜13、比較被覆工具1〜13の各種の被覆工具について、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・SCM440の長さ方向等間隔8本縦溝入り、
切削速度:320m/min、
切り込み:2.0mm、
送り:0.3mm/rev、
切削時間:5分、
の条件(切削条件Aという)での合金鋼の湿式高速断続切削試験(通常の切削速度は、200m/min)、
被削材:JIS・S45Cの長さ方向等間隔8本縦溝入り、
切削速度:380m/min、
切り込み:1.5mm、
送り:0.4mm/rev、
切削時間:5分、
の条件(切削条件Bという)での炭素鋼の湿式高速断続切削試験(通常の切削速度は、250m/min)、
被削材:JIS・FCD500の長さ方向等間隔8本縦溝入り、
切削速度:350m/min、
切り込み:2.0mm、
送り:0.3mm/rev、
切削時間:5分、
の条件(切削条件Cという)でのダグタイル鋳鉄の湿式高速断続切削試験(通常の切削速度は250m/min)、
を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。
表8にこの測定結果を示した。
Next, for the various coated tools of the present invention coated tools 1 to 13 and comparative coated tools 1 to 13, all of them are screwed with a fixing jig to the tip of the tool steel tool,
Work material: Eight vertical grooves with equal intervals in the length direction of JIS / SCM440,
Cutting speed: 320 m / min,
Cutting depth: 2.0 mm
Feed: 0.3mm / rev,
Cutting time: 5 minutes
Wet high-speed intermittent cutting test (normal cutting speed is 200 m / min) of alloy steel under the above conditions (referred to as cutting condition A),
Work material: Eight longitudinally spaced grooves in the length direction of JIS / S45C,
Cutting speed: 380 m / min,
Incision: 1.5mm,
Feed: 0.4mm / rev,
Cutting time: 5 minutes
Wet high-speed intermittent cutting test of carbon steel under the above conditions (referred to as cutting condition B) (normal cutting speed is 250 m / min),
Work material: Eight longitudinally spaced grooves in the length direction of JIS / FCD500
Cutting speed: 350 m / min,
Cutting depth: 2.0 mm
Feed: 0.3mm / rev,
Cutting time: 5 minutes
Wet high-speed intermittent cutting test (normal cutting speed is 250 m / min) of ductile cast iron under the above conditions (referred to as cutting condition C),
In each cutting test, the flank wear width of the cutting edge was measured.
Table 8 shows the measurement results.


表6〜8に示される結果から、本発明被覆工具1〜13は、いずれも、下部層と上部層の界面直上のAl結晶粒に占める界面方位形態Al結晶粒の度数の合計は30〜70%であり、さらに、上部層全体のAl結晶粒に占める(0001)方位傾斜角度分布を有するAl結晶粒の度数の合計は60%以上であるため、高熱発生を伴い、かつ、切刃に断続的・衝撃的負荷が作用する高速断続切削条件に用いた場合でも、硬質被覆層の耐剥離性が優れるとともに、耐チッピング性にも優れる。
これに対して、比較被覆工具1〜13では、高速断続切削加工においては、硬質被覆層の剥離発生、チッピング発生により、比較的短時間で使用寿命に至ることが明らかである。
From the results shown in Table 6-8, the present invention coated tool 1-13 are both the frequency of the interface orientation form Al 2 O 3 crystal grains occupying the Al 2 O 3 crystal grains immediately above the interface of the lower layer and the upper layer the total 30 to 70%, more accounts on Al 2 O 3 crystal grains of the whole upper layer (0001) for the total power of Al 2 O 3 crystal grains having an orientation angle of inclination distribution is 60% or more Even when used in high-speed intermittent cutting conditions that involve high heat generation and intermittent and impact loads on the cutting edge, the hard coating layer has excellent peeling resistance and excellent chipping resistance.
On the other hand, it is apparent that the comparative coated tools 1 to 13 reach the service life in a relatively short time due to occurrence of peeling and chipping of the hard coating layer in high-speed intermittent cutting.

上述のように、この発明の被覆工具は、各種鋼や鋳鉄などの通常の条件での連続切削や断続切削は勿論のこと、切刃に断続的・衝撃的負荷が作用する高速断続切削という厳しい切削条件下でも、硬質被覆層の剥離、チッピングが発生することはなく、長期の使用に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。









As described above, the coated tool of the present invention is not only continuous cutting and interrupted cutting under normal conditions such as various steels and cast irons, but also severe cutting such as high-speed intermittent cutting in which intermittent and impact loads act on the cutting edge. Even under cutting conditions, no peeling or chipping of the hard coating layer will occur, and excellent cutting performance will be demonstrated over long-term use. It can cope with energy saving and cost reduction sufficiently satisfactorily.









Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a)下部層として、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(b)上部層として、2〜15μmの平均層厚を有し、化学蒸着した状態でα型の結晶構造を有するAl層、
上記(a)、(b)からなる硬質被覆層を蒸着形成した表面被覆切削工具において、
(c)下部層の最表面層と上部層との界面における上部層のAl結晶粒について、電界放出型走査電子顕微鏡と電子線後方散乱回折装置を用い、その断面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記工具基体の表面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうちの0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで表わした場合、その傾斜角が25〜35度の範囲内にあるAl結晶粒の該傾斜角区分に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の30〜70%の割合を占め、
(d)上部層全体のAl結晶粒について、電界放出型走査電子顕微鏡と電子線後方散乱回折装置を用い、その断面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記工具基体の表面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定した場合、前記測定傾斜角のうちの0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで表わした場合、その傾斜角が0〜10度の範囲内にあるAl結晶粒の該傾斜角区分に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の60%以上であることを特徴とする表面被覆切削工具。
On the surface of the tool base composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(A) As a lower layer, it is composed of one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride oxide layer, and a total average layer of 3 to 20 μm A Ti compound layer having a thickness;
(B) As an upper layer, an Al 2 O 3 layer having an average layer thickness of 2 to 15 μm and having an α-type crystal structure in a state of chemical vapor deposition,
In the surface-coated cutting tool in which the hard coating layer composed of the above (a) and (b) is formed by vapor deposition,
(C) About the Al 2 O 3 crystal grains of the upper layer at the interface between the outermost surface layer and the upper layer of the lower layer, using a field emission scanning electron microscope and an electron beam backscatter diffractometer, the measurement range of the cross-section polished surface Each crystal grain having a hexagonal crystal lattice existing therein is irradiated with an electron beam, and the normal line of the (0001) plane which is the crystal plane of the crystal grain is formed with respect to the normal line of the surface of the tool base. The tilt angle is measured, and the measured tilt angles within the range of 0 to 45 degrees of the measured tilt angles are divided for each pitch of 0.25 degrees, and the frequencies existing in each section are totaled. When represented by an inclination angle frequency distribution graph, the total of the frequencies existing in the inclination angle section of the Al 2 O 3 crystal grains having an inclination angle in the range of 25 to 35 degrees is the entire frequency in the inclination angle frequency distribution graph. Of 30-70% of
(D) About the Al 2 O 3 crystal grains of the entire upper layer, using a field emission scanning electron microscope and an electron beam backscatter diffractometer, the crystal grains having a hexagonal crystal lattice existing within the measurement range of the cross-section polished surface When the inclination angle formed by the normal of the (0001) plane, which is the crystal plane of the crystal grain, is measured with respect to the normal of the surface of the tool base, individually with the electron beam, When the measurement inclination angle within the range of 0 to 45 degrees is divided into pitches of 0.25 degrees and the frequency existing in each division is represented by an inclination angle number distribution graph, The total of the frequencies existing in the tilt angle section of the Al 2 O 3 crystal grains having the tilt angle in the range of 0 to 10 degrees is 60% or more of the total power in the tilt angle frequency distribution graph. Surface coated cutting tool.
JP2012137413A 2012-06-19 2012-06-19 A surface-coated cutting tool with a hard coating layer that exhibits excellent peeling and chipping resistance in high-speed intermittent cutting. Active JP5892472B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012137413A JP5892472B2 (en) 2012-06-19 2012-06-19 A surface-coated cutting tool with a hard coating layer that exhibits excellent peeling and chipping resistance in high-speed intermittent cutting.
CN201310225231.8A CN103506639B (en) 2012-06-19 2013-06-07 Surface-coated cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012137413A JP5892472B2 (en) 2012-06-19 2012-06-19 A surface-coated cutting tool with a hard coating layer that exhibits excellent peeling and chipping resistance in high-speed intermittent cutting.

Publications (2)

Publication Number Publication Date
JP2014000634A JP2014000634A (en) 2014-01-09
JP5892472B2 true JP5892472B2 (en) 2016-03-23

Family

ID=49890362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012137413A Active JP5892472B2 (en) 2012-06-19 2012-06-19 A surface-coated cutting tool with a hard coating layer that exhibits excellent peeling and chipping resistance in high-speed intermittent cutting.

Country Status (2)

Country Link
JP (1) JP5892472B2 (en)
CN (1) CN103506639B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3106250B1 (en) * 2014-03-25 2019-07-24 Kanefusa Kabushiki Kaisha Cutting tool
CN109982799A (en) * 2016-11-16 2019-07-05 京瓷株式会社 Cutting tip and cutting element
EP3871814A4 (en) * 2019-02-19 2021-09-08 Sumitomo Electric Hardmetal Corp. Cutting tool

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004284003A (en) * 2003-02-28 2004-10-14 Mitsubishi Materials Corp Surface-coated cermet cutting tool exhibiting excellent chipping resistance in hard coated layer
JP4512989B2 (en) * 2003-12-26 2010-07-28 三菱マテリアル株式会社 Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer
JP4466841B2 (en) * 2004-06-30 2010-05-26 三菱マテリアル株式会社 A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4748361B2 (en) * 2005-12-14 2011-08-17 三菱マテリアル株式会社 Surface-coated cermet cutting tool with excellent chipping resistance with hard coating layer in difficult-to-cut materials
JP2007216362A (en) * 2006-02-20 2007-08-30 Mitsubishi Materials Corp Surface coated cermet-made cutting tool including hard coating layer exhibiting excellent chipping resistance in cutting difficult-to-cut material
SE532023C2 (en) * 2007-02-01 2009-09-29 Seco Tools Ab Textured hardened alpha-alumina coated cutting for metalworking
JP5187570B2 (en) * 2007-12-28 2013-04-24 三菱マテリアル株式会社 Surface coated cutting tool with excellent wear resistance due to hard coating layer
CN102355968B (en) * 2009-03-18 2013-10-30 三菱综合材料株式会社 Surface-coated cutting tool
JP5477767B2 (en) * 2009-11-16 2014-04-23 三菱マテリアル株式会社 Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5594574B2 (en) * 2010-02-16 2014-09-24 三菱マテリアル株式会社 Surface-coated cutting tool with excellent peeling resistance and wear resistance due to its hard coating layer
CN102398049B (en) * 2010-09-09 2015-11-25 三菱综合材料株式会社 The resistance to surface-coated cutting tool collapsing cutter

Also Published As

Publication number Publication date
CN103506639B (en) 2017-06-09
JP2014000634A (en) 2014-01-09
CN103506639A (en) 2014-01-15

Similar Documents

Publication Publication Date Title
JP5831707B2 (en) Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP5907406B2 (en) Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP5892473B2 (en) A surface-coated cutting tool with a hard coating layer that exhibits excellent peeling and chipping resistance in high-speed intermittent cutting.
JP2016165789A (en) Surface-coated cutting tool allowing hard coated layer to exhibit superior chipping resistance and wear resistance
JP5263514B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5838789B2 (en) Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP6139057B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP5995082B2 (en) A surface-coated cutting tool with a hard coating layer that exhibits excellent peeling and chipping resistance in high-speed intermittent cutting.
JP5892472B2 (en) A surface-coated cutting tool with a hard coating layer that exhibits excellent peeling and chipping resistance in high-speed intermittent cutting.
JP5854321B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP2015085441A (en) Surface coated cutting tool excellent in abnormal damage resistance and wear resistance
JP5023896B2 (en) Surface coated cutting tool
JP5999345B2 (en) A surface-coated cutting tool with a hard coating layer that exhibits excellent peeling and chipping resistance in high-speed intermittent cutting.
JP5003308B2 (en) Surface coated cutting tool
JP2006198740A (en) Cutting tool made of surface coated cermet with hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting
JP5748125B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP5176787B2 (en) Surface coated cutting tool with excellent chipping resistance and wear resistance due to hard coating layer
JP5930512B2 (en) A surface-coated cutting tool with a hard coating layer that exhibits excellent peeling and chipping resistance in high-speed intermittent cutting.
JP5892380B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance with a hard coating layer in high-speed intermittent cutting
JP5892335B2 (en) Surface coated cutting tool with excellent chipping resistance with hard coating layer
JP2013184230A (en) Surface coated cutting tool with hard coating layer having superior chipping resistance and fracture resistance
JP5019258B2 (en) Surface coated cutting tool
JP5187573B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance with a hard coating layer in high-speed heavy cutting
JP2016221655A (en) Surface-coated cutting tool with rigid coating layer exhibiting excellent chipping resistance, defect resistance, and abrasion resistance in high-speed intermittent cutting
JP2006334757A (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent wear resistance in high-speed cutting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160201

R150 Certificate of patent or registration of utility model

Ref document number: 5892472

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160214