JP2007216362A - Surface coated cermet-made cutting tool including hard coating layer exhibiting excellent chipping resistance in cutting difficult-to-cut material - Google Patents

Surface coated cermet-made cutting tool including hard coating layer exhibiting excellent chipping resistance in cutting difficult-to-cut material Download PDF

Info

Publication number
JP2007216362A
JP2007216362A JP2006042333A JP2006042333A JP2007216362A JP 2007216362 A JP2007216362 A JP 2007216362A JP 2006042333 A JP2006042333 A JP 2006042333A JP 2006042333 A JP2006042333 A JP 2006042333A JP 2007216362 A JP2007216362 A JP 2007216362A
Authority
JP
Japan
Prior art keywords
layer
type
degrees
inclination angle
hard coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006042333A
Other languages
Japanese (ja)
Inventor
Makoto Nishida
西田  真
Hiroshi Hara
央 原
Kazuhiro Kono
和弘 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2006042333A priority Critical patent/JP2007216362A/en
Publication of JP2007216362A publication Critical patent/JP2007216362A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface coated cermet-made cutting tool including a hard coating layer exhibiting excellent chipping resistance in cutting difficult-to-cut material. <P>SOLUTION: In this surface coated cermet-made cutting tool, the hard coating layer is formed on the surface of a tool base. The hard coating layer includes: a lower layer formed of Ti compound layer 3 to 20 μm; an inter-layer contact layer formed of a contact α-type Al<SB>2</SB>O<SB>3</SB>layer 0.1 to 1.9 μm; and an upper layer formed of a reformed α-type Al<SB>2</SB>O<SB>3</SB>layer 6 to 20 μm. The above upper layer and the inter-layer contact layer are formed of α-type Al<SB>2</SB>O<SB>3</SB>layer. In the case of measuring an angle of inclination made by a normal of (0001) face, which is a crystal plane of a crystal grain, using a field emission type scanning electron microscope to create an inclination angle frequency distribution graph, the α-type Al<SB>2</SB>O<SB>3</SB>layer shows an inclination angle frequency distribution graph in which the highest peak exists in an inclination angle section within the ranges of 30 to 45 degrees and 75 to 90 degrees, and the total of frequencies existing in the inclination angle sections occupies 50% or more of the whole frequency, and also the surface roughness of the reformed α-type Al<SB>2</SB>O<SB>3</SB>layer is set to Ra:0.2 μm or less. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、自身が高い粘性を有し、かつ切削時の切削工具表面部の硬質被覆層に対する粘着性も高く、この結果切削抵抗の高いものとなる軟鋼やステンレス鋼、さらに高マンガン鋼などの難削材の切削加工で、硬質被覆層がすぐれた耐チッピング性を示し、長期に亘ってすぐれた耐摩耗性を発揮する表面被覆サーメット製切削工具(以下、被覆サーメット工具という)に関するものである。   This invention has a high viscosity and has high adhesion to the hard coating layer on the surface of the cutting tool during cutting. As a result, soft steel, stainless steel, and high manganese steel that have high cutting resistance The present invention relates to a surface-coated cermet cutting tool (hereinafter referred to as a coated cermet tool) that exhibits excellent chipping resistance in hard-cutting materials and exhibits excellent wear resistance over a long period of time. .

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)下部層が、Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(b)上部層が、通常1〜15μmの平均層厚、厚膜化した状態で20μm以下の平均層厚を有し、かつ化学蒸着した状態でα型の結晶構造を有する酸化アルミニウム層(以下、従来α型Al23層という)、
以上(a)および(b)で構成された硬質被覆層を蒸着形成してなる被覆サーメット工具が知られており、この被覆サーメット工具が、例えば各種の一般鋼や普通鋳鉄などの切削加工に用いられることは良く知られるところである。
Conventionally, generally on the surface of a substrate (hereinafter collectively referred to as a tool substrate) composed of a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet. ,
(A) The lower layer is a Ti carbide (hereinafter referred to as TiC) layer, a nitride (hereinafter also referred to as TiN) layer, a carbonitride (hereinafter referred to as TiCN) layer, a carbon oxide (hereinafter referred to as TiCO). A Ti compound layer having a total average layer thickness of 3 to 20 μm, including one or two or more of a layer and a carbonitride oxide (hereinafter referred to as TiCNO) layer,
(B) The upper layer usually has an average layer thickness of 1 to 15 μm, an average layer thickness of 20 μm or less in a thickened state, and an aluminum oxide layer (hereinafter referred to as an α-type crystal structure in a state of chemical vapor deposition) , Conventionally α-type Al 2 O 3 layer)
A coated cermet tool formed by vapor-depositing the hard coating layer constituted by (a) and (b) above is known, and this coated cermet tool is used for cutting various general steels and ordinary cast irons, for example. It is well known that

また、上記の被覆サーメット工具において、これの硬質被覆層の構成層は、一般に粒状結晶組織を有し、さらに、下部層であるTi化合物層を構成するTiCN層を、層自身の強度向上を目的として、通常の化学蒸着装置にて、反応ガスとして有機炭窒化物を含む混合ガスを使用し、700〜950℃の中温温度域で化学蒸着することにより形成して縦長成長結晶組織をもつようにすることも知られている。
特開平6−31503号公報 特開平6−8010号公報
Further, in the above-described coated cermet tool, the constituent layer of the hard coating layer generally has a granular crystal structure, and further, the TiCN layer constituting the Ti compound layer as the lower layer is intended to improve the strength of the layer itself. In a normal chemical vapor deposition apparatus, a gas mixture containing organic carbonitrides is used as a reaction gas, and it is formed by chemical vapor deposition at an intermediate temperature range of 700 to 950 ° C. so that it has a vertically grown crystal structure. It is also known to do.
Japanese Unexamined Patent Publication No. 6-31503 Japanese Patent Laid-Open No. 6-8010

近年の切削装置のFA化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工には被削材の材種に関して、一層の汎用性をもった切削工具、すなわち1種の切削工具でできるだけ多くの種類の被削材の切削加工が可能な切削工具が求められる傾向にあるが、上記の従来被覆サーメット工具においては、これを低合金鋼や炭素鋼などの一般鋼、さらにねずみ鋳鉄などの普通鋳鉄の切削加工に用いた場合には問題はないが、特にこれを軟鋼やステンレス鋼、さらに高マンガン鋼などの難削材の切削加工に用いた場合には、前記難削材自身が高い粘性を有し、かつ切削時の切削工具表面部の硬質被覆層に対する粘着性も高く、この傾向は切削時に発生する高熱によって増大することと相俟って、切削抵抗の高いものとなり、一方硬質被覆層を構成する従来α型Al23層の高温強度はこれに耐えるに十分なものではなく、この結果切刃部にチッピング(微少欠け)が発生し易くなり、これが原因で比較的短時間で使用寿命に至るのが現状である。 In recent years, the use of FA for cutting machines has been remarkable. On the other hand, there has been a strong demand for labor saving and energy saving and further cost reduction for cutting work. There is a tendency to require a cutting tool having a cutting force, that is, a cutting tool capable of cutting as many kinds of work materials as possible with one kind of cutting tool. There is no problem when it is used for cutting ordinary steel such as steel and carbon steel, and ordinary cast iron such as gray cast iron, but this is especially useful for cutting difficult-to-cut materials such as mild steel, stainless steel, and high manganese steel. When used for, the difficult-to-cut material itself has a high viscosity and also has a high adhesiveness to the hard coating layer on the surface of the cutting tool during cutting, and this tendency increases due to the high heat generated during cutting. What coupled with, it is assumed high cutting resistance, whereas the high temperature strength of the conventional α type the Al 2 O 3 layer constituting the hard coating layer is not sufficient to withstand this, chipping (fine result in cutting edge Chipping) is likely to occur, and due to this, the service life is reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、上記の従来α型Al23層が硬質被覆層の上部層を構成する従来被覆サーメット工具に着目し、特に前記従来α型Al23層の耐チッピング性向上を図るべく研究を行った結果、
(a)上記の従来被覆サーメット工具の硬質被覆層としての従来α型Al23層は、一般に、通常の化学蒸着装置にて、
反応ガス組成:容量%で、AlCl3:1〜5%、CO2:3〜7%、HCl:0.3〜3%、H2S:0.02〜0.4%、H2:残り、
反応雰囲気温度:950〜1100℃、
反応雰囲気圧力:6〜13kPa、
の条件(以下、通常条件という)で形成されるが、この通常条件形成の従来α型Al23層について、電界放出型走査電子顕微鏡を用い、図1(a),(b)および図2(a),(b)に概略説明図で示される通り、工具基体表面と平行な研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、それぞれ0〜45度および45〜90度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフを作成すると、図5(測定傾斜角:0〜45度)および図6(測定傾斜角:45〜90度)に例示される通り、(0001)面の測定傾斜角の分布が0〜45度および45〜90度のいずれの範囲内でも不偏的な傾斜角度数分布グラフを示すこと。
In view of the above, the present inventors have focused on the conventional coated cermet tool in which the conventional α-type Al 2 O 3 layer constitutes the upper layer of the hard coating layer, and in particular, the conventional α-type Al 2 O 3 layer result to conducted research promote chipping resistance improving,
(A) The conventional α-type Al 2 O 3 layer as the hard coating layer of the conventional coated cermet tool is generally a normal chemical vapor deposition apparatus,
Reaction gas composition: by volume%, AlCl 3: 1~5%, CO 2: 3~7%, HCl: 0.3~3%, H 2 S: 0.02~0.4%, H 2: remainder ,
Reaction atmosphere temperature: 950-1100 ° C.
Reaction atmosphere pressure: 6-13 kPa,
The conventional α-type Al 2 O 3 layer formed under the normal conditions is formed using a field emission scanning electron microscope, and is shown in FIGS. 1 (a), 1 (b) and FIG. 2 (a) and (b), as schematically shown in the drawing, each crystal grain having a hexagonal crystal lattice existing within the measurement range of the polished surface parallel to the tool substrate surface is irradiated with an electron beam, The inclination angle formed by the normal line of the (0001) plane, which is the crystal plane of the crystal grain, is measured with respect to the normal line of the polished surface. Of the measured inclination angles, 0 to 45 degrees and 45 to 90 degrees, respectively. When the measured inclination angle within the range is divided for each pitch of 0.25 degrees, and an inclination angle number distribution graph is created by summing up the frequencies existing in each division, FIG. 45 degrees) and FIG. 6 (measurement tilt angle: 45 to 90 degrees), The distribution of the measured inclination angle of the (0001) plane should be an unbiased inclination angle number distribution graph regardless of the range of 0 to 45 degrees and 45 to 90 degrees.

(b)一方、α型Al23層を、同じく通常の化学蒸着装置を用い、
反応ガス組成:容量%で、AlCl3:3〜10%、CO2:0.5〜3%、HCl:0.3〜3%、SF:0.01〜0.2%、C:0.01〜0.3、H2:残り、
反応雰囲気温度:950〜1050℃、
反応雰囲気圧力:20〜30kPa、
の条件、すなわち反応ガス組成を調整して上記の通常条件の反応ガス組成とは異なった反応ガス組成とすると共に、同じく上記の通常条件の反応雰囲気圧力に比して、相対的に高圧にした条件で形成すると、この結果形成されたα型Al23層は、同じく電界放出型走査電子顕微鏡を用い、図1(a),(b)に示される通り、工具基体表面と平行な研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで現した場合、図3に例示される通り、傾斜角区分の特定位置にシャープな最高ピークが現れ、試験結果によれば、上記のα型Al23層の形成条件、すなわち上記の反応ガス組成および反応雰囲気条件のうちの少なくともいずれかの条件を、上記の範囲内で変化させると、上記シャープな最高ピークの現れる位置が傾斜角区分の30〜45度の範囲内で変化すると共に、前記30〜45度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の50%以上の割合を占めるようになり、この結果の傾斜角度数分布グラフにおいて30〜45度の範囲内に傾斜角区分の最高ピークが現れるα型Al23層(以下、改質α型Al23層という)は、上記の通常条件形成の従来α型Al23層に比して、一段とすぐれた高温強度を有するものであること。
(B) On the other hand, the α-type Al 2 O 3 layer was similarly used with a normal chemical vapor deposition apparatus,
Reaction gas composition:% by volume, AlCl 3 : 3 to 10%, CO 2 : 0.5 to 3%, HCl: 0.3 to 3%, SF 6 : 0.01 to 0.2%, C 2 H 4: 0.01~0.3, H 2: remainder,
Reaction atmosphere temperature: 950 to 1050 ° C.
Reaction atmosphere pressure: 20-30 kPa,
In other words, the reaction gas composition was adjusted to a reaction gas composition different from the reaction gas composition under the above normal conditions, and the pressure was set to be relatively high compared to the reaction atmosphere pressure under the above normal conditions. When formed under the conditions, the resulting α-type Al 2 O 3 layer was polished in parallel with the tool base surface using a field emission scanning electron microscope, as shown in FIGS. A crystal grain having a hexagonal crystal lattice existing in the measurement range of the plane is irradiated with an electron beam, and the normal line of the (0001) plane that is the crystal plane of the crystal grain is normal to the normal plane of the polished plane Is measured, and the measured inclination angles within the range of 0 to 45 degrees out of the measured inclination angles are divided into pitches of 0.25 degrees, and the frequencies existing in each division are tabulated. Is shown in FIG. 3. As shown, a sharp maximum peak appears at a specific position in the tilt angle section, and according to the test results, at least one of the above-mentioned α-type Al 2 O 3 layer formation conditions, that is, the above reaction gas composition and reaction atmosphere conditions. If any of the conditions is changed within the above range, the position where the sharpest peak appears changes within the range of 30 to 45 degrees of the tilt angle section and exists within the range of 30 to 45 degrees. The total number of frequencies to occupy is 50% or more of the total frequency in the inclination angle frequency distribution graph, and the maximum peak of the inclination angle section is in the range of 30 to 45 degrees in the inclination angle frequency distribution graph as a result. The appearing α-type Al 2 O 3 layer (hereinafter referred to as a modified α-type Al 2 O 3 layer) has a higher high-temperature strength than the conventional α-type Al 2 O 3 layer formed under the above normal conditions. It must be a thing.

(c)さらに、同じく、通常の化学蒸着装置を用い、
反応ガス組成:容量%で、AlCl3:1〜5%、CO2:3〜7%、HCl:0.3〜3%、H2S:0.02〜0.4%、H2:残り、
反応雰囲気温度:750〜900℃、
反応雰囲気圧力:20〜30kPa、
の条件でα型Al23層を0.1〜1.9μmの平均層厚で形成すると、この結果形成されたα型Al23層は、同じくα型の結晶構造を有し、電界放出型走査電子顕微鏡を用い、図2(a),(b)に示される通り、同じく上記工具基体表面と平行な研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、45〜90度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで現した場合、図4に例示される通り、傾斜角区分の特定位置にシャープな最高ピークが現れ、試験結果によれば、化学蒸着装置における反応雰囲気温度および圧力を、上記の通り750〜900℃および20〜30kPaの範囲内で変化させると、上記シャープな最高ピークの現れる位置が傾斜角区分の75〜90度の範囲内で変化すると共に、前記75〜90度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の50%以上の割合を占めるようになり、この結果の傾斜角度数分布グラフにおいて75〜90度の範囲内に傾斜角区分の最高ピークが現れるAl23層(以下、密着α型Al23層という)は、上記の改質α型Al23層(上部層)およびTi化合物層(下部層)のいずれにも著しく強固に密着する特性を具備すること。
(C) Furthermore, using a normal chemical vapor deposition apparatus,
Reaction gas composition: by volume%, AlCl 3: 1~5%, CO 2: 3~7%, HCl: 0.3~3%, H 2 S: 0.02~0.4%, H 2: remainder ,
Reaction atmosphere temperature: 750 to 900 ° C.
Reaction atmosphere pressure: 20-30 kPa,
When the α type the Al 2 O 3 layer at conditions to form with an average layer thickness of 0.1~1.9Myuemu, the result formed α-type Al 2 O 3 layer is also has a α-type crystal structure, Using a field emission scanning electron microscope, as shown in FIGS. 2A and 2B, each crystal grain having a hexagonal crystal lattice, which is also present in the measurement range of the polished surface parallel to the tool substrate surface, is used. By irradiating with an electron beam, the inclination angle formed by the normal line of the (0001) plane which is the crystal plane of the crystal grain is measured with respect to the normal line of the polished surface. FIG. 4 shows an example of a tilt angle distribution graph in which the measured tilt angles within a range of degrees are divided into pitches of 0.25 degrees and the frequencies existing in each section are tabulated. A sharp peak appears at a specific position in the slope angle section. When the reaction atmosphere temperature and pressure are changed within the range of 750 to 900 ° C. and 20 to 30 kPa as described above, the position at which the sharpest peak appears changes within the range of 75 to 90 degrees of the inclination angle section. At the same time, the sum of the frequencies existing within the range of 75 to 90 degrees occupies a ratio of 50% or more of the entire frequencies in the inclination angle distribution graph, and 75 to 90 in the inclination angle distribution graph as a result. The Al 2 O 3 layer (hereinafter referred to as the adhesion α-type Al 2 O 3 layer) in which the highest peak of the tilt angle section appears in the range of degrees is the above-mentioned modified α-type Al 2 O 3 layer (upper layer) and Ti It must have the property of adhering remarkably firmly to any of the compound layers (lower layers).

(d)一方、上記の被覆サーメット工具の硬質被覆層の上部層を構成する改質α型Al23層は、相対的に蒸着表面が粗いのが現状である。そこで、前記改質α型Al23層の全面に、通常の化学蒸着装置を用い、通常の条件、例えば表3に示される条件で、いずれも0.1〜2.5μmの平均層厚を有する窒化チタン(以下、TiNで示す)層と炭窒化チタン(以下、TiCNで示す)層の2層以上の交互積層を、0.4〜5μmの全体平均層厚で蒸着形成した状態で、
ウエットブラストにて、噴射研磨材として、水との合量に占める割合で15〜60質量%の酸化アルミニウム微粒(以下、Al23微粒で示す)を配合した研磨液を噴射すると、上記TiN層とTiCN層の2層以上の交互積層(以下、個々にTiN研磨材層およびTiCN研磨材層と言い、これら全体をTiN/TiCN研磨材層で示す)は、前記Al23微粒によって粉砕微粒化し、TiN微粒およびTiCN微粒となって前記Al23微粒の共存下で研磨材として作用し、硬質被覆層の上部層を構成する改質α型Al23層の表面を研磨することになり、この結果研磨後の前記改質α型Al23層の表面は、準拠規格JIS・B0601−1994に基いた測定(以下の表面粗さは全てかかる準拠規格に基いた測定値を示す)で、Ra:0.2μm以下の表面粗さにまで平滑化されるようになり、この上部層である改質α型Al23層の表面がRa:0.2μm以下の表面粗さに平滑化した上記の被覆サーメット工具を用いて、難削材の切削加工を行った場合、前記表面粗さの平滑化によって前記改質α型Al23層の摩耗進行が抑制されるようになり、この結果工具の使用寿命の一段の延命化が可能となること。
なお、この場合、上記改質α型Al23層の表面に、上記のTiN/TiCN研磨材層を形成することなく、これに同じくウエットブラストにて、噴射研磨材として、水との合量に占める割合で15〜60質量%のAl23微粒を配合した研磨液を直接噴射して、研磨しても、前記改質α型Al23層の表面は、Ra:0.3〜0.6μmの表面粗さにしか研磨されず、この結果の表面粗さがRa:0.3〜0.6μmの改質α型Al23層で上部層を構成した被覆サーメット工具を用いても、難削材の切削加工では表面平滑化による十分な摩耗抑制効果は発揮されず、満足な使用寿命の延命化は図れないこと。
(D) On the other hand, the modified α-type Al 2 O 3 layer constituting the upper layer of the hard coating layer of the above coated cermet tool has a relatively rough deposition surface. Therefore, an average layer thickness of 0.1 to 2.5 μm is used on the entire surface of the modified α-type Al 2 O 3 layer using a normal chemical vapor deposition apparatus under normal conditions, for example, the conditions shown in Table 3. Two or more alternating layers of titanium nitride (hereinafter referred to as TiN) layers and titanium carbonitride (hereinafter referred to as TiCN) layers having a thickness of 0.4 to 5 μm are deposited and formed,
When a polishing liquid containing 15 to 60% by mass of aluminum oxide fine particles (hereinafter referred to as Al 2 O 3 fine particles) is injected as a polishing material by wet blasting as a proportion of the total amount with water, the above TiN Alternating layers of two or more layers of layers and TiCN layers (hereinafter referred to as TiN abrasive layer and TiCN abrasive layer, respectively, these are shown as TiN / TiCN abrasive layer) are pulverized by the Al 2 O 3 fine particles. Atomized into TiN fine particles and TiCN fine particles, acts as an abrasive in the presence of the Al 2 O 3 fine particles, and polishes the surface of the modified α-type Al 2 O 3 layer constituting the upper layer of the hard coating layer As a result, the surface of the modified α-type Al 2 O 3 layer after polishing was measured based on the compliant standard JIS B0601-1994 (the following surface roughness is all measured values based on the compliant standard) Indicate) Ra: now be smoothed to a surface roughness of less than 0.2 [mu] m, the surface of the a top layer modification α type the Al 2 O 3 layer is Ra: smoothing surface roughness of not more than 0.2 [mu] m When the above-described coated cermet tool is used to cut a difficult-to-cut material, the progress of wear of the modified α-type Al 2 O 3 layer is suppressed by smoothing the surface roughness, As a result, the life of the tool can be further extended.
In this case, the TiN / TiCN abrasive layer is not formed on the surface of the modified α-type Al 2 O 3 layer. Even if the polishing liquid containing 15 to 60% by mass of Al 2 O 3 fine particles is directly sprayed and polished, the surface of the modified α-type Al 2 O 3 layer has Ra: 0. A coated cermet tool that is polished only to a surface roughness of 3 to 0.6 μm, and that the resulting surface roughness is an upper layer of a modified α-type Al 2 O 3 layer with Ra: 0.3 to 0.6 μm However, when cutting difficult-to-cut materials, sufficient wear-inhibiting effect due to surface smoothing cannot be demonstrated, and satisfactory life span cannot be extended.

(e)したがって、上部層を、上記の従来α型Al23層のもつ層厚と同等の6〜20μmの平均層厚とした状態で、上記のすぐれた高温強度を有する改質α型Al23層で構成すると共に、前記上部層と下部層であるTi化合物層の間に、これら両者と著しく強固に密着結合する上記の密着α型Al23層を、0.1〜1.9μmの平均層厚で介在させ、さらに前記改質α型Al23層の少なくとも切刃稜線部を含むすくい面部分および逃げ面部分を研磨して、これら研磨面の表面粗さをRa:0.2μm以下としてなる被覆サーメット工具は、特に切刃部に高い切削抵抗が加わる難削材の切削加工でも、前記硬質被覆層の高温強度が向上し、かつ前記上部層の改質α型Al23層がすぐれた表面平滑性を具備することから、すぐれた耐チッピング性を発揮し、長期に亘ってすぐれた耐摩耗性を示すようになること。
以上(a)〜(e)の研究結果を得たのである。
(E) Therefore, the modified α type having the above excellent high temperature strength in a state where the upper layer has an average layer thickness of 6 to 20 μm equivalent to the layer thickness of the conventional α type Al 2 O 3 layer. The above-mentioned close contact α-type Al 2 O 3 layer, which is composed of an Al 2 O 3 layer and is extremely tightly bonded to both of the upper layer and the lower Ti compound layer, is 0.1 to The rake face portion and the flank portion including at least the cutting edge ridge line portion of the modified α-type Al 2 O 3 layer are polished with an average layer thickness of 1.9 μm, and the surface roughness of these polished surfaces is increased. The coated cermet tool with Ra: 0.2 μm or less improves the high-temperature strength of the hard coating layer and improves the upper layer α even when cutting a difficult-to-cut material in which high cutting resistance is applied to the cutting edge. since the mold the Al 2 O 3 layer to mount an excellent surface smoothness, excellent resistance to Exhibits mappings properties, it exhibits a superior wear resistance over a long period.
The research results (a) to (e) have been obtained.

この発明は、上記の研究結果に基づいてなされたものであって、工具基体の表面に、
(1)下部層として、TiC層、TiN層、TiCN層、TiCO層、およびTiCNO層のうちの1層または2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(2)上記下部層と下記上部層の層間密着層として、化学蒸着した状態でα型の結晶構造を有し、電界放出型走査電子顕微鏡を用い、上記工具基体表面と平行な研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、45〜90度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、
75〜90度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記75〜90度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の50%以上の割合を占める傾斜角度数分布グラフを示し、かつ0.1〜1.9μmの平均層厚を有する密着α型Al23層、
(3)上部層として、同じく、化学蒸着した状態でα型の結晶構造を有し、電界放出型走査電子顕微鏡を用い、上記工具基体表面と平行な研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、
30〜45度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記30〜45度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の50%以上の割合を占める傾斜角度数分布グラフを示し、かつ6〜20μmの平均層厚を有する改質α型Al23層、
以上(1)〜(3)で構成された硬質被覆層を蒸着形成してなり、
さらに、上記硬質被覆層の上部層である改質α型Al23層の全面に、
いずれも0.1〜2.5μmの平均層厚を有するTiN研磨材層とTiCN研磨材層の2層以上の交互積層で構成され、かつ、0.4〜5μmの全体平均層厚を有するTiN/TiCN研磨材層を蒸着形成した状態で、
ウエットブラストにて、噴射研磨材として、水との合量に占める割合で15〜60質量%のAl23微粒を配合した研磨液を噴射し、
上記のTiN/TiCN研磨材層のウエットブラストによる粉砕化TiN微粒および粉砕化TiCN微粒と、噴射研磨材としてのAl23微粒の共存下で、上記硬質被覆層の上部層を構成する改質α型Al23層の少なくとも切刃稜線部を含むすくい面部分および逃げ面部分を研磨して、これら研磨面の表面粗さをRa:0.2μm以下としてなる、
難削材の切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する被覆サーメット工具に特徴を有するものである。
This invention was made based on the above research results, and on the surface of the tool base,
(1) As a lower layer, a Ti compound layer composed of one or more of a TiC layer, a TiN layer, a TiCN layer, a TiCO layer, and a TiCNO layer, and having a total average layer thickness of 3 to 20 μm,
(2) As an interlayer adhesion layer between the lower layer and the upper layer described below, a polished surface parallel to the tool base surface is obtained using a field emission scanning electron microscope having an α-type crystal structure in the state of chemical vapor deposition. Inclination made by irradiating an electron beam to each crystal grain having a hexagonal crystal lattice existing in the range and a normal line of the (0001) plane being the crystal plane of the crystal grain with respect to the normal line of the polished surface An angle is measured, and the measured inclination angle within the range of 45 to 90 degrees is divided into 0.25 degree pitches among the measured inclination angles, and the degrees existing in each division are totaled. In the angle distribution graph,
The highest peak exists in the inclination angle section in the range of 75 to 90 degrees, and the total of the frequencies existing in the range of 75 to 90 degrees represents a ratio of 50% or more of the entire degrees in the inclination angle frequency distribution graph. A close contact α-type Al 2 O 3 layer showing an inclination angle number distribution graph and having an average layer thickness of 0.1 to 1.9 μm;
(3) As an upper layer, a hexagonal crystal having an α-type crystal structure in the state of chemical vapor deposition and existing in a measurement range of a polished surface parallel to the tool base surface using a field emission scanning electron microscope By irradiating each crystal grain having a crystal lattice with an electron beam, the inclination angle formed by the normal line of the (0001) plane which is the crystal plane of the crystal grain is measured with respect to the normal line of the polished surface. In the inclination angle number distribution graph formed by totaling the frequencies existing in each division, while dividing the measurement inclination angle in the range of 0 to 45 degrees among the inclination angles for each pitch of 0.25 degrees,
The highest peak exists in the inclination angle section within the range of 30 to 45 degrees, and the total of the frequencies existing within the range of 30 to 45 degrees represents a ratio of 50% or more of the entire degrees in the inclination angle frequency distribution graph. A modified α-type Al 2 O 3 layer showing an occupying angle number distribution graph and having an average layer thickness of 6 to 20 μm;
The hard coating layer composed of the above (1) to (3) is formed by vapor deposition,
Furthermore, on the entire surface of the modified α-type Al 2 O 3 layer, which is the upper layer of the hard coating layer,
Each is composed of two or more alternating layers of TiN abrasive layer having an average layer thickness of 0.1 to 2.5 μm and TiCN abrasive layer, and TiN having an overall average layer thickness of 0.4 to 5 μm / With the TiCN abrasive layer deposited and formed,
In wet blasting, as a spraying abrasive, a polishing liquid containing 15 to 60% by mass of Al 2 O 3 fine particles in a proportion of the total amount with water is sprayed,
Modification of the upper layer of the hard coating layer in the presence of pulverized TiN fine particles and pulverized TiCN fine particles by wet blasting of the TiN / TiCN abrasive layer and Al 2 O 3 fine particles as a spray abrasive The rake face portion and the flank face portion including at least the cutting edge ridge line portion of the α-type Al 2 O 3 layer are polished, and the surface roughness of these polished surfaces is Ra: 0.2 μm or less.
It is characterized by a coated cermet tool that exhibits excellent chipping resistance in a hard coating layer when cutting difficult-to-cut materials.

以下に、この発明の被覆サーメット工具の硬質被覆層、研磨材層、さらにウエットブラストで用いられる研磨液のAl23微粒に関して、上記の通りに数値限定した理由を説明する。 The reason why the hard coating layer of the coated cermet tool of the present invention, the abrasive layer, and the Al 2 O 3 fine particles of the polishing liquid used in wet blasting are numerically limited as described above will be described below.

(A)硬質被覆層
(a)Ti化合物層(下部層)
Ti化合物層は、基本的には上部層である改質α型Al23層の下部層として存在し、自身の具備するすぐれた高温強度によって硬質被覆層が高温強度を具備するようにするほか、工具基体と密着α型Al23層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性向上に寄与する作用を有するが、その合計平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方その合計平均層厚が20μmを越えると、特に高熱発生を伴なう難削材の高速切削では熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その合計平均層厚を3〜20μmと定めた。
(A) Hard coating layer (a) Ti compound layer (lower layer)
The Ti compound layer basically exists as a lower layer of the modified α-type Al 2 O 3 layer, which is the upper layer, and allows the hard coating layer to have high temperature strength by its excellent high temperature strength. In addition, it firmly adheres to both the tool base and the close contact α-type Al 2 O 3 layer, and thus has an effect of improving the adhesion of the hard coating layer to the tool base, but if the total average layer thickness is less than 3 μm When the total average layer thickness exceeds 20 μm, the high-speed cutting of difficult-to-cut materials with high heat generation is likely to cause thermoplastic deformation, which is uneven wear. Therefore, the total average layer thickness was determined to be 3 to 20 μm.

(b)改質α型Al23層(上部層)
上記の通り、改質α型Al23層の傾斜角度数分布グラフにおける測定傾斜角の最高ピーク位置および度数分布割合は、反応ガス組成および反応雰囲気条件のうちの少なくともいずれかの条件を、上記の範囲内で変化させることによって変化するが、試験結果によれば、最高ピークが、30〜45度の範囲内の傾斜角区分に現れると共に、前記30〜45度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の50%以上の割合を占める傾斜角度数分布グラフを示す場合に、α型Al23自身のもつすぐれた高温硬さおよび耐熱性に加えて、すぐれた高温強度を具備するようになるものである。
また、その平均層厚が6μm未満では、切削工具に十分な使用寿命を確保することができず、一方、その平均層厚が20μmを越えると、難削材の切削加工ではチッピングが発生し易くなることから、その平均層厚を6〜20μmと定めた。
(B) modified α type the Al 2 O 3 layer (upper layer)
As described above, the maximum peak position and the frequency distribution ratio of the measured inclination angle in the inclination angle number distribution graph of the modified α-type Al 2 O 3 layer are at least one of the reaction gas composition and the reaction atmosphere conditions. Although it changes by changing within the above range, according to the test results, the highest peak appears in the inclination angle section within the range of 30 to 45 degrees and the frequency existing within the range of 30 to 45 degrees. In addition to the excellent high-temperature hardness and heat resistance of α-type Al 2 O 3 itself, when the inclination angle distribution graph occupies 50% or more of the total frequency in the inclination angle distribution graph It will have excellent high temperature strength.
Further, if the average layer thickness is less than 6 μm, a sufficient service life cannot be secured for the cutting tool. On the other hand, if the average layer thickness exceeds 20 μm, chipping is likely to occur in cutting of difficult-to-cut materials. Therefore, the average layer thickness was determined to be 6 to 20 μm.

(c)密着α型Al23層(層間密着層)
上記の通り、密着α型Al23層の傾斜角度数分布グラフにおける測定傾斜角の最高ピーク位置および度数分布割合は、化学蒸着装置における反応雰囲気温度および圧力を、上記の通り750〜900℃および20〜30kPaの範囲内で変化させることによって変化するが、試験結果によれば、最高ピークが75〜90度の範囲内の傾斜角区分に現れると共に、前記75〜90度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の50%以上の割合を占める傾斜角度数分布グラフを示す場合に、上記の上部層(改質α型Al23層)および下部層(Ti化合物)のいずれに対しても、すぐれた密着性を示すようになるのである。
また、その平均層厚が0.1μm未満では、所望のすぐれた密着性を確保することができず、一方、その平均層厚が1.9μmを越えると、これが難削材の切削加工ではチッピング発生の原因となることから、その平均層厚を0.1〜1.9μmと定めた。
(C) Adhesive α-type Al 2 O 3 layer (interlayer adhesion layer)
As described above, the maximum peak position and the frequency distribution ratio of the measured inclination angle in the inclination angle number distribution graph of the contact α-type Al 2 O 3 layer are the reaction atmosphere temperature and pressure in the chemical vapor deposition apparatus as described above, 750 to 900 ° C. However, according to the test results, the highest peak appears in the inclination angle section in the range of 75 to 90 degrees, and exists in the range of 75 to 90 degrees. summing the power is to indicate an inclination angle frequency distribution graph in a proportion of 50% or more of the total power at the inclination angle frequency distribution graph, the above upper layer (reformed α-type the Al 2 O 3 layer) and a lower layer For any of the (Ti compounds), excellent adhesion is exhibited.
Further, if the average layer thickness is less than 0.1 μm, the desired excellent adhesion cannot be ensured. On the other hand, if the average layer thickness exceeds 1.9 μm, this is chipping in cutting difficult-to-cut materials. The average layer thickness is determined to be 0.1 to 1.9 μm because it causes generation.

(B)TiN/TiCN研磨材層
上記の通り、TiN/TiCN研磨材層は、ウエットブラスト時に、研磨液に噴射研磨材として配合したAl23微粒によって粉砕微粒化し、TiN微粒およびTiCN微粒となって前記Al23微粒との共存下で研磨材として作用し、硬質被覆層の上部層を構成する改質α型Al23層の表面を研磨するが、この場合、個々の研磨材層の平均層厚が0.1μm未満であったり、TiN/TiCN研磨材層の全体平均層厚が0.4μm未満であったりすると、ウエットブラスト時における粉砕化TiN微粒および粉砕化TiCN微粒の割合が少な過ぎて、研磨機能を十分に発揮することができず、一方、個々の研磨材層の平均層厚が2.5μmを越えたり、TiN/TiCN研磨材層の全体平均層厚が5μmを越えたりすると、研磨液に噴射研磨材として配合したAl23微粒とのバランスがくずれて、相対的に多くなり過ぎ、この場合も研磨機能が急激に低下するようになり、いずれの場合もα型Al23層の表面をRa:0.2μm以下の表面粗さに研磨することができなくなるという理由で、個々の研磨材層の平均層厚を0.1〜2.5μm、その全体平均層厚を0.4〜5μmと定めた。
(B) TiN / TiCN abrasive material layer As described above, the TiN / TiCN abrasive material layer is pulverized and atomized by Al 2 O 3 fine particles blended in the polishing liquid as an injection abrasive material during wet blasting, and TiN fine particles and TiCN fine particles It acts as an abrasive in the coexistence with the Al 2 O 3 fine particles, and polishes the surface of the modified α-type Al 2 O 3 layer constituting the upper layer of the hard coating layer. If the average layer thickness of the material layer is less than 0.1 μm, or if the overall average layer thickness of the TiN / TiCN abrasive layer is less than 0.4 μm, the pulverized TiN fine particles and the pulverized TiCN fine particles at the time of wet blasting When the ratio is too small, the polishing function cannot be sufficiently exhibited. On the other hand, the average layer thickness of each abrasive layer exceeds 2.5 μm, or the total average layer thickness of the TiN / TiCN abrasive layer is 5 μm. When or beyond, in unbalanced and Al 2 O 3 fine formulated as injection abrasive in the polishing liquid, too many relatively become Again polishing function is rapidly reduced, in any case In addition, the average layer thickness of each abrasive layer is 0.1 to 2.5 μm because the surface of the α-type Al 2 O 3 layer cannot be polished to a surface roughness of Ra: 0.2 μm or less. The total average layer thickness was determined to be 0.4 to 5 μm.

(C)研磨液のAl23微粒
研磨液のAl23微粒には、ウエットブラスト時にTiN/TiCN研磨材層の粉砕化TiN/TiCN微粒と共存した状態で、改質α型Al23層の表面を研磨する作用があるが、その割合が水との合量に占める割合で15質量%未満でも、また60質量%を越えても研磨機能が急激に低下するようになることから、その割合を15〜60質量%と定めた。
(C) The Al 2 O 3 fine of Al 2 O 3 fine polishing liquid of the polishing liquid, in a state where at the time of wet blast coexists with pulverized TiN / TiCN fine of TiN / TiCN abrasive layer, reforming α-type Al 2 Although it has an action of polishing the surface of the O 3 layer, the polishing function will be drastically lowered even if the ratio is less than 15% by mass or more than 60% by mass with respect to the total amount with water. Therefore, the ratio was determined to be 15 to 60% by mass.

この発明の被覆サーメット工具は、硬質被覆層の上部層を構成する改質α型Al23層がα型Al23自身のもつすぐれた高温硬さおよび耐熱性に加えて、すぐれた高温強度を有し、かつ前記改質α型Al23層とTi化合物層との間に介在させた密着α型Al23層がこれら両者ときわめて強固に密着し、さらに前記改質α型Al23層の表面をRa:0.2μm以下の表面粗さに研磨することにより、特に切粉の粘性が高く、かつ工具表面に溶着し易いステンレス鋼や高マンガン鋼、さらに軟鋼などの難削材(被削材)の切削加工を行なっても、前記硬質被覆層のもつすぐれた高温強度および平滑な表面粗さによって前記硬質被覆層のチッピング発生が著しく抑制され、かつ摩耗抑制効果も発揮され、この結果長期に亘ってすぐれた耐摩耗性を示すようになるものである。 In the coated cermet tool of the present invention, the modified α-type Al 2 O 3 layer constituting the upper layer of the hard coating layer is excellent in addition to the excellent high-temperature hardness and heat resistance of the α-type Al 2 O 3 itself. The contact α-type Al 2 O 3 layer having high-temperature strength and interposed between the modified α-type Al 2 O 3 layer and the Ti compound layer is extremely firmly adhered to both of them, and the modified By polishing the surface of the α-type Al 2 O 3 layer to a surface roughness of Ra: 0.2 μm or less, stainless steel, high-manganese steel, and even mild steel that have particularly high chip viscosity and are easily welded to the tool surface Even when cutting difficult-to-cut materials (work materials) such as the above, chipping of the hard coating layer is remarkably suppressed and wear is suppressed by the excellent high-temperature strength and smooth surface roughness of the hard coating layer. The effect is also demonstrated, and as a result, the long-term excellent resistance It will show wear properties.

つぎに、この発明の被覆サーメット工具を実施例により具体的に説明する。   Next, the coated cermet tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことにより、中心部に工具取り付け用ボルト貫通孔を有する形式で、ISO規格にCNMG120412として規定されるスローアウエイチップ形状をもったWC基超硬合金製の工具基体A〜Fをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, and Co powder each having an average particle diameter of 1 to 3 μm are prepared. The raw material powder is blended in the blending composition shown in Table 1, added with wax, ball mill mixed in acetone for 24 hours, dried under reduced pressure, and press-molded into a green compact of a predetermined shape at a pressure of 98 MPa. The green compact is vacuum-sintered in a vacuum of 5 Pa at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour. After sintering, the cutting edge is subjected to a honing process of R: 0.07 mm. Thus, a tool base made of a WC-based cemented carbide having a throwaway tip shape defined as CNMG12041 in the ISO standard in the form of having a tool mounting bolt through hole in the center. Each of the bodies A to F was produced.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比で、TiC/TiN=50/50)粉末、Mo2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことにより、工具本体にクランプ駒による挟み締めにより取り付けられる穴なし形式で、ISO規格にCNMN120412として規定されるスローアウエイチップ形状をもったTiCN基サーメット製の工具基体a〜fを形成した。 Further, as raw material powders, TiCN (mass ratio, TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC, all having an average particle diameter of 0.5 to 2 μm. Prepare powder, Co powder, and Ni powder, blend these raw material powders into the composition shown in Table 2, wet mix with a ball mill for 24 hours, dry, and press-mold into a green compact at 98 MPa pressure The green compact is sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after sintering, the cutting edge portion is subjected to a honing process of R: 0.07 mm. Made of TiCN-based cermet with a throwaway tip shape that is defined as CNMN12041 in the ISO standard, with no holes attached to the tool body by clamping with clamp pieces To form a tool substrate a~f.

ついで、これらの工具基体A〜Fおよび工具基体a〜fのそれぞれを、通常の化学蒸着装置に装入し、
(a)まず、表3(表3中のl−TiCNは特開平6−8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)に示される条件にて、表5に示される目標層厚のTi化合物層を硬質被覆層の下部層として蒸着形成し、
(b)ついで、反応ガス組成:容量%で、AlCl3:2.2%、CO2:5%、HCl:2%、H2S:0.15%、H2:残り、
反応雰囲気温度:850℃、
反応雰囲気圧力:20〜30kPaの範囲内の所定の圧力、
の条件で表5に示される目標層厚で、密着α型Al23層を蒸着形成し、
(c)さらに、反応ガス組成:容量%で、AlCl3:6%、CO2:1.4%、HCl:1%、SF:0.09%、C:0.17、H2:残り、
反応雰囲気温度:1000℃、
反応雰囲気圧力:20〜30kPaの範囲内の所定の圧力、
の条件で同じく表5に示される目標層厚で、同じく上部層として改質α型Al23層を蒸着形成し、
(d)さらに、同じく表3に示される条件でTiN/TiCN研磨材層を、表6に示される目標層厚で蒸着形成し、
引き続いて、表4に示されるブラスト条件で、かつ表6に示される組み合わせでウエットブラストを施して、上記工具基体A〜Fについては、中心部の工具取り付け用ボルト貫通孔周辺部の上記TiN/TiCN研磨材層は除去せずに残した状態、また、上記の工具基体a〜fについては、クランプ駒当接面部分(すくい面中心部)の上記TiN/TiCN研磨材層は除去せずに残した状態で、前記改質α型Al23層(上部層)の切刃稜線部を含むすくい面および逃げ面を、同じく表6に示される表面粗さに研磨することにより本発明被覆サーメット工具1〜13をそれぞれ製造した。
Then, each of these tool bases A to F and tool bases a to f is charged into a normal chemical vapor deposition apparatus,
(A) First, Table 3 (l-TiCN in Table 3 indicates the conditions for forming a TiCN layer having a vertically elongated crystal structure described in JP-A-6-8010, and the other conditions are ordinary granularity. Under the conditions shown in Table 5), the Ti compound layer having the target layer thickness shown in Table 5 is vapor-deposited as the lower layer of the hard coating layer,
(B) Next, reaction gas composition: volume%, AlCl 3 : 2.2%, CO 2 : 5%, HCl: 2%, H 2 S: 0.15%, H 2 : remaining,
Reaction atmosphere temperature: 850 ° C.
Reaction atmosphere pressure: a predetermined pressure in the range of 20-30 kPa,
The adhesion α-type Al 2 O 3 layer is formed by vapor deposition at the target layer thickness shown in Table 5 under the conditions
(C) Furthermore, reaction gas composition: volume%, AlCl 3 : 6%, CO 2 : 1.4%, HCl: 1%, SF 6 : 0.09%, C 2 H 4 : 0.17, H 2 : the rest,
Reaction atmosphere temperature: 1000 ° C.
Reaction atmosphere pressure: a predetermined pressure in the range of 20-30 kPa,
The modified α-type Al 2 O 3 layer is also formed by vapor deposition with the target layer thickness shown in Table 5 under the same conditions as above,
(D) Further, a TiN / TiCN abrasive material layer is formed by vapor deposition with a target layer thickness shown in Table 6 under the same conditions shown in Table 3.
Subsequently, wet blasting is performed under the blasting conditions shown in Table 4 and in the combinations shown in Table 6, and for the tool bases A to F, the TiN / In the state where the TiCN abrasive layer is left without being removed, and for the tool bases a to f, the TiN / TiCN abrasive layer on the clamp piece abutting surface portion (the center portion of the rake face) is not removed. In the remaining state, the rake face and the flank face including the cutting edge ridge line portion of the modified α-type Al 2 O 3 layer (upper layer) are polished to the surface roughness shown in Table 6 to cover the present invention. Cermet tools 1 to 13 were produced, respectively.

また、比較の目的で、硬質被覆層の上部層である従来α型Al23層の形成を、
反応ガス組成:容量%で、AlCl3:2.2%、CO2:5%、HCl:2%、H2S:0.15%、H2:残り、
反応雰囲気温度:1020℃、
反応雰囲気圧力:6〜13kPaの範囲内の所定の圧力、
の通常条件で、表7に示される通りの目標層厚で形成し、同じく表7に示される通り、前記従来α型Al23層と下部層であるTi化合物層の間に層間密着層の形成を行なわず、かつ、上記の研磨材層の形成およびウエットブラストによる表面研磨処理を行わないない以外は同一の条件で、従来被覆サーメット工具1〜13をそれぞれ製造した。
For comparison purposes, the formation of the conventional α-type Al 2 O 3 layer, which is the upper layer of the hard coating layer,
Reaction gas composition: volume%, AlCl 3 : 2.2%, CO 2 : 5%, HCl: 2%, H 2 S: 0.15%, H 2 : remaining,
Reaction atmosphere temperature: 1020 ° C.
Reaction atmosphere pressure: a predetermined pressure in the range of 6 to 13 kPa,
Under the normal conditions, and with a target layer thickness as shown in Table 7, an interlayer adhesion layer is formed between the conventional α-type Al 2 O 3 layer and the lower Ti compound layer as shown in Table 7. Conventionally, coated cermet tools 1 to 13 were manufactured under the same conditions except that the formation of the abrasive layer and the surface polishing treatment by wet blasting were not performed.

ついで、上記の本発明被覆サーメット工具1〜13および従来被覆サーメット工具1〜13の硬質被覆層の上部層を構成する改質α型Al23層および従来α型Al23層、さらに上記の本発明被覆サーメット工具1〜13の密着α型Al23層について、電界放出型走査電子顕微鏡を用いて、傾斜角度数分布グラフをそれぞれ作成した。
すなわち、上記傾斜角度数分布グラフは、上記の本発明被覆サーメット工具1〜13の各種のα型Al23層について、それぞれ工具基体表面と平行な面をそれぞれ研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、それぞれの前記研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、この測定結果に基づいて、前記測定傾斜角のうち、前記改質α型Al23層については0〜45度、前記密着α型Al23層については45〜90度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより作成した。
また、従来被覆サーメット工具1〜13の従来α型Al23層についても、工具基体表面と平行な面の任意研磨面を同一の条件で観察し、同一な条件で傾斜角度数分布グラフを作成した。
Subsequently, the modified α-type Al 2 O 3 layer and the conventional α-type Al 2 O 3 layer constituting the upper layer of the hard coating layer of the above-described coated cermet tool 1-13 of the present invention and the conventional coated cermet tool 1-13, for adhesion α type the Al 2 O 3 layer of the invention described above coated cermet tools 1 to 13, using a field emission scanning electron microscope, were prepared, respectively the inclination angle frequency distribution graph.
That is, the inclination angle number distribution graph shows the electric field in a state where the surfaces parallel to the tool base surface are polished surfaces for the various α-type Al 2 O 3 layers of the above-described coated cermet tools 1 to 13 of the present invention. A hexagon set in the barrel of an emission scanning electron microscope and having an electron beam with an acceleration voltage of 15 kV at an incident angle of 70 degrees on the polished surface at an irradiation current of 1 nA and within the measurement range of each polished surface. Each crystal grain having a crystal lattice is irradiated, and an electron backscatter diffraction image apparatus is used, and the crystal grain is 30 × 50 μm at a spacing of 0.1 μm / step with respect to the normal of the polished surface. The tilt angle formed by the normal line of the (0001) plane, which is the crystal plane, is measured, and based on the measurement result, of the measured tilt angle, the modified α-type Al 2 O 3 layer is 0 to 45 degrees. , One in the contact α type the Al 2 O 3 layer The converting mechanism divides the measured tilt angle within a range of 45 to 90 degrees for each pitch of 0.25 degrees, was created by aggregating the frequencies present in each segment.
In addition, for the conventional α-type Al 2 O 3 layers of the conventional coated cermet tools 1 to 13, an arbitrary polished surface parallel to the tool base surface is observed under the same conditions, and an inclination angle number distribution graph is displayed under the same conditions. Created.

この結果得られた各種のα型Al23層の傾斜角度数分布グラフにおいて、表8,9にそれぞれ示される通り、本発明被覆サーメット工具1〜13の改質α型Al23層および密着α型Al23層は、(0001)面の測定傾斜角の分布が、それぞれ前者では30〜45度、後者では75〜90度の範囲内の傾斜角区分に最高ピークが現れる傾斜角度数分布グラフを示すのに対して、従来被覆サーメット工具1〜13の従来α型Al23層は、(0001)面の測定傾斜角の分布が0〜45度および45〜90度の範囲内で不偏的で、最高ピークが存在しない傾斜角度数分布グラフを示すものであった。
また表8,9には、上記の各種のα型Al23層の傾斜角度数分布グラフにおいて、それぞれ30〜45度および75〜90度の範囲内の傾斜角区分に存在する全傾斜角度数の傾斜角度数分布グラフ全体に占める割合を示した。
なお、図3は、本発明被覆サーメット工具2の改質α型Al23層(上部層)の傾斜角度数分布グラフ、図4は同工具の密着α型Al23層(層間密着層)の傾斜角度数分布グラフ、図5,6は従来被覆サーメット工具2の従来α型Al23層のそれぞれ0〜45度および45〜90度の傾斜角区分を示す傾斜角度数分布グラフである。
In the inclination angle number distribution graphs of the various α-type Al 2 O 3 layers obtained as a result, as shown in Tables 8 and 9, respectively, the modified α-type Al 2 O 3 layers of the coated cermet tools 1 to 13 of the present invention. And the close contact α-type Al 2 O 3 layer, in which the distribution of the measured inclination angle on the (0001) plane is 30 to 45 degrees in the former and 75 to 90 degrees in the latter, and the inclination in which the highest peak appears in the inclination angle section. In contrast to the angle distribution graph, the conventional α-type Al 2 O 3 layer of the conventional coated cermet tools 1 to 13 has a distribution of measured inclination angles on the (0001) plane of 0 to 45 degrees and 45 to 90 degrees. An inclination angle number distribution graph that is unbiased within the range and does not have the highest peak is shown.
Tables 8 and 9 also show the total inclination angles existing in the inclination angle sections in the range of 30 to 45 degrees and 75 to 90 degrees in the inclination angle number distribution graphs of the various α-type Al 2 O 3 layers. The ratio of the number to the whole angle distribution graph is shown.
3 is a graph showing the distribution of the number of inclination angles of the modified α-type Al 2 O 3 layer (upper layer) of the coated cermet tool 2 according to the present invention, and FIG. 4 is a contact α-type Al 2 O 3 layer (interlayer adhesion) of the tool. 5 and 6 are inclination angle distribution graphs showing inclination angle sections of 0 to 45 degrees and 45 to 90 degrees of the conventional α-type Al 2 O 3 layer of the conventional coated cermet tool 2, respectively. It is.

また、この結果得られた本発明被覆サーメット工具1〜13および従来被覆サーメット工具1〜13の硬質被覆層の構成層の厚さを、走査型電子顕微鏡を用いて測定(縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。   Moreover, when the thickness of the constituent layer of the hard coating layer of the present coated cermet tools 1 to 13 and the conventional coated cermet tools 1 to 13 obtained as a result was measured using a scanning electron microscope (longitudinal section measurement). , Each showed an average layer thickness (average value of 5-point measurement) substantially the same as the target layer thickness.

つぎに、上記の本発明被覆サーメット工具1〜13および従来被覆サーメット工具1〜13各種の被覆サーメット工具について、いずれも工具鋼製バイトの先端部にボルト止めまたはクランプ駒による挟み締め止めした状態で、
被削材:JIS・SUS430の丸棒、
切削速度:330m/min.、
切り込み:1mm、
送り:0.25mm/rev.、
の条件(切削条件Aという)でのステンレス鋼の乾式連続切削試験、
被削材:JIS・SMn443Hの丸棒、
切削速度:290m/min.、
切り込み:1mm、
送り:0.3mm/rev.、
の条件(切削条件Bという)での高マンガン鋼の乾式連続切削試験、さらに、
被削材:JIS・SS490の長さ方向等間隔4本縦溝入り丸棒、
切削速度:300m/min.、
切り込み:2mm、
送り:0.3mm/rev.、
の条件(切削条件Cという)での軟鋼の乾式断続切削試験を行い、いずれの切削試験でも切刃の逃げ面摩耗幅が、一般に切削工具の使用寿命の目安とされている0.3mmに至るまでの切削時間を測定した。この測定結果を表10に示した。
Next, with respect to the above-described coated cermet tools 1 to 13 of the present invention and the various coated cermet tools 1 to 13 of the present invention, all of them are clamped and clamped to the tip of the tool steel tool by a bolt or a clamp piece. ,
Work material: JIS / SUS430 round bar,
Cutting speed: 330 m / min. ,
Cutting depth: 1mm,
Feed: 0.25 mm / rev. ,
Dry continuous cutting test of stainless steel under the conditions (cutting condition A),
Work material: JIS / SMn443H round bar,
Cutting speed: 290 m / min. ,
Cutting depth: 1mm,
Feed: 0.3 mm / rev. ,
Dry continuous cutting test of high manganese steel under the conditions (cutting condition B),
Work material: JIS / SS490, 4 longitudinally spaced round bars
Cutting speed: 300 m / min. ,
Cutting depth: 2mm,
Feed: 0.3 mm / rev. ,
A dry intermittent cutting test of mild steel under the above conditions (referred to as cutting condition C), and in any cutting test, the flank wear width of the cutting blade reaches 0.3 mm, which is generally regarded as a guide for the service life of cutting tools. The cutting time until was measured. The measurement results are shown in Table 10.

Figure 2007216362
Figure 2007216362

Figure 2007216362
Figure 2007216362

Figure 2007216362
Figure 2007216362

Figure 2007216362
Figure 2007216362

Figure 2007216362
Figure 2007216362

Figure 2007216362
Figure 2007216362

Figure 2007216362
Figure 2007216362

Figure 2007216362
Figure 2007216362

Figure 2007216362
Figure 2007216362

Figure 2007216362
Figure 2007216362

表5〜10に示される結果から、本発明被覆サーメット工具1〜13は、いずれも(0001)面の傾斜角度数分布グラフで、硬質被覆層の上部層である改質α型Al23層が30〜45度の範囲内の傾斜角区分で、また前記上部層と下部層であるTi化合物層の間に介在させた密着α型Al23層が75〜90度の範囲内の傾斜角区分でそれぞれ最高ピークを示し、かつそれぞれの前記傾斜角区分における度数分布割合が50%以上を示し、この結果前記改質α型Al23層はすぐれた高温硬さおよび耐熱性に加えて、すぐれた高温強度を有し、一方前記密着α型Al23層はすぐれた密着性を示し、さらに、前記改質α型Al23層の少なくとも切刃稜線部を含むすくい面部分および逃げ面部分の表面がRa:0.2μm以下の表面粗さに研磨され、摩耗進行抑制効果が発揮されることと相俟って、特に切刃部に高い切削抵抗が加わる難削材の切削加工でも、切刃部におけるチッピング発生が著しく抑制され、すぐれた耐摩耗性を長期に亘って示すのに対して、硬質被覆層の上部層が、(0001)面の測定傾斜角の分布が0〜45度および45〜90度の範囲内で不偏的で、最高ピークが存在しない傾斜角度数分布グラフを示すと共に、表面平滑性の低い従来α型Al23層からなり、かつ前記密着α型Al23層の介在形成のない従来被覆サーメット工具1〜13においては、いずれも硬質被覆層の強度不足が原因で、難削材の切削加工では硬質被覆層にチッピングが発生し、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 5 to 10, all of the coated cermet tools 1 to 13 of the present invention are (0001) plane inclination angle number distribution graphs, and the modified α-type Al 2 O 3 which is the upper layer of the hard coating layer. The layer is inclined at an angle in the range of 30 to 45 degrees, and the contact α-type Al 2 O 3 layer interposed between the upper and lower Ti compound layers is in the range of 75 to 90 degrees. Each of the inclination angle sections shows the highest peak, and the frequency distribution ratio in each of the inclination angle sections shows 50% or more. As a result, the modified α-type Al 2 O 3 layer has excellent high-temperature hardness and heat resistance. In addition, the adhesive α-type Al 2 O 3 layer has excellent high temperature strength, while the adhesive α-type Al 2 O 3 layer exhibits excellent adhesion, and further includes a rake line including at least the cutting edge ridge portion of the modified α-type Al 2 O 3 layer. Surface roughness of the surface portion and the flank portion is Ra: 0.2 μm or less Combined with the fact that it is polished and the effect of suppressing the progress of wear is exerted, the chipping at the cutting edge is remarkably suppressed, especially in cutting of difficult-to-cut materials where high cutting resistance is applied to the cutting edge. While the wear resistance is shown over a long period of time, the upper layer of the hard coating layer has an unbiased distribution of measured inclination angles on the (0001) plane within the range of 0 to 45 degrees and 45 to 90 degrees. The conventional coated cermet tool which shows a gradient angle distribution graph in which the highest peak does not exist, is composed of a conventional α-type Al 2 O 3 layer with low surface smoothness, and has no intervening formation of the adhesive α-type Al 2 O 3 layer In Nos. 1 to 13, it is clear that chipping occurs in the hard coating layer when cutting difficult-to-cut materials due to insufficient strength of the hard coating layer, and the service life is reached in a relatively short time.

上述のように、この発明の被覆サーメット工具は、各種の一般鋼や普通鋳鉄などの切削加工は勿論のこと、特に自身が高い粘性を有し、かつ切削時の切削工具表面部の硬質被覆層に対する粘着性も高く、この結果切削抵抗の高いものとなる軟鋼やステンレス鋼、さらに高マンガン鋼などの難削材の切削加工でも、チッピングの発生なく、すぐれた耐摩耗性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated cermet tool of the present invention is not only for cutting various general steels and ordinary cast iron, but also has a high viscosity, and the hard coating layer on the surface of the cutting tool at the time of cutting. Even when cutting difficult-to-cut materials such as mild steel, stainless steel, and high manganese steel, which have high cutting resistance, it has excellent wear resistance without chipping. Since it exhibits excellent cutting performance, it can sufficiently satisfy the high performance of the cutting device, the labor saving and energy saving of cutting, and the cost reduction.

硬質被覆層を構成する各種α型Al23層における結晶粒の(0001)面を測定する場合の0〜45度の傾斜角の測定範囲を示す概略説明図である。It is a schematic diagram illustrating a measurement range of the inclination angle of 0 to 45 degrees when measuring the crystal grain of the various α-type the Al 2 O 3 layer constituting the hard coating layer (0001) plane. 硬質被覆層を構成する各種α型Al23層における結晶粒の(0001)面を測定する場合の45〜90度の傾斜角の測定範囲を示す概略説明図である。It is a schematic diagram illustrating a measurement range of the inclination angle of 45 to 90 degrees when measuring the crystal grain of the various α-type the Al 2 O 3 layer constituting the hard coating layer (0001) plane. 本発明被覆サーメット工具2の硬質被覆層の上部層を構成する改質α型Al23層の0〜45度の傾斜角区分を示す傾斜角度数分布グラフである。The inclination angle frequency distribution graph showing the tilt angle sections of 0 to 45 degrees of the modified α type the Al 2 O 3 layer constituting the upper layer of the hard coating layer of the present invention coated cermet tool 2. 本発明被覆サーメット工具2の硬質被覆層の層間密着層を構成する密着α型Al23層の45〜90度の傾斜角区分を示す傾斜角度数分布グラフである。The inclination angle frequency distribution graph showing the tilt angle sections of 45 to 90 degrees of the contact α type the Al 2 O 3 layer constituting the interlayer adhesion layer of the hard coating layer of the present invention coated cermet tool 2. 従来被覆サーメット工具2の硬質被覆層の上部層を構成する従来α型Al23層の0〜45度の傾斜角区分を示す傾斜角度数分布グラフである。The inclination angle frequency distribution graph showing the tilt angle sections of 0 to 45 degrees of conventional α form the Al 2 O 3 layer constituting the upper layer of the hard coating layer of the conventional coated cermet tool 2. 従来被覆サーメット工具2の硬質被覆層を構成する従来α型Al23層の45〜90度の傾斜角区分を示す傾斜角度数分布グラフである。The inclination angle frequency distribution graph showing the tilt angle sections of 45 to 90 degrees to the conventional coated cermet conventional α type the Al 2 O 3 layer constituting the hard coating layer of the tool 2.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(1)下部層として、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(2)上記下部層と下記上部層の層間密着層として、化学蒸着した状態でα型の結晶構造を有し、電界放出型走査電子顕微鏡を用い、上記工具基体表面と平行な研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、45〜90度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、
75〜90度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記75〜90度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の50%以上の割合を占める傾斜角度数分布グラフを示し、かつ0.1〜1.9μmの平均層厚を有する密着α型酸化アルミニウム層、
(3)上部層として、化学蒸着した状態でα型の結晶構造を有し、電界放出型走査電子顕微鏡を用い、上記工具基体表面と平行な研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、
30〜45度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記30〜45度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の50%以上の割合を占める傾斜角度数分布グラフを示し、かつ6〜20μmの平均層厚を有する改質α型酸化アルミニウム層、
以上(1)〜(3)で構成された硬質被覆層を蒸着してなり、
さらに、上記硬質被覆層の上部層である改質α型酸化アルミニウム層の全面に、
いずれも0.1〜2.5μmの平均層厚を有する窒化チタン層と炭窒化チタン層の2層以上の交互積層で構成され、かつ、0.4〜5μmの全体平均層厚を有する研磨材層を蒸着形成した状態で、
ウエットブラストにて、噴射研磨材として、水との合量に占める割合で15〜60質量%の酸化アルミニウム微粒を配合した研磨液を噴射し、
上記の研磨材層のウエットブラストによる粉砕化窒化チタン微粒および粉砕化炭窒化チタン微粒と、噴射研磨材としての酸化アルミニウム微粒の共存下で、上記硬質被覆層の上部層を構成する改質α型酸化アルミニウム層の少なくとも切刃稜線部を含むすくい面部分および逃げ面部分を研磨して、これら研磨面の表面粗さを準拠規格JIS・B0601−1994に基いた測定で、Ra:0.2μm以下としたこと、
を特徴とする難削材の切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具。
On the surface of the tool base composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(1) As a lower layer, it is composed of one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer, and carbonitride layer, and a total average of 3 to 20 μm A Ti compound layer having a layer thickness,
(2) As an interlayer adhesion layer between the lower layer and the upper layer described below, a polished surface parallel to the tool base surface is obtained using a field emission scanning electron microscope having an α-type crystal structure in the state of chemical vapor deposition. Inclination made by irradiating an electron beam to each crystal grain having a hexagonal crystal lattice existing in the range and a normal line of the (0001) plane being the crystal plane of the crystal grain with respect to the normal line of the polished surface An angle is measured, and the measured inclination angle within the range of 45 to 90 degrees is divided into 0.25 degree pitches among the measured inclination angles, and the degrees existing in each division are totaled. In the angle distribution graph,
The highest peak exists in the inclination angle section in the range of 75 to 90 degrees, and the total of the frequencies existing in the range of 75 to 90 degrees represents a ratio of 50% or more of the entire degrees in the inclination angle frequency distribution graph. A close contact α-type aluminum oxide layer showing an inclination angle number distribution graph and having an average layer thickness of 0.1 to 1.9 μm;
(3) As an upper layer, a hexagonal crystal lattice having an α-type crystal structure in a chemical vapor deposited state and existing in a measurement range of a polished surface parallel to the tool base surface using a field emission scanning electron microscope And measuring the inclination angle formed by the normal line of the (0001) plane, which is the crystal plane of the crystal grain, with respect to the normal line of the polished surface. In the inclination angle number distribution graph formed by dividing the measured inclination angles in the range of 0 to 45 degrees for each pitch of 0.25 degrees and totaling the frequencies existing in each section,
The highest peak exists in the inclination angle section within the range of 30 to 45 degrees, and the total of the frequencies existing within the range of 30 to 45 degrees represents a ratio of 50% or more of the entire degrees in the inclination angle frequency distribution graph. A modified α-type aluminum oxide layer showing an inclination angle number distribution graph and having an average layer thickness of 6 to 20 μm;
The hard coating layer composed of the above (1) to (3) is deposited,
Furthermore, on the entire surface of the modified α-type aluminum oxide layer, which is the upper layer of the hard coating layer,
Abrasive material having an overall average layer thickness of 0.4 to 5 μm, which is composed of two or more alternating layers of titanium nitride layers and titanium carbonitride layers having an average layer thickness of 0.1 to 2.5 μm. With the layer deposited,
In wet blasting, as a spraying abrasive, a polishing liquid containing 15 to 60% by mass of aluminum oxide fine particles in a proportion of the total amount with water is sprayed,
Modified α-type constituting the upper layer of the hard coating layer in the presence of the ground titanium nitride fine particles and ground titanium carbonitride fine particles by wet blasting of the abrasive layer and the aluminum oxide fine particles as the spray abrasive The rake face portion and the flank face portion including at least the cutting edge ridge line portion of the aluminum oxide layer are polished, and the surface roughness of these polished surfaces is measured based on the compliant standard JIS B0601-1994, Ra: 0.2 μm or less And
A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in cutting difficult-to-cut materials characterized by
JP2006042333A 2006-02-20 2006-02-20 Surface coated cermet-made cutting tool including hard coating layer exhibiting excellent chipping resistance in cutting difficult-to-cut material Withdrawn JP2007216362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006042333A JP2007216362A (en) 2006-02-20 2006-02-20 Surface coated cermet-made cutting tool including hard coating layer exhibiting excellent chipping resistance in cutting difficult-to-cut material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006042333A JP2007216362A (en) 2006-02-20 2006-02-20 Surface coated cermet-made cutting tool including hard coating layer exhibiting excellent chipping resistance in cutting difficult-to-cut material

Publications (1)

Publication Number Publication Date
JP2007216362A true JP2007216362A (en) 2007-08-30

Family

ID=38494155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006042333A Withdrawn JP2007216362A (en) 2006-02-20 2006-02-20 Surface coated cermet-made cutting tool including hard coating layer exhibiting excellent chipping resistance in cutting difficult-to-cut material

Country Status (1)

Country Link
JP (1) JP2007216362A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011104690A (en) * 2009-11-16 2011-06-02 Mitsubishi Materials Corp Surface coated cutting tool exhibiting excellent chipping resistance in hard coating layer
JP2013129030A (en) * 2011-12-22 2013-07-04 Mitsubishi Materials Corp Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting
JP2014000634A (en) * 2012-06-19 2014-01-09 Mitsubishi Materials Corp Surface-coated cutting tool having hard coating layer exhibiting excellent peeling resistance and chipping resistance in high speed intermittent cutting work
JP2014121749A (en) * 2012-12-20 2014-07-03 Mitsubishi Materials Corp Surface-coated cutting tool including coating layer exhibiting excellent chipping resistance and wear resistance in high speed intermittent cutting

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011104690A (en) * 2009-11-16 2011-06-02 Mitsubishi Materials Corp Surface coated cutting tool exhibiting excellent chipping resistance in hard coating layer
JP2013129030A (en) * 2011-12-22 2013-07-04 Mitsubishi Materials Corp Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting
JP2014000634A (en) * 2012-06-19 2014-01-09 Mitsubishi Materials Corp Surface-coated cutting tool having hard coating layer exhibiting excellent peeling resistance and chipping resistance in high speed intermittent cutting work
JP2014121749A (en) * 2012-12-20 2014-07-03 Mitsubishi Materials Corp Surface-coated cutting tool including coating layer exhibiting excellent chipping resistance and wear resistance in high speed intermittent cutting

Similar Documents

Publication Publication Date Title
JP2006015426A (en) Surface-coated cermet cutting tool with hard coating layer exerting excellent chipping resistance in high-speed intermittent cutting
JP4863053B2 (en) Manufacturing method of surface-coated cermet cutting tool that exhibits excellent chipping resistance in high-speed cutting of difficult-to-cut materials
JP2006231422A (en) Surface-coated cermet cutting tool with hard coating layer exerting excellent chipping resistance in high-speed intermittent cutting
JP4984513B2 (en) Manufacturing method of surface-coated cermet cutting tool that exhibits excellent chipping resistance in high-speed cutting of difficult-to-cut materials
JP2007160497A (en) SURFACE COATED CUTTING TOOL MADE OF CERMET HAVING PROPERTY-MODIFIED ALPHA TYPE Al2O3 LAYER OF HARD COATING LAYER HAVING EXCELLENT CRYSTAL GRAIN INTERFACE STRENGTH
JP4747388B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP2007216362A (en) Surface coated cermet-made cutting tool including hard coating layer exhibiting excellent chipping resistance in cutting difficult-to-cut material
JP5023896B2 (en) Surface coated cutting tool
JP4788893B2 (en) Method for producing a surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in difficult-to-cut materials
JP2006000970A (en) Surface-coated cermet cutting tool with hard coating layer exerting excellent abrasion resistance in high-speed cutting
JP4748361B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance with hard coating layer in difficult-to-cut materials
JP5077647B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high-speed cutting of difficult-to-cut materials
JP2007216361A (en) Surface coated cermet-made cutting tool including hard coating layer exhibiting excellent chipping resistance in cutting difficult-to-cut material
JP4747338B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP2007196352A (en) Surface coated cermet cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed cutting difficult-to-cut material
JP4788891B2 (en) Manufacturing method of surface-coated cermet cutting tool that exhibits excellent chipping resistance in high-speed cutting of difficult-to-cut materials
JP4793752B2 (en) Method for producing a surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in difficult-to-cut materials
JP4788358B2 (en) Method for producing a surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in difficult-to-cut materials
JP4788356B2 (en) Manufacturing method of surface-coated cermet cutting tool that exhibits excellent chipping resistance in high-speed cutting of difficult-to-cut materials
JP2008000882A (en) Surface coated cermet cutting tool having hard coating layer exhibiting excellent chipping resistance and abrasion resistance in high-speed cutting of material hard to cut
JP4788892B2 (en) Manufacturing method of surface-coated cermet cutting tool that exhibits excellent chipping resistance in high-speed cutting of difficult-to-cut materials
JP2006231423A (en) Surface coated cermet cutting tool with hard coating layer exerting excellent chipping resistance in high-speed intermittent cutting
JP4793629B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP2007216360A (en) Surface coated cermet-made cutting tool including hard coating layer exhibiting excellent chipping resistance in cutting difficult-to-cut material
JP2007168029A (en) Surface coated cermet-made cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed cutting material hard to cut

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090512