JP2007168029A - Surface coated cermet-made cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed cutting material hard to cut - Google Patents
Surface coated cermet-made cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed cutting material hard to cut Download PDFInfo
- Publication number
- JP2007168029A JP2007168029A JP2005369860A JP2005369860A JP2007168029A JP 2007168029 A JP2007168029 A JP 2007168029A JP 2005369860 A JP2005369860 A JP 2005369860A JP 2005369860 A JP2005369860 A JP 2005369860A JP 2007168029 A JP2007168029 A JP 2007168029A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- degrees
- inclination angle
- range
- type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
この発明は、自身が高い粘性を有し、かつ切削時の切削工具表面部の硬質被覆層に対する粘着性も高く、この結果切削抵抗のきわめて高いものとなる軟鋼やステンレス鋼、さらに高マンガン鋼などの難削材の高速切削加工で、硬質被覆層がすぐれた耐チッピング性を示し、長期に亘ってすぐれた耐摩耗性を発揮する表面被覆サーメット製切削工具(以下、被覆サーメット工具という)に関するものである。 This invention has a high viscosity, and has a high adhesion to the hard coating layer on the surface of the cutting tool during cutting. As a result, mild steel, stainless steel, and high manganese steel that have extremely high cutting resistance. This is a surface-coated cermet cutting tool (hereinafter referred to as a coated cermet tool) that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials, and exhibits excellent wear resistance over a long period of time. It is.
従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)下部層が、Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(b)上部層が、1〜15μmの平均層厚を有し、かつ化学蒸着した状態でα型の結晶構造を有する酸化アルミニウム層(以下、従来α型Al2O3層という)、
以上(a)および(b)で構成された硬質被覆層を蒸着形成してなる被覆サーメット工具が知られており、この被覆サーメット工具が、例えば各種の鋼や鋳鉄などの切削加工に用いられることは良く知られるところである。
Conventionally, generally on the surface of a substrate (hereinafter collectively referred to as a tool substrate) composed of a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet. ,
(A) The lower layer is a Ti carbide (hereinafter referred to as TiC) layer, a nitride (hereinafter also referred to as TiN) layer, a carbonitride (hereinafter referred to as TiCN) layer, a carbon oxide (hereinafter referred to as TiCO). A Ti compound layer having a total average layer thickness of 3 to 20 μm, including one or two or more of a layer and a carbonitride oxide (hereinafter referred to as TiCNO) layer,
(B) The upper layer has an average layer thickness of 1 to 15 μm and has an α-type crystal structure in a state of chemical vapor deposition (hereinafter referred to as a conventional α-type Al 2 O 3 layer),
A coated cermet tool formed by vapor-depositing a hard coating layer composed of (a) and (b) above is known, and this coated cermet tool is used for cutting various steels and cast irons, for example. Is well known.
また、上記の被覆サーメット工具において、これの硬質被覆層の構成層は、一般に粒状結晶組織を有し、さらに、下部層であるTi化合物層を構成するTiCN層を、層自身の強度向上を目的として、通常の化学蒸着装置にて、反応ガスとして有機炭窒化物を含む混合ガスを使用し、700〜950℃の中温温度域で化学蒸着することにより形成して縦長成長結晶組織をもつようにすることも知られている。
近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は一段と高速化の傾向にあるが、上記の従来被覆サーメット工具においては、これを低合金鋼や炭素鋼などの一般鋼、さらにねずみ鋳鉄などの普通鋳鉄の高速切削加工に用いた場合には問題はないが、特にこれを軟鋼やステンレス鋼、さらに高マンガン鋼などの難削材の高速切削加工に用いた場合には、前記難削材自身が高い粘性を有し、かつ切削時の切削工具表面部の硬質被覆層に対する粘着性も高く、この傾向は高速切削時に発生する高熱によって一段と増大することと相俟って、切削抵抗のきわめて高いものとなり、一方硬質被覆層を構成する従来α型Al2O3層の高温強度はこれに耐えるに十分なものではなく、この結果切刃部にチッピング(微少欠け)が発生し易くなり、これが原因で比較的短時間で使用寿命に至るのが現状である。 In recent years, the performance of cutting machines has been remarkable. On the other hand, there is a strong demand for labor saving, energy saving, and cost reduction for cutting work, and along with this, cutting work tends to be further accelerated. In coated cermet tools, there is no problem when used for high-speed cutting of general steel such as low alloy steel and carbon steel, and ordinary cast iron such as gray cast iron. When used for high-speed cutting of difficult-to-cut materials such as high-manganese steel, the difficult-to-cut material itself has a high viscosity and has high adhesion to the hard coating layer on the surface of the cutting tool during cutting. The tendency, combined with the further increase due to the high heat generated during high-speed cutting, has extremely high cutting resistance, while the high-temperature strength of the conventional α-type Al 2 O 3 layer that constitutes the hard coating layer can withstand this. As a result, chipping (slight chipping) is likely to occur in the cutting edge portion, and the service life is reached in a relatively short time due to this.
そこで、本発明者等は、上述のような観点から、上記の従来α型Al2O3層が硬質被覆層の上部層を構成する従来被覆サーメット工具に着目し、特に前記従来α型Al2O3層の耐チッピング性向上を図るべく研究を行った結果、
(a)上記の従来被覆サーメット工具の硬質被覆層としての従来α型Al2O3層は、一般に、通常の化学蒸着装置にて、
反応ガス組成:容量%で、AlCl3:1〜5%、CO2:3〜7%、HCl:0.3〜3%、H2S:0.02〜0.4%、H2:残り、
反応雰囲気温度:950〜1100℃、
反応雰囲気圧力:6〜13kPa、
の条件(以下、通常条件という)で形成されるが、この通常条件形成の従来α型Al2O3層について、電界放出型走査電子顕微鏡を用い、図1(a),(b)および図2(a),(b)に概略説明図で示される通り、工具基体表面と平行な研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、それぞれ0〜45度および45〜90度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフを作成すると、図5(測定傾斜角:0〜45度)および図6(測定傾斜角:45〜90度)に例示される通り、(0001)面の測定傾斜角の分布が0〜45度および45〜90度のいずれの範囲内でも不偏的な傾斜角度数分布グラフを示すこと。
In view of the above, the present inventors have focused on the conventional coated cermet tool in which the conventional α-type Al 2 O 3 layer constitutes the upper layer of the hard coating layer, and in particular, the conventional α-type Al 2 O 3 layer result to conducted research promote chipping resistance improving,
(A) The conventional α-type Al 2 O 3 layer as the hard coating layer of the conventional coated cermet tool is generally a normal chemical vapor deposition apparatus,
Reaction gas composition: by volume%, AlCl 3: 1~5%, CO 2: 3~7%, HCl: 0.3~3%, H 2 S: 0.02~0.4%, H 2: remainder ,
Reaction atmosphere temperature: 950-1100 ° C.
Reaction atmosphere pressure: 6-13 kPa,
The conventional α-type Al 2 O 3 layer formed under the normal conditions is formed using a field emission scanning electron microscope, and is shown in FIGS. 1 (a), 1 (b) and FIG. 2 (a) and (b), as schematically shown in the drawing, each crystal grain having a hexagonal crystal lattice existing within the measurement range of the polished surface parallel to the tool substrate surface is irradiated with an electron beam, The inclination angle formed by the normal line of the (0001) plane, which is the crystal plane of the crystal grain, is measured with respect to the normal line of the polished surface. Of the measured inclination angles, 0 to 45 degrees and 45 to 90 degrees, respectively. When the measured inclination angle within the range is divided for each pitch of 0.25 degrees, and an inclination angle number distribution graph is created by summing up the frequencies existing in each division, FIG. 45 degrees) and FIG. 6 (measurement tilt angle: 45 to 90 degrees), The distribution of the measured inclination angle of the (0001) plane should be an unbiased inclination angle number distribution graph regardless of the range of 0 to 45 degrees and 45 to 90 degrees.
(b)一方、α型Al2O3層を、同じく通常の化学蒸着装置を用い、
反応ガス組成:容量%で、AlCl3:3〜10%、CO2:0.5〜3%、HCl:0.3〜3%、SF6:0.01〜0.2%、C2H4:0.01〜0.3%、H2:残り、
反応雰囲気温度:950〜1050℃、
反応雰囲気圧力:20〜30kPa、
の条件、すなわち反応ガス組成を調整して上記の通常条件の反応ガス組成とは異なった反応ガス組成とすると共に、同じく上記の通常条件の反応雰囲気の温度および圧力に比して、相対的に低温高圧条件した条件で形成すると、この結果形成されたα型Al2O3層は、同じく電界放出型走査電子顕微鏡を用い、図1(a),(b)に示される通り、工具基体表面と平行な研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで現した場合、図3に例示される通り、傾斜角区分の特定位置にシャープな最高ピークが現れ、試験結果によれば、上記のα型Al2O3層の形成条件、すなわち上記の反応ガス組成および反応雰囲気条件のうちの少なくともいずれかの条件を、上記の範囲内で変化させると、上記シャープな最高ピークの現れる位置が傾斜角区分の30〜45度の範囲内で変化すると共に、前記30〜45度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の50%以上の割合を占めるようになり、この結果の傾斜角度数分布グラフにおいて30〜45度の範囲内に傾斜角区分の最高ピークが現れるα型Al2O3層(以下、改質α型Al2O3層という)は、上記の通常条件形成の従来α型Al2O3層に比して、一段とすぐれた高温強度を有するものであること。
(B) On the other hand, the α-type Al 2 O 3 layer was similarly used with a normal chemical vapor deposition apparatus,
Reaction gas composition:% by volume, AlCl 3 : 3 to 10%, CO 2 : 0.5 to 3%, HCl: 0.3 to 3%, SF 6 : 0.01 to 0.2%, C 2 H 4: 0.01~0.3%, H 2: remainder,
Reaction atmosphere temperature: 950 to 1050 ° C.
Reaction atmosphere pressure: 20-30 kPa,
In other words, the reaction gas composition is adjusted to a reaction gas composition different from the reaction gas composition under the normal conditions described above, and in comparison with the temperature and pressure of the reaction atmosphere under the normal conditions. When formed under the conditions of low temperature and high pressure, the α-type Al 2 O 3 layer formed as a result of the same was obtained using the field emission scanning electron microscope, as shown in FIGS. 1 (a) and 1 (b). The crystal grains having a hexagonal crystal lattice existing in the measurement range of the polished surface parallel to the electron beam are irradiated with an electron beam, and are the crystal planes of the crystal grains with respect to the normal line of the polished surface (0001) The tilt angle formed by the normal of the surface is measured, and among the measured tilt angles, the measured tilt angles within the range of 0 to 45 degrees are divided for each pitch of 0.25 degrees and exist in each section. When represented by a graph showing the distribution of the number of tilt angles In this case, as illustrated in FIG. 3, a sharp maximum peak appears at a specific position of the tilt angle section. According to the test results, the formation conditions of the α-type Al 2 O 3 layer, that is, the reaction gas composition and When at least one of the reaction atmosphere conditions is changed within the above range, the position at which the sharpest peak appears changes within the range of 30 to 45 degrees of the tilt angle section, and the above 30 to The total of the frequencies existing in the 45 degree range occupies a ratio of 50% or more of the entire frequency in the inclination angle frequency distribution graph, and in the resulting inclination angle frequency distribution graph, it is in the range of 30 to 45 degrees. The α-type Al 2 O 3 layer (hereinafter referred to as a modified α-type Al 2 O 3 layer) in which the highest peak of the tilt angle section appears is compared with the conventional α-type Al 2 O 3 layer formed under the above normal conditions, Excellent high temperature strength It must be something.
(c)さらに、同じく、通常の化学蒸着装置を用い、
反応ガス組成:容量%で、AlCl3:1〜5%、CO2:3〜7%、HCl:0.3〜3%、H2S:0.02〜0.4%、H2:残り、
反応雰囲気温度:750〜900℃、
反応雰囲気圧力:20〜30kPa、
の条件でα型Al2O3層を0.1〜1.9μmの平均層厚で形成すると、この結果形成されたα型Al2O3層は、同じくα型の結晶構造を有し、電界放出型走査電子顕微鏡を用い、図2(a),(b)に示される通り、同じく上記工具基体表面と平行な研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、45〜90度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで現した場合、図4に例示される通り、傾斜角区分の特定位置にシャープな最高ピークが現れ、試験結果によれば、化学蒸着装置における反応雰囲気温度および圧力を、上記の通り750〜900℃および20〜30kPaの範囲内で変化させると、上記シャープな最高ピークの現れる位置が傾斜角区分の75〜90度の範囲内で変化すると共に、前記75〜90度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の50%以上の割合を占めるようになり、この結果の傾斜角度数分布グラフにおいて75〜90度の範囲内に傾斜角区分の最高ピークが現れるAl2O3層(以下、密着α型Al2O3層という)は、上記の改質α型Al2O3層(上部層)およびTi化合物層(下部層)のいずれにも著しく強固に密着する特性を具備すること。
(C) Furthermore, using a normal chemical vapor deposition apparatus,
Reaction gas composition: by volume%, AlCl 3: 1~5%, CO 2: 3~7%, HCl: 0.3~3%, H 2 S: 0.02~0.4%, H 2: remainder ,
Reaction atmosphere temperature: 750 to 900 ° C.
Reaction atmosphere pressure: 20-30 kPa,
When the α type the Al 2 O 3 layer at conditions to form with an average layer thickness of 0.1~1.9Myuemu, the result formed α-type Al 2 O 3 layer is also has a α-type crystal structure, Using a field emission scanning electron microscope, as shown in FIGS. 2A and 2B, each crystal grain having a hexagonal crystal lattice, which is also present in the measurement range of the polished surface parallel to the tool substrate surface, is used. By irradiating with an electron beam, the inclination angle formed by the normal line of the (0001) plane which is the crystal plane of the crystal grain is measured with respect to the normal line of the polished surface. FIG. 4 shows an example of a tilt angle distribution graph in which the measured tilt angles within a range of degrees are divided into pitches of 0.25 degrees and the frequencies existing in each section are tabulated. A sharp peak appears at a specific position in the slope angle section. When the reaction atmosphere temperature and pressure are changed within the range of 750 to 900 ° C. and 20 to 30 kPa as described above, the position at which the sharpest peak appears changes within the range of 75 to 90 degrees of the inclination angle section. At the same time, the sum of the frequencies existing within the range of 75 to 90 degrees occupies a ratio of 50% or more of the entire frequencies in the inclination angle distribution graph, and 75 to 90 in the inclination angle distribution graph as a result. The Al 2 O 3 layer (hereinafter referred to as the adhesion α-type Al 2 O 3 layer) in which the highest peak of the tilt angle section appears in the range of degrees is the above-mentioned modified α-type Al 2 O 3 layer (upper layer) and Ti It must have the property of adhering remarkably firmly to any of the compound layers (lower layers).
(d)したがって、上部層を、1.5〜5.9μmの相対的に薄い平均層厚に特定した上で、上記(b)のすぐれた高温強度を有する改質α型Al2O3層で構成すると共に、前記上部層と下部層であるTi化合物層の間に、これら両者と著しく強固に密着する上記(c)の密着α型Al2O3層を、0.1〜1.9μmの平均層厚で介在させた構造の硬質被覆層を、上記工具基体の表面に蒸着形成してなる被覆サーメット工具は、切削抵抗の著しく高い上記の難削材の高速切削加工においても前記硬質被覆層にチッピングが発生することがなく、この結果すぐれた耐摩耗性を長期に亘って発揮するようになること。
以上(a)〜(d)の研究結果を得たのである。
(D) Therefore, after the upper layer is specified to have a relatively thin average layer thickness of 1.5 to 5.9 μm, the modified α-type Al 2 O 3 layer having excellent high-temperature strength as described in (b) above. And the adhesion α-type Al 2 O 3 layer of the above (c), which is extremely firmly adhered to both of the upper layer and the lower Ti compound layer, is 0.1 to 1.9 μm. The coated cermet tool formed by vapor-depositing a hard coating layer having a structure having an average layer thickness on the surface of the tool base is also used in the high-speed cutting of the above difficult-to-cut material with extremely high cutting resistance. Chipping does not occur in the layer, and as a result, excellent wear resistance is exhibited over a long period of time.
The research results (a) to (d) have been obtained.
この発明は、上記の研究結果に基づいてなされたものであって、工具基体の表面に、
(a)下部層として、TiC層、TiN層、TiCN層、TiCO層、およびTiCNO層のうちの1層または2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(b)上記下部層と下記上部層の層間密着層として、化学蒸着した状態でα型の結晶構造を有し、電界放出型走査電子顕微鏡を用い、上記工具基体表面と平行な研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、45〜90度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、
75〜90度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記75〜90度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の50%以上の割合を占める傾斜角度数分布グラフを示し、かつ0.1〜1.9μmの平均層厚を有する密着α型Al2O3層、
(c)上部層として、同じく、化学蒸着した状態でα型の結晶構造を有し、電界放出型走査電子顕微鏡を用い、上記工具基体表面と平行な研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、
30〜45度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記30〜45度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の50%以上の割合を占める傾斜角度数分布グラフを示し、かつ1.5〜5.9μmの平均層厚を有する改質α型Al2O3層、
以上(a)〜(c)で構成された硬質被覆層を蒸着形成してなる難削材の高速切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する被覆サーメット工具に特徴を有するものである。
This invention was made based on the above research results, and on the surface of the tool base,
(A) As a lower layer, a Ti compound layer comprising one or more of a TiC layer, a TiN layer, a TiCN layer, a TiCO layer, and a TiCNO layer, and having a total average layer thickness of 3 to 20 μm,
(B) As an interlayer adhesion layer between the lower layer and the upper layer described below, a polishing surface having an α-type crystal structure in the state of chemical vapor deposition and parallel to the tool substrate surface using a field emission scanning electron microscope Inclination made by irradiating an electron beam to each crystal grain having a hexagonal crystal lattice existing in the range and a normal line of the (0001) plane being the crystal plane of the crystal grain with respect to the normal line of the polished surface An angle is measured, and the measured inclination angle within the range of 45 to 90 degrees is divided into 0.25 degree pitches among the measured inclination angles, and the degrees existing in each division are totaled. In the angle distribution graph,
The highest peak exists in the inclination angle section in the range of 75 to 90 degrees, and the total of the frequencies existing in the range of 75 to 90 degrees represents a ratio of 50% or more of the entire degrees in the inclination angle frequency distribution graph. A close contact α-type Al 2 O 3 layer showing an inclination angle number distribution graph and having an average layer thickness of 0.1 to 1.9 μm;
(C) As an upper layer, a hexagonal crystal having an α-type crystal structure in the state of chemical vapor deposition and existing in a measurement range of a polished surface parallel to the tool substrate surface using a field emission scanning electron microscope By irradiating each crystal grain having a crystal lattice with an electron beam, the inclination angle formed by the normal line of the (0001) plane which is the crystal plane of the crystal grain is measured with respect to the normal line of the polished surface. In the inclination angle number distribution graph formed by totaling the frequencies existing in each division, while dividing the measurement inclination angle in the range of 0 to 45 degrees among the inclination angles for each pitch of 0.25 degrees,
The highest peak exists in the inclination angle section within the range of 30 to 45 degrees, and the total of the frequencies existing within the range of 30 to 45 degrees represents a ratio of 50% or more of the entire degrees in the inclination angle frequency distribution graph. A modified α-type Al 2 O 3 layer showing an occupying inclination number distribution graph and having an average layer thickness of 1.5 to 5.9 μm;
It is characterized by a coated cermet tool that exhibits excellent chipping resistance in high-speed cutting of difficult-to-cut materials formed by vapor-depositing the hard coating layer composed of (a) to (c) above. is there.
以下に、この発明の被覆サーメット工具の硬質被覆層の構成層に関し、上記の通りに数値限定した理由を説明する。
(a)Ti化合物層(下部層)
Ti化合物層は、基本的には上部層である改質α型Al2O3層の下部層として存在し、自身の具備するすぐれた高温強度によって硬質被覆層が高温強度を具備するようにするほか、工具基体と密着α型Al2O3層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性向上に寄与する作用を有するが、その合計平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方その合計平均層厚が20μmを越えると、特に高熱発生を伴なう難削材の高速切削では熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その合計平均層厚を3〜20μmと定めた。
The reason why the numerical values of the constituent layers of the hard coating layer of the coated cermet tool of the present invention are limited as described above will be described below.
(A) Ti compound layer (lower layer)
The Ti compound layer basically exists as a lower layer of the modified α-type Al 2 O 3 layer, which is the upper layer, and allows the hard coating layer to have high temperature strength by its excellent high temperature strength. In addition, it firmly adheres to both the tool base and the close contact α-type Al 2 O 3 layer, and thus has an effect of improving the adhesion of the hard coating layer to the tool base, but if the total average layer thickness is less than 3 μm When the total average layer thickness exceeds 20 μm, the high-speed cutting of difficult-to-cut materials with high heat generation is likely to cause thermoplastic deformation, which is uneven wear. Therefore, the total average layer thickness was determined to be 3 to 20 μm.
(b)改質α型Al2O3層(上部層)
上記の通り、改質α型Al2O3層の傾斜角度数分布グラフにおける測定傾斜角の最高ピーク位置および度数分布割合は、反応ガス組成および反応雰囲気条件のうちの少なくともいずれかの条件を、上記の範囲内で変化させることによって変化するが、試験結果によれば、最高ピークが、30〜45度の範囲内の傾斜角区分に現れると共に、前記30〜45度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の50%以上の割合を占める傾斜角度数分布グラフを示す場合に、α型Al2O3自身のもつすぐれた高温硬さおよび耐熱性に加えて、すぐれた高温強度を具備するようになるものである。
また、その平均層厚が1.5μm未満では、上記の特性を硬質被覆層に十分に具備せしめることができず、一方、その平均層厚が5.9μmを越えると、難削材の高速切削加工ではチッピングが発生し易くなることから、その平均層厚を1.5〜5.9μmと定めた。
(B) modified α type the Al 2 O 3 layer (upper layer)
As described above, the maximum peak position and the frequency distribution ratio of the measured inclination angle in the inclination angle number distribution graph of the modified α-type Al 2 O 3 layer are at least one of the reaction gas composition and the reaction atmosphere conditions. Although it changes by changing within the above range, according to the test results, the highest peak appears in the inclination angle section within the range of 30 to 45 degrees and the frequency existing within the range of 30 to 45 degrees. In addition to the excellent high-temperature hardness and heat resistance of α-type Al 2 O 3 itself, when the inclination angle distribution graph occupies 50% or more of the total frequency in the inclination angle distribution graph It will have excellent high temperature strength.
If the average layer thickness is less than 1.5 μm, the hard coating layer cannot be sufficiently provided with the above characteristics. On the other hand, if the average layer thickness exceeds 5.9 μm, high-speed cutting of difficult-to-cut materials is possible. Since chipping is likely to occur during processing, the average layer thickness is set to 1.5 to 5.9 μm.
(c)密着α型Al2O3層(層間密着層)
上記の通り、密着α型Al2O3層の傾斜角度数分布グラフにおける測定傾斜角の最高ピーク位置および度数分布割合は、化学蒸着装置における反応雰囲気温度および圧力を、上記の通り750〜900℃および20〜30kPaの範囲内で変化させることによって変化するが、試験結果によれば、最高ピークが75〜90度の範囲内の傾斜角区分に現れると共に、前記75〜90度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の50%以上の割合を占める傾斜角度数分布グラフを示す場合に、上記の上部層(改質α型Al2O3層)および下部層(Ti化合物)のいずれに対しても、すぐれた密着性を示すようになるのである。
また、その平均層厚が0.1μm未満では、所望のすぐれた密着性を確保することができず、一方、その平均層厚が1.9μmを越えると、難削材の高速切削加工ではチッピングが発生し易くなることから、その平均層厚を0.1〜1.9μmと定めた。
(C) Adhesive α-type Al 2 O 3 layer (interlayer adhesion layer)
As described above, the maximum peak position and the frequency distribution ratio of the measured inclination angle in the inclination angle number distribution graph of the contact α-type Al 2 O 3 layer are the reaction atmosphere temperature and pressure in the chemical vapor deposition apparatus as described above, 750 to 900 ° C. However, according to the test results, the highest peak appears in the inclination angle section in the range of 75 to 90 degrees, and exists in the range of 75 to 90 degrees. summing the power is to indicate an inclination angle frequency distribution graph in a proportion of 50% or more of the total power at the inclination angle frequency distribution graph, the above upper layer (reformed α-type the Al 2 O 3 layer) and a lower layer For any of the (Ti compounds), excellent adhesion is exhibited.
On the other hand, if the average layer thickness is less than 0.1 μm, the desired excellent adhesion cannot be ensured. On the other hand, if the average layer thickness exceeds 1.9 μm, chipping is required for high-speed cutting of difficult-to-cut materials. Therefore, the average layer thickness was determined to be 0.1 to 1.9 μm.
なお、切削工具の使用前後の識別を目的として、黄金色の色調を有するTiN層を、必要に応じて硬質被覆層の最表面層として蒸着形成してもよいが、この場合の平均層厚は0.1〜1μmでよく、これは0.1μm未満では、十分な識別効果が得られず、一方前記TiN層による前記識別効果は1μmまでの平均層厚で十分であるという理由からである。 In addition, for the purpose of identification before and after the use of the cutting tool, a TiN layer having a golden color tone may be vapor-deposited as the outermost surface layer of the hard coating layer as necessary, but the average layer thickness in this case is It may be 0.1 to 1 μm, and if the thickness is less than 0.1 μm, a sufficient discrimination effect cannot be obtained, while the discrimination effect by the TiN layer is sufficient for an average layer thickness of up to 1 μm.
この発明の被覆サーメット工具は、硬質被覆層の上部層を構成する改質α型Al2O3層がα型Al2O3自身のもつすぐれた高温硬さおよび耐熱性に加えて、すぐれた高温強度を有し、かつ前記改質α型Al2O3層とTi化合物層との間に介在させた密着α型Al2O3層がこれら両者ときわめて強固に密着することから、切削抵抗の高い難削材の高速切削加工でも、硬質被覆層にチッピングの発生なく、すぐれた耐摩耗性を発揮し、使用寿命の一層の延命化を可能とするものである。 In the coated cermet tool of the present invention, the modified α-type Al 2 O 3 layer constituting the upper layer of the hard coating layer is excellent in addition to the excellent high-temperature hardness and heat resistance of the α-type Al 2 O 3 itself. Since the adhesive α-type Al 2 O 3 layer having high-temperature strength and interposed between the modified α-type Al 2 O 3 layer and the Ti compound layer adheres very firmly to both, the cutting resistance Even in high-speed cutting of difficult-to-cut materials, the hard coating layer exhibits excellent wear resistance without occurrence of chipping, and the service life can be further extended.
つぎに、この発明の被覆サーメット工具を実施例により具体的に説明する。 Next, the coated cermet tool of the present invention will be specifically described with reference to examples.
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr3C2粉末、TiN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG120408に規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体A〜Fをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, and Co powder each having an average particle diameter of 1 to 3 μm are prepared. The raw material powder was blended in the blending composition shown in Table 1, and then added with wax, mixed in a ball mill for 24 hours in acetone, dried under reduced pressure, and then press-molded into a green compact of a predetermined shape at a pressure of 98 MPa. The green compact is vacuum-sintered in a vacuum of 5 Pa at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour. After sintering, the cutting edge is subjected to a honing process of R: 0.07 mm. Thus, tool bases A to F made of a WC-based cemented carbide having a throwaway tip shape specified in ISO · CNMG120408 were manufactured.
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比で、TiC/TiN=50/50)粉末、Mo2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG120412のチップ形状をもったTiCN基サーメット製の工具基体a〜fを形成した。 Further, as the raw material powder, both (in mass ratio, TiC / TiN = 50/50 ) TiCN having an average particle diameter of 0.5~2μm powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC Prepare powder, Co powder, and Ni powder, blend these raw material powders into the composition shown in Table 2, wet mix with a ball mill for 24 hours, dry, and press-mold into a green compact at 98 MPa pressure The green compact is sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after sintering, the cutting edge portion is subjected to a honing process of R: 0.07 mm. Tool bases a to f made of TiCN-based cermet having a chip shape conforming to ISO standards / CNMG 120212 were formed.
ついで、これらの工具基体A〜Fおよび工具基体a〜fのそれぞれを、通常の化学蒸着装置に装入し、
(a)まず、表3(表3中のl−TiCNは特開平6−8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)に示される条件にて、表4,5に示される目標層厚のTi化合物層を硬質被覆層の下部層として蒸着形成し、
(b)ついで、反応ガス組成:容量%で、AlCl3:2.2%、CO2:5%、HCl:2%、H2S:0.15%、H2:残り、
反応雰囲気温度:850℃、
反応雰囲気圧力:20〜30kPaの範囲内の所定の圧力、
の条件で表4,5に示される目標層厚で、密着α型Al2O3層を蒸着形成し、
(c)さらに、反応ガス組成:容量%で、AlCl3:4%、CO2:1.5%、HCl:2%、SF6:0.1%、C2H4:0.15%、H2:残り、
反応雰囲気温度:1000℃、
反応雰囲気圧力:20〜30kPaの範囲内の所定の圧力、
の条件で同じく表4,5に示される目標層厚で、同じく上部層として改質α型Al2O3層を蒸着形成することにより本発明被覆サーメット工具1〜13をそれぞれ製造した。
Then, each of these tool bases A to F and tool bases a to f is charged into a normal chemical vapor deposition apparatus,
(A) First, Table 3 (l-TiCN in Table 3 indicates the conditions for forming a TiCN layer having a vertically elongated crystal structure described in JP-A-6-8010, and the other conditions are ordinary granularity. Under the conditions shown in Table 4 and 5), the Ti compound layer having the target layer thickness shown in Tables 4 and 5 is deposited as the lower layer of the hard coating layer.
(B) Next, reaction gas composition: volume%, AlCl 3 : 2.2%, CO 2 : 5%, HCl: 2%, H 2 S: 0.15%, H 2 : remaining,
Reaction atmosphere temperature: 850 ° C.
Reaction atmosphere pressure: a predetermined pressure in the range of 20-30 kPa,
With the target layer thicknesses shown in Tables 4 and 5 under the conditions described above, an adhesion α-type Al 2 O 3 layer is formed by vapor deposition.
(C) Furthermore, the reaction gas composition: volume%, AlCl 3 : 4%, CO 2 : 1.5%, HCl: 2%, SF 6 : 0.1%, C 2 H 4 : 0.15%, H 2 : Remaining
Reaction atmosphere temperature: 1000 ° C.
Reaction atmosphere pressure: a predetermined pressure in the range of 20-30 kPa,
The coated cermet tools 1 to 13 of the present invention were manufactured by depositing a modified α-type Al 2 O 3 layer as an upper layer, with the target layer thicknesses shown in Tables 4 and 5 under the same conditions.
また、比較の目的で、硬質被覆層の上部層である従来α型Al2O3層の形成を、
反応ガス組成:容量%で、AlCl3:2.2%、CO2:5%、HCl:2%、H2S:0.15%、H2:残り、
反応雰囲気温度:1020℃、
反応雰囲気圧力:6〜13kPaの範囲内の所定の圧力、
の通常条件で、表6,7に示される通りの目標層厚で形成し、かつ同じく表6,7に示される通り、前記従来α型Al2O3層と下部層であるTi化合物層の間に層間密着層の形成を行なわない以外は同一の条件で、従来被覆サーメット工具1〜13をそれぞれ製造した。
For comparison purposes, the formation of the conventional α-type Al 2 O 3 layer, which is the upper layer of the hard coating layer,
Reaction gas composition: volume%, AlCl 3 : 2.2%, CO 2 : 5%, HCl: 2%, H 2 S: 0.15%, H 2 : remaining,
Reaction atmosphere temperature: 1020 ° C.
Reaction atmosphere pressure: a predetermined pressure in the range of 6 to 13 kPa,
Of the conventional α-type Al 2 O 3 layer and the lower Ti compound layer, as shown in Tables 6 and 7, respectively. Conventionally coated cermet tools 1 to 13 were manufactured under the same conditions except that no interlayer adhesion layer was formed therebetween.
ついで、上記の本発明被覆サーメット工具1〜13および従来被覆サーメット工具1〜13の硬質被覆層の上部層を構成する改質α型Al2O3層および従来α型Al2O3層、さらに上記の本発明被覆サーメット工具1〜13の密着α型Al2O3層について、電界放出型走査電子顕微鏡を用いて、傾斜角度数分布グラフをそれぞれ作成した。
すなわち、上記傾斜角度数分布グラフは、上記の本発明被覆サーメット工具1〜13の各種のα型Al2O3層について、それぞれ工具基体表面と平行な面をそれぞれ研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、それぞれの前記研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、この測定結果に基づいて、前記測定傾斜角のうち、前記改質α型Al2O3層については0〜45度、前記密着α型Al2O3層については45〜90度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより作成した。
また、従来被覆サーメット工具1〜13の従来α型Al2O3層についても、工具基体表面と平行な面の任意研磨面を同一の条件で観察し、同一な条件で傾斜角度数分布グラフを作成した。
Subsequently, the modified α-type Al 2 O 3 layer and the conventional α-type Al 2 O 3 layer constituting the upper layer of the hard coating layer of the above-described coated cermet tool 1-13 of the present invention and the conventional coated cermet tool 1-13, for adhesion α type the Al 2 O 3 layer of the invention described above coated cermet tools 1 to 13, using a field emission scanning electron microscope, were prepared, respectively the inclination angle frequency distribution graph.
That is, the inclination angle number distribution graph shows the electric field in a state where the surfaces parallel to the tool base surface are polished surfaces for the various α-type Al 2 O 3 layers of the above-described coated cermet tools 1 to 13 of the present invention. A hexagon set in the barrel of an emission scanning electron microscope and having an electron beam with an acceleration voltage of 15 kV at an incident angle of 70 degrees on the polished surface at an irradiation current of 1 nA and within the measurement range of each polished surface. Each crystal grain having a crystal lattice is irradiated, and an electron backscatter diffraction image apparatus is used, and the crystal grain is 30 × 50 μm at a spacing of 0.1 μm / step with respect to the normal of the polished surface. The tilt angle formed by the normal line of the (0001) plane, which is the crystal plane, is measured, and based on the measurement result, of the measured tilt angle, the modified α-type Al 2 O 3 layer is 0 to 45 degrees. , One in the contact α type the Al 2 O 3 layer The converting mechanism divides the measured tilt angle within a range of 45 to 90 degrees for each pitch of 0.25 degrees, was created by aggregating the frequencies present in each segment.
In addition, for the conventional α-type Al 2 O 3 layers of the conventional coated cermet tools 1 to 13, an arbitrary polished surface parallel to the tool base surface is observed under the same conditions, and an inclination angle number distribution graph is displayed under the same conditions. Created.
この結果得られた各種のα型Al2O3層の傾斜角度数分布グラフにおいて、表4〜7にそれぞれ示される通り、本発明被覆サーメット工具1〜13の改質α型Al2O3層および密着α型Al2O3層は、(0001)面の測定傾斜角の分布が、それぞれ前者では30〜45度、後者では75〜90度の範囲内の傾斜角区分に最高ピークが現れる傾斜角度数分布グラフを示すのに対して、従来被覆サーメット工具1〜13の従来α型Al2O3層は、(0001)面の測定傾斜角の分布が0〜45度および45〜90度の範囲内で不偏的で、最高ピークが存在しない傾斜角度数分布グラフを示すものであった。
また表4〜7には、上記の各種のα型Al2O3層の傾斜角度数分布グラフにおいて、それぞれ30〜45度および75〜90度の範囲内の傾斜角区分に存在する全傾斜角度数の傾斜角度数分布グラフ全体に占める割合を示した。
なお、図3は、本発明被覆サーメット工具5の改質α型Al2O3層(上部層)の傾斜角度数分布グラフ、図4は同密着α型Al2O3層(層間密着層)の傾斜角度数分布グラフ、図5,6は従来被覆サーメット工具6の従来α型Al2O3層のそれぞれ0〜45度および45〜90度の傾斜角区分を示す傾斜角度数分布グラフである。
In the inclination angle number distribution graphs of the various α-type Al 2 O 3 layers obtained as a result, as shown in Tables 4 to 7, modified α-type Al 2 O 3 layers of the coated cermet tools 1 to 13 of the present invention, respectively. And the close contact α-type Al 2 O 3 layer, in which the distribution of the measured inclination angle on the (0001) plane is 30 to 45 degrees in the former and 75 to 90 degrees in the latter, and the inclination in which the highest peak appears in the inclination angle section. In contrast to the angle distribution graph, the conventional α-type Al 2 O 3 layer of the conventional coated cermet tools 1 to 13 has a distribution of measured inclination angles on the (0001) plane of 0 to 45 degrees and 45 to 90 degrees. An inclination angle number distribution graph that is unbiased within the range and does not have the highest peak is shown.
Tables 4 to 7 show the total inclination angles existing in the inclination angle sections in the range of 30 to 45 degrees and 75 to 90 degrees in the inclination angle number distribution graphs of the various α-type Al 2 O 3 layers. The ratio of the number to the whole angle distribution graph is shown.
3 is an inclination angle number distribution graph of the modified α-type Al 2 O 3 layer (upper layer) of the coated cermet tool 5 of the present invention, and FIG. 4 is the same contact α-type Al 2 O 3 layer (interlayer adhesion layer). 5 and 6 are inclination angle distribution graphs showing inclination angle sections of 0 to 45 degrees and 45 to 90 degrees of the conventional α-type Al 2 O 3 layer of the conventional coated cermet tool 6, respectively. .
また、この結果得られた本発明被覆サーメット工具1〜13および従来被覆サーメット工具1〜13の硬質被覆層の構成層の厚さを、走査型電子顕微鏡を用いて測定(縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。 Moreover, when the thickness of the constituent layer of the hard coating layer of the present coated cermet tools 1 to 13 and the conventional coated cermet tools 1 to 13 obtained as a result was measured using a scanning electron microscope (longitudinal section measurement). , Each showed an average layer thickness (average value of 5-point measurement) substantially the same as the target layer thickness.
つぎに、上記の本発明被覆サーメット工具1〜13および従来被覆サーメット工具1〜13各種の被覆サーメット工具について、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・SUS316Lの長さ方向等間隔4本縦溝入り丸棒、
切削速度:330m/min.、
切り込み:1.5mm、
送り:0.2mm/rev.、
切削時間:5分、
の条件(切削条件Aという)でのステンレス鋼の乾式断続高速切削試験(通常の切削速度150m/min.)、
被削材:JIS・SS400の長さ方向等間隔4本縦溝入り丸棒、
切削速度:450m/min.、
切り込み:1mm、
送り:0.25mm/rev.、
切削時間:5分、
の条件(切削条件Bという)での軟鋼の乾式断続高速切削試験(通常の切削速度は200m/min.)、さらに、
被削材:JIS・SCMnH1の丸棒、
切削速度:430m/min.、
切り込み:1.5mm、
送り:0.3mm/rev.、
切削時間:5分、
の条件(切削条件Cという)での高マンガン鋼の乾式連続高速切削試験(通常の切削速度は250m/min.)を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表8に示した。
Next, for the various coated cermet tools of the present invention coated cermet tool 1-13 and the conventional coated cermet tool 1-13, all of them are screwed with a fixing jig to the tip of the tool steel tool,
Work material: JIS / SUS316L lengthwise equidistant four round grooved round bars,
Cutting speed: 330 m / min. ,
Incision: 1.5mm,
Feed: 0.2 mm / rev. ,
Cutting time: 5 minutes
Dry intermittent high-speed cutting test (normal cutting speed 150 m / min.) Of stainless steel under the following conditions (referred to as cutting conditions A),
Work material: JIS / SS400 lengthwise equidistant 4 round bars with flutes,
Cutting speed: 450 m / min. ,
Cutting depth: 1mm,
Feed: 0.25 mm / rev. ,
Cutting time: 5 minutes
Dry interrupted high-speed cutting test (normal cutting speed is 200 m / min.) Of mild steel under the following conditions (referred to as cutting conditions B),
Work material: JIS / SCMnH1 round bar,
Cutting speed: 430 m / min. ,
Incision: 1.5mm,
Feed: 0.3 mm / rev. ,
Cutting time: 5 minutes
The dry continuous high-speed cutting test (normal cutting speed is 250 m / min.) Of high manganese steel under the above conditions (referred to as cutting condition C), and the flank wear width of the cutting edge was measured in any cutting test. The measurement results are shown in Table 8.
表4〜8に示される結果から、本発明被覆サーメット工具1〜13は、いずれも(0001)面の傾斜角度数分布グラフで、硬質被覆層の上部層である改質α型Al2O3層が30〜45度の範囲内の傾斜角区分で、また前記上部層と下部層であるTi化合物層の間に介在させた密着α型Al2O3層が75〜90度の範囲内の傾斜角区分でそれぞれ最高ピークを示し、かつそれぞれの前記傾斜角区分における度数分布割合が50%以上を示し、この結果前記改質α型Al2O3層はすぐれた高温硬さおよび耐熱性に加えて、すぐれた高温強度を有し、一方前記密着α型Al2O3層はすぐれた密着性を示すようになることから、切削抵抗のきわめて高い難削材の高速切削でもチッピングの発生なく、すぐれた耐摩耗性を示すのに対して、硬質被覆層の上部層が、(0001)面の測定傾斜角の分布が0〜45度および45〜90度の範囲内で不偏的で、最高ピークが存在しない傾斜角度数分布グラフを示す従来α型Al2O3層からなり、かつ前記密着α型Al2O3層の介在形成のない従来被覆サーメット工具1〜13においては、いずれも硬質被覆層の強度不足が原因で、難削材の高速切削加工では硬質被覆層にチッピングが発生し、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 4 to 8, the coated cermet tools 1 to 13 of the present invention are all (0001) plane inclination angle number distribution graphs, and modified α-type Al 2 O 3 which is the upper layer of the hard coating layer. The layer is inclined at an angle in the range of 30 to 45 degrees, and the contact α-type Al 2 O 3 layer interposed between the upper and lower Ti compound layers is in the range of 75 to 90 degrees. Each of the inclination angle sections shows the highest peak, and the frequency distribution ratio in each of the inclination angle sections shows 50% or more. As a result, the modified α-type Al 2 O 3 layer has excellent high-temperature hardness and heat resistance. In addition, it has excellent high-temperature strength, while the adhesion α-type Al 2 O 3 layer exhibits excellent adhesion, so that no chipping occurs even at high-speed cutting of difficult-to-cut materials with extremely high cutting resistance. Hard coating, while showing excellent wear resistance The conventional α-type Al in which the upper layer of the layer shows an inclination angle distribution graph in which the distribution of the measured inclination angle of the (0001) plane is unbiased within the range of 0 to 45 degrees and 45 to 90 degrees, and the highest peak does not exist consists 2 O 3 layer, and in the contact α type the Al 2 O 3 layer prior coated cermet tools 1 to 13 with no intervening formation are all due to insufficient strength of the hard coating layer, high-speed cutting of difficult-to-cut materials It is clear that chipping occurs in the hard coating layer during processing, and the service life is reached in a relatively short time.
上述のように、この発明の被覆サーメット工具は、各種の鋼や鋳鉄などの高速切削加工は勿論のこと、特に自身が高い粘性を有し、かつ切削時の切削工具表面部の硬質被覆層に対する粘着性も高く、この結果切削抵抗のきわめて高いものとなる軟鋼やステンレス鋼、さらに高マンガン鋼などの難削材の高速切削加工でも、チッピングの発生なく、すぐれた耐摩耗性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。 As described above, the coated cermet tool of the present invention has high viscosity in addition to high-speed cutting such as various types of steel and cast iron, and has a high viscosity with respect to the hard coating layer on the surface of the cutting tool at the time of cutting. Even with high-speed cutting of difficult-to-cut materials such as mild steel, stainless steel, and high-manganese steel, which have high adhesion and high cutting resistance as a result, it exhibits excellent wear resistance without chipping. Since it exhibits excellent cutting performance, it can sufficiently satisfy the high performance of the cutting device, the labor saving and energy saving of the cutting work, and the cost reduction.
Claims (1)
(a)下部層として、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(b)上記下部層と下記上部層の層間密着層として、化学蒸着した状態でα型の結晶構造を有し、電界放出型走査電子顕微鏡を用い、上記工具基体表面と平行な研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、45〜90度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、
75〜90度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記75〜90度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の50%以上の割合を占める傾斜角度数分布グラフを示し、かつ0.1〜1.9μmの平均層厚を有するα型酸化アルミニウム層、
(c)上部層として、化学蒸着した状態でα型の結晶構造を有し、電界放出型走査電子顕微鏡を用い、上記工具基体表面と平行な研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、
30〜45度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記30〜45度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の50%以上の割合を占める傾斜角度数分布グラフを示し、かつ1.5〜5.9μmの平均層厚を有するα型酸化アルミニウム層、
以上(a)〜(c)で構成された硬質被覆層を蒸着形成してなる難削材の高速切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具。 On the surface of the tool base composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(A) As a lower layer, it consists of one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer, and carbonitride oxide layer, and a total average of 3 to 20 μm A Ti compound layer having a layer thickness,
(B) As an interlayer adhesion layer between the lower layer and the upper layer described below, a polishing surface having an α-type crystal structure in the state of chemical vapor deposition and parallel to the tool substrate surface using a field emission scanning electron microscope Inclination made by irradiating an electron beam to each crystal grain having a hexagonal crystal lattice existing in the range and a normal line of the (0001) plane being the crystal plane of the crystal grain with respect to the normal line of the polished surface An angle is measured, and the measured inclination angle within the range of 45 to 90 degrees is divided into 0.25 degree pitches among the measured inclination angles, and the degrees existing in each division are totaled. In the angle distribution graph,
The highest peak exists in the inclination angle section in the range of 75 to 90 degrees, and the total of the frequencies existing in the range of 75 to 90 degrees represents a ratio of 50% or more of the entire degrees in the inclination angle frequency distribution graph. An α-type aluminum oxide layer showing an inclination angle number distribution graph and having an average layer thickness of 0.1 to 1.9 μm;
(C) As an upper layer, a hexagonal crystal lattice having an α-type crystal structure in a chemically vapor-deposited state and existing in a measurement range of a polished surface parallel to the tool substrate surface using a field emission scanning electron microscope And measuring the inclination angle formed by the normal line of the (0001) plane, which is the crystal plane of the crystal grain, with respect to the normal line of the polished surface. In the inclination angle number distribution graph formed by dividing the measured inclination angles in the range of 0 to 45 degrees for each pitch of 0.25 degrees and totaling the frequencies existing in each section,
The highest peak exists in the inclination angle section within the range of 30 to 45 degrees, and the total of the frequencies existing within the range of 30 to 45 degrees represents a ratio of 50% or more of the entire degrees in the inclination angle frequency distribution graph. An α-type aluminum oxide layer showing an occupying angle number distribution graph and having an average layer thickness of 1.5 to 5.9 μm;
A surface-coated cermet cutting tool that exhibits excellent chipping resistance in high-speed cutting of difficult-to-cut materials formed by vapor-depositing the hard coating layer composed of (a) to (c) above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005369860A JP2007168029A (en) | 2005-12-22 | 2005-12-22 | Surface coated cermet-made cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed cutting material hard to cut |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005369860A JP2007168029A (en) | 2005-12-22 | 2005-12-22 | Surface coated cermet-made cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed cutting material hard to cut |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007168029A true JP2007168029A (en) | 2007-07-05 |
Family
ID=38295257
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005369860A Withdrawn JP2007168029A (en) | 2005-12-22 | 2005-12-22 | Surface coated cermet-made cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed cutting material hard to cut |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007168029A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015188980A (en) * | 2014-03-28 | 2015-11-02 | 三菱マテリアル株式会社 | Surface-coated cutting tool with hard coating layer exhibiting superior chipping resistance and wear resistance |
-
2005
- 2005-12-22 JP JP2005369860A patent/JP2007168029A/en not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015188980A (en) * | 2014-03-28 | 2015-11-02 | 三菱マテリアル株式会社 | Surface-coated cutting tool with hard coating layer exhibiting superior chipping resistance and wear resistance |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4518260B2 (en) | Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting | |
JP4747324B2 (en) | Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high speed heavy cutting | |
JP5023654B2 (en) | Surface-coated cermet cutting tool with excellent crystal grain interface strength, modified α-type Al2O3 layer of hard coating layer | |
JP4747388B2 (en) | Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials | |
JP2006198740A (en) | Cutting tool made of surface coated cermet with hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting | |
JP2006116621A (en) | Surface-coated cermet cutting tool with hard coating layer exerting excellent chipping resistance in high-speed intermittent cutting | |
JP2009166193A (en) | Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting | |
JP4811787B2 (en) | Surface-coated cermet cutting tool with excellent grain interface strength in modified κ-type aluminum oxide layer of hard coating layer | |
JP4748361B2 (en) | Surface-coated cermet cutting tool with excellent chipping resistance with hard coating layer in difficult-to-cut materials | |
JP2006000970A (en) | Surface-coated cermet cutting tool with hard coating layer exerting excellent abrasion resistance in high-speed cutting | |
JP2006289546A (en) | Surface-coated cermet cutting tool having hard coating layer for exhibiting superior chipping resistance in high speed intermittent cutting work | |
JP4747338B2 (en) | Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials | |
JP4747386B2 (en) | Surface coated cermet cutting tool whose hard coating layer exhibits excellent wear resistance in high speed cutting | |
JP2007168029A (en) | Surface coated cermet-made cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed cutting material hard to cut | |
JP2006334757A (en) | Surface coated cermet cutting tool whose hard coating layer exhibits excellent wear resistance in high-speed cutting | |
JP2007160464A (en) | Surface coated cermet cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting | |
JP2006218546A (en) | Surface-coated cermet cutting tool with hard coating layer exerting excellent chipping resistance in high-speed intermittent cutting | |
JP4529578B2 (en) | Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high speed heavy cutting | |
JP2006043802A (en) | Surface coated cermet cutting tool having hard coated layer exhibiting excellent wear resistance in high-speed cutting | |
JP4793629B2 (en) | Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials | |
JP4438559B2 (en) | Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in intermittent heavy cutting | |
JP2005279914A (en) | Surface coated cermet-made cutting tool having hard coating layer exhibiting excellent chipping resistance | |
JP2006315149A (en) | Surface coated cermet cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting | |
JP4936212B2 (en) | Surface-coated cutting tool whose hard coating layer exhibits excellent wear resistance in high-speed cutting | |
JP4816904B2 (en) | Surface coated cermet cutting tool whose hard coating layer exhibits excellent wear resistance in high speed cutting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20090303 |