JP2007160464A - Surface coated cermet cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting - Google Patents

Surface coated cermet cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting Download PDF

Info

Publication number
JP2007160464A
JP2007160464A JP2005359829A JP2005359829A JP2007160464A JP 2007160464 A JP2007160464 A JP 2007160464A JP 2005359829 A JP2005359829 A JP 2005359829A JP 2005359829 A JP2005359829 A JP 2005359829A JP 2007160464 A JP2007160464 A JP 2007160464A
Authority
JP
Japan
Prior art keywords
layer
inclination angle
degrees
range
distribution graph
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005359829A
Other languages
Japanese (ja)
Inventor
Tetsuhiko Honma
哲彦 本間
Hiroshi Hara
央 原
Kazuhiro Kono
和弘 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2005359829A priority Critical patent/JP2007160464A/en
Publication of JP2007160464A publication Critical patent/JP2007160464A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface coated cermet cutting tool having a hard coating layer exhibiting excellent chipping resistance in high speed intermittent cutting. <P>SOLUTION: This coated cermet tool is constituted by forming the hard coating layer having a lower part layer of a Ti compound layer and an upper part layer of the αtype Al<SB>2</SB>O<SB>3</SB>layer by deposition on a surface of a tool base body. The αtype Al<SB>2</SB>O<SB>3</SB>layer is constituted of: an upper rank layer showing an inclination angle frequency distribution graph in which a highest peak exists in an inclination angle section in the range of 30 to 45° and the total of frequencies existing in the range of 30 to 45° occupies the rate of ≥50% of the whole frequency when preparing the inclination angle frequency distribution graph by using a field emission type scanning electron microscope and measuring an inclination angle made by a normal line of a surface (0001) which is a crystal surface of crystal grains; and a lower rank layer showing an inclination angle frequency distribution graph in which a highest peak exists in an inclination angle section in the range of 75 to 90° and the total of frequencies existing in the range of 75 to 90° occupies the rate ≥50% of the whole frequency. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、特に硬質被覆層の構成層である酸化アルミニウム層(以下、Al23層で示す)を厚膜化した状態で、各種の鋼や鋳鉄などの切削加工を、高速で、かつ機械的衝撃を伴なう断続切削条件で行った場合にも、硬質被覆層がすぐれた耐チッピング性を示し、したがってチッピング(微少欠け)などの発生なく、長期に亘ってすぐれた耐摩耗性を発揮する表面被覆サーメット製切削工具(以下、被覆サーメット工具という)に関するものである。 In the present invention, particularly in a state in which an aluminum oxide layer (hereinafter referred to as an Al 2 O 3 layer) that is a constituent layer of a hard coating layer is thickened, various kinds of cutting work such as steel and cast iron can be performed at high speed. Even when performed under intermittent cutting conditions with mechanical impact, the hard coating layer exhibits excellent chipping resistance, and therefore has excellent wear resistance over a long period of time without occurrence of chipping (small chipping). The present invention relates to a surface-coated cermet cutting tool to be exhibited (hereinafter referred to as a coated cermet tool).

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)下部層が、Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(b)上部層が、通常、1〜12μmの平均層厚、厚膜化した状態も含めると20μm以下の平均層厚を有し、かつ化学蒸着した状態でα型の結晶構造を有する酸化アルミニウム層(以下、蒸着α型Al23層で示す)、
以上(a)および(b)で構成された硬質被覆層を蒸着形成してなる被覆サーメット工具が知られており、この被覆サーメット工具が、例えば各種の鋼や鋳鉄などの連続切削や断続切削に用いられることは良く知られている。
Conventionally, generally on the surface of a substrate (hereinafter collectively referred to as a tool substrate) composed of a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet. ,
(A) The lower layer is a Ti carbide (hereinafter referred to as TiC) layer, a nitride (hereinafter also referred to as TiN) layer, a carbonitride (hereinafter referred to as TiCN) layer, a carbon oxide (hereinafter referred to as TiCO). A Ti compound layer having a total average layer thickness of 3 to 20 μm, including one or two or more of a layer and a carbonitride oxide (hereinafter referred to as TiCNO) layer,
(B) The upper layer usually has an average layer thickness of 1 to 12 μm, an average layer thickness of 20 μm or less including the thickened state, and an α-type crystal structure in the state of chemical vapor deposition. Layer (hereinafter referred to as a deposited α-type Al 2 O 3 layer),
There is known a coated cermet tool formed by vapor-depositing a hard coating layer composed of (a) and (b) above, and this coated cermet tool can be used for continuous cutting and intermittent cutting of various steels and cast irons, for example. It is well known to be used.

また、一般に、上記の被覆サーメット工具の硬質被覆層を構成するTi化合物層や蒸着α型Al23層が粒状結晶組織を有し、さらに、前記Ti化合物層を構成するTiCN層を、層自身の強度向上を目的として、通常の化学蒸着装置にて、反応ガスとして有機炭窒化物を含む混合ガスを使用し、700〜950℃の中温温度域で化学蒸着することにより形成して縦長成長結晶組織をもつようにすることも知られている。
特開平6−31503号公報 特開平6−8010号公報
In general, the Ti compound layer and vapor-deposited α-type Al 2 O 3 layer constituting the hard coating layer of the above coated cermet tool have a granular crystal structure, and the TiCN layer constituting the Ti compound layer is For the purpose of improving its own strength, it is formed by chemical vapor deposition in a medium temperature range of 700 to 950 ° C using a mixed gas containing organic carbonitrides as a reaction gas in a normal chemical vapor deposition apparatus, and vertically grown. It is also known to have a crystal structure.
Japanese Unexamined Patent Publication No. 6-31503 Japanese Patent Laid-Open No. 6-8010

近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、蒸着α型Al23層は最大層厚で20μmの厚膜化を必要とされ、さらに切削加工は一段と高速化する傾向にあるが、上記の従来被覆サーメット工具においては、これを鋼や鋳鉄などの通常の条件での連続切削や断続切削に用いた場合には問題はないが、特にこれを高速断続切削条件で用いた場合には、特に硬質被覆層を構成する蒸着α型Al23層の高温硬さおよび高温強度が不十分であるために、摩耗が急速に進行し、かつチッピングも発生し易くなり、さらに前記蒸着α型Al23層の厚膜化によってチッピングは一段と発生し易くなることから、比較的短時間で使用寿命に至るのが現状である。 In recent years, the performance of cutting machines has been remarkably improved. On the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for cutting work. Accordingly, the vapor deposited α-type Al 2 O 3 layer has a maximum thickness of 20 μm. Although thicker films are required and the cutting process tends to be faster, the above-mentioned conventional coated cermet tools were used for continuous cutting and intermittent cutting under normal conditions such as steel and cast iron. In this case, there is no problem, but especially when this is used under high-speed interrupted cutting conditions, the high-temperature hardness and high-temperature strength of the vapor-deposited α-type Al 2 O 3 layer constituting the hard coating layer is insufficient. In addition, wear progresses rapidly and chipping is likely to occur, and chipping is more likely to occur by increasing the thickness of the deposited α-type Al 2 O 3 layer. Is the current situation

そこで、本発明者等は、上述のような観点から、上記の蒸着α型Al23層が硬質被覆層の上部層を構成する被覆サーメット工具に着目し、特に前記蒸着α型Al23層の耐チッピング性向上を図るべく研究を行った結果、
(a)上記の従来被覆サーメット工具の硬質被覆層としての蒸着α型Al23層は、一般に、通常の化学蒸着装置にて、
反応ガス組成:容量%で、AlCl3:1〜5%、CO2:3〜7%、HCl:0.3〜3%、H2S:0.02〜0.4%、H2:残り、
反応雰囲気温度:950〜1100℃、
反応雰囲気圧力:6〜13kPa、
の条件(以下、通常条件という)で形成されるが、この通常条件形成の蒸着α型Al23層について、電界放出型走査電子顕微鏡を用い、図1(a),(b)および図2(a),(b)に概略説明図で示される通り、工具基体表面と平行な研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、それぞれ0〜45度および45〜90度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフを作成すると、図5(測定傾斜角:0〜45度)および図6(測定傾斜角:45〜90度)に例示される通り、(0001)面の測定傾斜角の分布が0〜45度および45〜90度のいずれの範囲内でも不偏的な傾斜角度数分布グラフを示すこと。
In view of the above, the present inventors paid attention to a coated cermet tool in which the vapor-deposited α-type Al 2 O 3 layer constitutes the upper layer of the hard coating layer, and particularly the vapor-deposited α-type Al 2 O 3. As a result of research to improve chipping resistance of three layers,
(A) The vapor-deposited α-type Al 2 O 3 layer as a hard coating layer of the above-described conventional coated cermet tool is generally used in a normal chemical vapor deposition apparatus.
Reaction gas composition: by volume%, AlCl 3: 1~5%, CO 2: 3~7%, HCl: 0.3~3%, H 2 S: 0.02~0.4%, H 2: remainder ,
Reaction atmosphere temperature: 950-1100 ° C.
Reaction atmosphere pressure: 6-13 kPa,
1 (a), (b) and FIG. 1 using the field emission scanning electron microscope for the deposited α-type Al 2 O 3 layer formed under the normal conditions. 2 (a) and (b), as schematically shown in the drawing, each crystal grain having a hexagonal crystal lattice existing within the measurement range of the polished surface parallel to the tool substrate surface is irradiated with an electron beam, The inclination angle formed by the normal line of the (0001) plane, which is the crystal plane of the crystal grain, is measured with respect to the normal line of the polished surface. Of the measured inclination angles, 0 to 45 degrees and 45 to 90 degrees, respectively. When the measured inclination angle within the range is divided for each pitch of 0.25 degrees, and an inclination angle number distribution graph is created by summing up the frequencies existing in each division, FIG. 45 degrees) and FIG. 6 (measurement tilt angle: 45 to 90 degrees), The distribution of the measured inclination angle of the (0001) plane should be an unbiased inclination angle number distribution graph regardless of the range of 0 to 45 degrees and 45 to 90 degrees.

(b)一方、蒸着α型Al23層を、同じく通常の化学蒸着装置を用い、
反応ガス組成:容量%で、AlCl3:1〜5%、CO2:3〜7%、HCl:0.3〜3%、H2S:0.02〜0.4%、H2:残り、
反応雰囲気温度:750〜900℃、
反応雰囲気圧力:20〜30kPa、
の相対的に低温高圧条件(反応ガス組成は上記の通常条件と同じ)で形成すると、この結果形成された蒸着α型Al23層は、同じく電界放出型走査電子顕微鏡を用い、図2(a),(b)に示される通り、同じく上記工具基体表面と平行な研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、45〜90度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで現した場合、図4に例示される通り、傾斜角区分の特定位置にシャープな最高ピークが現れ、試験結果によれば、化学蒸着装置における反応雰囲気温度および圧力を、上記の通り750〜900℃および20〜30kPaの範囲内で変化させると、上記シャープな最高ピークの現れる位置が傾斜角区分の75〜90度の範囲内で変化すると共に、前記75〜90度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の50%以上の割合を占めるようになり、この結果の傾斜角度数分布グラフにおいて75〜90度の範囲内に傾斜角区分の最高ピークが現れる蒸着α型Al23層は、上記の通常条件形成の蒸着α型Al23層に比して、相対的に高い高温硬さを有すること。
(B) On the other hand, the vapor-deposited α-type Al 2 O 3 layer was similarly used with a normal chemical vapor deposition device,
Reaction gas composition: by volume%, AlCl 3: 1~5%, CO 2: 3~7%, HCl: 0.3~3%, H 2 S: 0.02~0.4%, H 2: remainder ,
Reaction atmosphere temperature: 750 to 900 ° C.
Reaction atmosphere pressure: 20-30 kPa,
2 formed under the relatively low temperature and high pressure conditions (reaction gas composition is the same as the above normal conditions), the deposited α-type Al 2 O 3 layer formed as a result is also shown in FIG. As shown in (a) and (b), each crystal grain having a hexagonal crystal lattice that is also present in the measurement range of the polished surface parallel to the tool base surface is irradiated with an electron beam, The inclination angle formed by the normal line of the (0001) plane, which is the crystal plane of the crystal grain, is measured with respect to the normal line, and the measurement inclination angle within the range of 45 to 90 degrees out of the measurement inclination angles is set to 0. .When divided into 25-degree pitches and represented by an inclination angle number distribution graph in which the frequencies existing in each area are aggregated, as shown in FIG. The highest peak appears and the test results show that When the reaction atmosphere temperature and pressure are changed within the range of 750 to 900 ° C. and 20 to 30 kPa as described above, the position at which the sharpest peak appears changes within the range of 75 to 90 degrees of the inclination angle section. The sum of the frequencies existing in the range of 75 to 90 degrees occupies a ratio of 50% or more of the entire frequencies in the inclination angle distribution graph, and 75 to 90 degrees in the inclination angle distribution graph as a result. The vapor-deposited α-type Al 2 O 3 layer in which the highest peak of the tilt angle section appears in the range of the above has a relatively high high-temperature hardness as compared with the vapor-deposited α-type Al 2 O 3 layer formed under the above normal conditions thing.

(c)さらに、蒸着α型Al23層を、同じく通常の化学蒸着装置を用い、
反応ガス組成:容量%で、AlCl3:3〜10%、CO2:0.5〜3%、HCl:0.3〜3%、SF:0.01〜0.2%、C:0.01〜0.3%、H2:残り、
反応雰囲気温度:950〜1050℃、
反応雰囲気圧力:20〜30kPa、
の条件、すなわち反応ガス組成を調整して上記の通常条件の反応ガス組成とは異なった反応ガス組成とすると共に、同じく上記の通常条件の反応雰囲気の圧力に比して、相対的に高圧の条件で形成すると、この結果形成された蒸着α型Al23層は、同じく電界放出型走査電子顕微鏡を用い、図1(a),(b)に示される通り、工具基体表面と平行な研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで現した場合、図3に例示される通り、傾斜角区分の特定位置にシャープな最高ピークが現れ、試験結果によれば、上記の蒸着α型Al23層の形成条件、すなわち上記の反応ガス組成および反応雰囲気条件のうちの少なくともいずれかの条件を、上記の範囲内で変化させると、上記シャープな最高ピークの現れる位置が傾斜角区分の30〜45度の範囲内で変化すると共に、前記30〜45度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の50%以上の割合を占めるようになり、この結果の傾斜角度数分布グラフにおいて30〜45度の範囲内に傾斜角区分の最高ピークが現れる蒸着α型Al23層は、上記の通常条件形成の蒸着α型Al23層に比して、相対的にすぐれた高温強度を有すること。
(C) Furthermore, the vapor-deposited α-type Al 2 O 3 layer was similarly used with a normal chemical vapor deposition apparatus,
Reaction gas composition:% by volume, AlCl 3 : 3 to 10%, CO 2 : 0.5 to 3%, HCl: 0.3 to 3%, SF 6 : 0.01 to 0.2%, C 2 H 4: 0.01~0.3%, H 2: remainder,
Reaction atmosphere temperature: 950 to 1050 ° C.
Reaction atmosphere pressure: 20-30 kPa,
In other words, the reaction gas composition is adjusted to a reaction gas composition different from the reaction gas composition under the normal conditions described above, and the pressure of the reaction atmosphere under the normal conditions is also relatively high. When formed under the conditions, the vapor-deposited α-type Al 2 O 3 layer formed as a result is parallel to the tool base surface as shown in FIGS. 1 (a) and 1 (b) using the same field emission scanning electron microscope. The crystal grains having a hexagonal crystal lattice existing within the measurement range of the polished surface are irradiated with an electron beam, and the method of the (0001) plane that is the crystal plane of the crystal grains with respect to the normal line of the polished surface Measure the tilt angle formed by the line, and divide the measured tilt angles within the range of 0 to 45 degrees out of the measured tilt angles by pitch of 0.25 degrees, and count the frequencies existing in each section Is shown in FIG. 3. As can be seen, a sharp maximum peak appears at a specific position in the tilt angle section, and according to the test results, the formation conditions of the vapor-deposited α-type Al 2 O 3 layer, that is, the reaction gas composition and reaction atmosphere conditions described above, When at least one of the conditions is changed within the above range, the position where the sharpest peak appears changes within the range of 30 to 45 degrees of the inclination angle section, and within the range of 30 to 45 degrees. The sum of the frequencies present accounts for 50% or more of the total frequency in the tilt angle distribution graph, and the highest peak of the tilt angle section is in the range of 30 to 45 degrees in the resulting tilt angle distribution graph. The vapor-deposited α-type Al 2 O 3 layer in which is shown has relatively superior high-temperature strength as compared with the vapor-deposited α-type Al 2 O 3 layer formed under the normal conditions.

(d)したがって、下部層がTi化合物層からなる硬質被覆層の上部層である蒸着α型Al23層を、それぞれ2〜18μmの平均層厚(ただし、合計平均層厚は20μm以下)を有する下位層と上位層からなる上下2層構造とし、上記工具基体表面と平行な研磨面の測定で、前記上位層を、30〜45度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記30〜45度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の50%以上の割合を占める傾斜角度数分布グラフを示し、前記下位層を、75〜90度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記75〜90度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の50%以上の割合を占める傾斜角度数分布グラフを示す蒸着α型Al23層で構成してなる被覆サーメット工具は、前記蒸着α型Al23層が相対的すぐれた高温硬さと高温強度を具備することから、特に最大層厚で20μmに厚膜化した状態で、高速断続切削条件で切削加工を行っても、上記の硬質被覆層の上部層が、(0001)面の測定傾斜角の分布が0〜45度および45〜90度の範囲内で不偏的な傾斜角度数分布グラフを示す蒸着α型Al23層で構成された従来被覆サーメット工具に比して、硬質被覆層にチッピングの発生なく、一段とすぐれた耐摩耗性を長期に亘って発揮するようになること。
以上(a)〜(d)に示される研究結果を得たのである。
(D) Accordingly, the deposited α-type Al 2 O 3 layer, which is the upper layer of the hard coating layer whose lower layer is made of a Ti compound layer, has an average layer thickness of 2 to 18 μm (however, the total average layer thickness is 20 μm or less). The upper layer has a highest peak in the inclination angle section within the range of 30 to 45 degrees in the measurement of the polished surface parallel to the tool base surface. In addition, an inclination angle number distribution graph in which the sum of the frequencies existing in the range of 30 to 45 degrees occupies a ratio of 50% or more of the entire frequencies in the inclination angle number distribution graph is shown, and the lower layer is 75 to 90 An inclination angle in which the highest peak exists in the inclination angle section within the range of degrees, and the total of the frequencies existing within the range of 75 to 90 degrees accounts for 50% or more of the entire degrees in the inclination angle frequency distribution graph Number distribution gra Coated cermet tool formed by constituted by depositing α-type the Al 2 O 3 layer showing a, since the said deposition α type the Al 2 O 3 layer is provided with a relative excellent high-temperature hardness and high-temperature strength, in particular at most layer thickness Even when cutting is performed under high-speed interrupted cutting conditions with the film thickness increased to 20 μm, the upper layer of the hard coating layer has a distribution of measured inclination angles on the (0001) plane of 0 to 45 degrees and 45 to 90 degrees. Compared to the conventional coated cermet tool composed of vapor-deposited α-type Al 2 O 3 layer showing an unbiased inclination angle distribution graph within the range of degrees, the hard coating layer has excellent wear resistance without chipping. To show its sexuality over a long period of time.
The research results shown in (a) to (d) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、工具基体の表面に、
(a)下部層が、TiC層、TiN層、TiCN層、TiCO層、およびTiCNO層のうちの1層または2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(b)上部層が、20μm以下の平均層厚を有する蒸着α型Al23層、
以上(a)および(b)で構成された硬質被覆層を蒸着形成してなる被覆サーメット工具において、
上記蒸着α型Al23層を、それぞれ2〜18μmの平均層厚(ただし、合計平均層厚は20μm以下)を有する下位層と上位層からなる上下2層構造とし、さらに電界放出型走査電子顕微鏡を用い、上記工具基体表面と平行な研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、前記上位層については0〜45度、上記下位層については45〜90度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで現した場合、
(A)上記蒸着α型Al23層の上位層は、30〜45度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記30〜45度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の50%以上の割合を占める傾斜角度数分布グラフを示し、
(B)上記蒸着α型Al23層の下位層は、75〜90度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記75〜90度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の50%以上の割合を占める傾斜角度数分布グラフを示してなる、
硬質被覆層が高速断続切削ですぐれた耐チッピング性を発揮する被覆サーメット工具に特徴を有するものである。
This invention was made based on the above research results, and on the surface of the tool base,
(A) a Ti compound layer in which the lower layer is composed of one or more of a TiC layer, a TiN layer, a TiCN layer, a TiCO layer, and a TiCNO layer, and has a total average layer thickness of 3 to 20 μm,
(B) a vapor-deposited α-type Al 2 O 3 layer whose upper layer has an average layer thickness of 20 μm or less,
In the coated cermet tool formed by vapor-depositing the hard coating layer composed of (a) and (b) above,
The deposited α-type Al 2 O 3 layer has an upper and lower two-layer structure composed of a lower layer and an upper layer each having an average layer thickness of 2 to 18 μm (however, the total average layer thickness is 20 μm or less), and further, field emission scanning Using an electron microscope, each crystal grain having a hexagonal crystal lattice existing within the measurement range of the polished surface parallel to the tool substrate surface is irradiated with an electron beam, and the crystal is compared with the normal line of the polished surface. The inclination angle formed by the normal line of the (0001) plane, which is the crystal plane of the grain, is measured. Among the measured inclination angles, the upper layer is in the range of 0 to 45 degrees and the lower layer is in the range of 45 to 90 degrees. When the measurement inclination angle is divided into pitches of 0.25 degrees and the frequency existing in each division is represented by an inclination angle number distribution graph,
(A) The upper layer of the vapor-deposited α-type Al 2 O 3 layer has the highest peak in the tilt angle section within the range of 30 to 45 degrees and the total number of frequencies existing within the range of 30 to 45 degrees. Shows an inclination angle number distribution graph occupying a ratio of 50% or more of the entire frequency in the inclination angle number distribution graph,
(B) The lower layer of the deposited α-type Al 2 O 3 layer has the highest peak in the inclination angle section within the range of 75 to 90 degrees, and the total of the frequencies existing in the range of 75 to 90 degrees. Is an inclination angle number distribution graph occupying a ratio of 50% or more of the entire frequency in the inclination angle number distribution graph,
The hard coating layer is characterized by a coated cermet tool that exhibits excellent chipping resistance in high-speed intermittent cutting.

以下に、この発明の被覆サーメット工具の硬質被覆層の構成層に関し、上記の通りに数値限定した理由を説明する。
(a)Ti化合物層(下部層)
Ti化合物層は、基本的には蒸着α型Al23層の下部層として存在し、自身の具備するすぐれた高温強度によって硬質被覆層が高温強度を具備するようにするほか、工具基体と蒸着α型Al23層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性向上に寄与する作用を有するが、その合計平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方その合計平均層厚が20μmを越えると、特に高熱発生を伴なう高速切削では熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その合計平均層厚を3〜20μmと定めた。
The reason why the numerical values of the constituent layers of the hard coating layer of the coated cermet tool of the present invention are limited as described above will be described below.
(A) Ti compound layer (lower layer)
The Ti compound layer basically exists as a lower layer of the vapor-deposited α-type Al 2 O 3 layer, and allows the hard coating layer to have high temperature strength by its excellent high temperature strength, It adheres firmly to any of the vapor-deposited α-type Al 2 O 3 layers, and thus has an effect of improving the adhesion of the hard coating layer to the tool substrate. However, if the total average layer thickness is less than 3 μm, the above-described effect is sufficient. On the other hand, if the total average layer thickness exceeds 20 μm, it becomes easy to cause thermoplastic deformation particularly in high-speed cutting accompanied by high heat generation, which causes uneven wear. The average layer thickness was determined to be 3-20 μm.

(b)蒸着α型Al23層(上部層)
上記の通り、蒸着α型Al23層の上位層および下位層の傾斜角度数分布グラフにおける測定傾斜角の最高ピーク位置および度数分布割合は、いずれもこれの形成条件を変化させることによって変化するが、試験結果によれば、最高ピーク位置が、前記上位層では30〜45度、前記下位層では75〜90度の範囲内の傾斜角区分に現れると共に、前記30〜45度および75〜90度の範囲内に存在する度数の合計が、いずれの場合も傾斜角度数分布グラフにおける度数全体の50%以上の割合を占める傾斜角度数分布グラフを示す場合に、前記上位層および下位層は、それぞれ所望のすぐれた高温強度および高温硬さを具備するようになるものであり、したがって、最高ピーク位置および度数分布割合が前記の条件を満足しない場合には、所望の高温強度および高温硬さを具備しないものとなる。
また、蒸着α型Al23層は、上位層のすぐれた高温強度と下位層のすぐれた高温硬さによってすぐれた高温強度と高温硬さを具備するようになるが、前記上位層および下位層の平均層厚がそれぞれ2μm未満になると、前記2層のそれぞれのもつすぐれた高温強度および高温硬さを確保することができず、また、前記上位層および下位層の平均層厚がそれぞれ18μmを越えると、一方の平均層厚を最低平均層厚である2μmにしても合計平均層厚は20μmを越えてしまい、このように前記上位層および下位層の平均層厚がそれぞれ18μmを越えても、また、前記上位層および下位層の合計平均層厚が20μmを越えても、チッピングが発生し易くなることから、前記上位層および下位層の平均層厚をそれぞれ2〜18μm、合計平均層厚を20μm以下と定めた。
(B) Evaporated α-type Al 2 O 3 layer (upper layer)
As described above, the maximum peak position and the frequency distribution ratio of the measured inclination angle in the inclination angle number distribution graph of the upper layer and lower layer of the vapor-deposited α-type Al 2 O 3 layer are both changed by changing the formation conditions thereof. However, according to the test results, the highest peak position appears in the inclination angle section within the range of 30 to 45 degrees in the upper layer and 75 to 90 degrees in the lower layer, and the 30 to 45 degrees and 75 to 45 degrees. In the case where the total number of frequencies existing in the range of 90 degrees indicates an inclination angle number distribution graph that accounts for 50% or more of the entire frequency in the inclination angle number distribution graph, the upper layer and the lower layer are Each having the desired excellent high-temperature strength and high-temperature hardness, and therefore when the highest peak position and the frequency distribution ratio do not satisfy the above-mentioned conditions. The desired high-temperature strength and high-temperature hardness are not provided.
Further, the deposited α-type Al 2 O 3 layer has excellent high temperature strength and high temperature hardness due to excellent high temperature strength of the upper layer and excellent high temperature hardness of the lower layer. If the average layer thickness of each layer is less than 2 μm, the excellent high-temperature strength and high-temperature hardness of each of the two layers cannot be secured, and the average layer thickness of the upper layer and the lower layer is 18 μm, respectively. If the average layer thickness of one layer exceeds 2 μm, which is the minimum average layer thickness, the total average layer thickness exceeds 20 μm. Thus, the average layer thickness of the upper layer and the lower layer exceeds 18 μm. Further, even if the total average layer thickness of the upper layer and the lower layer exceeds 20 μm, chipping is likely to occur. Therefore, the average layer thickness of the upper layer and the lower layer is 2 to 18 μm, respectively. Thickness It was defined as 20μm or less.

なお、切削工具の使用前後の識別を目的として、黄金色の色調を有するTiN層を、必要に応じて硬質被覆層の最表面層として蒸着形成してもよいが、この場合の平均層厚は0.1〜1μmでよく、これは0.1μm未満では、十分な識別効果が得られず、一方前記TiN層による前記識別効果は1μmまでの平均層厚で十分であるという理由からである。   In addition, for the purpose of identification before and after the use of the cutting tool, a TiN layer having a golden color tone may be vapor-deposited as the outermost surface layer of the hard coating layer as necessary, but the average layer thickness in this case is It may be 0.1 to 1 μm, and if the thickness is less than 0.1 μm, a sufficient discrimination effect cannot be obtained, while the discrimination effect by the TiN layer is sufficient for an average layer thickness of up to 1 μm.

この発明の被覆サーメット工具は、硬質被覆層の上部層を構成する蒸着α型Al23層の層厚を厚膜化した状態で、各種の鋼や鋳鉄などの切削加工を高速で、かつ機械的衝撃を伴なう断続切削条件で行っても、前記蒸着α型Al23層が、すぐれた高温強度と高温硬さを有することから、硬質被覆層にチッピングの発生なく、すぐれた耐摩耗性を発揮し、使用寿命の一層の延命化を可能とするものである。 The coated cermet tool of the present invention is a state in which the thickness of the vapor-deposited α-type Al 2 O 3 layer constituting the upper layer of the hard coating layer is increased, and various types of steel and cast iron can be cut at high speed. Even when performed under intermittent cutting conditions with mechanical impact, the vapor-deposited α-type Al 2 O 3 layer has excellent high-temperature strength and high-temperature hardness, so that the hard coating layer was excellent without occurrence of chipping. It exhibits wear resistance and enables further extension of the service life.

つぎに、この発明の被覆サーメット工具を実施例により具体的に説明する。   Next, the coated cermet tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG120408に規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体A〜Fをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, and Co powder each having an average particle diameter of 1 to 3 μm are prepared. The raw material powder was blended in the blending composition shown in Table 1, and then added with wax, mixed in a ball mill for 24 hours in acetone, dried under reduced pressure, and then press-molded into a green compact of a predetermined shape at a pressure of 98 MPa. The green compact is vacuum-sintered in a vacuum of 5 Pa at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour. After sintering, the cutting edge is subjected to a honing process of R: 0.07 mm. Thus, tool bases A to F made of a WC-based cemented carbide having a throwaway tip shape specified in ISO · CNMG120408 were manufactured.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比で、TiC/TiN=50/50)粉末、Mo2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にチャンファー幅:0.mm、チャンファー角度:20度のホーニング加工を施すことによりISO規格・CNMG120408のチップ形状をもったTiCN基サーメット製の工具基体a〜fを形成した。 Further, as raw material powders, TiCN (mass ratio, TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC, all having an average particle diameter of 0.5 to 2 μm. Prepare powder, Co powder, and Ni powder, blend these raw material powders into the composition shown in Table 2, wet mix with a ball mill for 24 hours, dry, and press-mold into a green compact at 98 MPa pressure The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after sintering, a chamfer width of 0. The tool bases a to f made of TiCN base cermet having a chip shape of ISO standard / CNMG120408 were formed by performing a honing process of mm and chamfer angle: 20 degrees.

ついで、これらの工具基体A〜Fおよび工具基体a〜fのそれぞれを、通常の化学蒸着装置に装入し、
(a)まず、表3(表3中のl−TiCNは特開平6−8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)に示される条件にて、表4,5に示される目標層厚のTi化合物層を硬質被覆層の下部層として蒸着形成し、
(b)ついで、反応ガス組成:容量%で、AlCl3:2.2%、CO2:5%、HCl:2%、H2S:0.15%、H2:残り、
反応雰囲気温度:850℃、
反応雰囲気圧力:20〜30kPaの範囲内の所定の圧力、
の条件で表4,5に示される目標層厚で、上部層である蒸着α型Al23層の下位層を蒸着形成し、
(c)さらに、反応ガス組成:容量%で、AlCl3:3.5%、CO2:1.5%、HCl:2%、SF:0.1%、C:0.05%、H2:残り、
反応雰囲気温度:1000℃、
反応雰囲気圧力:20〜30kPaの範囲内の所定の圧力、
の条件で同じく表4,5に示される目標層厚で、同じく上部層である蒸着α型Al23層の上位層を蒸着形成することにより本発明被覆サーメット工具1〜13をそれぞれ製造した。
Then, each of these tool bases A to F and tool bases a to f is charged into a normal chemical vapor deposition apparatus,
(A) First, Table 3 (l-TiCN in Table 3 indicates the conditions for forming a TiCN layer having a vertically elongated crystal structure described in JP-A-6-8010, and the other conditions are ordinary granularity. Under the conditions shown in Table 4 and 5), the Ti compound layer having the target layer thickness shown in Tables 4 and 5 is deposited as the lower layer of the hard coating layer.
(B) Next, reaction gas composition: volume%, AlCl 3 : 2.2%, CO 2 : 5%, HCl: 2%, H 2 S: 0.15%, H 2 : remaining,
Reaction atmosphere temperature: 850 ° C.
Reaction atmosphere pressure: a predetermined pressure in the range of 20-30 kPa,
The lower layer of the vapor deposition α-type Al 2 O 3 layer, which is the upper layer, is formed by vapor deposition at the target layer thickness shown in Tables 4 and 5 under the conditions of
(C) Furthermore, reaction gas composition: volume%, AlCl 3 : 3.5%, CO 2 : 1.5%, HCl: 2%, SF 6 : 0.1%, C 2 H 4 : 0.05 %, H 2 : remaining,
Reaction atmosphere temperature: 1000 ° C.
Reaction atmosphere pressure: a predetermined pressure in the range of 20-30 kPa,
The coated cermet tools 1 to 13 of the present invention were manufactured by vapor-depositing the upper layer of the vapor deposition α-type Al 2 O 3 layer, which is also the upper layer, with the target layer thicknesses shown in Tables 4 and 5 under the same conditions. .

また、比較の目的で、硬質被覆層の上部層である蒸着α型Al23層の形成を、
反応ガス組成:容量%で、AlCl3:2.2%、CO2:5%、HCl:2%、H2S:0.15%、H2:残り、
反応雰囲気温度:1020℃、
反応雰囲気圧力:6〜13kPaの範囲内の所定の圧力、
の通常条件で、表6,7に示される通りの目標層厚で形成する以外は、上記の本発明被覆サーメット工具1〜13と同一の条件で従来被覆サーメット工具1〜13をそれぞれ製造した。
For the purpose of comparison, the formation of a vapor-deposited α-type Al 2 O 3 layer, which is the upper layer of the hard coating layer,
Reaction gas composition: volume%, AlCl 3 : 2.2%, CO 2 : 5%, HCl: 2%, H 2 S: 0.15%, H 2 : remaining,
Reaction atmosphere temperature: 1020 ° C.
Reaction atmosphere pressure: a predetermined pressure in the range of 6 to 13 kPa,
The conventional coated cermet tools 1 to 13 were produced under the same conditions as those of the present invention coated cermet tools 1 to 13 except that the target layer thicknesses shown in Tables 6 and 7 were used.

ついで、上記の本発明被覆サーメット工具1〜13と従来被覆サーメット工具1〜13の硬質被覆層の上部層を構成する蒸着α型Al23層について、電界放出型走査電子顕微鏡を用いて、傾斜角度数分布グラフをそれぞれ作成した。
すなわち、上記傾斜角度数分布グラフは、上記の本発明被覆サーメット工具1〜13の蒸着α型Al23層の上位層および下位層について、それぞれ工具基体表面と平行な面をそれぞれ研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、それぞれの前記研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、この測定結果に基づいて、前記測定傾斜角のうち、前記上位層については0〜45度、前記下位層については45〜90度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより作成した。
また、従来被覆サーメット工具1〜13の蒸着α型Al23層についても、工具基体表面と平行な面の任意研磨面を同一の条件で観察し、同一な条件で傾斜角度数分布グラフを作成した。
Next, for the vapor deposition α-type Al 2 O 3 layer constituting the upper layer of the hard coating layer of the present invention coated cermet tool 1-13 and the conventional coated cermet tool 1-13, using a field emission scanning electron microscope, Each inclination angle number distribution graph was created.
That is, in the inclination angle number distribution graph, for the upper layer and the lower layer of the vapor deposition α-type Al 2 O 3 layer of the coated cermet tools 1 to 13 of the present invention, the surfaces parallel to the tool base surface are respectively polished surfaces. In this state, it is set in a lens barrel of a field emission scanning electron microscope, and an electron beam with an acceleration voltage of 15 kV at an incident angle of 70 degrees is applied to the polished surface with an irradiation current of 1 nA, and each measuring range of the polished surface is measured. Irradiate each crystal grain having a hexagonal crystal lattice existing in it, and use an electron backscatter diffraction image apparatus, and a region of 30 × 50 μm at an interval of 0.1 μm / step with respect to the normal of the polished surface Then, the inclination angle formed by the normal line of the (0001) plane which is the crystal plane of the crystal grain is measured, and based on the measurement result, the upper layer of the measurement inclination angle is 0 to 45 degrees, 4 for lower layers The measurement inclination angle within the range of 5 to 90 degrees was divided for each pitch of 0.25 degrees, and the frequency existing in each section was totaled.
In addition, for the deposited α-type Al 2 O 3 layers of the conventional coated cermet tools 1 to 13, an arbitrary polished surface parallel to the tool base surface is observed under the same conditions, and an inclination angle number distribution graph is displayed under the same conditions. Created.

この結果得られた各種の蒸着α型Al23層の傾斜角度数分布グラフにおいて、表4〜7にそれぞれ示される通り、本発明被覆サーメット工具1〜13の蒸着α型Al23層の上位層および下位層は、(0001)面の測定傾斜角の分布が、それぞれ上位層では30〜45度、下位層では75〜90度の範囲内の傾斜角区分に最高ピークが現れる傾斜角度数分布グラフを示すのに対して、従来被覆サーメット工具1〜13の蒸着α型Al23層は、(0001)面の測定傾斜角の分布が0〜45度および45〜90度の範囲内で不偏的で、最高ピークが存在しない傾斜角度数分布グラフを示すものであった。
また表4〜7には、上記の各種の蒸着α型Al23層の傾斜角度数分布グラフにおいて、それぞれ30〜45度および75〜90度の範囲内の傾斜角区分に存在する全傾斜角度数の傾斜角度数分布グラフ全体に占める割合を示した。
なお、図3は、本発明被覆サーメット工具2の蒸着α型Al23層の上位層の傾斜角度数分布グラフ、図4は同下位層の傾斜角度数分布グラフ、図5,6は従来被覆サーメット工具2の蒸着α型Al23層のそれぞれ0〜45度および45〜90度の傾斜角区分を示す傾斜角度数分布グラフである。
In the inclination angle frequency distribution graph of the results obtained various deposition α type the Al 2 O 3 layer of, as shown in Tables 4-7, the present invention coated cermet tools 1 to 13 deposited α-type the Al 2 O 3 layer of In the upper layer and lower layer, the distribution of the measured inclination angle of the (0001) plane is such that the highest peak appears in the inclination angle section within the range of 30 to 45 degrees in the upper layer and 75 to 90 degrees in the lower layer, respectively. In contrast to the number distribution graph, the deposited α-type Al 2 O 3 layer of the conventional coated cermet tools 1 to 13 has a distribution of measured inclination angles on the (0001) plane in the range of 0 to 45 degrees and 45 to 90 degrees. The inclination angle number distribution graph in which the highest peak does not exist is shown.
Tables 4 to 7 show the total inclination existing in the inclination angle sections in the range of 30 to 45 degrees and 75 to 90 degrees, respectively, in the inclination angle number distribution graphs of the various deposited α-type Al 2 O 3 layers. The ratio of the number of angles to the entire inclination angle number distribution graph is shown.
3 is an inclination angle number distribution graph of the upper layer of the vapor deposition α-type Al 2 O 3 layer of the coated cermet tool 2 of the present invention, FIG. 4 is an inclination angle number distribution graph of the lower layer, and FIGS. the inclination angle frequency distribution graph, respectively showing the inclination angle segment of 0 to 45 degrees and 45-90 degrees coated cermet tool 2 of the deposition α type the Al 2 O 3 layer.

また、この結果得られた本発明被覆サーメット工具1〜13および従来被覆サーメット工具1〜13の硬質被覆層の構成層の厚さを、走査型電子顕微鏡を用いて測定(縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。   Moreover, when the thickness of the constituent layer of the hard coating layer of the present coated cermet tools 1 to 13 and the conventional coated cermet tools 1 to 13 obtained as a result was measured using a scanning electron microscope (longitudinal section measurement). , Each showed an average layer thickness (average value of 5-point measurement) substantially the same as the target layer thickness.

つぎに、上記の本発明被覆サーメット工具1〜13および従来被覆サーメット工具1〜13各種の被覆サーメット工具について、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・S35Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:400m/min.、
切り込み:1.5mm、
送り:0.2mm/rev.、
切削時間:5分、
の条件(切削条件Aという)での炭素鋼の湿式断続高速切削試験(通常の切削速度は250m/min.)、
被削材:JIS・SNCM439の長さ方向等間隔4本縦溝入り丸棒、
切削速度:360m/min.、
切り込み:1mm、
送り:0.25mm/rev.、
切削時間:5分、
の条件(切削条件Bという)での合金鋼の湿式断続高速切削試験(通常の切削速度は180m/min.)、さらに、
被削材:JIS・FC300の長さ方向等間隔4本縦溝入り丸棒、
切削速度:400m/min.、
切り込み:2.5mm、
送り:0.2mm/rev.、
切削時間:5分、
の条件(切削条件Cという)での鋳鉄の湿式断続高速切削試験(通常の切削速度は300m/min.)を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表8に示した。
Next, for the various coated cermet tools of the present invention coated cermet tool 1-13 and the conventional coated cermet tool 1-13, all of them are screwed with a fixing jig to the tip of the tool steel tool,
Work material: JIS-S35C lengthwise equal length 4 round fluted round bars,
Cutting speed: 400 m / min. ,
Incision: 1.5mm,
Feed: 0.2 mm / rev. ,
Cutting time: 5 minutes
Wet intermittent high-speed cutting test (normal cutting speed is 250 m / min.) Of carbon steel under the conditions (referred to as cutting conditions A),
Work material: JIS / SNCM439 round direction bar with four equal intervals in the length direction,
Cutting speed: 360 m / min. ,
Cutting depth: 1mm,
Feed: 0.25 mm / rev. ,
Cutting time: 5 minutes
Wet intermittent high-speed cutting test (normal cutting speed is 180 m / min.) Of alloy steel under the following conditions (referred to as cutting conditions B),
Work material: JIS / FC300 lengthwise equidistant 4 bars with vertical grooves,
Cutting speed: 400 m / min. ,
Incision: 2.5mm,
Feed: 0.2 mm / rev. ,
Cutting time: 5 minutes
Wet intermittent high-speed cutting test (normal cutting speed is 300 m / min.) Of cast iron under the above conditions (referred to as cutting condition C), and the flank wear width of the cutting edge was measured in any cutting test. The measurement results are shown in Table 8.

Figure 2007160464
Figure 2007160464

Figure 2007160464
Figure 2007160464

Figure 2007160464
Figure 2007160464

Figure 2007160464
Figure 2007160464

Figure 2007160464
Figure 2007160464

Figure 2007160464
Figure 2007160464

Figure 2007160464
Figure 2007160464

Figure 2007160464
Figure 2007160464

表4〜8に示される結果から、本発明被覆サーメット工具1〜13は、いずれも硬質被覆層の上部層である蒸着α型Al23層の上下2層構造の上位層および下位層のそれぞれが、(0001)面の傾斜角度数分布グラフで前記上位層では3〜4度、同下位層では75〜90度の範囲内の傾斜角区分で最高ピークを示し、すぐれた高温強度と高温硬さを具備するようになることから、前記蒸着α型Al23層の層厚を厚膜化した状態で、鋼や鋳鉄の切削加工を、高速で、かつ機械的衝撃を伴なう断続切削条件で行なっても、チッピングの発生なく、すぐれた耐摩耗性を示すのに対して、硬質被覆層の上部層全体が、(0001)面の測定傾斜角の分布が0〜45度および45〜90度の範囲内で不偏的で、最高ピークが存在しない傾斜角度数分布グラフを示す蒸着α型Al23層で構成された従来被覆サーメット工具1〜13においては、いずれも前記蒸着α型Al23層の高温強度および高温硬さ不足が原因で、高速断続切削条件では硬質被覆層にチッピングが発生し、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 4 to 8, the coated cermet tools 1 to 13 of the present invention are the upper layer and lower layer of the upper and lower two-layer structure of the vapor-deposited α-type Al 2 O 3 layer that is the upper layer of the hard coating layer. In each of the inclination angle number distribution graphs of the (0001) plane, the highest layer shows the highest peak in the inclination angle range within the range of 3 to 4 degrees and the lower layer within the range of 75 to 90 degrees. Since it has hardness, cutting of steel and cast iron is performed at high speed and with mechanical impact in a state where the thickness of the vapor-deposited α-type Al 2 O 3 layer is increased. Even when performed under intermittent cutting conditions, chipping does not occur and excellent wear resistance is exhibited, whereas the entire upper layer of the hard coating layer has a distribution of measured inclination angles of (0001) plane of 0 to 45 degrees and Tilt angle that is unbiased within the range of 45 to 90 degrees and does not have the highest peak In the conventional coated cermet tools 1 to 13, which is composed of vapor-deposited α-type the Al 2 O 3 layer showing the distribution graph, both in high temperature strength and high-temperature hardness insufficient cause the deposition α type the Al 2 O 3 layer, high speed It is clear that under intermittent cutting conditions, chipping occurs in the hard coating layer and the service life is reached in a relatively short time.

上述のように、この発明の被覆サーメット工具は、各種鋼や鋳鉄などの通常の条件での連続切削や断続切削は勿論のこと、特に高速断続切削でもチッピングの発生なく、すぐれた耐摩耗性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated cermet tool of the present invention has excellent wear resistance without occurrence of chipping even in continuous cutting and interrupted cutting under normal conditions such as various steels and cast irons, especially in high-speed interrupted cutting. Since it exhibits excellent cutting performance over a long period of time, it can sufficiently satisfactorily cope with higher performance of the cutting device, labor saving and energy saving of cutting, and lower cost.

硬質被覆層を構成する蒸着α型Al23層の上位層における結晶粒の(0001)面を測定する場合の傾斜角の測定範囲を示す概略説明図である。Is a schematic diagram illustrating a measurement range of the inclination angle in the case of measuring the crystal grains (0001) plane in the upper layer of vapor-deposited α-type the Al 2 O 3 layer constituting the hard coating layer. 硬質被覆層を構成する蒸着α型Al23層の下位層における結晶粒の(0001)面を測定する場合の傾斜角の測定範囲を示す概略説明図である。It is a schematic diagram illustrating a measurement range of the inclination angle in the case of measuring the crystal grains (0001) plane in the lower layer of the deposited α-type the Al 2 O 3 layer constituting the hard coating layer. 本発明被覆サーメット工具2の硬質被覆層を構成する蒸着α型Al23層の上位層の(0001)面の傾斜角度数分布グラフである。It is an inclination angle number distribution graph of the (0001) plane of the upper layer of the vapor-deposited α-type Al 2 O 3 layer constituting the hard coating layer of the coated cermet tool 2 of the present invention. 本発明被覆サーメット工具2の硬質被覆層を構成する蒸着α型Al23層の下位層の(0001)面の傾斜角度数分布グラフである。It is an inclination angle number distribution graph of the (0001) plane of the lower layer of the vapor-deposited α-type Al 2 O 3 layer constituting the hard coating layer of the coated cermet tool 2 of the present invention. 従来被覆サーメット工具2の硬質被覆層を構成する蒸着α型Al23層の0〜45度の傾斜角区分を示す傾斜角度数分布グラフである。The inclination angle frequency distribution graph showing the tilt angle sections of 0 to 45 degrees to the conventional coated cermet deposited α-type the Al 2 O 3 layer constituting the hard coating layer of the tool 2. 従来被覆サーメット工具2の硬質被覆層を構成する蒸着α型Al23層の45〜90度の傾斜角区分を示す傾斜角度数分布グラフである。The inclination angle frequency distribution graph showing the tilt angle sections of 45 to 90 degrees to the conventional coated cermet deposited α-type the Al 2 O 3 layer constituting the hard coating layer of the tool 2.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a)下部層が、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(b)上部層が、化学蒸着した状態でα型の結晶構造を有し、かつ20μm以下の平均層厚を有する酸化アルミニウム層、
以上(a)および(b)で構成された硬質被覆層を蒸着形成してなる表面被覆サーメット製切削工具において、
上記酸化アルミニウム層を、それぞれ2〜18μmの平均層厚(ただし、合計平均層厚は20μm以下)を有する下位層と上位層からなる上下2層構造とし、さらに電界放出型走査電子顕微鏡を用い、上記工具基体表面と平行な研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、前記上位層については0〜45度、上記下位層については45〜90度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで現した場合、
(A)上記酸化アルミニウム層の上位層は、30〜45度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記30〜45度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の50%以上の割合を占める傾斜角度数分布グラフを示し、
(B)上記酸化アルミニウム層の下位層は、75〜90度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記75〜90度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の50%以上の割合を占める傾斜角度数分布グラフを示すこと、
を特徴とする硬質被覆層が高速断続切削ですぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具。
On the surface of the tool base composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(A) The lower layer is composed of one or more of a Ti carbide layer, a nitride layer, a carbonitride layer, a carbonate layer, and a carbonitride layer, and a total average of 3 to 20 μm A Ti compound layer having a layer thickness,
(B) an aluminum oxide layer in which the upper layer has an α-type crystal structure in the state of chemical vapor deposition and has an average layer thickness of 20 μm or less,
In the surface-coated cermet cutting tool formed by vapor-depositing the hard coating layer composed of (a) and (b) above,
The aluminum oxide layer has an upper and lower two-layer structure composed of a lower layer and an upper layer each having an average layer thickness of 2 to 18 μm (however, the total average layer thickness is 20 μm or less), and further using a field emission scanning electron microscope, The crystal grains having a hexagonal crystal lattice existing within the measurement range of the polished surface parallel to the tool substrate surface are irradiated with electron beams, and the crystal plane of the crystal grains is normal to the polished surface. A tilt angle formed by a normal line of a certain (0001) plane is measured, and among the measured tilt angles, the measured tilt angle is in the range of 0 to 45 degrees for the upper layer and 45 to 90 degrees for the lower layer. Are divided into pitches of 0.25 degrees, and the frequency distribution in each section is represented by an inclination angle number distribution graph obtained by tabulating,
(A) The upper layer of the aluminum oxide layer has the highest peak in the inclination angle section within the range of 30 to 45 degrees, and the sum of the frequencies existing within the range of 30 to 45 degrees is the inclination angle number. An inclination angle frequency distribution graph that accounts for 50% or more of the total frequency in the distribution graph,
(B) In the lower layer of the aluminum oxide layer, the highest peak exists in the inclination angle section in the range of 75 to 90 degrees, and the total of the frequencies existing in the range of 75 to 90 degrees is the inclination angle number. Showing an inclination angle frequency distribution graph that occupies 50% or more of the total frequency in the distribution graph;
A surface-coated cermet cutting tool with a hard coating layer that features excellent chipping resistance in high-speed intermittent cutting.
JP2005359829A 2005-12-14 2005-12-14 Surface coated cermet cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting Withdrawn JP2007160464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005359829A JP2007160464A (en) 2005-12-14 2005-12-14 Surface coated cermet cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005359829A JP2007160464A (en) 2005-12-14 2005-12-14 Surface coated cermet cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting

Publications (1)

Publication Number Publication Date
JP2007160464A true JP2007160464A (en) 2007-06-28

Family

ID=38243934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005359829A Withdrawn JP2007160464A (en) 2005-12-14 2005-12-14 Surface coated cermet cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting

Country Status (1)

Country Link
JP (1) JP2007160464A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102441686A (en) * 2010-09-30 2012-05-09 三菱综合材料株式会社 Blade-breakage-resisting surface coating cutting tool with excellent performance of hard coating layer
JP2014121749A (en) * 2012-12-20 2014-07-03 Mitsubishi Materials Corp Surface-coated cutting tool including coating layer exhibiting excellent chipping resistance and wear resistance in high speed intermittent cutting

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102441686A (en) * 2010-09-30 2012-05-09 三菱综合材料株式会社 Blade-breakage-resisting surface coating cutting tool with excellent performance of hard coating layer
JP2014121749A (en) * 2012-12-20 2014-07-03 Mitsubishi Materials Corp Surface-coated cutting tool including coating layer exhibiting excellent chipping resistance and wear resistance in high speed intermittent cutting

Similar Documents

Publication Publication Date Title
JP4747324B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high speed heavy cutting
JP2006289556A (en) Surface-coated cermet cutting tool having hard coating layer for exhibiting superior chipping resistance in high speed intermittent cutting work
JP4512989B2 (en) Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer
JP4747388B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP4720418B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP2006198740A (en) Cutting tool made of surface coated cermet with hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting
JP2006043853A (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed and multiple cutting
JP2006289586A (en) Surface-coated cermet cutting tool having hard coating layer exhibiting superior chipping resistance in high speed intermittent cutting work
JP2007160464A (en) Surface coated cermet cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting
JP2006000970A (en) Surface-coated cermet cutting tool with hard coating layer exerting excellent abrasion resistance in high-speed cutting
JP4748361B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance with hard coating layer in difficult-to-cut materials
JP2006289546A (en) Surface-coated cermet cutting tool having hard coating layer for exhibiting superior chipping resistance in high speed intermittent cutting work
JP4747386B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent wear resistance in high speed cutting
JP2005238437A (en) Surface-coated cermet cutting tool having hard coating layer exhibiting superior abrasion resistance in high speed cutting
JP4529578B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high speed heavy cutting
JP4747387B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer
JP4747338B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP2006116621A (en) Surface-coated cermet cutting tool with hard coating layer exerting excellent chipping resistance in high-speed intermittent cutting
JP2006334757A (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent wear resistance in high-speed cutting
JP2006218546A (en) Surface-coated cermet cutting tool with hard coating layer exerting excellent chipping resistance in high-speed intermittent cutting
JP4793629B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP2006315149A (en) Surface coated cermet cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting
JP2006043802A (en) Surface coated cermet cutting tool having hard coated layer exhibiting excellent wear resistance in high-speed cutting
JP4692065B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer
JP2007168029A (en) Surface coated cermet-made cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed cutting material hard to cut

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090303