JP6853450B2 - Surface coating cutting tool - Google Patents

Surface coating cutting tool Download PDF

Info

Publication number
JP6853450B2
JP6853450B2 JP2017026575A JP2017026575A JP6853450B2 JP 6853450 B2 JP6853450 B2 JP 6853450B2 JP 2017026575 A JP2017026575 A JP 2017026575A JP 2017026575 A JP2017026575 A JP 2017026575A JP 6853450 B2 JP6853450 B2 JP 6853450B2
Authority
JP
Japan
Prior art keywords
layer
ticn
carbonitride
tool
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017026575A
Other languages
Japanese (ja)
Other versions
JP2017144549A (en
Inventor
正樹 奥出
正樹 奥出
西田 真
西田  真
翔 龍岡
翔 龍岡
佐藤 賢一
佐藤  賢一
光亮 柳澤
光亮 柳澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to PCT/JP2017/005901 priority Critical patent/WO2017142061A1/en
Publication of JP2017144549A publication Critical patent/JP2017144549A/en
Application granted granted Critical
Publication of JP6853450B2 publication Critical patent/JP6853450B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本発明は、各種の鋼や鋳鉄などの切削加工を、硬質被覆層が塑性変形を起こしやすい高負荷かつ低速条件で行った場合でも、硬質被覆層がすぐれた耐塑性変形性を有し、長期の使用に亘ってすぐれた耐摩耗性を発揮する表面被覆切削工具(以下、被覆工具という)に関する。 According to the present invention, even when cutting various types of steel, cast iron, etc. are performed under high load and low speed conditions in which the hard coating layer is prone to plastic deformation, the hard coating layer has excellent plastic deformation resistance and is long-term. The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent wear resistance over its use.

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)下部層が、Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなるTi化合物層、
(b)上部層が、酸化アルミニウム層(以下、Al層で示す)、
以上(a)および(b)で構成された硬質被覆層が蒸着形成された被覆工具が知られているが、被削材の種類、切削条件に応じて、耐チッピング性、耐欠損性、耐剥離性、耐摩耗性等の工具性能を高めるため、各種の提案がなされている。
Conventionally, generally, on the surface of a substrate (hereinafter, collectively referred to as a tool substrate) composed of a tungsten carbide (hereinafter, WC) -based cemented carbide or a titanium nitride (hereinafter, TiCN) -based cermet. ,
(A) The lower layer is a Ti carbide (hereinafter referred to as TiC) layer, a nitride (hereinafter, also indicated by TiN) layer, a carbonitride (hereinafter, indicated by TiCN) layer, and a carbon oxide (hereinafter, TiCO). A Ti compound layer consisting of one layer or two or more of the (shown) layer and the carbonitride oxide (hereinafter referred to as TiCNO) layer.
(B) The upper layer is an aluminum oxide layer (hereinafter referred to as Al 2 O 3 layer),
A covering tool in which a hard coating layer composed of the above (a) and (b) is formed by vapor deposition is known, but chipping resistance, chipping resistance, and chipping resistance and chipping resistance are determined according to the type of work material and cutting conditions. Various proposals have been made to improve tool performance such as peelability and abrasion resistance.

例えば、特許文献1には、WC基超硬合金基体の表面に、少なくとも1層のチタンの炭窒化物層を含むチタン化合物内層と、酸化アルミニウム外層とで構成された複合硬質層を被覆してなる切削工具において、前記チタン化合物内層を構成する少なくとも1層のチタンの炭窒化物層は、(220)面にX線回折による最大ピークが現れるTiCN層であり、前記酸化アルミニウム外層は、κ型結晶を主体とし、かつASTMにおいてκ−Alの面間隔2.79オングストロームの面として定義される面に最大ピークが現れる酸化アルミニウム層とすることにより、剥離、摩耗等による異常損傷の発生を防止し、工具寿命の向上を図ることが提案されている。
即ち、TiCN層は(220)面に配向することで、基体または下の層との密着力を増し、界面からの剥離が起きにくくなるため、剥離に起因する異常損傷の発生や寿命低下を抑えることができる。また、(220)面に配向したTiCN層の上に、κ型結晶を主体としかつASTMにおいてκ−Alの面間隔2.79オングストロームの面として定義される面に最大ピークが現れる酸化アルミニウム層を被覆すると、前記面間距離2.79オングストロームに配向性を示すκ−Alは被覆層表面が平滑であるために、切り屑と工具間の摩擦による異常損傷が生じにくくなり、この酸化アルミニウム層が異常損傷を起しにくく安定した耐摩耗性を示すというものである。
For example, in Patent Document 1, the surface of a WC-based cemented carbide substrate is coated with a composite hard layer composed of an inner layer of a titanium compound including at least one carbonitride layer of titanium and an outer layer of aluminum oxide. The carbonitride layer of titanium, which is at least one layer constituting the inner layer of the titanium compound, is a TiCN layer in which the maximum peak due to X-ray diffraction appears on the (220) plane, and the outer layer of aluminum oxide is a κ type. Abnormal damage due to peeling, abrasion, etc. occurs by using an aluminum oxide layer that is mainly composed of crystals and in which the maximum peak appears on the surface defined as the surface of κ-Al 2 O 3 with a surface spacing of 2.79 angstrom in ASTM. It has been proposed to prevent this and improve the tool life.
That is, by orienting the TiCN layer on the (220) plane, the adhesion with the substrate or the lower layer is increased, and peeling from the interface is less likely to occur, so that the occurrence of abnormal damage and shortening of life due to peeling are suppressed. be able to. Further, on the TiCN layer oriented to the (220) plane, an oxidation in which a maximum peak appears on a plane defined as a plane having a plane spacing of 2.79 angstrom of κ-Al 2 O 3 mainly composed of κ type crystals in ASTM. When coating the aluminum layer, κ-Al 2 O 3 showing the orientation of the distance 2.79 Å between the surfaces for the coating layer surface is smooth, abnormal damage hardly occurs due to friction between the chip and the tool , This aluminum oxide layer is less likely to cause abnormal damage and exhibits stable wear resistance.

また、特許文献2には、工具基体表面に内層および外層を被覆形成した被覆工具において、内層を10μm以上の厚みを有し柱状組織からなる炭窒化チタン層を有する多層構造とし、外層を、少なくともα型酸化アルミニウム層を含む層とし、前記炭窒化チタン層について、(422)面と(311)面との配向性指数TC(422)、TC(311)をともに1.3以上3以下とする配向性をもたせ、また、配向性指数TC(422)とTC
(311)とを除く配向性指数TC(hkl)がすべて1.5以下とすることによって、被覆工具の耐剥離性、耐摩耗性、耐クレータ性、また、破壊強度を向上させることが提案されている。
ここで、炭窒化チタン層の配向性指数TC(422)、TC(311)をともに1.3以上とし、その組織を柱状組織とすることにより、10μm以上の膜厚でも膜の耐破壊性を大きく向上させ耐摩耗性を向上させることが可能となり、また、切削中のチッピングによる摩耗の進行が抑制し得るとともに、切削中の被削材の溶着が起こりにくくなり、その結果、膜にかかる切削応力の増大が防げることから耐剥離性も大幅に向上するとされている。
Further, in Patent Document 2, in a coated tool in which an inner layer and an outer layer are coated on the surface of a tool substrate, the inner layer has a multi-layer structure having a titanium nitride layer having a thickness of 10 μm or more and a columnar structure, and the outer layer is at least. The layer includes the α-type aluminum oxide layer, and the orientation indexes TC (422) and TC (311) of the (422) plane and the (311) plane of the titanium nitride layer are both 1.3 or more and 3 or less. Orientation, orientation index TC (422) and TC
It has been proposed to improve the peel resistance, wear resistance, crater resistance, and fracture strength of the coated tool by setting the orientation index TC (hkl) excluding (311) to 1.5 or less. ing.
Here, by setting the orientation indices TC (422) and TC (311) of the titanium carbide layer to 1.3 or more and forming the structure into a columnar structure, the fracture resistance of the film can be improved even with a film thickness of 10 μm or more. It is possible to greatly improve and improve wear resistance, and it is possible to suppress the progress of wear due to chipping during cutting, and welding of the work material during cutting is less likely to occur, and as a result, cutting applied to the film. It is said that the peel resistance is greatly improved because the increase in stress can be prevented.

また、特許文献3には、基体表面に、少なくとも1層の炭窒化チタン層を含む硬質被覆層を形成した被覆工具において、前記炭窒化チタン層の組織係数TC(hkl)のうちの配向性指数TC(220)を最大とし、また、硬度基準片の押し込み硬度をHsとし、炭窒化チタン層の押し込み硬度をHtとした場合、(Htの平均値)/Hs≧3、かつ、炭窒化チタン層の押し込み硬度の最大値をHtmax、最小値をHtminとした場合、(Htmax−Htmin)/(Htの平均値)<0.5とし、炭窒化チタン層の結晶配向性を制御するとともに、該炭窒化チタン層の硬度のばらつきをなくすことにより、被覆工具の耐摩耗性および耐欠損性の向上を図ることが提案されている。 Further, Patent Document 3 describes an orientation index of the structure coefficient TC (hkl) of the titanium nitride layer in a coating tool in which a hard coating layer including at least one titanium nitride layer is formed on the surface of the substrate. When TC (220) is the maximum, the indentation hardness of the hardness reference piece is Hs, and the indentation hardness of the titanium nitride layer is Ht, (average value of Ht) / Hs ≧ 3, and the titanium nitride layer When the maximum value of the indentation hardness of is Htmax and the minimum value is Htmin, (Htmax-Htmin) / (average value of Ht) <0.5, the crystal orientation of the titanium nitride layer is controlled, and the charcoal is used. It has been proposed to improve the wear resistance and fracture resistance of the coated tool by eliminating the variation in the hardness of the titanium nitride layer.

特開平8−300203号公報Japanese Unexamined Patent Publication No. 8-300203 特許平11−140647号公報Japanese Patent No. 11-140647 特許第5729777号公報Japanese Patent No. 5729777

近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強い。これに伴い、切削加工は一段と高能率化すると共に、高切り込みや高送りなどの重切削、断続切削等で切れ刃に高負荷が作用する傾向にある。前述した従来の被覆工具を鋼や鋳鉄などの通常の条件での連続切削、高速切削に用いた場合には問題はないが、従来の被覆工具を、高負荷が作用することにより、硬質被覆層が塑性変形を起こすような高負荷・低速切削加工条件に用いた場合には、硬質被覆層の塑性変形により、硬質被覆層を構成する結晶粒の脱落等が生じやすく、また、これに起因する異常摩耗が進行しやすく、これを原因として比較的短時間で工具寿命に至るという問題がある。 In recent years, the performance of cutting equipment has been remarkably improved, while there is a strong demand for labor saving, energy saving, and cost reduction for cutting. Along with this, the cutting process becomes more efficient, and a high load tends to act on the cutting edge due to heavy cutting such as high cutting and high feed, intermittent cutting, and the like. There is no problem when the above-mentioned conventional covering tool is used for continuous cutting and high-speed cutting under normal conditions such as steel and cast iron, but the conventional covering tool is used as a hard coating layer due to the action of a high load. When used under high-load, low-speed cutting conditions that cause plastic deformation, the plastic deformation of the hard coating layer tends to cause the crystal grains that make up the hard coating layer to fall off, which is also the cause. Abnormal wear is likely to progress, which causes a problem that the tool life is reached in a relatively short time.

そこで、本発明者らは、前述のような観点から、切れ刃に高負荷が作用し、硬質被覆層が塑性変形を起こしやすい高負荷・低速切削加工条件で使用した場合でも、硬質被覆層の異常損傷が発生しにくい硬質被覆層の構造について鋭意研究を行ったところ、硬質被覆層をTi化合物層からなる下部層と、Al層からなる上部層とで構成するとともに、下部層を構成するTi化合物層として、少なくとも1層のTiの炭窒化物(以下、「TiCN」で示すこともある。)層を設け、該TiCN層の(200)配向性を高めた場合には、高負荷(特に、TiCN層表面への大きなせん断力)が作用したとしても、TiCN層がすぐれた耐塑性変形性を示し、その結果、TiCN層を構成する結晶粒の脱落等による異常損傷の発生を抑制し得ること、また、これにより耐摩耗性の向上を図り得ることを見出したのである。
また、前記TiCN層を、アスペクト比が5以上である柱状縦長組織として形成した場合には、すぐれた耐塑性変形性に加え、柱状縦長組織によりもたらされる一段とすぐれた耐摩耗性を発揮することを見出したのである。
Therefore, from the above viewpoint, the present inventors consider that even when the hard coating layer is used under high load and low speed cutting conditions in which a high load acts on the cutting edge and the hard coating layer is likely to undergo plastic deformation. As a result of intensive research on the structure of the hard coating layer that is less likely to cause abnormal damage, the hard coating layer is composed of a lower layer made of a Ti compound layer and an upper layer made of an Al 2 O 3 layer, and the lower layer is formed. When at least one Ti carbonitride (hereinafter, also referred to as “TiCN”) layer is provided as the constituent Ti compound layer and the (200) orientation of the TiCN layer is enhanced, the height is high. Even if a load (particularly, a large shearing force on the surface of the TiCN layer) acts, the TiCN layer exhibits excellent plastic deformation resistance, and as a result, abnormal damage such as dropping of crystal grains constituting the TiCN layer occurs. It was found that it can be suppressed and that the wear resistance can be improved by this.
Further, when the TiCN layer is formed as a columnar vertically elongated structure having an aspect ratio of 5 or more, in addition to excellent plastic deformation resistance, it exhibits further excellent wear resistance brought about by the columnar vertically elongated structure. I found it.

本発明は、前記知見に基づいてなされたものであって、
「(1)炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、硬質被覆層が形成されている表面被覆切削工具において、
(a)前記硬質被覆層は、少なくとも下部層と上部層からなり、
(b)前記下部層は、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、炭窒酸化物層およびTiとAlの複合窒化物層から選ばれる1層または2層以上からなり、かつ、その内の少なくとも1層は1.7μm以上の平均層厚のTiの炭窒化物層で構成された2〜15μmの合計平均層厚を有するTi化合物層からなり、
(c)前記上部層は、1〜15μmの平均層厚を有する酸化アルミニウム層からなり、
(d)前記下部層のTi化合物層中の少なくとも1層のTiの炭窒化物層は、(200)面にX線回折による最大回折ピーク強度が現れ、かつ、配向性指数Tc(200)は2.0以上であることを特徴とする表面被覆切削工具。
(2)前記Ti化合物層の縦断面において、アスペクト比が5以上である柱状縦長組織を有するTiの炭窒化物からなる結晶粒が占める面積割合は、70面積%以上であることを特徴とする(1)に記載の表面被覆切削工具。
(3)前記Ti化合物層において、すべてのTiの炭窒化物層の層厚が1.7〜13.5μmであることを特徴とする(1)または(2)に記載の表面被覆切削工具。」
The present invention has been made based on the above findings.
"(1) In a surface-coated cutting tool in which a hard coating layer is formed on the surface of a tool substrate composed of a tungsten carbide-based cemented carbide or a titanium nitride-based cermet.
(A) The hard coating layer is composed of at least a lower layer and an upper layer.
(B) The lower layer is composed of one layer or two or more layers selected from a carbide layer of Ti, a nitride layer, a carbonitride layer, a carbon oxide layer, a carbonitride oxide layer and a composite nitride layer of Ti and Al. It becomes, and at least one layer of which consists of Ti compound layer having a total average layer thickness of 2~15μm comprised of carbonitride layer of Ti having an average layer thickness of more than 1.7 [mu] m,
(C) The upper layer is composed of an aluminum oxide layer having an average layer thickness of 1 to 15 μm.
(D) At least one Ti carbonitride layer in the lower Ti compound layer has a maximum diffraction peak intensity due to X-ray diffraction on the (200) plane, and has an orientation index Tc (200). A surface coating cutting tool characterized by being 2.0 or more.
(2) In the vertical cross section of the Ti compound layer, the area ratio of the crystal grains made of Ti carbonitride having a columnar longitudinal structure having an aspect ratio of 5 or more is 70 area% or more. The surface coating cutting tool according to (1).
(3) The surface coating cutting tool according to (1) or (2), wherein in the Ti compound layer, the layer thickness of all Ti carbonitride layers is 1.7 to 13.5 μm. "

次に、本発明の被覆工具について詳細に説明する。
本発明の被覆工具の硬質被覆層は、少なくとも、Ti化合物層からなる下部層と、Al層から上部層とによって構成される。
Next, the covering tool of the present invention will be described in detail.
Hard layer of the coated tool of the present invention includes at least a lower layer comprising a Ti compound layer, composed of an upper layer from the Al 2 O 3 layer.

下部層:
Ti化合物層(例えば、TiC層、TiN層、TiCN層、TiCO層TiCNO層およびTiAlN層)からなる下部層は、それ自身の有するすぐれた高温強度によって、硬質被覆層に対して高温強度を与える。また、Ti化合物層は、工具基体表面、Al層からなる上部層のいずれにも密着し、硬質被覆層の工具基体に対する密着性を維持する作用を有する。
しかしながら、このTi化合物層の合計平均層厚が2μm未満の場合、前述した作用を十分に発揮させることができない。
一方、本発明の下部層は、後述するようにすぐれた耐塑性変形性を有するが、下部層の合計平均層厚が15μmを越えるような場合には、切削加工時に作用する高負荷によって塑性変形を起し易くなり、その結果、結晶粒の脱落の発生、これによるチッピング、欠損、剥離の発生、あるいは偏摩耗の進行等の異常損傷発生の原因となる。
したがって、本発明では、Ti化合物層からなる下部層の合計平均層厚は2〜15μmと定めた。
Lower layer:
The lower layer composed of the Ti compound layer (for example, TiC layer, TiN layer, TiCN layer, TiCO layer , TiCNO layer and TiAlN layer ) imparts high temperature strength to the hard coating layer by its own excellent high temperature strength. .. Further, the Ti compound layer adheres to both the surface of the tool substrate and the upper layer composed of the Al 2 O 3 layer, and has an effect of maintaining the adhesion of the hard coating layer to the tool substrate.
However, when the total average layer thickness of the Ti compound layer is less than 2 μm, the above-mentioned action cannot be sufficiently exerted.
On the other hand, the lower layer of the present invention has excellent plastic deformation resistance as described later, but when the total average layer thickness of the lower layer exceeds 15 μm, plastic deformation is caused by a high load acting during cutting. As a result, it causes the occurrence of falling off of crystal grains, the occurrence of chipping, chipping, peeling, or the occurrence of abnormal damage such as the progress of uneven wear.
Therefore, in the present invention, the total average layer thickness of the lower layer composed of the Ti compound layer is set to 2 to 15 μm.

下部層のTiCN層:
前記のとおり、本発明被覆工具の硬質被覆層の下部層は、Ti化合物層によって構成されるが、該下部層は、少なくとも1層のTiCN層を含み、該層は、(200)配向性を有するTiCN層として構成する。
すなわち、下部層の前記少なくとも1層のTiCN層を構成する結晶粒について、X線回折により各結晶格子面からの回折ピーク強度を測定した場合、(200)面に最大の回折ピーク強度が現れる(200)配向性を有する。
図1に、本発明被覆工具のTiCN層について、X線回折により測定した各結晶格子面からの回折ピーク強度のチャートの一例を示す。
図1からも明らかなように、本発明被覆工具のTiCN層は、(200)面についての回折ピーク強度が、他の結晶格子面のピーク強度に比して最大であることがわかる。
なお、X線回折は、X線回折装置としてスペクトリス社PANalytical Empyreanを用いて、CuKα線による2θ‐θ法で測定し、測定条件として、測定範囲(2θ):30〜130度、X線出力:45kV、40mA、発散スリット:0.5度、スキャンステップ:0.013度、1ステップ辺り測定時間:0.48sec/stepという条件で測定した。
Lower TiCN layer:
As described above, the lower layer of the hard coating layer of the coating tool of the present invention is composed of a Ti compound layer, and the lower layer contains at least one TiCN layer, and the layer has (200) orientation. It is configured as a TiCN layer having.
That is, when the diffraction peak intensities from each crystal lattice plane are measured by X-ray diffraction for the crystal grains constituting the TiCN layer of at least one of the lower layers, the maximum diffraction peak intensity appears on the (200) plane (200). 200) Has orientation.
FIG. 1 shows an example of a chart of diffraction peak intensities from each crystal lattice surface measured by X-ray diffraction for the TiCN layer of the coating tool of the present invention.
As is clear from FIG. 1, it can be seen that the TiCN layer of the coating tool of the present invention has the maximum diffraction peak intensity for the (200) plane as compared with the peak strength of the other crystal lattice planes.
The X-ray diffraction was measured by the 2θ-θ method using CuKα rays using PANalytical Empyrene of Spectris as an X-ray diffractometer, and the measurement conditions were: measurement range (2θ): 30 to 130 degrees, X-ray output: The measurement was performed under the conditions of 45 kV, 40 mA, divergence slit: 0.5 degrees, scan step: 0.013 degrees, and measurement time per step: 0.48 sec / step.

さらに、前記少なくとも1層のTiCN層について、配向性指数Tc(hkl)を求めた場合、本発明被覆工具ではTc(200)の値が2.0以上、好ましくは、3.0以上、を示す(200)配向性を有する。
なお、配向性指数Tc(hkl)とは、以下の式で定義されるものである。

Figure 0006853450

上記式中、I(hkl)は測定された(hkl)面のピーク強度(回折強度)を示し、I(hkl)はJCPDSカード(Joint Committee on Powder Diffraction Standards(粉末X線回折標準))で表される(hkl)面を構成するTiCとTiNの粉末回折強度の平均値を示す。また、(hkl)は、(111)、(200)、(220)、(311)、(222)、(331)、(420)、(422)の8面であり、上記式の中括弧内は8面の平均値を示す。 Further, when the orientation index Tc (hkl) is determined for at least one TiCN layer, the coating tool of the present invention shows a Tc (200) value of 2.0 or more, preferably 3.0 or more. (200) Has orientation.
The orientation index Tc (hkl) is defined by the following equation.
Figure 0006853450

In the above formula, I (hkl) indicates the peak intensity (diffraction intensity) of the measured (hkl) plane, and I 0 (hkl) is a JCPDS card (Joint Committee on Power Diffraction Standards). The average value of the powder diffraction intensities of TiC and TiN constituting the represented (hkl) plane is shown. Further, (hkl) is the eight surfaces of (111), (200), (220), (311), (222), (331), (420), and (422), and is in the curly braces of the above equation. Indicates the average value of 8 planes.

本発明被覆工具の少なくとも1層のTiCN層は、前記したように(200)面にX線回折による最大ピーク強度を示し、かつ、配向性指数Tc(200)≧2.0という(200)配向性を有することによって、切削加工時にTiCN層に大きなせん断力が作用した場合でも、TiCN層は耐塑性変形性を有するため、該層を構成する結晶粒の脱落の発生、これによるチッピング、欠損、剥離の発生、あるいは、偏摩耗の進行等の異常損傷の発生を抑制することができ、また、これにより耐摩耗性を向上させることができる。
しかし、(200)面についてのX線回折ピーク強度が、他の格子面からの回折ピーク強度に比して最大であるといえない場合、あるいは、配向性指数Tc(200)が2.0未満であるような場合には、(200)面配向性が十分でないため、耐塑性変形性向上効果が十分でなく、その結果、高負荷(高せん断力)が作用した場合の粒子の脱落防止、チッピング・欠損の発生、偏摩耗の発生を抑制することができない。
したがって、本発明では、下部層の少なくとも1層のTiCN層について測定した(200)面のX線回折ピーク強度が、他の結晶格子面のピーク強度に比して最大であることとし、また、配向性指数Tc(200)が2.0以上、好ましくは、3.0以上であると定めた。
As described above, at least one TiCN layer of the coating tool of the present invention shows the maximum peak intensity by X-ray diffraction on the (200) plane, and the orientation index Tc (200) ≥ 2.0 (200) orientation. Due to its properties, even when a large shearing force acts on the TiCN layer during cutting, the TiCN layer has plastic deformation resistance, so that the crystal grains constituting the layer fall off, resulting in chipping, chipping, and so on. It is possible to suppress the occurrence of peeling or the occurrence of abnormal damage such as the progress of uneven wear, and thereby the wear resistance can be improved.
However, when the X-ray diffraction peak intensity for the (200) plane cannot be said to be the maximum as compared with the diffraction peak intensity from other lattice planes, or the orientation index Tc (200) is less than 2.0. In such a case, (200) the plane orientation is not sufficient, so that the effect of improving the plastic deformation resistance is not sufficient, and as a result, the particles are prevented from falling off when a high load (high shear force) is applied. It is not possible to suppress the occurrence of chipping / chipping and uneven wear.
Therefore, in the present invention, the X-ray diffraction peak intensity of the (200) plane measured for at least one TiCN layer of the lower layer is the maximum as compared with the peak intensity of the other crystal lattice planes. The orientation index Tc (200) was determined to be 2.0 or more, preferably 3.0 or more.

下部層中の少なくとも1層のTiCN層は、柱状縦長組織を有していることが好ましい。
特に、TiCN結晶粒の最大粒子幅Wと層厚方向の最大粒子長さLから求められるアスペクト比が5以上である柱状縦長成長TiCN結晶粒の占める面積割合が、TiCN層の縦断面面積の70面積%以上を占める場合には、柱状縦長組織の特徴であるすぐれた耐摩耗性向上効果を期待することができる。
なお、前記最大粒子幅W、最大粒子長さLとは、柱状縦長成長TiCN結晶粒について、TiCN層の縦断面における1つの結晶粒を計測したとき、層厚方向に垂直な方向の結晶粒の幅(短辺)で最も大きい値を最大粒子幅Wと呼び、一方、層厚方向の結晶粒の高さ(長辺)で最も大きい値を最大粒子長さLと呼ぶ。
また、TiCN層の層厚について特に限定するものではないが、Ti化合物層を構成するすべてのTiCN層の層厚が1.7〜13.5μmであることが望ましい。
これは、TiCN層の層厚が1.7μm以上になると、Tc(200)の値が大きくなる傾向を示し、高負荷切削加工における耐塑性変形性が向上するとともに、逃げ面摩耗量も減少し耐摩耗性が向上するからであり、一方、TiCN層の層厚が13.5μmを超えると、塑性変形を起し易くなり、偏摩耗の進行による異常損傷が発生するという理由による。
At least one TiCN layer in the lower layer preferably has a columnar longitudinal structure.
In particular, the area ratio of the columnar vertically elongated TiCN crystal grains having an aspect ratio of 5 or more obtained from the maximum particle width W of the TiCN crystal grains and the maximum particle length L in the layer thickness direction is 70 of the vertical cross-sectional area of the TiCN layer. When it occupies an area% or more, it can be expected to have an excellent effect of improving wear resistance, which is a characteristic of columnar vertically long structures.
The maximum particle width W and the maximum particle length L are the crystal grains in the direction perpendicular to the layer thickness direction when one crystal grain in the vertical cross section of the TiCN layer is measured for the columnar vertically elongated TiCN crystal grains. The largest value in the width (short side) is called the maximum grain width W, while the largest value in the height (long side) of the crystal grains in the layer thickness direction is called the maximum particle length L.
Further, the layer thickness of the TiCN layer is not particularly limited, but it is desirable that the layer thickness of all the TiCN layers constituting the Ti compound layer is 1.7 to 13.5 μm.
This is because when the thickness of the TiCN layer is 1.7 μm or more, the value of Tc (200) tends to increase, the plastic deformation resistance in high-load cutting is improved, and the amount of flank wear is also reduced. This is because the wear resistance is improved, and on the other hand, when the layer thickness of the TiCN layer exceeds 13.5 μm, plastic deformation is likely to occur, and abnormal damage due to the progress of uneven wear occurs.

TiCN層の成膜:
この発明における下部層のTi化合物層は、例えば、以下のようにして形成する。
即ち、通常の化学蒸着装置を使用して、TiC層、TiN層、TiCN層、TiCO層、TiCNO層およびTiAlN層のうちの1層または2層以上からなる種々のTi化合物層を蒸着形成する。
その中で、(200)配向性の高いTiCN層、あるいは、アスペクト比が5以上である柱状縦長組織を有する結晶粒が、下部層縦断面の70面積%以上を占めるTiCN層は、例えば、以下の蒸着方法によって形成することができる。
反応ガス組成(容量%):TiCl 1〜5%、CHCN 0.5〜1.5%、N 25〜40%、残部H
反応雰囲気温度:750〜850℃、
反応雰囲気圧力:5〜10kPa
反応雰囲気温度を低温にし、TiCN層の原料となるガス濃度比を低くすることで、(200)配向性の高い結晶組織が形成しやすくなり、またその組織は柱状縦長組織を有しやすくなる。
また、TiN層の形成時に、例えば、
反応ガス組成(容量%):NH 0.5〜2.0%,TiCl 0.1〜0.3%、N 0〜10%、残部H
反応雰囲気温度:750〜850℃、
反応雰囲気圧力:5〜8kPa
のような条件で作成することで、アスペクト比が5以上である柱状縦長組織を有する結晶粒を形成しやすくなる。
Film formation of TiCN layer:
The lower Ti compound layer in the present invention is formed, for example, as follows.
That is, various Ti compound layers including one or more of the TiC layer, the TiN layer, the TiCN layer, the TiCO layer, the TiCNO layer and the TiAlN layer are vapor-deposited and formed by using a normal chemical vapor deposition apparatus.
Among them, (200) a TiCN layer having high orientation or a TiCN layer in which crystal grains having a columnar longitudinal structure having an aspect ratio of 5 or more occupy 70 area% or more of the vertical cross section of the lower layer is, for example, the following. It can be formed by the vapor deposition method of.
Reaction gas composition (% by volume): TiCl 4 1-5%, CH 3 CN 0.5-1.5%, N 2 25-40%, balance H 2 ,
Reaction atmosphere temperature: 750 to 850 ° C,
Reaction atmosphere pressure: 5-10 kPa
By lowering the reaction atmosphere temperature and lowering the gas concentration ratio that is the raw material of the TiCN layer, (200) a highly oriented crystal structure is likely to be formed, and the structure is likely to have a columnar vertically elongated structure.
Also, when forming the TiN layer, for example,
Reaction gas composition (volume%): NH 3 0.5 to 2.0%, TiCl 4 0.1 to 0.3%, N 20 to 10%, balance H 2 ,
Reaction atmosphere temperature: 750 to 850 ° C,
Reaction atmosphere pressure: 5-8 kPa
By producing under the above conditions, it becomes easy to form crystal grains having a columnar vertically long structure having an aspect ratio of 5 or more.

Al層からなる上部層:
本発明被覆工具の上部層は、前記の(200)面にX線回折による最大ピーク強度を有し、かつ、配向性指数Tc(200)が2.0以上であるTiCN層を含む下部層の表面に、通常の化学蒸着法によって、1〜15μmの平均層厚を有するAl層を蒸着することにより形成する。
Alには、α型、κ型、γ型等の種々の結晶構造が存在するが、すぐれた高温硬さを有すること、耐酸化性を有すること、熱安定性に優れていること等の点から、上部層を構成するAl層としては、α型の結晶構造を有するα型Al層が望ましい。
例えば、α型Al層を形成する場合には、
反応ガス組成(容量%):AlCl 2〜5%,CO 10〜20%、HCl 1〜3%、HS 0〜0.15%、残部H
反応雰囲気温度:850〜950℃、
反応雰囲気圧力:5〜10kPa
のような条件で作製する。
また、上部層の平均層厚が1μm未満では、長期の使用に亘っての耐摩耗性を確保することができず、一方、その平均層厚が15μmを越えるとAl結晶粒が粗大化し易くなり、その結果、高温硬さ、高温強度の低下に加え、切れ刃に大きなせん断力が作用する高負荷切削加工時の耐チッピング性、耐欠損性が低下することから、その平均層厚は1〜15μmと定めた。
Upper layer consisting of Al 2 O 3 layers:
The upper layer of the coating tool of the present invention is a lower layer including a TiCN layer having a maximum peak intensity by X-ray diffraction on the (200) plane and having an orientation index Tc (200) of 2.0 or more. on the surface by conventional chemical vapor deposition, is formed by depositing the the Al 2 O 3 layer having an average layer thickness of 1 to 15 m.
Al 2 O 3 has various crystal structures such as α-type, κ-type, and γ-type, but it has excellent high-temperature hardness, oxidation resistance, and excellent thermal stability. From the above points, the α-type Al 2 O 3 layer having an α-type crystal structure is desirable as the Al 2 O 3 layer constituting the upper layer.
For example, when forming an α-type Al 2 O 3 layer,
Reaction gas composition (% by volume): AlCl 3 2-5%, CO 2 10-20%, HCl 1-3%, H 2 S 0-0.15%, balance H 2 ,
Reaction atmosphere temperature: 850-950 ° C,
Reaction atmosphere pressure: 5-10 kPa
It is manufactured under the following conditions.
Further, if the average layer thickness of the upper layer is less than 1 μm, wear resistance over a long period of use cannot be ensured, while if the average layer thickness exceeds 15 μm, Al 2 O 3 crystal grains are coarse. As a result, in addition to the decrease in high-temperature hardness and high-temperature strength, the chipping resistance and fracture resistance during high-load cutting, in which a large shearing force acts on the cutting edge, are reduced, so that the average layer thickness is reduced. Was set to 1 to 15 μm.

本発明の被覆工具によれば、工具基体の表面に形成された硬質被覆層は、少なくともTi化合物層からなる下部層とAl層からなる上部層を備え、下部層の内の少なくとも1層は、TiCN層で構成され、該TiCN層は、(200)面にX線回折による最大回折ピーク強度が現れ、かつ、配向性指数Tc(200)は2.0以上であることから、TiCN層は、耐塑性変形性にすぐれる。
その結果、TiCN層表面への大きなせん断力が作用する高負荷・低速切削加工条件で使用した場合でも、本発明被覆工具は、TiCN層の備えるすぐれた耐塑性変形性によって、結晶粒の脱落、チッピング・欠損・剥離等の異常損傷の発生を抑制することができ、また、Al層からなる上部層が備えるすぐれた高温硬さ、耐酸化性、熱安定性と相俟って、長期の使用にわたってすぐれた耐摩耗性を発揮し、特に炭素鋼や合金鋼のようなすくい面の摩耗進行の影響が出やすい被削材に有効である。
さらに、下部層において、アスペクト比が5以上である柱状縦長組織を有する結晶粒の面積割合を、下部層の縦断面の70面積%以上とすることによって、耐摩耗性をより向上させることができ、切削工具の長寿命化を図ることができる。
According to coated tool of the present invention, the hard coating layer formed on the surface of the tool substrate comprises an upper layer comprising a lower layer and the Al 2 O 3 layer consisting of at least a Ti compound layer, at least one of the lower layer The layer is composed of a TiCN layer, and the TiCN layer has a maximum diffraction peak intensity due to X-ray diffraction on the (200) plane and an orientation index Tc (200) of 2.0 or more. The layer has excellent plastic deformation resistance.
As a result, even when used under high load and low speed cutting conditions in which a large shearing force acts on the surface of the TiCN layer, the coating tool of the present invention has the excellent plastic deformation resistance of the TiCN layer, so that the crystal grains fall off. It is possible to suppress the occurrence of abnormal damage such as chipping, chipping, and peeling, and in combination with the excellent high-temperature hardness, oxidation resistance, and thermal stability of the upper layer composed of Al 2 O 3 layers, It exhibits excellent wear resistance over a long period of use, and is particularly effective for work materials such as carbon steel and alloy steel, which are easily affected by the progress of wear on the rake face.
Further, the wear resistance can be further improved by setting the area ratio of the crystal grains having a columnar longitudinal structure having an aspect ratio of 5 or more in the lower layer to 70 area% or more of the vertical cross section of the lower layer. , The life of the cutting tool can be extended.

本発明被覆工具のTiCN層について、X線回折により測定した各結晶格子面から得られた回折ピーク強度の一例を示す。An example of the diffraction peak intensity obtained from each crystal lattice plane measured by X-ray diffraction is shown for the TiCN layer of the coating tool of the present invention.

本発明の被覆工具の実施形態について、実施例に基づいて具体的に説明する。 Embodiments of the covering tool of the present invention will be specifically described based on examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、NbC粉末、Cr粉末、TiN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、ISO規格CNMG120408のインサート形状をもったWC基超硬合金製の工具基体a〜dをそれぞれ製造した。 As raw material powders, both WC powder having an average particle size of 1 to 3 [mu] m, TiC powder, ZrC powder, NbC powder, Cr 3 C 2 powder, TiN powder, and Co powder was prepared, these raw powders, Table 1 After blending to the compounding composition shown in (1), wax is further added, the mixture is ball-mill mixed in acetone for 24 hours, dried under reduced pressure, and then press-molded into a green compact having a predetermined shape at a pressure of 98 MPa, and the green compact is 5 Pa. Vacuum sintered in vacuum at a predetermined temperature within the range of 1370 to 1470 ° C. under the condition of holding for 1 hour, and after sintering, a tool base a to WC-based superhard alloy having an insert shape of ISO standard CNMG120408. d was manufactured respectively.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、ZrC粉末、TaC粉末、Mo2C粉末、WC粉末、Co粉末およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、ISO規格CNMG120412のインサート形状をもったTiCN基サーメット製の工具基体eを作製した。 Further, as the raw material powder, both (TiC / TiN = 50/50 in mass ratio) TiCN having an average particle diameter of 0.5~2μm powder, ZrC powder, TaC powder, Mo 2 C powder, WC powder, Co powder And Ni powder are prepared, these raw material powders are blended into the compounding composition shown in Table 2, wet-mixed with a ball mill for 24 hours, dried, and then press-molded into a green compact at a pressure of 98 MPa. The body was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, a tool base e made of TiCN-based cermet having an insert shape of ISO standard CNMG120412 was prepared.

ついで、これらの工具基体a〜dおよび工具基体eのそれぞれを、通常の化学蒸着装置に装入し、表3、表4に示される条件で、表6に示される目標層厚の下部層としてのTi化合物層を蒸着形成し、ついで、表3に示される条件で、表6に示される目標層厚の上部層としてのAl層を蒸着形成することにより、表6に示される本発明被覆工具1〜13をそれぞれ製造した。
なお、表3にあるHT−TiCN層は、段落0016で示したTiCN層よりも反応雰囲気温度が高温で作製したTiCN層を示す。
また、表3において、アスペクト比が5以上である柱状縦長組織の結晶粒が形成されやすいTi化合物層の成膜条件は、TiN層−1(第1層)とTiAlN層である。
Then, each of these tool substrates a to d and the tool substrate e is charged into a normal chemical vapor deposition apparatus, and under the conditions shown in Tables 3 and 4, as a lower layer of the target layer thickness shown in Table 6. the Ti compound layer is vapor deposited, and then, under the conditions shown in Table 3, by depositing form the Al 2 O 3 layer as an upper layer of the target layer thicknesses shown in Table 6, the present as shown in Table 6 Invention covering tools 1 to 13 were manufactured, respectively.
The HT-TiCN layer shown in Table 3 shows a TiCN layer prepared at a reaction atmosphere temperature higher than that of the TiCN layer shown in paragraph 0016.
Further, in Table 3, the film forming conditions of the Ti compound layer in which crystal grains having a columnar longitudinal structure having an aspect ratio of 5 or more are likely to be formed are TiN layer-1 (first layer) and TiAlN layer.

また、比較の目的で、工具基体a〜dおよび工具基体eのそれぞれを、通常の化学蒸着装置に装入し、表3、表5に示される条件で、表7に示される目標層厚の下部層としてのTi化合物層を蒸着形成し、ついで、表3に示される条件で、表7に示される目標層厚の上部層としてのAl層を蒸着形成することにより、表7に示される比較例被覆工具1〜13をそれぞれ製造した。 Further, for the purpose of comparison, each of the tool substrates a to d and the tool substrate e is charged into a normal chemical vapor deposition apparatus, and the target layer thickness shown in Table 7 is obtained under the conditions shown in Tables 3 and 5. the Ti compound layer as a lower layer was vapor deposited and then, under the conditions shown in Table 3, the the Al 2 O 3 layer as an upper layer of the target layer thicknesses shown in Table 7 by depositing formed, in Table 7 The shown comparative examples covering tools 1 to 13 were manufactured, respectively.

本発明被覆工具1〜13および比較被覆工具1〜13の下部層のTiCN層について、X線回折により、各格子面からの回折ピーク強度を測定した。
図1に、本発明被覆工具1について求めたチャートを示す。
なお、X線回折は、装置としてスペクトリス社PANalytical Empyreanを用い、CuKα線による2θ‐θ法で測定した。
測定条件は、測定範囲(2θ):30〜130度、X線出力:45kV、40mA、発散スリット:0.5度、スキャンステップ:0.013度、1ステップ辺り測定時間:0.48sec/stepである。
上記で求めたチャートから、(200)面からの回折ピーク強度が、他の格子面からの回折ピーク強度に対して最大であるか否かを判定した。
表6、表7に、その判定結果を示す。
The diffraction peak intensities from each lattice surface were measured by X-ray diffraction for the TiCN layer of the lower layer of the covering tools 1 to 13 of the present invention and the comparative covering tools 1 to 13.
FIG. 1 shows a chart obtained for the covering tool 1 of the present invention.
The X-ray diffraction was measured by the 2θ-θ method using CuKα rays using PANalytical Empylean manufactured by Spectris as an apparatus.
The measurement conditions are measurement range (2θ): 30 to 130 degrees, X-ray output: 45 kV, 40 mA, divergence slit: 0.5 degrees, scan step: 0.013 degrees, measurement time per step: 0.48 sec / step. Is.
From the chart obtained above, it was determined whether or not the diffraction peak intensity from the (200) plane was the maximum with respect to the diffraction peak intensity from the other lattice planes.
Tables 6 and 7 show the determination results.

また、上記回折ピーク強度の測定結果に基づき、配向性指数Tc(200)を求めた。
配向性指数Tc(200)は、

Figure 0006853450

の式によって算出した。
ここで、I(hkl)は測定された(hkl)面の回折ピーク強度を示し、I(hkl)はJCPDSカード(Joint Committee on Powder Diffraction Standards(粉末X線回折標準))で表される(hkl)面を構成するTiCとTiNの粉末回折強度の平均値を示す。また、(hkl)は、(111)、(200)、(220)、(311)、(222)、(331)、(420)、(422)の8面である。
表6、表7に、上記で算出した配向性指数Tc(200)の値を示す。 Further, the orientation index Tc (200) was determined based on the measurement result of the diffraction peak intensity.
The orientation index Tc (200) is

Figure 0006853450

It was calculated by the formula of.
Here, I (hkl) indicates the diffraction peak intensity of the measured (hkl) plane, and I 0 (hkl) is represented by a JCPDS card (Joint Committee on Powder Diffraction Standards) (powder X-ray diffraction standard). The average value of the powder diffraction intensities of TiC and TiN constituting the hkl) plane is shown. Further, (hkl) has eight surfaces of (111), (200), (220), (311), (222), (331), (420), and (422).
Tables 6 and 7 show the values of the orientation index Tc (200) calculated above.

また、本発明被覆工具1〜13および比較被覆工具1〜13の下部層のTiCN層の縦断面について、走査型電子顕微鏡(倍率5000倍)を用いて、工具基体と平行な方向に10μm、工具基体と垂直な方向にTiCN層の層厚分の高さの領域内に存在するTiCN結晶粒のそれぞれについて最大粒子幅W、最大粒子長さLを測定するとともに、アスペクト比L/Wの値を求め、アスペクト比L/Wが5以上である結晶粒が、TiCN層の縦断面に占める面積割合を求めた。
表6、表7に、上記で求めた面積割合を示す。
Further, the vertical cross section of the TiCN layer in the lower layer of the covering tools 1 to 13 of the present invention and the comparative covering tools 1 to 13 is 10 μm in the direction parallel to the tool substrate using a scanning electron microscope (magnification: 5000 times). The maximum particle width W and the maximum particle length L are measured for each of the TiCN crystal grains existing in the region at the height of the layer thickness of the TiCN layer in the direction perpendicular to the substrate, and the values of the aspect ratio L / W are measured. The area ratio of the crystal grains having an aspect ratio L / W of 5 or more to the vertical cross section of the TiCN layer was determined.
Tables 6 and 7 show the area ratios obtained above.

また、本発明被覆工具1〜13、比較例被覆工具1〜13の硬質被覆層の各構成層の厚さを、走査型電子顕微鏡を用いて測定(縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。 Further, when the thickness of each constituent layer of the hard coating layer of the coating tools 1 to 13 of the present invention and the coating tools 1 to 13 of the comparative example was measured using a scanning electron microscope (longitudinal cross-sectional measurement), all of them were the target layers. The average layer thickness (average value of 5-point measurement) substantially the same as the thickness was shown.

Figure 0006853450
Figure 0006853450

Figure 0006853450
Figure 0006853450

Figure 0006853450
Figure 0006853450

Figure 0006853450
Figure 0006853450

Figure 0006853450
Figure 0006853450

Figure 0006853450
Figure 0006853450

Figure 0006853450
Figure 0006853450

つぎに、本発明被覆工具1〜13、比較例被覆工具1〜13の各種の被覆工具について、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、次の切削条件A、切削条件Bで切削試験を実施した。
≪切削条件A≫
被削材:S45C
切削速度:200m/min,
切り込み:3.0mm,
送り:0.4mm/rev,
切削時間:5分間
の条件での炭素鋼丸棒の乾式連続高切り込み切削試験、
≪切削条件B≫
被削材:SCM440
切削速度:250m/min,
切り込み:2.0mm,
送り:0.3mm/rev,
切削時間:5分間
の条件での合金鋼4本スリット材の湿式断続切削試験、
上記の切削試験における切れ刃の逃げ面摩耗幅を測定するとともに、チッピング、欠損、剥離等の異常損傷の発生状況を肉眼で観察した。
表8、表9に、この試験結果を示す。
Next, with respect to the various covering tools of the covering tools 1 to 13 of the present invention and the covering tools 1 to 13 of the comparative example, the following cutting conditions are obtained while all of them are screwed to the tip of the tool steel cutting tool with a fixing jig. A cutting test was carried out under A and cutting condition B.
≪Cutting condition A≫
Work material: S45C
Cutting speed: 200 m / min,
Notch: 3.0 mm,
Feed: 0.4 mm / rev,
Cutting time: Dry continuous high depth cutting test of carbon steel round bar under the condition of 5 minutes,
≪Cutting condition B≫
Work Material: SCM440
Cutting speed: 250 m / min,
Notch: 2.0 mm,
Feed: 0.3mm / rev,
Cutting time: Wet intermittent cutting test of alloy steel 4-slit material under the condition of 5 minutes,
The flank wear width of the cutting edge in the above cutting test was measured, and the occurrence of abnormal damage such as chipping, chipping, and peeling was observed with the naked eye.
Tables 8 and 9 show the test results.

Figure 0006853450
Figure 0006853450

Figure 0006853450
Figure 0006853450

表8、表9に示される結果から、本発明被覆工具1〜13は、下部層に耐塑性変形性にすぐれるTiCN層が存在するため、TiCN結晶粒の脱落、これを原因とするチッピング、欠損、剥離の発生もなく、すぐれた耐摩耗性を発揮する。
これに対して、比較例被覆工具1〜13は、高負荷・低速切削加工においては、TiCN結晶粒の脱落、チッピング・欠損・剥離等の異常損傷の発生により、比較的短時間で使用寿命に至ることが明らかである。
From the results shown in Tables 8 and 9, in the coating tools 1 to 13 of the present invention, since the TiCN layer having excellent plastic deformation resistance is present in the lower layer, the TiCN crystal grains fall off, and the chipping caused by this, Demonstrates excellent wear resistance without occurrence of chipping or peeling.
On the other hand, the covering tools 1 to 13 of Comparative Examples have a relatively short service life due to abnormal damage such as falling off of TiCN crystal grains, chipping, chipping, and peeling in high-load / low-speed cutting. It is clear that it will reach.

前述のように、本発明の被覆工具は、切れ刃に高負荷(大きなせん断力)が作用する高負荷・低速切削において特にすぐれた切削性能を発揮するが、各種鋼や鋳鉄などの通常の条件での連続切削や断続切削にも勿論用いることができる。

As described above, the covering tool of the present invention exhibits particularly excellent cutting performance in high-load and low-speed cutting in which a high load (large shear force) acts on the cutting edge, but under normal conditions such as various steels and cast iron. Of course, it can also be used for continuous cutting and intermittent cutting.

Claims (3)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、硬質被覆層が形成されている表面被覆切削工具において、
(a)前記硬質被覆層は、少なくとも下部層と上部層からなり、
(b)前記下部層は、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、炭窒酸化物層およびTiとAlの複合窒化物層から選ばれる1層または2層以上からなり、かつ、その内の少なくとも1層は1.7μm以上の平均層厚のTiの炭窒化物層で構成された2〜15μmの合計平均層厚を有するTi化合物層からなり、
(c)前記上部層は、1〜15μmの平均層厚を有する酸化アルミニウム層からなり、
(d)前記下部層のTi化合物層中の少なくとも1層のTiの炭窒化物層は、(200)面にX線回折による最大回折ピーク強度が現れ、かつ、配向性指数Tc(200)は2.0以上であることを特徴とする表面被覆切削工具。
In a surface-coated cutting tool in which a hard coating layer is formed on the surface of a tool substrate composed of a tungsten carbide-based cemented carbide or a titanium nitride-based cermet.
(A) The hard coating layer is composed of at least a lower layer and an upper layer.
(B) The lower layer is composed of one layer or two or more layers selected from a carbide layer of Ti, a nitride layer, a carbonitride layer, a carbon oxide layer, a carbonitride oxide layer and a composite nitride layer of Ti and Al. It becomes, and at least one layer of which consists of Ti compound layer having a total average layer thickness of 2~15μm comprised of carbonitride layer of Ti having an average layer thickness of more than 1.7 [mu] m,
(C) The upper layer is composed of an aluminum oxide layer having an average layer thickness of 1 to 15 μm.
(D) At least one Ti carbonitride layer in the lower Ti compound layer has a maximum diffraction peak intensity due to X-ray diffraction on the (200) plane, and has an orientation index Tc (200). A surface coating cutting tool characterized by being 2.0 or more.
前記Ti化合物層の縦断面において、アスペクト比が5以上である柱状縦長組織を有するTiの炭窒化物からなる結晶粒が占める面積割合は、70面積%以上であることを特徴とする請求項1に記載の表面被覆切削工具。 Claim 1 is characterized in that, in the vertical cross section of the Ti compound layer, the area ratio of the crystal grains made of Ti carbonitride having a columnar longitudinal structure having an aspect ratio of 5 or more is 70 area% or more. Surface coating cutting tool described in. 前記Ti化合物層において、すべてのTiの炭窒化物層の層厚が1.7〜13.5μmであることを特徴とする請求項1または2に記載の表面被覆切削工具。 The surface coating cutting tool according to claim 1 or 2, wherein in the Ti compound layer, the layer thickness of all Ti carbonitride layers is 1.7 to 13.5 μm.
JP2017026575A 2016-02-17 2017-02-16 Surface coating cutting tool Active JP6853450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/005901 WO2017142061A1 (en) 2016-02-17 2017-02-17 Surface coated cutting tool

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016027727 2016-02-17
JP2016027727 2016-02-17

Publications (2)

Publication Number Publication Date
JP2017144549A JP2017144549A (en) 2017-08-24
JP6853450B2 true JP6853450B2 (en) 2021-03-31

Family

ID=59681024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017026575A Active JP6853450B2 (en) 2016-02-17 2017-02-16 Surface coating cutting tool

Country Status (1)

Country Link
JP (1) JP6853450B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7261806B2 (en) * 2018-09-05 2023-04-20 京セラ株式会社 coated tools and cutting tools
JP7141022B2 (en) * 2019-02-27 2022-09-22 三菱マテリアル株式会社 surface coated cutting tools
CN116837347B (en) * 2023-09-01 2023-11-21 赣州澳克泰工具技术有限公司 Coated cutting tool and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE514737C2 (en) * 1994-03-22 2001-04-09 Sandvik Ab Coated carbide cutting tool
WO2012144088A1 (en) * 2011-04-21 2012-10-26 住友電工ハードメタル株式会社 Surface-coated cutting tool and method for manufacturing same
EP2604720A1 (en) * 2011-12-14 2013-06-19 Sandvik Intellectual Property Ab Coated cutting tool and method of manufacturing the same
JP6311700B2 (en) * 2013-03-12 2018-04-18 三菱日立ツール株式会社 Hard coating, hard coating covering member, and manufacturing method thereof
CN105308210B (en) * 2013-06-14 2018-06-26 山特维克知识产权股份有限公司 Coated cutting tool

Also Published As

Publication number Publication date
JP2017144549A (en) 2017-08-24

Similar Documents

Publication Publication Date Title
US10456844B2 (en) Surface-coated cutting tool
JP5831707B2 (en) Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
EP3202515A1 (en) Surface-coated cutting tool having excellent chip resistance
JP5907406B2 (en) Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
US20190003060A1 (en) Surface-coated cutting tool
JP5582409B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP7098932B2 (en) Surface coating cutting tool with excellent chipping resistance and wear resistance with a hard coating layer
EP3505282B1 (en) Surface-coated cutting tool with hard coating layer exhibiting excellent chipping resistance and peeling resistance
JP7121234B2 (en) A surface cutting tool with a hard coating that exhibits excellent chipping resistance
JP6853450B2 (en) Surface coating cutting tool
JP6857298B2 (en) Surface coating cutting tool with excellent chipping resistance due to the hard coating layer
JP5029825B2 (en) Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high speed heavy cutting
JP5402516B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6853449B2 (en) Surface coating cutting tool
JP3887811B2 (en) Cutting tool made of surface-coated tungsten carbide based cemented carbide with a hard coating layer that provides excellent wear resistance in high-speed cutting
JP2004122269A (en) Surface coated cermet cutting tool exhibiting superior chipping resistance under high speed heavy duty cutting
JP6940815B2 (en) Surface coating cutting tool with excellent wear resistance and peeling resistance for the hard coating layer
JP5569740B2 (en) Surface coated cutting tool with excellent chipping resistance
WO2017142061A1 (en) Surface coated cutting tool
WO2017142058A1 (en) Surface coated cutting tool
JP2018149668A (en) Surface coated cutting tool with hard coating layer exhibiting superior chipping resistance and abrasion resistance
JP5686294B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5569739B2 (en) Surface coated cutting tool with excellent chipping resistance
JP2010274330A (en) Surface coated cutting tool
JP5305013B2 (en) Surface coated cutting tool with excellent chipping and wear resistance with excellent hard coating layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210127

R150 Certificate of patent or registration of utility model

Ref document number: 6853450

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150