WO2017142061A1 - Surface coated cutting tool - Google Patents

Surface coated cutting tool Download PDF

Info

Publication number
WO2017142061A1
WO2017142061A1 PCT/JP2017/005901 JP2017005901W WO2017142061A1 WO 2017142061 A1 WO2017142061 A1 WO 2017142061A1 JP 2017005901 W JP2017005901 W JP 2017005901W WO 2017142061 A1 WO2017142061 A1 WO 2017142061A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
ticn
carbonitride
cutting
compound
Prior art date
Application number
PCT/JP2017/005901
Other languages
French (fr)
Japanese (ja)
Inventor
正樹 奥出
西田 真
翔 龍岡
佐藤 賢一
光亮 柳澤
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017026575A external-priority patent/JP6853450B2/en
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Publication of WO2017142061A1 publication Critical patent/WO2017142061A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/36Carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides

Definitions

  • the invention of the present application has excellent plastic deformation resistance that the hard coating layer has excellent even when the hard coating layer is subjected to cutting under high load and low speed conditions in which the hard coating layer easily causes plastic deformation.
  • the present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent wear resistance over the use of the above.
  • a substrate (hereinafter collectively referred to as a tool substrate) composed of a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet.
  • the lower layer is a Ti carbide (hereinafter referred to as TiC) layer, a nitride (hereinafter also referred to as TiN) layer, a carbonitride (hereinafter referred to as TiCN) layer, a carbon oxide (hereinafter referred to as TiCO).
  • TiCNO carbonitride oxide
  • Al 2 O 3 layer aluminum oxide layer
  • a composite hard layer composed of a titanium compound inner layer including at least one titanium carbonitride layer and an aluminum oxide outer layer is coated on the surface of a WC-based cemented carbide substrate.
  • at least one titanium carbonitride layer constituting the titanium compound inner layer is a TiCN layer in which a maximum peak by X-ray diffraction appears on the (220) plane
  • the aluminum oxide outer layer is a ⁇ type Occurrence of abnormal damage due to exfoliation, wear, etc. by using an aluminum oxide layer that is mainly composed of crystals and has a maximum peak on the surface defined as 2.79 angstroms of ⁇ -Al 2 O 3 in ASTM. It has been proposed to prevent tooling and improve tool life.
  • the TiCN layer is oriented in the (220) plane, the adhesion with the substrate or the underlying layer is increased, and peeling from the interface is less likely to occur. be able to. Further, on the TiCN layer oriented in the (220) plane, an oxidation in which a maximum peak appears on a plane mainly composed of ⁇ -type crystals and defined as a plane having a plane spacing of 2.79 ⁇ in ⁇ -Al 2 O 3 in ASTM. When the aluminum layer is coated, the surface of the ⁇ -Al 2 O 3 having an orientation of 2.79 angstroms between the surfaces is smooth and the surface of the coating layer is smooth, so that abnormal damage due to friction between the chips and the tool is less likely to occur.
  • the aluminum oxide layer is resistant to abnormal damage and exhibits stable wear resistance.
  • the inner layer has a multilayer structure having a titanium carbonitride layer having a thickness of 10 ⁇ m or more and having a columnar structure
  • the outer layer is at least The layer includes an ⁇ -type aluminum oxide layer, and the orientation index TC (422) and TC (311) of the (422) plane and the (311) plane are both 1.3 or more and 3 or less for the titanium carbonitride layer.
  • the peel resistance and wear resistance of the coated tool It has been proposed to improve crater resistance and breaking strength.
  • the orientation index TC (422) and TC (311) of the titanium carbonitride layer are both 1.3 or more, and the structure is a columnar structure, so that the fracture resistance of the film can be improved even with a film thickness of 10 ⁇ m or more. It is possible to greatly improve the wear resistance, and the progress of wear due to chipping during cutting can be suppressed, and the welding of the work material during cutting is less likely to occur. Since the increase in stress can be prevented, the peel resistance is also greatly improved.
  • Patent Document 3 discloses that in a coated tool in which a hard coating layer including at least one titanium carbonitride layer is formed on a substrate surface, an orientation index out of the texture coefficient TC (hkl) of the titanium carbonitride layer.
  • TC (220) is the maximum
  • the indentation hardness of the hardness reference piece is Hs
  • the indentation hardness of the titanium carbonitride layer is Ht, (average value of Ht) / Hs ⁇ 3 and the titanium carbonitride layer
  • the maximum value of the indentation hardness is Htmax and the minimum value is Htmin, (Htmax ⁇ Htmin) / (average value of Ht) ⁇ 0.5
  • the crystal orientation of the titanium carbonitride layer is controlled, and the carbon It has been proposed to improve the wear resistance and fracture resistance of the coated tool by eliminating variations in the hardness of the titanium nitride layer.
  • Japanese Laid-Open Patent Publication No. 8-300203 A) Japanese Patent No. 11-140647 (A) Japanese Patent No. 5729777 (B)
  • the inventors of the present invention have a high load acting on the cutting edge, and even when the hard coating layer is used under a high load / low speed cutting process condition in which plastic deformation easily occurs,
  • the hard coating layer is composed of a lower layer made of a Ti compound layer and an upper layer made of an Al 2 O 3 layer, and the lower layer is made of
  • TiCN Ti carbonitride
  • This invention is made
  • A) The hard coating layer comprises at least a lower layer and an upper layer
  • B) The lower layer is composed of one layer or two or more layers selected from a Ti carbide layer, a nitride layer, a carbonitride layer, a carbonate layer, and a carbonitride oxide layer, and at least one of them is A Ti compound layer composed of Ti carbonitride layers and having a total average layer thickness of 2 to 15 ⁇ m
  • the upper layer comprises an aluminum oxide layer having an average layer thickness of 1 to 15 ⁇ m
  • the area ratio occupied by the crystal grains having a columnar longitudinal structure having an aspect ratio of 5 or more is 70 area% or more.
  • Coated cutting tool (3) The surface-coated cutting tool according to (1) or (2), wherein in the Ti compound layer, the thickness of all Ti carbonitride layers is 1.5 to 12 ⁇ m.
  • the hard coating layer of the coated tool of the present invention is composed of at least a lower layer made of a Ti compound layer and an Al 2 O 3 layer to an upper layer.
  • the lower layer composed of a Ti compound layer (for example, a TiC layer, a TiN layer, a TiCN layer, a TiCO layer, and a TiCNO layer) gives high temperature strength to the hard coating layer due to its excellent high temperature strength. Further, the Ti compound layer is in close contact with both the tool base surface and the upper layer composed of the Al 2 O 3 layer, and has an action of maintaining the adhesion of the hard coating layer to the tool base. However, when the total average layer thickness of the Ti compound layer is less than 2 ⁇ m, the above-described effects cannot be sufficiently exhibited. On the other hand, the lower layer of the present invention has excellent plastic deformation resistance as will be described later.
  • a Ti compound layer for example, a TiC layer, a TiN layer, a TiCN layer, a TiCO layer, and a TiCNO layer
  • the total average layer thickness of the lower layer exceeds 15 ⁇ m, plastic deformation is caused by a high load acting during cutting. As a result, crystal grains fall off, thereby causing chipping, chipping, peeling, or abnormal damage such as progression of uneven wear. Therefore, in the coated tool of the present invention, the total average layer thickness of the lower layer made of the Ti compound layer is set to 2 to 15 ⁇ m.
  • the lower layer of the hard coating layer of the coated tool of the present invention is composed of a Ti compound layer, and the lower layer includes at least one TiCN layer, and the layer has (200) orientation.
  • the TiCN layer is configured as follows. That is, when the diffraction peak intensity from each crystal lattice plane is measured by X-ray diffraction for the crystal grains constituting the at least one TiCN layer of the lower layer, the maximum diffraction peak intensity appears on the (200) plane ( 200) It has orientation.
  • FIG. 1 shows an example of a chart of diffraction peak intensity from each crystal lattice plane measured by X-ray diffraction for the TiCN layer of the coated tool of the present invention. As is clear from FIG.
  • the TiCN layer of the coated tool of the present invention has the maximum diffraction peak intensity with respect to the (200) plane as compared with the peak intensity of other crystal lattice planes.
  • X-ray diffraction was measured by the 2 ⁇ - ⁇ method using CuK ⁇ rays using a Spectris PANalytical Empire as an X-ray diffractometer, and measurement conditions (measurement range (2 ⁇ ): 30 to 130 degrees, X-ray output: The measurement was performed under the conditions of 45 kV, 40 mA, divergent slit: 0.5 degree, scan step: 0.013 degree, measurement time per step: 0.48 sec / step.
  • the coated tool of the present invention has a value of Tc (200) of 2.0 or more, preferably 3.0 or more. It has the (200) orientation shown.
  • the orientation index Tc (hkl) is defined by the following formula.
  • I (hkl) represents the peak intensity (diffraction intensity) of the measured (hkl) plane
  • I 0 (hkl) is a JCPDS card (Joint Committee on Powder Diffraction Standards (powder X-ray diffraction standard)).
  • the average value of the powder diffraction intensity of TiC and TiN constituting the (hkl) plane represented is shown.
  • (hkl) is the eight faces of (111), (200), (220), (311), (222), (331), (420), (422) Indicates the average value of 8 surfaces.
  • At least one TiCN layer of the coated tool of the present invention shows the maximum peak intensity by X-ray diffraction on the (200) plane, and the orientation index Tc (200) ⁇ 2.0 (200). Due to the orientation, even when a large shearing force is applied to the TiCN layer during cutting, the TiCN layer has plastic deformation resistance. The occurrence of peeling or the occurrence of abnormal damage such as the progression of uneven wear can be suppressed, and the wear resistance can be improved thereby. However, when the X-ray diffraction peak intensity with respect to the (200) plane cannot be said to be maximum as compared with the diffraction peak intensity from other lattice planes, or the orientation index Tc (200) is less than 2.0.
  • the X-ray diffraction peak intensity of the (200) plane measured for at least one TiCN layer of the lower layer is maximum compared to the peak intensity of other crystal lattice planes,
  • the orientation index Tc (200) was determined to be 2.0 or more, preferably 3.0 or more.
  • At least one TiCN layer in the lower layer has a columnar vertically long structure.
  • the area ratio of the columnar vertically grown TiCN crystal grains having an aspect ratio of 5 or more determined from the maximum grain width W of the TiCN crystal grains and the maximum grain length L in the layer thickness direction is 70% of the longitudinal sectional area of the TiCN layer. In the case of occupying area% or more, it is possible to expect an excellent effect of improving wear resistance, which is a feature of a columnar vertically long structure.
  • the maximum grain width W and the maximum grain length L are the columnar vertically grown TiCN crystal grains, when one crystal grain in the longitudinal section of the TiCN layer is measured, the crystal grains in the direction perpendicular to the layer thickness direction.
  • the largest value of the width (short side) is called the maximum particle width W, while the largest value of the crystal grain height (long side) in the layer thickness direction is called the maximum particle length L.
  • the thickness of the TiCN layer is not particularly limited, but it is desirable that the thickness of all the TiCN layers constituting the Ti compound layer is 1.5 to 12 ⁇ m. This indicates that when the thickness of the TiCN layer is 1.5 ⁇ m or more, the value of Tc (200) tends to increase, and the plastic deformation resistance in high-load cutting is improved and the flank wear amount is also reduced. This is because the wear resistance is improved. On the other hand, if the thickness of the TiCN layer exceeds 12 ⁇ m, plastic deformation is likely to occur, and abnormal damage due to the progress of uneven wear occurs.
  • the lower Ti compound layer in this invention is formed as follows, for example. That is, various Ti compound layers comprising one or more of TiC layer, TiN layer, TiCN layer, TiCO layer, TiCNO layer and TiAlN layer are formed by vapor deposition using a normal chemical vapor deposition apparatus. Among them, a (200) highly oriented TiCN layer, or a TiCN layer in which a crystal grain having a columnar longitudinal structure having an aspect ratio of 5 or more occupies 70 area% or more of the lower layer longitudinal section is, for example, It can be formed by the vapor deposition method.
  • Reaction gas composition (volume%): TiCl 4 1-5%, CH 3 CN 0.5-1.5%, N 2 25-40%, balance H 2 , Reaction atmosphere temperature: 750 to 850 ° C.
  • Reaction atmosphere pressure 5 to 10 kPa
  • Reaction gas composition volume%: NH 3 0.5-2.0%, TiCl 4 0.1-0.3%, N 2 0-10%, balance H 2 , Reaction atmosphere temperature: 750 to 850 ° C.
  • Reaction atmosphere pressure 5 to 8 kPa By creating under such conditions, it becomes easy to form crystal grains having a columnar longitudinal structure having an aspect ratio of 5 or more.
  • the upper layer of the coated tool of the present invention includes a TiCN layer having a maximum peak intensity by X-ray diffraction on the (200) plane and an orientation index Tc (200) of 2.0 or more. Is formed by vapor-depositing an Al 2 O 3 layer having an average layer thickness of 1 to 15 ⁇ m by the usual chemical vapor deposition method.
  • Al 2 O 3 has various crystal structures such as ⁇ -type, ⁇ -type, and ⁇ -type, but has excellent high-temperature hardness, oxidation resistance, and excellent thermal stability.
  • the Al 2 O 3 layer constituting the upper layer is preferably an ⁇ -type Al 2 O 3 layer having an ⁇ -type crystal structure.
  • Reaction gas composition (volume%): AlCl 3 2-5%, CO 2 10-20%, HCl 1-3%, H 2 S 0-0.15%, balance H 2 , Reaction atmosphere temperature: 850 to 950 ° C. Reaction atmosphere pressure: 5 to 10 kPa It is produced under the following conditions. Further, if the average layer thickness of the upper layer is less than 1 ⁇ m, it is not possible to ensure wear resistance over a long period of use, whereas if the average layer thickness exceeds 15 ⁇ m, the Al 2 O 3 crystal grains are coarse.
  • the chipping resistance and fracture resistance during high-load cutting in which a large shearing force acts on the cutting edge, are reduced.
  • the hard coating layer formed on the surface of the tool base includes at least a lower layer made of a Ti compound layer and an upper layer made of an Al 2 O 3 layer, and at least one of the lower layers.
  • the layer is composed of a TiCN layer, and the TiCN layer has a maximum diffraction peak intensity due to X-ray diffraction on the (200) plane and the orientation index Tc (200) is 2.0 or more.
  • the layer is excellent in plastic deformation resistance. As a result, even when used under high-load / low-speed cutting conditions where a large shearing force acts on the TiCN layer surface, the coated tool of the present invention has the ability to drop crystal grains due to the excellent plastic deformation resistance of the TiCN layer.
  • the wear resistance can be further improved by setting the area ratio of the crystal grains having a columnar longitudinal structure having an aspect ratio of 5 or more in the lower layer to 70 area% or more of the vertical section of the lower layer. The life of the cutting tool can be extended.
  • Embodiments of the coated tool of the present invention will be specifically described based on examples.
  • WC powder, TiC powder, ZrC powder, NbC powder, Cr 3 C 2 powder, TiN powder, and Co powder all having an average particle diameter of 1 to 3 ⁇ m were prepared. Then, after adding wax, ball mill mixing in acetone for 24 hours, drying under reduced pressure, press-molding into a green compact of a predetermined shape at a pressure of 98 MPa. In a vacuum, vacuum sintering is performed at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour, and after sintering, a tool base a to WC-base cemented carbide having an ISO standard CNMG120408 insert shape is used. Each d was produced.
  • ZrC powder ZrC powder
  • TaC powder Mo 2 C powder
  • WC powder Co powder all having an average particle diameter of 0.5 to 2 ⁇ m
  • Ni powder these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and then pressed into a compact at a pressure of 98 MPa.
  • the body was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, a tool base e made of TiCN-based cermet having an insert shape of ISO standard CNMG120212 was produced.
  • each of the tool bases a to d and the tool base e is charged into a normal chemical vapor deposition apparatus, and under the conditions shown in Tables 3 and 4, as lower layers having the target layer thicknesses shown in Table 6.
  • the Ti compound layer shown in Table 6 was formed by vapor deposition of the Al 2 O 3 layer as the upper layer of the target layer thickness shown in Table 6 under the conditions shown in Table 3.
  • Invention coated tools 1 to 13 were produced respectively.
  • the HT-TiCN layer in Table 3 is a TiCN layer manufactured at a higher reaction atmosphere temperature than the TiCN layer shown in paragraph 0016.
  • the TiN layer-1 (first layer) and the TiAlN layer are the deposition conditions for the Ti compound layer in which columnar vertically oriented crystal grains having an aspect ratio of 5 or more are likely to be formed.
  • each of the tool bases a to d and the tool base e is loaded into a normal chemical vapor deposition apparatus, and the target layer thicknesses shown in Table 7 are set under the conditions shown in Tables 3 and 5.
  • the target layer thicknesses shown in Table 7 are set under the conditions shown in Tables 3 and 5.
  • the diffraction peak intensity from each lattice plane was measured by X-ray diffraction.
  • FIG. 1 the chart calculated
  • X-ray diffraction was measured by the 2 ⁇ - ⁇ method using CuK ⁇ rays using Spectris PANalytical Empirean as an apparatus. Measurement conditions are measurement range (2 ⁇ ): 30 to 130 degrees, X-ray output: 45 kV, 40 mA, diverging slit: 0.5 degrees, scan step: 0.013 degrees, measurement time per step: 0.48 sec / step It is. From the chart obtained above, it was determined whether or not the diffraction peak intensity from the (200) plane was the maximum with respect to the diffraction peak intensities from other lattice planes. Tables 6 and 7 show the determination results.
  • orientation index Tc (200) was determined based on the measurement result of the diffraction peak intensity.
  • the orientation index Tc (200) was calculated by the following formula.
  • I (hkl) represents the measured diffraction peak intensity of the (hkl) plane
  • I 0 (hkl) is represented by a JCPDS card (Joint Committee on Powder Diffraction Standards (powder X-ray diffraction standard))
  • hkl The average value of the powder diffraction intensities of TiC and TiN constituting the surface is shown.
  • (hkl) is the eight surfaces (111), (200), (220), (311), (222), (331), (420), and (422).
  • Tables 6 and 7 show the values of the orientation index Tc (200) calculated above.
  • the longitudinal section of the TiCN layer of the lower layer of the coated tools 1 to 13 of the present invention and the comparative coated tools 1 to 13 is 10 ⁇ m in a direction parallel to the tool base using a scanning electron microscope (5000 times magnification).
  • the maximum grain width W and the maximum grain length L are measured for each TiCN crystal grain existing in the region of the height of the TiCN layer in the direction perpendicular to the substrate, and the value of the aspect ratio L / W is set.
  • the area ratio of crystal grains having an aspect ratio L / W of 5 or more in the longitudinal section of the TiCN layer was determined. Tables 6 and 7 show the area ratios obtained above.
  • the thicknesses of the constituent layers of the hard coating layers of the inventive coated tools 1 to 13 and comparative example coated tools 1 to 13 were measured using a scanning electron microscope (longitudinal cross section measurement). The average layer thickness (average value of 5-point measurement) substantially the same as the thickness was shown.
  • the coated tool of the present invention exhibits excellent cutting performance in high-load / low-speed cutting in which a high load (a large shearing force) acts on the cutting edge, but the normal conditions such as various steel and cast iron Of course, it can also be used for continuous cutting and intermittent cutting.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

A surface coated cutting tool with a hard coating layer formed on a tool base body surface thereof, said hard coating layer comprising at least a lower layer and an upper layer, wherein the lower layer comprises a Ti compound layer, said Ti compound layer having a total average layer thickness of 2-15μm and comprising one or more layers selected from a TiC layer, a TiN layer, a TiCN layer, a TiCO layer, and a TiCNO layer, at least one of said layer(s) being a TiCN layer, the upper layer comprises an Al2O3 layer having an average layer thickness of 1-15μm, at least one of the TiCN layer(s) making up the lower layer demonstrates a maximum diffraction peak intensity at the (200) plane during X-ray diffraction and has an orientation index Tc(200) of 2.0 or greater, and in the lower layer, crystal grains that have a columnar, vertically elongated structure with an aspect ratio of 5 or greater preferably occupy 70% or more of the area of a vertical cross-section of the lower layer.

Description

表面被覆切削工具Surface coated cutting tool
 本願発明は、各種の鋼や鋳鉄などの切削加工を、硬質被覆層が塑性変形を起こしやすい高負荷かつ低速条件で行った場合でも、硬質被覆層がすぐれた耐塑性変形性を有し、長期の使用に亘ってすぐれた耐摩耗性を発揮する表面被覆切削工具(以下、被覆工具という)に関する。
 本願は、2016年2月17日に日本に出願された特願2016-027727号及び2017年2月16日に日本に出願された特願2017-026575号に基づき優先権を主張し、その内容をここに援用する。
The invention of the present application has excellent plastic deformation resistance that the hard coating layer has excellent even when the hard coating layer is subjected to cutting under high load and low speed conditions in which the hard coating layer easily causes plastic deformation. The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent wear resistance over the use of the above.
This application claims priority based on Japanese Patent Application No. 2016-027727 filed in Japan on February 17, 2016 and Japanese Patent Application No. 2017-026575 filed on February 16, 2017 in Japan. Is hereby incorporated by reference.
 従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
 (a)下部層が、Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなるTi化合物層、
 (b)上部層が、酸化アルミニウム層(以下、Al層で示す)、
以上(a)および(b)で構成された硬質被覆層が蒸着形成された被覆工具が知られているが、被削材の種類、切削条件に応じて、耐チッピング性、耐欠損性、耐剥離性、耐摩耗性等の工具性能を高めるため、各種の提案がなされている。
Conventionally, generally on the surface of a substrate (hereinafter collectively referred to as a tool substrate) composed of a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet. ,
(A) The lower layer is a Ti carbide (hereinafter referred to as TiC) layer, a nitride (hereinafter also referred to as TiN) layer, a carbonitride (hereinafter referred to as TiCN) layer, a carbon oxide (hereinafter referred to as TiCO). And a Ti compound layer composed of one or more of a carbonitride oxide (hereinafter referred to as TiCNO) layer,
(B) The upper layer is an aluminum oxide layer (hereinafter referred to as an Al 2 O 3 layer),
Although a coated tool in which the hard coating layer composed of (a) and (b) is formed by vapor deposition is known, the chipping resistance, chipping resistance, Various proposals have been made to improve tool performance such as peelability and wear resistance.
 例えば、特許文献1には、WC基超硬合金基体の表面に、少なくとも1層のチタンの炭窒化物層を含むチタン化合物内層と、酸化アルミニウム外層とで構成された複合硬質層を被覆してなる切削工具において、前記チタン化合物内層を構成する少なくとも1層のチタンの炭窒化物層は、(220)面にX線回折による最大ピークが現れるTiCN層であり、前記酸化アルミニウム外層は、κ型結晶を主体とし、かつASTMにおいてκ-Alの面間隔2.79オングストロームの面として定義される面に最大ピークが現れる酸化アルミニウム層とすることにより、剥離、摩耗等による異常損傷の発生を防止し、工具寿命の向上を図ることが提案されている。
 即ち、TiCN層は(220)面に配向することで、基体または下の層との密着力を増し、界面からの剥離が起きにくくなるため、剥離に起因する異常損傷の発生や寿命低下を抑えることができる。また、(220)面に配向したTiCN層の上に、κ型結晶を主体としかつASTMにおいてκ-Alの面間隔2.79オングストロームの面として定義される面に最大ピークが現れる酸化アルミニウム層を被覆すると、前記面間距離2.79オングストロームに配向性を示すκ-Alは被覆層表面が平滑であるために、切り屑と工具間の摩擦による異常損傷が生じにくくなり、この酸化アルミニウム層が異常損傷を起しにくく安定した耐摩耗性を示すというものである。
For example, in Patent Document 1, a composite hard layer composed of a titanium compound inner layer including at least one titanium carbonitride layer and an aluminum oxide outer layer is coated on the surface of a WC-based cemented carbide substrate. In the cutting tool, at least one titanium carbonitride layer constituting the titanium compound inner layer is a TiCN layer in which a maximum peak by X-ray diffraction appears on the (220) plane, and the aluminum oxide outer layer is a κ type Occurrence of abnormal damage due to exfoliation, wear, etc. by using an aluminum oxide layer that is mainly composed of crystals and has a maximum peak on the surface defined as 2.79 angstroms of κ-Al 2 O 3 in ASTM. It has been proposed to prevent tooling and improve tool life.
That is, since the TiCN layer is oriented in the (220) plane, the adhesion with the substrate or the underlying layer is increased, and peeling from the interface is less likely to occur. be able to. Further, on the TiCN layer oriented in the (220) plane, an oxidation in which a maximum peak appears on a plane mainly composed of κ-type crystals and defined as a plane having a plane spacing of 2.79 Å in κ-Al 2 O 3 in ASTM. When the aluminum layer is coated, the surface of the κ-Al 2 O 3 having an orientation of 2.79 angstroms between the surfaces is smooth and the surface of the coating layer is smooth, so that abnormal damage due to friction between the chips and the tool is less likely to occur. The aluminum oxide layer is resistant to abnormal damage and exhibits stable wear resistance.
 また、特許文献2には、工具基体表面に内層および外層を被覆形成した被覆工具において、内層を10μm以上の厚みを有し柱状組織からなる炭窒化チタン層を有する多層構造とし、外層を、少なくともα型酸化アルミニウム層を含む層とし、前記炭窒化チタン層について、(422)面と(311)面との配向性指数TC(422)、TC(311)をともに1.3以上3以下とする配向性をもたせ、また、配向性指数TC(422)とTC(311)とを除く配向性指数TC(hkl)がすべて1.5以下とすることによって、被覆工具の耐剥離性、耐摩耗性、耐クレータ性、また、破壊強度を向上させることが提案されている。
 ここで、炭窒化チタン層の配向性指数TC(422)、TC(311)をともに1.3以上とし、その組織を柱状組織とすることにより、10μm以上の膜厚でも膜の耐破壊性を大きく向上させ耐摩耗性を向上させることが可能となり、また、切削中のチッピングによる摩耗の進行が抑制し得るとともに、切削中の被削材の溶着が起こりにくくなり、その結果、膜にかかる切削応力の増大が防げることから耐剥離性も大幅に向上するとされている。
Further, in Patent Document 2, in a coated tool in which an inner layer and an outer layer are formed on the tool base surface, the inner layer has a multilayer structure having a titanium carbonitride layer having a thickness of 10 μm or more and having a columnar structure, and the outer layer is at least The layer includes an α-type aluminum oxide layer, and the orientation index TC (422) and TC (311) of the (422) plane and the (311) plane are both 1.3 or more and 3 or less for the titanium carbonitride layer. By providing orientation, and by making all orientation indices TC (hkl) excluding the orientation indices TC (422) and TC (311) to be 1.5 or less, the peel resistance and wear resistance of the coated tool It has been proposed to improve crater resistance and breaking strength.
Here, the orientation index TC (422) and TC (311) of the titanium carbonitride layer are both 1.3 or more, and the structure is a columnar structure, so that the fracture resistance of the film can be improved even with a film thickness of 10 μm or more. It is possible to greatly improve the wear resistance, and the progress of wear due to chipping during cutting can be suppressed, and the welding of the work material during cutting is less likely to occur. Since the increase in stress can be prevented, the peel resistance is also greatly improved.
 また、特許文献3には、基体表面に、少なくとも1層の炭窒化チタン層を含む硬質被覆層を形成した被覆工具において、前記炭窒化チタン層の組織係数TC(hkl)のうちの配向性指数TC(220)を最大とし、また、硬度基準片の押し込み硬度をHsとし、炭窒化チタン層の押し込み硬度をHtとした場合、(Htの平均値)/Hs≧3、かつ、炭窒化チタン層の押し込み硬度の最大値をHtmax、最小値をHtminとした場合、(Htmax-Htmin)/(Htの平均値)<0.5とし、炭窒化チタン層の結晶配向性を制御するとともに、該炭窒化チタン層の硬度のばらつきをなくすことにより、被覆工具の耐摩耗性および耐欠損性の向上を図ることが提案されている。 Patent Document 3 discloses that in a coated tool in which a hard coating layer including at least one titanium carbonitride layer is formed on a substrate surface, an orientation index out of the texture coefficient TC (hkl) of the titanium carbonitride layer. When TC (220) is the maximum, the indentation hardness of the hardness reference piece is Hs, and the indentation hardness of the titanium carbonitride layer is Ht, (average value of Ht) / Hs ≧ 3 and the titanium carbonitride layer When the maximum value of the indentation hardness is Htmax and the minimum value is Htmin, (Htmax−Htmin) / (average value of Ht) <0.5, the crystal orientation of the titanium carbonitride layer is controlled, and the carbon It has been proposed to improve the wear resistance and fracture resistance of the coated tool by eliminating variations in the hardness of the titanium nitride layer.
日本国特開平8-300203号公報(A)Japanese Laid-Open Patent Publication No. 8-300203 (A) 日本国特許平11-140647号公報(A)Japanese Patent No. 11-140647 (A) 日本国特許第5729777号公報(B)Japanese Patent No. 5729777 (B)
 近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強い。これに伴い、切削加工は一段と高能率化すると共に、高切り込みや高送りなどの重切削、断続切削等で切れ刃に高負荷が作用する傾向にある。前述した従来の被覆工具を鋼や鋳鉄などの通常の条件での連続切削、高速切削に用いた場合には問題はないが、従来の被覆工具を、高負荷が作用することにより、硬質被覆層が塑性変形を起こすような高負荷・低速切削加工条件に用いた場合には、硬質被覆層の塑性変形により、硬質被覆層を構成する結晶粒の脱落等が生じやすく、また、これに起因する異常摩耗が進行しやすく、これを原因として比較的短時間で工具寿命に至るという問題がある。 The performance of cutting equipment has been remarkable in recent years. On the other hand, there is a strong demand for labor saving and energy saving and cost reduction for cutting. Along with this, the cutting work becomes more efficient, and there is a tendency that a high load acts on the cutting edge due to heavy cutting such as high cutting and high feed, intermittent cutting, and the like. There is no problem when the above-mentioned conventional coated tool is used for continuous cutting and high-speed cutting under normal conditions such as steel and cast iron. When used in high load / low speed cutting conditions that cause plastic deformation, the plastic deformation of the hard coating layer is likely to cause the crystal grains constituting the hard coating layer to fall off, resulting from this. Abnormal wear tends to progress, and this causes a problem that tool life is reached in a relatively short time.
 そこで、本願発明者らは、前述のような観点から、切れ刃に高負荷が作用し、硬質被覆層が塑性変形を起こしやすい高負荷・低速切削加工条件で使用した場合でも、硬質被覆層の異常損傷が発生しにくい硬質被覆層の構造について鋭意研究を行ったところ、硬質被覆層をTi化合物層からなる下部層と、Al層からなる上部層とで構成するとともに、下部層を構成するTi化合物層として、少なくとも1層のTiの炭窒化物(以下、「TiCN」で示すこともある。)層を設け、該TiCN層の(200)配向性を高めた場合には、高負荷(特に、TiCN層表面への大きなせん断力)が作用したとしても、TiCN層がすぐれた耐塑性変形性を示し、その結果、TiCN層を構成する結晶粒の脱落等による異常損傷の発生を抑制し得ること、また、これにより耐摩耗性の向上を図り得ることを見出したのである。
 また、前記TiCN層を、アスペクト比が5以上である柱状縦長組織として形成した場合には、すぐれた耐塑性変形性に加え、柱状縦長組織によりもたらされる一段とすぐれた耐摩耗性を発揮することを見出したのである。
In view of the above, the inventors of the present invention have a high load acting on the cutting edge, and even when the hard coating layer is used under a high load / low speed cutting process condition in which plastic deformation easily occurs, As a result of earnest research on the structure of the hard coating layer that is unlikely to cause abnormal damage, the hard coating layer is composed of a lower layer made of a Ti compound layer and an upper layer made of an Al 2 O 3 layer, and the lower layer is made of When at least one Ti carbonitride (hereinafter also referred to as “TiCN”) layer is provided as a constituent Ti compound layer, and the (200) orientation of the TiCN layer is increased, Even when a load (especially a large shearing force on the surface of the TiCN layer) is applied, the TiCN layer exhibits excellent plastic deformation resistance. As a result, abnormal damage due to dropping off of crystal grains constituting the TiCN layer is caused. Suppress Rukoto, also is was found that thereby obtaining aims to improve the wear resistance.
In addition, when the TiCN layer is formed as a columnar vertically long structure having an aspect ratio of 5 or more, in addition to excellent plastic deformation resistance, it exhibits excellent wear resistance provided by the columnar vertically long structure. I found it.
 本願発明は、前記知見に基づいてなされたものであって、以下の態様を有する。
 (1)炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、硬質被覆層が形成されている表面被覆切削工具において、
 (a)前記硬質被覆層は、少なくとも下部層と上部層からなり、
 (b)前記下部層は、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層から選ばれる1層または2層以上からなり、その内の少なくとも1層はTiの炭窒化物層で構成された2~15μmの合計平均層厚を有するTi化合物層からなり、
 (c)前記上部層は、1~15μmの平均層厚を有する酸化アルミニウム層からなり、
 (d)前記下部層のTi化合物層中の少なくとも1層のTiの炭窒化物層は、(200)面にX線回折による最大回折ピーク強度が現れ、かつ、配向性指数Tc(200)は2.0以上であることを特徴とする表面被覆切削工具。
 (2)前記Ti化合物層の縦断面において、アスペクト比が5以上である柱状縦長組織を有する結晶粒が占める面積割合は、70面積%以上であることを特徴とする(1)に記載の表面被覆切削工具。
 (3)前記Ti化合物層において、すべてのTiの炭窒化物層の層厚が1.5~12μmであることを特徴とする(1)または(2)に記載の表面被覆切削工具。
This invention is made | formed based on the said knowledge, Comprising: It has the following aspects.
(1) In a surface-coated cutting tool in which a hard coating layer is formed on the surface of a tool base composed of a tungsten carbide-based cemented carbide or a titanium carbonitride-based cermet,
(A) The hard coating layer comprises at least a lower layer and an upper layer,
(B) The lower layer is composed of one layer or two or more layers selected from a Ti carbide layer, a nitride layer, a carbonitride layer, a carbonate layer, and a carbonitride oxide layer, and at least one of them is A Ti compound layer composed of Ti carbonitride layers and having a total average layer thickness of 2 to 15 μm,
(C) the upper layer comprises an aluminum oxide layer having an average layer thickness of 1 to 15 μm;
(D) In at least one Ti carbonitride layer in the Ti compound layer of the lower layer, the maximum diffraction peak intensity by X-ray diffraction appears on the (200) plane, and the orientation index Tc (200) is A surface-coated cutting tool characterized by being 2.0 or more.
(2) In the longitudinal section of the Ti compound layer, the area ratio occupied by the crystal grains having a columnar longitudinal structure having an aspect ratio of 5 or more is 70 area% or more. Coated cutting tool.
(3) The surface-coated cutting tool according to (1) or (2), wherein in the Ti compound layer, the thickness of all Ti carbonitride layers is 1.5 to 12 μm.
 次に、本願発明の一態様の被覆工具(以下、「本願発明の被覆工具」と称する)について詳細に説明する。
 本願発明の被覆工具の硬質被覆層は、少なくとも、Ti化合物層からなる下部層と、Al層から上部層とによって構成される。
Next, the coated tool according to one aspect of the present invention (hereinafter referred to as “the coated tool of the present invention”) will be described in detail.
The hard coating layer of the coated tool of the present invention is composed of at least a lower layer made of a Ti compound layer and an Al 2 O 3 layer to an upper layer.
 下部層:
 Ti化合物層(例えば、TiC層、TiN層、TiCN層、TiCO層およびTiCNO層)からなる下部層は、それ自身の有するすぐれた高温強度によって、硬質被覆層に対して高温強度を与える。また、Ti化合物層は、工具基体表面、Al層からなる上部層のいずれにも密着し、硬質被覆層の工具基体に対する密着性を維持する作用を有する。
 しかしながら、このTi化合物層の合計平均層厚が2μm未満の場合、前述した作用を十分に発揮させることができない。
 一方、本願発明の下部層は、後述するようにすぐれた耐塑性変形性を有するが、下部層の合計平均層厚が15μmを越えるような場合には、切削加工時に作用する高負荷によって塑性変形を起し易くなり、その結果、結晶粒の脱落の発生、これによるチッピング、欠損、剥離の発生、あるいは偏摩耗の進行等の異常損傷発生の原因となる。
 したがって、本願発明の被覆工具では、Ti化合物層からなる下部層の合計平均層厚は2~15μmと定めた。
Lower layer:
The lower layer composed of a Ti compound layer (for example, a TiC layer, a TiN layer, a TiCN layer, a TiCO layer, and a TiCNO layer) gives high temperature strength to the hard coating layer due to its excellent high temperature strength. Further, the Ti compound layer is in close contact with both the tool base surface and the upper layer composed of the Al 2 O 3 layer, and has an action of maintaining the adhesion of the hard coating layer to the tool base.
However, when the total average layer thickness of the Ti compound layer is less than 2 μm, the above-described effects cannot be sufficiently exhibited.
On the other hand, the lower layer of the present invention has excellent plastic deformation resistance as will be described later. However, when the total average layer thickness of the lower layer exceeds 15 μm, plastic deformation is caused by a high load acting during cutting. As a result, crystal grains fall off, thereby causing chipping, chipping, peeling, or abnormal damage such as progression of uneven wear.
Therefore, in the coated tool of the present invention, the total average layer thickness of the lower layer made of the Ti compound layer is set to 2 to 15 μm.
 下部層のTiCN層:
 前記のとおり、本願発明の被覆工具の硬質被覆層の下部層は、Ti化合物層によって構成されるが、該下部層は、少なくとも1層のTiCN層を含み、該層は、(200)配向性を有するTiCN層として構成する。
 すなわち、下部層の前記少なくとも1層のTiCN層を構成する結晶粒について、X線回折により各結晶格子面からの回折ピーク強度を測定した場合、(200)面に最大の回折ピーク強度が現れる(200)配向性を有する。
 図1に、本願発明の被覆工具のTiCN層について、X線回折により測定した各結晶格子面からの回折ピーク強度のチャートの一例を示す。
 図1からも明らかなように、本願発明の被覆工具のTiCN層は、(200)面についての回折ピーク強度が、他の結晶格子面のピーク強度に比して最大であることがわかる。
 なお、X線回折は、X線回折装置としてスペクトリス社PANalytical Empyreanを用いて、CuKα線による2θ‐θ法で測定し、測定条件として、測定範囲(2θ):30~130度、X線出力:45kV、40mA、発散スリット:0.5度、スキャンステップ:0.013度、1ステップ辺り測定時間:0.48sec/stepという条件で測定した。
Lower TiCN layer:
As described above, the lower layer of the hard coating layer of the coated tool of the present invention is composed of a Ti compound layer, and the lower layer includes at least one TiCN layer, and the layer has (200) orientation. The TiCN layer is configured as follows.
That is, when the diffraction peak intensity from each crystal lattice plane is measured by X-ray diffraction for the crystal grains constituting the at least one TiCN layer of the lower layer, the maximum diffraction peak intensity appears on the (200) plane ( 200) It has orientation.
FIG. 1 shows an example of a chart of diffraction peak intensity from each crystal lattice plane measured by X-ray diffraction for the TiCN layer of the coated tool of the present invention.
As is clear from FIG. 1, it can be seen that the TiCN layer of the coated tool of the present invention has the maximum diffraction peak intensity with respect to the (200) plane as compared with the peak intensity of other crystal lattice planes.
X-ray diffraction was measured by the 2θ-θ method using CuKα rays using a Spectris PANalytical Empire as an X-ray diffractometer, and measurement conditions (measurement range (2θ): 30 to 130 degrees, X-ray output: The measurement was performed under the conditions of 45 kV, 40 mA, divergent slit: 0.5 degree, scan step: 0.013 degree, measurement time per step: 0.48 sec / step.
 さらに、前記少なくとも1層のTiCN層について、配向性指数Tc(hkl)を求めた場合、本願発明の被覆工具ではTc(200)の値が2.0以上、好ましくは、3.0以上、を示す(200)配向性を有する。
なお、配向性指数Tc(hkl)とは、以下の式で定義されるものである。
Further, when the orientation index Tc (hkl) is determined for the at least one TiCN layer, the coated tool of the present invention has a value of Tc (200) of 2.0 or more, preferably 3.0 or more. It has the (200) orientation shown.
The orientation index Tc (hkl) is defined by the following formula.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 上記式中、I(hkl)は測定された(hkl)面のピーク強度(回折強度)を示し、I(hkl)はJCPDSカード(Joint Committee on Powder Diffraction Standards(粉末X線回折標準))で表される(hkl)面を構成するTiCとTiNの粉末回折強度の平均値を示す。また、(hkl)は、(111)、(200)、(220)、(311)、(222)、(331)、(420)、(422)の8面であり、上記式の中括弧内は8面の平均値を示す。 In the above formula, I (hkl) represents the peak intensity (diffraction intensity) of the measured (hkl) plane, and I 0 (hkl) is a JCPDS card (Joint Committee on Powder Diffraction Standards (powder X-ray diffraction standard)). The average value of the powder diffraction intensity of TiC and TiN constituting the (hkl) plane represented is shown. In addition, (hkl) is the eight faces of (111), (200), (220), (311), (222), (331), (420), (422) Indicates the average value of 8 surfaces.
 本願発明の被覆工具の少なくとも1層のTiCN層は、前記したように(200)面にX線回折による最大ピーク強度を示し、かつ、配向性指数Tc(200)≧2.0という(200)配向性を有することによって、切削加工時にTiCN層に大きなせん断力が作用した場合でも、TiCN層は耐塑性変形性を有するため、該層を構成する結晶粒の脱落の発生、これによるチッピング、欠損、剥離の発生、あるいは、偏摩耗の進行等の異常損傷の発生を抑制することができ、また、これにより耐摩耗性を向上させることができる。
 しかし、(200)面についてのX線回折ピーク強度が、他の格子面からの回折ピーク強度に比して最大であるといえない場合、あるいは、配向性指数Tc(200)が2.0未満であるような場合には、(200)面配向性が十分でないため、耐塑性変形性向上効果が十分でなく、その結果、高負荷(高せん断力)が作用した場合の粒子の脱落防止、チッピング・欠損の発生、偏摩耗の発生を抑制することができない。
 したがって、本願発明では、下部層の少なくとも1層のTiCN層について測定した(200)面のX線回折ピーク強度が、他の結晶格子面のピーク強度に比して最大であることとし、また、配向性指数Tc(200)が2.0以上、好ましくは、3.0以上であると定めた。
As described above, at least one TiCN layer of the coated tool of the present invention shows the maximum peak intensity by X-ray diffraction on the (200) plane, and the orientation index Tc (200) ≧ 2.0 (200). Due to the orientation, even when a large shearing force is applied to the TiCN layer during cutting, the TiCN layer has plastic deformation resistance. The occurrence of peeling or the occurrence of abnormal damage such as the progression of uneven wear can be suppressed, and the wear resistance can be improved thereby.
However, when the X-ray diffraction peak intensity with respect to the (200) plane cannot be said to be maximum as compared with the diffraction peak intensity from other lattice planes, or the orientation index Tc (200) is less than 2.0. In such a case, since the (200) plane orientation is not sufficient, the plastic deformation resistance improvement effect is not sufficient, and as a result, the particles are prevented from falling off when a high load (high shear force) is applied. It is not possible to suppress the occurrence of chipping, chipping and uneven wear.
Therefore, in the present invention, the X-ray diffraction peak intensity of the (200) plane measured for at least one TiCN layer of the lower layer is maximum compared to the peak intensity of other crystal lattice planes, The orientation index Tc (200) was determined to be 2.0 or more, preferably 3.0 or more.
 下部層中の少なくとも1層のTiCN層は、柱状縦長組織を有していることが好ましい。
 特に、TiCN結晶粒の最大粒子幅Wと層厚方向の最大粒子長さLから求められるアスペクト比が5以上である柱状縦長成長TiCN結晶粒の占める面積割合が、TiCN層の縦断面面積の70面積%以上を占める場合には、柱状縦長組織の特徴であるすぐれた耐摩耗性向上効果を期待することができる。
 なお、前記最大粒子幅W、最大粒子長さLとは、柱状縦長成長TiCN結晶粒について、TiCN層の縦断面における1つの結晶粒を計測したとき、層厚方向に垂直な方向の結晶粒の幅(短辺)で最も大きい値を最大粒子幅Wと呼び、一方、層厚方向の結晶粒の高さ(長辺)で最も大きい値を最大粒子長さLと呼ぶ。
 また、TiCN層の層厚について特に限定するものではないが、Ti化合物層を構成するすべてのTiCN層の層厚が1.5~12μmであることが望ましい。
 これは、TiCN層の層厚が1.5μm以上になると、Tc(200)の値が大きくなる傾向を示し、高負荷切削加工における耐塑性変形性が向上するとともに、逃げ面摩耗量も減少し耐摩耗性が向上するからであり、一方、TiCN層の層厚が12μmを超えると、塑性変形を起し易くなり、偏摩耗の進行による異常損傷が発生するという理由による。
It is preferable that at least one TiCN layer in the lower layer has a columnar vertically long structure.
In particular, the area ratio of the columnar vertically grown TiCN crystal grains having an aspect ratio of 5 or more determined from the maximum grain width W of the TiCN crystal grains and the maximum grain length L in the layer thickness direction is 70% of the longitudinal sectional area of the TiCN layer. In the case of occupying area% or more, it is possible to expect an excellent effect of improving wear resistance, which is a feature of a columnar vertically long structure.
Note that the maximum grain width W and the maximum grain length L are the columnar vertically grown TiCN crystal grains, when one crystal grain in the longitudinal section of the TiCN layer is measured, the crystal grains in the direction perpendicular to the layer thickness direction. The largest value of the width (short side) is called the maximum particle width W, while the largest value of the crystal grain height (long side) in the layer thickness direction is called the maximum particle length L.
Further, the thickness of the TiCN layer is not particularly limited, but it is desirable that the thickness of all the TiCN layers constituting the Ti compound layer is 1.5 to 12 μm.
This indicates that when the thickness of the TiCN layer is 1.5 μm or more, the value of Tc (200) tends to increase, and the plastic deformation resistance in high-load cutting is improved and the flank wear amount is also reduced. This is because the wear resistance is improved. On the other hand, if the thickness of the TiCN layer exceeds 12 μm, plastic deformation is likely to occur, and abnormal damage due to the progress of uneven wear occurs.
 TiCN層の成膜:
 この発明における下部層のTi化合物層は、例えば、以下のようにして形成する。
 即ち、通常の化学蒸着装置を使用して、TiC層、TiN層、TiCN層、TiCO層、TiCNO層およびTiAlN層のうちの1層または2層以上からなる種々のTi化合物層を蒸着形成する。
 その中で、(200)配向性の高いTiCN層、あるいは、アスペクト比が5以上である柱状縦長組織を有する結晶粒が、下部層縦断面の70面積%以上を占めるTiCN層は、例えば、以下の蒸着方法によって形成することができる。
反応ガス組成(容量%):TiCl 1~5%、CHCN 0.5~1.5%、N 25~40%、残部H
 反応雰囲気温度:750~850℃、
 反応雰囲気圧力:5~10kPa
 反応雰囲気温度を低温にし、TiCN層の原料となるガス濃度比を低くすることで、(200)配向性の高い結晶組織が形成しやすくなり、またその組織は柱状縦長組織を有しやすくなる。
 また、TiN層の形成時に、例えば、
反応ガス組成(容量%):NH 0.5~2.0%,TiCl 0.1~0.3%、N 0~10%、残部H
 反応雰囲気温度:750~850℃、
 反応雰囲気圧力:5~8kPa
のような条件で作成することで、アスペクト比が5以上である柱状縦長組織を有する結晶粒を形成しやすくなる。
Formation of TiCN layer:
The lower Ti compound layer in this invention is formed as follows, for example.
That is, various Ti compound layers comprising one or more of TiC layer, TiN layer, TiCN layer, TiCO layer, TiCNO layer and TiAlN layer are formed by vapor deposition using a normal chemical vapor deposition apparatus.
Among them, a (200) highly oriented TiCN layer, or a TiCN layer in which a crystal grain having a columnar longitudinal structure having an aspect ratio of 5 or more occupies 70 area% or more of the lower layer longitudinal section is, for example, It can be formed by the vapor deposition method.
Reaction gas composition (volume%): TiCl 4 1-5%, CH 3 CN 0.5-1.5%, N 2 25-40%, balance H 2 ,
Reaction atmosphere temperature: 750 to 850 ° C.
Reaction atmosphere pressure: 5 to 10 kPa
By lowering the reaction atmosphere temperature and lowering the gas concentration ratio as a raw material for the TiCN layer, it becomes easy to form a crystal structure with a high (200) orientation, and the structure tends to have a columnar vertically long structure.
Further, when forming the TiN layer, for example,
Reaction gas composition (volume%): NH 3 0.5-2.0%, TiCl 4 0.1-0.3%, N 2 0-10%, balance H 2 ,
Reaction atmosphere temperature: 750 to 850 ° C.
Reaction atmosphere pressure: 5 to 8 kPa
By creating under such conditions, it becomes easy to form crystal grains having a columnar longitudinal structure having an aspect ratio of 5 or more.
 Al層からなる上部層:
 本願発明の被覆工具の上部層は、前記の(200)面にX線回折による最大ピーク強度を有し、かつ、配向性指数Tc(200)が2.0以上であるTiCN層を含む下部層の表面に、通常の化学蒸着法によって、1~15μmの平均層厚を有するAl層を蒸着することにより形成する。
 Alには、α型、κ型、γ型等の種々の結晶構造が存在するが、すぐれた高温硬さを有すること、耐酸化性を有すること、熱安定性に優れていること等の点から、上部層を構成するAl層としては、α型の結晶構造を有するα型Al層が望ましい。
 例えば、α型Al層を形成する場合には、
反応ガス組成(容量%):AlCl 2~5%,CO 10~20%、HCl 1~3%、HS 0~0.15%、残部H
 反応雰囲気温度:850~950℃、
 反応雰囲気圧力:5~10kPa
のような条件で作製する。
 また、上部層の平均層厚が1μm未満では、長期の使用に亘っての耐摩耗性を確保することができず、一方、その平均層厚が15μmを越えるとAl結晶粒が粗大化し易くなり、その結果、高温硬さ、高温強度の低下に加え、切れ刃に大きなせん断力が作用する高負荷切削加工時の耐チッピング性、耐欠損性が低下することから、その平均層厚は1~15μmと定めた。
Upper layer composed of Al 2 O 3 layer:
The upper layer of the coated tool of the present invention includes a TiCN layer having a maximum peak intensity by X-ray diffraction on the (200) plane and an orientation index Tc (200) of 2.0 or more. Is formed by vapor-depositing an Al 2 O 3 layer having an average layer thickness of 1 to 15 μm by the usual chemical vapor deposition method.
Al 2 O 3 has various crystal structures such as α-type, κ-type, and γ-type, but has excellent high-temperature hardness, oxidation resistance, and excellent thermal stability. In view of the above, the Al 2 O 3 layer constituting the upper layer is preferably an α-type Al 2 O 3 layer having an α-type crystal structure.
For example, when forming an α-type Al 2 O 3 layer,
Reaction gas composition (volume%): AlCl 3 2-5%, CO 2 10-20%, HCl 1-3%, H 2 S 0-0.15%, balance H 2 ,
Reaction atmosphere temperature: 850 to 950 ° C.
Reaction atmosphere pressure: 5 to 10 kPa
It is produced under the following conditions.
Further, if the average layer thickness of the upper layer is less than 1 μm, it is not possible to ensure wear resistance over a long period of use, whereas if the average layer thickness exceeds 15 μm, the Al 2 O 3 crystal grains are coarse. As a result, in addition to the decrease in high-temperature hardness and strength at high temperatures, the chipping resistance and fracture resistance during high-load cutting, in which a large shearing force acts on the cutting edge, are reduced. Was determined to be 1 to 15 μm.
 本願発明の被覆工具によれば、工具基体の表面に形成された硬質被覆層は、少なくともTi化合物層からなる下部層とAl層からなる上部層を備え、下部層の内の少なくとも1層は、TiCN層で構成され、該TiCN層は、(200)面にX線回折による最大回折ピーク強度が現れ、かつ、配向性指数Tc(200)は2.0以上であることから、TiCN層は、耐塑性変形性にすぐれる。
 その結果、TiCN層表面への大きなせん断力が作用する高負荷・低速切削加工条件で使用した場合でも、本願発明の被覆工具は、TiCN層の備えるすぐれた耐塑性変形性によって、結晶粒の脱落、チッピング・欠損・剥離等の異常損傷の発生を抑制することができ、また、Al層からなる上部層が備えるすぐれた高温硬さ、耐酸化性、熱安定性と相俟って、長期の使用にわたってすぐれた耐摩耗性を発揮し、特に炭素鋼や合金鋼のようなすくい面の摩耗進行の影響が出やすい被削材に有効である。
 さらに、下部層において、アスペクト比が5以上である柱状縦長組織を有する結晶粒の面積割合を、下部層の縦断面の70面積%以上とすることによって、耐摩耗性をより向上させることができ、切削工具の長寿命化を図ることができる。
According to the coated tool of the present invention, the hard coating layer formed on the surface of the tool base includes at least a lower layer made of a Ti compound layer and an upper layer made of an Al 2 O 3 layer, and at least one of the lower layers. The layer is composed of a TiCN layer, and the TiCN layer has a maximum diffraction peak intensity due to X-ray diffraction on the (200) plane and the orientation index Tc (200) is 2.0 or more. The layer is excellent in plastic deformation resistance.
As a result, even when used under high-load / low-speed cutting conditions where a large shearing force acts on the TiCN layer surface, the coated tool of the present invention has the ability to drop crystal grains due to the excellent plastic deformation resistance of the TiCN layer. It is possible to suppress the occurrence of abnormal damage such as chipping, chipping and peeling, and combined with the excellent high temperature hardness, oxidation resistance and thermal stability of the upper layer made of Al 2 O 3 layer It exhibits excellent wear resistance over a long period of use, and is particularly effective for work materials that are susceptible to wear progress on rake surfaces such as carbon steel and alloy steel.
Furthermore, the wear resistance can be further improved by setting the area ratio of the crystal grains having a columnar longitudinal structure having an aspect ratio of 5 or more in the lower layer to 70 area% or more of the vertical section of the lower layer. The life of the cutting tool can be extended.
本願発明の被覆工具のTiCN層について、X線回折により測定した各結晶格子面から得られた回折ピーク強度の一例を示す。An example of the diffraction peak intensity obtained from each crystal lattice plane measured by X-ray diffraction for the TiCN layer of the coated tool of the present invention is shown.
 本願発明の被覆工具の実施形態について、実施例に基づいて具体的に説明する。 Embodiments of the coated tool of the present invention will be specifically described based on examples.
 原料粉末として、いずれも1~3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、NbC粉末、Cr粉末、TiN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370~1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、ISO規格CNMG120408のインサート形状をもったWC基超硬合金製の工具基体a~dをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, ZrC powder, NbC powder, Cr 3 C 2 powder, TiN powder, and Co powder all having an average particle diameter of 1 to 3 μm were prepared. Then, after adding wax, ball mill mixing in acetone for 24 hours, drying under reduced pressure, press-molding into a green compact of a predetermined shape at a pressure of 98 MPa. In a vacuum, vacuum sintering is performed at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour, and after sintering, a tool base a to WC-base cemented carbide having an ISO standard CNMG120408 insert shape is used. Each d was produced.
 また、原料粉末として、いずれも0.5~2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、ZrC粉末、TaC粉末、Mo2C粉末、WC粉末、Co粉末およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、ISO規格CNMG120412のインサート形状をもったTiCN基サーメット製の工具基体eを作製した。 In addition, as raw material powders, TiCN (TiC / TiN = 50/50 by mass ratio) powder, ZrC powder, TaC powder, Mo 2 C powder, WC powder, Co powder all having an average particle diameter of 0.5 to 2 μm And Ni powder are prepared, these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and then pressed into a compact at a pressure of 98 MPa. The body was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, a tool base e made of TiCN-based cermet having an insert shape of ISO standard CNMG120212 was produced.
 ついで、これらの工具基体a~dおよび工具基体eのそれぞれを、通常の化学蒸着装置に装入し、表3、表4に示される条件で、表6に示される目標層厚の下部層としてのTi化合物層を蒸着形成し、ついで、表3に示される条件で、表6に示される目標層厚の上部層としてのAl層を蒸着形成することにより、表6に示される本発明被覆工具1~13をそれぞれ製造した。
なお、表3にあるHT-TiCN層は、段落0016で示したTiCN層よりも反応雰囲気温度が高温で作製したTiCN層を示す。
また、表3において、アスペクト比が5以上である柱状縦長組織の結晶粒が形成されやすいTi化合物層の成膜条件は、TiN層-1(第1層)とTiAlN層である。
Next, each of the tool bases a to d and the tool base e is charged into a normal chemical vapor deposition apparatus, and under the conditions shown in Tables 3 and 4, as lower layers having the target layer thicknesses shown in Table 6. The Ti compound layer shown in Table 6 was formed by vapor deposition of the Al 2 O 3 layer as the upper layer of the target layer thickness shown in Table 6 under the conditions shown in Table 3. Invention coated tools 1 to 13 were produced respectively.
Note that the HT-TiCN layer in Table 3 is a TiCN layer manufactured at a higher reaction atmosphere temperature than the TiCN layer shown in paragraph 0016.
Further, in Table 3, the TiN layer-1 (first layer) and the TiAlN layer are the deposition conditions for the Ti compound layer in which columnar vertically oriented crystal grains having an aspect ratio of 5 or more are likely to be formed.
 また、比較の目的で、工具基体a~dおよび工具基体eのそれぞれを、通常の化学蒸着装置に装入し、表3、表5に示される条件で、表7に示される目標層厚の下部層としてのTi化合物層を蒸着形成し、ついで、表3に示される条件で、表7に示される目標層厚の上部層としてのAl層を蒸着形成することにより、表7に示される比較例被覆工具1~13をそれぞれ製造した。 For comparison purposes, each of the tool bases a to d and the tool base e is loaded into a normal chemical vapor deposition apparatus, and the target layer thicknesses shown in Table 7 are set under the conditions shown in Tables 3 and 5. By forming a Ti compound layer as a lower layer by vapor deposition and then depositing an Al 2 O 3 layer as an upper layer having a target layer thickness shown in Table 7 under the conditions shown in Table 3, The comparative example coated tools 1 to 13 shown were produced, respectively.
 本発明被覆工具1~13および比較被覆工具1~13の下部層のTiCN層について、X線回折により、各格子面からの回折ピーク強度を測定した。
図1に、本発明被覆工具1について求めたチャートを示す。
 なお、X線回折は、装置としてスペクトリス社PANalytical Empyreanを用い、CuKα線による2θ‐θ法で測定した。
測定条件は、測定範囲(2θ):30~130度、X線出力:45kV、40mA、発散スリット:0.5度、スキャンステップ:0.013度、1ステップ辺り測定時間:0.48sec/stepである。
 上記で求めたチャートから、(200)面からの回折ピーク強度が、他の格子面からの回折ピーク強度に対して最大であるか否かを判定した。
 表6、表7に、その判定結果を示す。
For the TiCN layers of the lower layers of the inventive coated tools 1 to 13 and the comparative coated tools 1 to 13, the diffraction peak intensity from each lattice plane was measured by X-ray diffraction.
In FIG. 1, the chart calculated | required about this invention coated tool 1 is shown.
X-ray diffraction was measured by the 2θ-θ method using CuKα rays using Spectris PANalytical Empirean as an apparatus.
Measurement conditions are measurement range (2θ): 30 to 130 degrees, X-ray output: 45 kV, 40 mA, diverging slit: 0.5 degrees, scan step: 0.013 degrees, measurement time per step: 0.48 sec / step It is.
From the chart obtained above, it was determined whether or not the diffraction peak intensity from the (200) plane was the maximum with respect to the diffraction peak intensities from other lattice planes.
Tables 6 and 7 show the determination results.
 また、上記回折ピーク強度の測定結果に基づき、配向性指数Tc(200)を求めた。
 配向性指数Tc(200)は、下記式によって算出した。
Further, the orientation index Tc (200) was determined based on the measurement result of the diffraction peak intensity.
The orientation index Tc (200) was calculated by the following formula.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで、I(hkl)は測定された(hkl)面の回折ピーク強度を示し、I(hkl)はJCPDSカード(Joint Committee on Powder Diffraction Standards(粉末X線回折標準))で表される(hkl)面を構成するTiCとTiNの粉末回折強度の平均値を示す。また、(hkl)は、(111)、(200)、(220)、(311)、(222)、(331)、(420)、(422)の8面である。
 表6、表7に、上記で算出した配向性指数Tc(200)の値を示す。
Here, I (hkl) represents the measured diffraction peak intensity of the (hkl) plane, and I 0 (hkl) is represented by a JCPDS card (Joint Committee on Powder Diffraction Standards (powder X-ray diffraction standard)) ( hkl) The average value of the powder diffraction intensities of TiC and TiN constituting the surface is shown. Further, (hkl) is the eight surfaces (111), (200), (220), (311), (222), (331), (420), and (422).
Tables 6 and 7 show the values of the orientation index Tc (200) calculated above.
 また、本発明被覆工具1~13および比較被覆工具1~13の下部層のTiCN層の縦断面について、走査型電子顕微鏡(倍率5000倍)を用いて、工具基体と平行な方向に10μm、工具基体と垂直な方向にTiCN層の層厚分の高さの領域内に存在するTiCN結晶粒のそれぞれについて最大粒子幅W、最大粒子長さLを測定するとともに、アスペクト比L/Wの値を求め、アスペクト比L/Wが5以上である結晶粒が、TiCN層の縦断面に占める面積割合を求めた。
 表6、表7に、上記で求めた面積割合を示す。
Further, the longitudinal section of the TiCN layer of the lower layer of the coated tools 1 to 13 of the present invention and the comparative coated tools 1 to 13 is 10 μm in a direction parallel to the tool base using a scanning electron microscope (5000 times magnification). The maximum grain width W and the maximum grain length L are measured for each TiCN crystal grain existing in the region of the height of the TiCN layer in the direction perpendicular to the substrate, and the value of the aspect ratio L / W is set. The area ratio of crystal grains having an aspect ratio L / W of 5 or more in the longitudinal section of the TiCN layer was determined.
Tables 6 and 7 show the area ratios obtained above.
 また、本発明被覆工具1~13、比較例被覆工具1~13の硬質被覆層の各構成層の厚さを、走査型電子顕微鏡を用いて測定(縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。 Further, the thicknesses of the constituent layers of the hard coating layers of the inventive coated tools 1 to 13 and comparative example coated tools 1 to 13 were measured using a scanning electron microscope (longitudinal cross section measurement). The average layer thickness (average value of 5-point measurement) substantially the same as the thickness was shown.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 つぎに、本発明被覆工具1~13、比較例被覆工具1~13の各種の被覆工具について、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、次の切削条件A、切削条件Bで切削試験を実施した。
≪切削条件A≫
 被削材:S45C
 切削速度:200m/min,
 切り込み:3.0mm,
 送り:0.4mm/rev,
 切削時間:5分間
の条件での炭素鋼丸棒の乾式連続高切り込み切削試験。
≪切削条件B≫
 被削材:SCM440 
 切削速度:250m/min,
 切り込み:2.0mm,
 送り:0.3mm/rev,
 切削時間:5分間
の条件での合金鋼4本スリット材の湿式断続切削試験。
上記の切削試験における切れ刃の逃げ面摩耗幅を測定するとともに、チッピング、欠損、剥離等の異常損傷の発生状況を肉眼で観察した。
 表8、表9に、この試験結果を示す。
Next, for the various coated tools of the coated tools 1 to 13 of the present invention and the comparative coated tools 1 to 13, the following cutting conditions were set in a state where each was fixed to the tip of the tool steel tool with a fixing jig. A cutting test was performed under A and cutting conditions B.
≪Cutting condition A≫
Work material: S45C
Cutting speed: 200 m / min,
Cutting depth: 3.0mm,
Feed: 0.4mm / rev,
Cutting time: Dry continuous high-cut cutting test of carbon steel round bar under conditions of 5 minutes.
≪Cutting condition B≫
Work material: SCM440
Cutting speed: 250 m / min,
Cutting depth: 2.0mm,
Feed: 0.3mm / rev,
Cutting time: Wet intermittent cutting test of 4 alloy steel slit materials under conditions of 5 minutes.
The flank wear width of the cutting edge in the above cutting test was measured, and the occurrence of abnormal damage such as chipping, chipping and peeling was observed with the naked eye.
Tables 8 and 9 show the test results.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表8、表9に示される結果から、本発明被覆工具1~13は、下部層に耐塑性変形性にすぐれるTiCN層が存在するため、TiCN結晶粒の脱落、これを原因とするチッピング、欠損、剥離の発生もなく、すぐれた耐摩耗性を発揮する。
 これに対して、比較例被覆工具1~13は、高負荷・低速切削加工においては、TiCN結晶粒の脱落、チッピング・欠損・剥離等の異常損傷の発生により、比較的短時間で使用寿命に至ることが明らかである。
From the results shown in Table 8 and Table 9, since the present invention coated tools 1 to 13 have a TiCN layer excellent in plastic deformation resistance in the lower layer, TiCN crystal grains fall off, chipping caused by this, Excellent wear resistance with no chipping or peeling.
In contrast, the comparative example coated tools 1 to 13 have a relatively short service life due to abnormal damage such as dropping, chipping, chipping and peeling of TiCN crystal grains in high load / low speed cutting. It is clear that
 前述のように、本願発明の被覆工具は、切れ刃に高負荷(大きなせん断力)が作用する高負荷・低速切削において特にすぐれた切削性能を発揮するが、各種鋼や鋳鉄などの通常の条件での連続切削や断続切削にも勿論用いることができる。 As described above, the coated tool of the present invention exhibits excellent cutting performance in high-load / low-speed cutting in which a high load (a large shearing force) acts on the cutting edge, but the normal conditions such as various steel and cast iron Of course, it can also be used for continuous cutting and intermittent cutting.

Claims (3)

  1.  炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、硬質被覆層が形成されている表面被覆切削工具において、
     (a)前記硬質被覆層は、少なくとも下部層と上部層からなり、
     (b)前記下部層は、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層から選ばれる1層または2層以上からなり、その内の少なくとも1層はTiの炭窒化物層で構成された2~15μmの合計平均層厚を有するTi化合物層からなり、
     (c)前記上部層は、1~15μmの平均層厚を有する酸化アルミニウム層からなり、
     (d)前記下部層のTi化合物層中の少なくとも1層のTiの炭窒化物層は、(200)面にX線回折による最大回折ピーク強度が現れ、かつ、配向性指数Tc(200)は2.0以上であることを特徴とする表面被覆切削工具。
    In a surface-coated cutting tool in which a hard coating layer is formed on the surface of a tool base composed of a tungsten carbide-based cemented carbide or a titanium carbonitride-based cermet,
    (A) The hard coating layer comprises at least a lower layer and an upper layer,
    (B) The lower layer is composed of one layer or two or more layers selected from a Ti carbide layer, a nitride layer, a carbonitride layer, a carbonate layer, and a carbonitride oxide layer, and at least one of them is A Ti compound layer composed of Ti carbonitride layers and having a total average layer thickness of 2 to 15 μm,
    (C) the upper layer comprises an aluminum oxide layer having an average layer thickness of 1 to 15 μm;
    (D) In at least one Ti carbonitride layer in the Ti compound layer of the lower layer, the maximum diffraction peak intensity by X-ray diffraction appears on the (200) plane, and the orientation index Tc (200) is A surface-coated cutting tool characterized by being 2.0 or more.
  2.  前記Ti化合物層の縦断面において、アスペクト比が5以上である柱状縦長組織を有する結晶粒が占める面積割合は、70面積%以上であることを特徴とする請求項1に記載の表面被覆切削工具。 2. The surface-coated cutting tool according to claim 1, wherein in the longitudinal section of the Ti compound layer, an area ratio occupied by a crystal grain having a columnar longitudinal structure having an aspect ratio of 5 or more is 70 area% or more. .
  3.  前記Ti化合物層において、すべてのTiの炭窒化物層の層厚が1.5~12μmであることを特徴とする請求項1または2に記載の表面被覆切削工具。 3. The surface-coated cutting tool according to claim 1, wherein in the Ti compound layer, the thickness of all Ti carbonitride layers is 1.5 to 12 μm.
PCT/JP2017/005901 2016-02-17 2017-02-17 Surface coated cutting tool WO2017142061A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016027727 2016-02-17
JP2016-027727 2016-02-17
JP2017026575A JP6853450B2 (en) 2016-02-17 2017-02-16 Surface coating cutting tool
JP2017-026575 2017-02-16

Publications (1)

Publication Number Publication Date
WO2017142061A1 true WO2017142061A1 (en) 2017-08-24

Family

ID=59626010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005901 WO2017142061A1 (en) 2016-02-17 2017-02-17 Surface coated cutting tool

Country Status (1)

Country Link
WO (1) WO2017142061A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0847999A (en) * 1994-03-22 1996-02-20 Sandvik Ab Coated superhard sintered alloy article and its production
WO2012144088A1 (en) * 2011-04-21 2012-10-26 住友電工ハードメタル株式会社 Surface-coated cutting tool and method for manufacturing same
WO2014142190A1 (en) * 2013-03-12 2014-09-18 日立ツール株式会社 Hard film, hard film covered member, and method for manufacturing hard film and hard film covered member
WO2014198881A1 (en) * 2013-06-14 2014-12-18 Sandvik Intellectual Property Ab Coated cutting tool
JP2015500148A (en) * 2011-12-14 2015-01-05 サンドビック インテレクチュアル プロパティー アクティエボラーグ Coated cutting tool and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0847999A (en) * 1994-03-22 1996-02-20 Sandvik Ab Coated superhard sintered alloy article and its production
WO2012144088A1 (en) * 2011-04-21 2012-10-26 住友電工ハードメタル株式会社 Surface-coated cutting tool and method for manufacturing same
JP2015500148A (en) * 2011-12-14 2015-01-05 サンドビック インテレクチュアル プロパティー アクティエボラーグ Coated cutting tool and manufacturing method thereof
WO2014142190A1 (en) * 2013-03-12 2014-09-18 日立ツール株式会社 Hard film, hard film covered member, and method for manufacturing hard film and hard film covered member
WO2014198881A1 (en) * 2013-06-14 2014-12-18 Sandvik Intellectual Property Ab Coated cutting tool

Similar Documents

Publication Publication Date Title
JP5831707B2 (en) Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP5907406B2 (en) Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP5321094B2 (en) Surface coated cutting tool
JP7121234B2 (en) A surface cutting tool with a hard coating that exhibits excellent chipping resistance
JP4888771B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6853450B2 (en) Surface coating cutting tool
JP5029825B2 (en) Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high speed heavy cutting
JP2019005867A (en) Surface-coated cutting tool with hard coating layer exhibiting excellent anti-chipping properties
JP5402516B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6853449B2 (en) Surface coating cutting tool
JP2004122269A (en) Surface coated cermet cutting tool exhibiting superior chipping resistance under high speed heavy duty cutting
JP5170828B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP2006198740A (en) Cutting tool made of surface coated cermet with hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting
JP5176787B2 (en) Surface coated cutting tool with excellent chipping resistance and wear resistance due to hard coating layer
WO2017142061A1 (en) Surface coated cutting tool
WO2015129771A1 (en) Cutting tool made of surface-coated titanium carbonitride-based cermet having exceptional chipping resistance
JP6940815B2 (en) Surface coating cutting tool with excellent wear resistance and peeling resistance for the hard coating layer
WO2017142058A1 (en) Surface coated cutting tool
JP5305013B2 (en) Surface coated cutting tool with excellent chipping and wear resistance with excellent hard coating layer
JP2018149668A (en) Surface coated cutting tool with hard coating layer exhibiting superior chipping resistance and abrasion resistance
JP5569739B2 (en) Surface coated cutting tool with excellent chipping resistance
JP2010274330A (en) Surface coated cutting tool
JP5686294B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5892335B2 (en) Surface coated cutting tool with excellent chipping resistance with hard coating layer
JP7401850B2 (en) surface coated cutting tools

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17753316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17753316

Country of ref document: EP

Kind code of ref document: A1