JP6853449B2 - Surface coating cutting tool - Google Patents
Surface coating cutting tool Download PDFInfo
- Publication number
- JP6853449B2 JP6853449B2 JP2017026574A JP2017026574A JP6853449B2 JP 6853449 B2 JP6853449 B2 JP 6853449B2 JP 2017026574 A JP2017026574 A JP 2017026574A JP 2017026574 A JP2017026574 A JP 2017026574A JP 6853449 B2 JP6853449 B2 JP 6853449B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- ticn
- tool
- cutting
- carbonitride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Chemical Vapour Deposition (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
Description
本発明は、各種の鋼や鋳鉄などの切削加工を、硬質被覆層が塑性変形を起こしやすい高負荷かつ低速条件で行った場合でも、硬質被覆層がすぐれた耐塑性変形性を有し、長期の使用に亘ってすぐれた耐摩耗性を発揮する表面被覆切削工具(以下、被覆工具という)に関する。 According to the present invention, even when cutting various types of steel, cast iron, etc. are performed under high load and low speed conditions in which the hard coating layer is prone to plastic deformation, the hard coating layer has excellent plastic deformation resistance and is long-term. The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent wear resistance over its use.
従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)下部層が、Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなるTi化合物層、
(b)上部層が、酸化アルミニウム層(以下、Al2O3層で示す)、
以上(a)および(b)で構成された硬質被覆層が蒸着形成された被覆工具が知られているが、被削材の種類、切削条件に応じて、耐チッピング性、耐欠損性、耐剥離性、耐摩耗性等の工具性能を高めるため、各種の提案がなされている。
Conventionally, generally, on the surface of a substrate (hereinafter, collectively referred to as a tool substrate) composed of a tungsten carbide (hereinafter, WC) -based cemented carbide or a titanium nitride (hereinafter, TiCN) -based cermet. ,
(A) The lower layer is a Ti carbide (hereinafter referred to as TiC) layer, a nitride (hereinafter, also indicated by TiN) layer, a carbonitride (hereinafter, indicated by TiCN) layer, and a carbon oxide (hereinafter, TiCO). A Ti compound layer consisting of one layer or two or more of the (shown) layer and the carbonitride oxide (hereinafter referred to as TiCNO) layer.
(B) The upper layer is an aluminum oxide layer (hereinafter referred to as Al 2 O 3 layer),
A covering tool in which a hard coating layer composed of the above (a) and (b) is formed by vapor deposition is known, but chipping resistance, chipping resistance, and chipping resistance and chipping resistance are determined according to the type of work material and cutting conditions. Various proposals have been made to improve tool performance such as peelability and abrasion resistance.
例えば、特許文献1には、WC基超硬合金基体の表面に、少なくとも1層のチタンの炭窒化物層を含むチタン化合物内層と、酸化アルミニウム外層とで構成された複合硬質層を被覆してなる切削工具において、前記チタン化合物内層を構成する少なくとも1層のチタンの炭窒化物層は、(220)面にX線回折による最大ピークが現れるTiCN層であり、前記酸化アルミニウム外層は、κ型結晶を主体とし、かつASTMにおいてκ−Al2O3の面間隔2.79オングストロームの面として定義される面に最大ピークが現れる酸化アルミニウム層とすることにより、剥離、摩耗等による異常損傷の発生を防止し、工具寿命の向上を図ることが提案されている。
即ち、TiCN層は(220)面に配向することで、基体または下の層との密着力を増し、界面からの剥離が起きにくくなるため、剥離に起因する異常損傷の発生や寿命低下を抑えることができる。また、(220)面に配向したTiCN層の上に、κ型結晶を主体としかつASTMにおいてκ−Al2O3の面間隔2.79オングストロームの面として定義される面に最大ピークが現れる酸化アルミニウム層を被覆すると、前記面間距離2.79オングストロームに配向性を示すκ−Al2O3は被覆層表面が平滑であるために、切り屑と工具間の摩擦による異常損傷が生じにくくなり、この酸化アルミニウム層が異常損傷を起しにくく安定した耐摩耗性を示すというものである。
For example, in Patent Document 1, the surface of a WC-based cemented carbide substrate is coated with a composite hard layer composed of an inner layer of a titanium compound including at least one carbonitride layer of titanium and an outer layer of aluminum oxide. The carbonitride layer of titanium, which is at least one layer constituting the inner layer of the titanium compound, is a TiCN layer in which the maximum peak due to X-ray diffraction appears on the (220) plane, and the outer layer of aluminum oxide is a κ type. Abnormal damage due to peeling, abrasion, etc. occurs by using an aluminum oxide layer that is mainly composed of crystals and in which the maximum peak appears on the surface defined as the surface of κ-Al 2 O 3 with a surface spacing of 2.79 angstrom in ASTM. It has been proposed to prevent this and improve the tool life.
That is, by orienting the TiCN layer on the (220) plane, the adhesion with the substrate or the lower layer is increased, and peeling from the interface is less likely to occur, so that the occurrence of abnormal damage and shortening of life due to peeling are suppressed. be able to. Further, on the TiCN layer oriented to the (220) plane, an oxidation in which a maximum peak appears on a plane defined as a plane having a plane spacing of 2.79 angstrom of κ-Al 2 O 3 mainly composed of κ type crystals in ASTM. When coating the aluminum layer, κ-Al 2 O 3 showing the orientation of the distance 2.79 Å between the surfaces for the coating layer surface is smooth, abnormal damage hardly occurs due to friction between the chip and the tool , This aluminum oxide layer is less likely to cause abnormal damage and exhibits stable wear resistance.
また、特許文献2には、工具基体表面に内層および外層を被覆形成した被覆工具において、内層を10μm以上の厚みを有し柱状組織からなる炭窒化チタン層を有する多層構造とし、外層を、少なくともα型酸化アルミニウム層を含む層とし、前記炭窒化チタン層について、(422)面と(311)面との配向性指数TC(422)、TC(311)をともに1.3以上3以下とする配向性をもたせ、また、配向性指数TC(422)とTC(311)とを除く配向性指数TC(hkl)がすべて1.5以下とすることによって、被覆工具の耐剥離性、耐摩耗性、耐クレータ性、また、破壊強度を向上させることが提案されている。
ここで、炭窒化チタン層の配向性指数TC(422)、TC(311)をともに1.3以上とし、その組織を柱状組織とすることにより、10μm以上の膜厚でも膜の耐破壊性を大きく向上させ耐摩耗性を向上させることが可能となり、また、切削中のチッピングによる摩耗の進行が抑制し得るとともに、切削中の被削材の溶着が起こりにくくなり、その結果、膜にかかる切削応力の増大が防げることから耐剥離性も大幅に向上するとされている。
Further, in Patent Document 2, in a coated tool in which an inner layer and an outer layer are coated on the surface of a tool substrate, the inner layer has a multi-layer structure having a titanium nitride layer having a thickness of 10 μm or more and a columnar structure, and the outer layer is at least. The layer includes the α-type aluminum oxide layer, and the orientation indexes TC (422) and TC (311) of the (422) plane and the (311) plane of the titanium nitride layer are both 1.3 or more and 3 or less. By providing orientation and having the orientation index TC (hkl) excluding the orientation indexes TC (422) and TC (311) all set to 1.5 or less, the peeling resistance and wear resistance of the covering tool It has been proposed to improve crater resistance and breaking strength.
Here, by setting the orientation indices TC (422) and TC (311) of the titanium carbide layer to 1.3 or more and forming the structure into a columnar structure, the fracture resistance of the film can be improved even with a film thickness of 10 μm or more. It is possible to greatly improve and improve wear resistance, and it is possible to suppress the progress of wear due to chipping during cutting, and welding of the work material during cutting is less likely to occur, and as a result, cutting applied to the film. It is said that the peel resistance is greatly improved because the increase in stress can be prevented.
また、特許文献3には、基体表面に、少なくとも1層の炭窒化チタン層を含む硬質被覆層を形成した被覆工具において、前記炭窒化チタン層の組織係数TC(hkl)のうちの配向性指数TC(220)を最大とし、また、硬度基準片の押し込み硬度をHsとし、炭窒化チタン層の押し込み硬度をHtとした場合、(Htの平均値)/Hs≧3、かつ、炭窒化チタン層の押し込み硬度の最大値をHtmax、最小値をHtminとした場合、(Htmax−Htmin)/(Htの平均値)<0.5とし、炭窒化チタン層の結晶配向性を制御するとともに、該炭窒化チタン層の硬度のばらつきをなくすことにより、被覆工具の耐摩耗性および耐欠損性の向上を図ることが提案されている。 Further, Patent Document 3 describes an orientation index of the structure coefficient TC (hkl) of the titanium nitride layer in a coating tool in which a hard coating layer including at least one titanium nitride layer is formed on the surface of the substrate. When TC (220) is the maximum, the indentation hardness of the hardness reference piece is Hs, and the indentation hardness of the titanium nitride layer is Ht, (average value of Ht) / Hs ≧ 3, and the titanium nitride layer When the maximum value of the indentation hardness of is Htmax and the minimum value is Htmin, (Htmax-Htmin) / (average value of Ht) <0.5, the crystal orientation of the titanium nitride layer is controlled, and the charcoal is used. It has been proposed to improve the wear resistance and fracture resistance of the coated tool by eliminating the variation in the hardness of the titanium nitride layer.
近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強い。これに伴い、切削加工は一段と高能率化すると共に、高切り込みや高送りなどの重切削、断続切削等で切れ刃に高負荷が作用する傾向にある。前述した従来の被覆工具を鋼や鋳鉄などの通常の条件での連続切削、高速切削に用いた場合には問題はないが、従来の被覆工具を、高負荷が作用することにより、硬質被覆層が塑性変形を起こすような高負荷・低速切削加工条件に用いた場合には、硬質被覆層の塑性変形により、硬質被覆層を構成する結晶粒の脱落等が生じやすく、また、これに起因する異常摩耗が進行しやすく、これを原因として比較的短時間で工具寿命に至るという問題がある。 In recent years, the performance of cutting equipment has been remarkably improved, while there is a strong demand for labor saving, energy saving, and cost reduction for cutting. Along with this, the cutting process becomes more efficient, and a high load tends to act on the cutting edge due to heavy cutting such as high cutting and high feed, intermittent cutting, and the like. There is no problem when the above-mentioned conventional covering tool is used for continuous cutting and high-speed cutting under normal conditions such as steel and cast iron, but the conventional covering tool is used as a hard coating layer due to the action of a high load. When used under high-load, low-speed cutting conditions that cause plastic deformation, the plastic deformation of the hard coating layer tends to cause the crystal grains that make up the hard coating layer to fall off, which is also the cause. Abnormal wear is likely to progress, which causes a problem that the tool life is reached in a relatively short time.
そこで、本発明者らは、前述のような観点から、切れ刃に高負荷が作用し、硬質被覆層が塑性変形を起こしやすい高負荷・低速切削加工条件で使用した場合でも、硬質被覆層の異常損傷が発生しにくい硬質被覆層の構造について鋭意研究を行ったところ、工具基体表面に、少なくともTi化合物層を含む硬質被覆層を形成し、さらに、Ti化合物層として、少なくとも1層のTiCN層を含む層を形成し、該TiCN層の(200)配向性を高めた場合には、高負荷(特に、TiCN層表面への大きなせん断力)が作用したとしても、TiCN層がすぐれた耐塑性変形性を有するため、TiCN層を構成する結晶粒の脱落等による異常損傷の発生を抑制し得ること、また、これにより耐摩耗性の向上を図り得ることを見出したのである。
また、前記TiCN層を、アスペクト比が5以上である柱状縦長組織として形成した場合には、すぐれた耐塑性変形性に加え、柱状縦長組織によりもたらされる一段とすぐれた耐摩耗性を発揮することを見出したのである。
Therefore, from the above viewpoint, the present inventors consider that even when the hard coating layer is used under high load and low speed cutting conditions in which a high load acts on the cutting edge and the hard coating layer is likely to undergo plastic deformation. As a result of diligent research on the structure of the hard coating layer that is less likely to cause abnormal damage, a hard coating layer containing at least a Ti compound layer was formed on the surface of the tool substrate, and at least one TiCN layer was further formed as the Ti compound layer. When a layer containing the above is formed to increase the (200) orientation of the TiCN layer, the TiCN layer has excellent plastic resistance even if a high load (particularly, a large shearing force on the surface of the TiCN layer) acts. It has been found that since it has deformability, it is possible to suppress the occurrence of abnormal damage due to the falling off of crystal grains constituting the TiCN layer, and thereby it is possible to improve the wear resistance.
Further, when the TiCN layer is formed as a columnar vertically elongated structure having an aspect ratio of 5 or more, in addition to excellent plastic deformation resistance, it exhibits further excellent wear resistance brought about by the columnar vertically elongated structure. I found it.
本発明は、前記知見に基づいてなされたものであって、
「(1)炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、硬質被覆層が形成されている表面被覆切削工具において、
(a)前記硬質被覆層は、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、炭窒酸化物層およびTiとAlの窒化物層から選ばれる1層または2層以上からなり、かつ、その内の少なくとも1層は1.5μm以上の平均層厚のTiの炭窒化物層で構成された2〜15μmの合計平均層厚を有するTi化合物層からなり、
(b)前記Ti化合物層中の少なくとも1層のTiの炭窒化物層は、(200)面にX線回折による最大回折ピーク強度が現れ、かつ、配向性指数Tc(200)は2.0以上であることを特徴とする表面被覆切削工具。
(2)前記Ti化合物層の縦断面において、アスペクト比が5以上である柱状縦長組織を有する結晶粒が占める面積割合は、70面積%以上であることを特徴とする(1)に記載の表面被覆切削工具。
(3)前記Ti化合物層において、すべてのTiの炭窒化物層の層厚が1.5〜13μmであることを特徴とする(1)または(2)に記載の表面被覆切削工具。」
The present invention has been made based on the above findings.
"(1) In a surface-coated cutting tool in which a hard coating layer is formed on the surface of a tool substrate composed of a tungsten carbide-based cemented carbide or a titanium nitride-based cermet.
(A) The hard coating layer is composed of one layer or two or more layers selected from a Ti carbide layer, a nitride layer, a carbonitride layer, a carbon oxide layer, a carbonitride oxide layer, and a Ti and Al nitride layer. It becomes, and at least one layer of which consists of Ti compound layer having a total average layer thickness of 2~15μm comprised of carbonitride layer of Ti having an average layer thickness of more than 1.5 [mu] m,
(B) At least one Ti carbonitride layer in the Ti compound layer has a maximum diffraction peak intensity due to X-ray diffraction on the (200) plane, and an orientation index Tc (200) is 2.0. A surface-coated cutting tool characterized by the above.
(2) The surface according to (1), wherein in the vertical cross section of the Ti compound layer, the area ratio occupied by the crystal grains having a columnar longitudinal structure having an aspect ratio of 5 or more is 70 area% or more. Coated cutting tool.
(3) The surface coating cutting tool according to (1) or (2), wherein in the Ti compound layer, the layer thickness of all Ti carbonitride layers is 1.5 to 13 μm. "
次に、本発明の被覆工具について詳細に説明する。
本発明の被覆工具は、工具基体表面にTi化合物層を含む硬質被覆層が形成され、Ti化合物層は少なくとも1層のTiCN層を含み、該TiCN層の少なくとも1層は、(200)配向度の高いTiCN層からなっている。
Next, the covering tool of the present invention will be described in detail.
In the coating tool of the present invention, a hard coating layer containing a Ti compound layer is formed on the surface of the tool substrate, the Ti compound layer contains at least one TiCN layer, and at least one layer of the TiCN layer has a degree of orientation (200). Consists of a high TiCN layer.
硬質被覆層:
本発明被覆工具の硬質被覆層は、Ti化合物層(例えば、TiC層、TiN層、TiCN層、TiCO層、TiCNO層およびTiAlN層)を含み、Ti化合物層それ自身がすぐれた高温強度を有するとともに、工具基体表面との密着強度に優れるが、Ti化合物層の合計平均層厚が2μm未満の場合、前記作用を十分に発揮させることができない。
一方、Ti化合物層の合計平均層厚が15μmを越えるような場合には、切削加工時に作用する高負荷によって塑性変形を起し易くなり、その結果、結晶粒の脱落の発生、これによるチッピング、欠損、剥離の発生、あるいは偏摩耗の進行等の異常損傷発生の原因となる。
したがって、本発明では、Ti化合物層からなる硬質被覆層の合計平均層厚は2〜15μmと定めた。
Hard coating layer:
The hard coating layer of the coating tool of the present invention includes a Ti compound layer (for example, a TiC layer, a TiN layer, a TiCN layer, a TiCO layer, a TiCNO layer and a TiAlN layer), and the Ti compound layer itself has excellent high-temperature strength. Although the adhesion strength to the surface of the tool substrate is excellent, when the total average layer thickness of the Ti compound layers is less than 2 μm, the above-mentioned action cannot be sufficiently exerted.
On the other hand, when the total average layer thickness of the Ti compound layer exceeds 15 μm, plastic deformation is likely to occur due to the high load acting during cutting, and as a result, crystal grains fall off, resulting in chipping. It may cause abnormal damage such as chipping, peeling, or uneven wear.
Therefore, in the present invention, the total average layer thickness of the hard coating layer composed of the Ti compound layer is set to 2 to 15 μm.
TiCN層:
本発明被覆工具の硬質被覆層のTi化合物層は、少なくとも1層のTiCN層を含み、該層は、(200)配向性を有するTiCN層として構成される。
すなわち、前記少なくとも1層のTiCN層を構成する結晶粒について、X線回折により各格子面からの回折ピーク強度を測定した場合、(200)面に最大の回折ピーク強度が現れる(200)配向性を有する。
図1に、本発明被覆工具のTiCN層について、X線回折により測定した各格子面からの回折ピーク強度のチャートの一例を示す。
図1からも明らかなように、本発明被覆工具のTiCN層は、(200)面についての回折ピーク強度が、他の格子面からの回折ピーク強度に比べると最大のピーク強度を示していることがわかる。
なお、X線回折は、X線回折装置としてスペクトリス社PANalytical Empyreanを用いて、CuKα線による2θ‐θ法で測定し、測定条件として、測定範囲(2θ):30〜130度、X線出力:45kV、40mA、発散スリット:0.5度、スキャンステップ:0.013度、1ステップ辺り測定時間:0.48sec/stepという条件で測定した。
TiCN layer:
The Ti compound layer of the hard coating layer of the coating tool of the present invention includes at least one TiCN layer, and the layer is configured as a TiCN layer having (200) orientation.
That is, when the diffraction peak intensities from each lattice plane are measured by X-ray diffraction for the crystal grains constituting the at least one TiCN layer, the maximum diffraction peak intensity appears on the (200) plane (200) orientation. Has.
FIG. 1 shows an example of a chart of diffraction peak intensities from each lattice surface measured by X-ray diffraction for the TiCN layer of the coating tool of the present invention.
As is clear from FIG. 1, the TiCN layer of the coating tool of the present invention shows the maximum peak intensity of the diffraction peak intensity on the (200) plane as compared with the diffraction peak intensity from the other lattice planes. I understand.
The X-ray diffraction was measured by the 2θ-θ method using CuKα rays using PANalytical Empyrene of Spectris as an X-ray diffractometer, and the measurement conditions were: measurement range (2θ): 30 to 130 degrees, X-ray output: The measurement was performed under the conditions of 45 kV, 40 mA, divergence slit: 0.5 degrees, scan step: 0.013 degrees, and measurement time per step: 0.48 sec / step.
さらに、前記少なくとも1層のTiCN層について、配向性指数Tc(hkl)を求めた場合、本発明被覆工具ではTc(200)の値が2.0以上、好ましくは、3.0以上、を示す(200)配向性を有する。
なお、配向性指数Tc(hkl)とは、以下の式で定義されるものである。
上記式中、I(hkl)は測定された(hkl)面のピーク強度(回折強度)を示し、I0(hkl)はJCPDSカード(Joint Committee on Powder Diffraction Standards(粉末X線回折標準))で表される(hkl)面を構成するTiCとTiNの粉末回折強度の平均値を示す。また、(hkl)は、(111)、(200)、(220)、(311)、(222)、(331)、(420)、(422)の8面であり、上記式の中括弧内は8面の平均値を示す。
Further, when the orientation index Tc (hkl) is determined for at least one TiCN layer, the coating tool of the present invention shows a Tc (200) value of 2.0 or more, preferably 3.0 or more. (200) Has orientation.
The orientation index Tc (hkl) is defined by the following equation.
In the above formula, I (hkl) indicates the peak intensity (diffraction intensity) of the measured (hkl) plane, and I 0 (hkl) is a JCPDS card (Joint Committee on Power Diffraction Standards). The average value of the powder diffraction intensities of TiC and TiN constituting the represented (hkl) plane is shown. Further, (hkl) is the eight surfaces of (111), (200), (220), (311), (222), (331), (420), and (422), and is in the curly braces of the above equation. Indicates the average value of 8 planes.
本発明被覆工具の少なくとも1層のTiCN層は、前記したように(200)面にX線回折による最大ピーク強度を示し、かつ、配向性指数Tc(200)≧2.0という(200)配向性を有することによって、切削加工時にTiCN層に大きなせん断力が作用した場合でも、TiCN層は耐塑性変形性を有するため、該層を構成する結晶粒の脱落の発生、これによるチッピング、欠損、剥離の発生、あるいは、偏摩耗の進行等の異常損傷の発生を抑制することができ、また、これにより耐摩耗性を向上させることができる。
しかし、(200)面についてのX線回折ピーク強度が、他の格子面からの回折ピーク強度に比して最大であるといえない場合、あるいは、配向性指数Tc(200)が4.0未満であるような場合には、(200)面配向性が十分でないため、耐塑性変形性向上効果が十分でなく、その結果、高負荷(高せん断力)が作用した場合の粒子の脱落防止、チッピング・欠損の発生、偏摩耗の発生を抑制することができない。
したがって、本発明では、Ti化合物層の内の少なくとも1層のTiCN層について測定した(200)面のX線回折ピーク強度が、他の結晶格子面のピーク強度に比して最大であることとし、また、配向性指数Tc(200)は2.0以上、好ましくは、3.0以上であると定めた。
As described above, at least one TiCN layer of the coating tool of the present invention shows the maximum peak intensity by X-ray diffraction on the (200) plane, and the orientation index Tc (200) ≥ 2.0 (200) orientation. Due to its properties, even when a large shearing force acts on the TiCN layer during cutting, the TiCN layer has plastic deformation resistance, so that the crystal grains constituting the layer fall off, resulting in chipping, chipping, and so on. It is possible to suppress the occurrence of peeling or the occurrence of abnormal damage such as the progress of uneven wear, and thereby the wear resistance can be improved.
However, when the X-ray diffraction peak intensity for the (200) plane cannot be said to be the maximum as compared with the diffraction peak intensity from other lattice planes, or the orientation index Tc (200) is less than 4.0. In such a case, (200) the plane orientation is not sufficient, so that the effect of improving the plastic deformation resistance is not sufficient, and as a result, the particles are prevented from falling off when a high load (high shear force) is applied. It is not possible to suppress the occurrence of chipping / chipping and uneven wear.
Therefore, in the present invention, it is assumed that the X-ray diffraction peak intensity of the (200) plane measured for at least one TiCN layer among the Ti compound layers is the maximum as compared with the peak intensity of the other crystal lattice planes. Further, the orientation index Tc (200) was determined to be 2.0 or more, preferably 3.0 or more.
Ti化合物層中の少なくとも1層のTiCN層は、柱状縦長組織を有していることが好ましい。
特に、TiCN結晶粒の最大粒子幅Wと層厚方向の最大粒子長さLから求められるアスペクト比が5以上である柱状縦長TiCN結晶粒の占める面積割合が、TiCN層の縦断面面積の70面積%以上を占める場合には、柱状縦長組織の特徴である耐摩耗性向上効果を期待することができる。
なお、前記最大粒子幅W、最大粒子長さLとは、柱状縦長成長TiCN結晶粒について、TiCN層の縦断面における1つの結晶粒を計測したとき、層厚方向に垂直な方向の結晶粒の幅(短辺)で最も大きい値を最大粒子幅Wと呼び、一方、層厚方向の結晶粒の高さ(長辺)で最も大きい値を最大粒子長さLと呼ぶ。
また、TiCN層の層厚について特に限定するものではないが、Ti化合物層を構成するすべてのTiCN層の層厚が1.5〜13μmであることが望ましい。
これは、TiCN層の層厚が1.5μm以上になると、Tc(200)の値が大きくなる傾向を示し、高負荷切削加工における耐塑性変形性が向上するとともに、逃げ面摩耗量も減少し耐摩耗性が向上するからであり、一方、TiCN層の層厚が13μmを超えると、塑性変形を起し易くなり、偏摩耗の進行による異常損傷が発生するという理由による。
At least one TiCN layer in the Ti compound layer preferably has a columnar longitudinal structure.
In particular, the area ratio of the columnar vertically long TiCN crystal grains having an aspect ratio of 5 or more obtained from the maximum particle width W of the TiCN crystal grains and the maximum particle length L in the layer thickness direction is 70 of the vertical cross-sectional area of the TiCN layer. When it occupies% or more, the effect of improving the wear resistance, which is a characteristic of the columnar vertically long structure, can be expected.
The maximum particle width W and the maximum particle length L are the crystal grains in the direction perpendicular to the layer thickness direction when one crystal grain in the vertical cross section of the TiCN layer is measured for the columnar vertically elongated TiCN crystal grains. The largest value in the width (short side) is called the maximum grain width W, while the largest value in the height (long side) of the crystal grains in the layer thickness direction is called the maximum particle length L.
Further, the layer thickness of the TiCN layer is not particularly limited, but it is desirable that the layer thickness of all the TiCN layers constituting the Ti compound layer is 1.5 to 13 μm.
This is because when the thickness of the TiCN layer is 1.5 μm or more, the value of Tc (200) tends to increase, the plastic deformation resistance in high-load cutting is improved, and the amount of flank wear is also reduced. This is because the wear resistance is improved, and on the other hand, when the layer thickness of the TiCN layer exceeds 13 μm, plastic deformation is likely to occur, and abnormal damage due to the progress of uneven wear occurs.
Ti化合物層の成膜:
この発明におけるTi化合物層は、例えば、以下のようにして形成する。即ち、通常の化学蒸着装置を使用して、TiC層、TiN層、TiCN層、TiCO層、TiCNO層およびTiAlN層のうちの1層または2層以上からなる種々のTi化合物層を蒸着形成する。
その中で、(200)配向性の高いTiCN層、あるいは、アスペクト比が5以上である柱状縦長組織を有する結晶粒が、Ti化合物層の縦断面の70面積%以上を占めるTiCN層は、例えば、以下の蒸着方法によって形成することができる。
反応ガス組成(容量%):TiCl4 1〜5%、CH3CN 0.5〜1.5%、N2 25〜40%、残部H2、
反応雰囲気温度:750〜850℃、
反応雰囲気圧力:5〜10kPa
反応雰囲気温度を低温にし、TiCN層の原料となるガス濃度比を低くすることで、(200)配向性の高い結晶組織が形成しやすくなり、またその組織は柱状縦長組織を有しやすくなる。
また、TiN層の形成時に、例えば、
反応ガス組成(容量%):NH3 0.5〜2.0%,TiCl4 0.1〜0.3%、N2 0〜10%、残部H2、
反応雰囲気温度:750〜850℃、
反応雰囲気圧力:5〜8kPa
のような条件で作成することで、アスペクト比が5以上である柱状縦長組織を有する結晶粒を形成しやすくなる。
Film formation of Ti compound layer:
T i compound layer that put to the invention, for example, formed as follows. That is, various Ti compound layers including one or more of the TiC layer, the TiN layer, the TiCN layer, the TiCO layer, the TiCNO layer and the TiAlN layer are vapor-deposited and formed by using a normal chemical vapor deposition apparatus.
Among them, (200) a TiCN layer having high orientation, or a TiCN layer in which crystal grains having a columnar longitudinal structure having an aspect ratio of 5 or more occupy 70 area% or more of the vertical cross section of the Ti compound layer, for example. , Can be formed by the following vapor deposition method.
Reaction gas composition (% by volume): TiCl 4 1-5%, CH 3 CN 0.5-1.5%, N 2 25-40%, balance H 2 ,
Reaction atmosphere temperature: 750 to 850 ° C,
Reaction atmosphere pressure: 5-10 kPa
By lowering the reaction atmosphere temperature and lowering the gas concentration ratio that is the raw material of the TiCN layer, (200) a highly oriented crystal structure is likely to be formed, and the structure is likely to have a columnar vertically elongated structure.
Also, when forming the TiN layer, for example,
Reaction gas composition (volume%): NH 3 0.5 to 2.0%, TiCl 4 0.1 to 0.3%, N 20 to 10%, balance H 2 ,
Reaction atmosphere temperature: 750 to 850 ° C,
Reaction atmosphere pressure: 5-8 kPa
By producing under the above conditions, it becomes easy to form crystal grains having a columnar vertically long structure having an aspect ratio of 5 or more.
本発明の被覆工具によれば、工具基体の表面に形成されたTi化合物層を含む硬質被覆層は、Ti化合物層として少なくとも1層のTiCN層を含み、かつ、該TiCN層の内の少なくとも1つの層は、(200)面にX線回折による最大回折ピーク強度が現れ、かつ、配向性指数Tc(200)は2.0以上である(200)配向性を有するため、すぐれた耐塑性変形性を備える。
その結果、TiCN層表面への大きなせん断力が作用する高負荷・低速切削加工条件で使用した場合でも、本発明被覆工具は、TiCN層の備えるすぐれた耐塑性変形性によって、結晶粒の脱落、チッピング・欠損・剥離等の異常損傷の発生を抑制することができ、長期の使用にわたってすぐれた耐摩耗性を発揮するのである。
さらに、Ti化合物層において、アスペクト比が5以上である柱状縦長組織を有する結晶粒の面積割合が、TiCN層の縦断面の70面積%以上であることによって、耐摩耗性をより向上させることができ、切削工具の長寿命化を図ることができる。
According to the coating tool of the present invention, the hard coating layer containing the Ti compound layer formed on the surface of the tool substrate includes at least one TiCN layer as the Ti compound layer, and at least one of the TiCN layers. One layer has excellent plastic deformation resistance because the maximum diffraction peak intensity due to X-ray diffraction appears on the (200) plane and the orientation index Tc (200) has (200) orientation of 2.0 or more. Have sex.
As a result, even when used under high load and low speed cutting conditions in which a large shear force acts on the surface of the TiCN layer, the coating tool of the present invention has excellent plastic deformation resistance provided by the TiCN layer, so that the crystal grains fall off. It can suppress the occurrence of abnormal damage such as chipping, chipping, and peeling, and exhibits excellent wear resistance over a long period of use.
Further, in the Ti compound layer, the area ratio of the crystal grains having a columnar longitudinal structure having an aspect ratio of 5 or more is 70 area% or more of the vertical cross section of the TiCN layer, so that the abrasion resistance can be further improved. It is possible to extend the life of the cutting tool.
本発明の被覆工具の実施形態について、実施例に基づいて具体的に説明する。 Embodiments of the covering tool of the present invention will be specifically described based on examples.
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、NbC粉末、Cr3C2粉末、TiN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、ISO規格CNMG120408のインサート形状をもったWC基超硬合金製の工具基体a〜dをそれぞれ製造した。 As raw material powders, both WC powder having an average particle size of 1 to 3 [mu] m, TiC powder, ZrC powder, NbC powder, Cr 3 C 2 powder, TiN powder, and Co powder was prepared, these raw powders, Table 1 After blending to the compounding composition shown in (1), wax is further added, the mixture is ball-mill mixed in acetone for 24 hours, dried under reduced pressure, and then press-molded into a green compact having a predetermined shape at a pressure of 98 MPa, and the green compact is 5 Pa. Vacuum sintered in vacuum at a predetermined temperature within the range of 1370 to 1470 ° C. under the condition of holding for 1 hour, and after sintering, a tool base a to WC-based superhard alloy having an insert shape of ISO standard CNMG120408. d was manufactured respectively.
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、ZrC粉末、TaC粉末、Mo2C粉末、WC粉末、Co粉末およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、ISO規格CNMG120412のインサート形状をもったTiCN基サーメット製の工具基体eを作製した。 Further, as the raw material powder, both (TiC / TiN = 50/50 in mass ratio) TiCN having an average particle diameter of 0.5~2μm powder, ZrC powder, TaC powder, Mo 2 C powder, WC powder, Co powder And Ni powder are prepared, these raw material powders are blended into the compounding composition shown in Table 2, wet-mixed with a ball mill for 24 hours, dried, and then press-molded into a green compact at a pressure of 98 MPa. The body was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, a tool base e made of TiCN-based cermet having an insert shape of ISO standard CNMG120412 was prepared.
ついで、これらの工具基体a〜dおよび工具基体eのそれぞれを、通常の化学蒸着装置に装入し、表3、表4に示される条件で、表6に示される目標層厚のTi化合物層を蒸着形成することにより、表6に示される本発明被覆工具1〜13をそれぞれ製造した。
なお、表3で示すHT−TiCN層は、段落0016で示したTiCN層よりも反応雰囲気温度が高温で作製したTiCN層を示す。
また、表3において、アスペクト比が5以上である柱状縦長組織の結晶粒が形成されやすいTi化合物層の成膜条件は、TiN層−1(第1層)とTiAlN層である。
Then, each of these tool substrates a to d and the tool substrate e is charged into a normal chemical vapor deposition apparatus, and the Ti compound layer having the target layer thickness shown in Table 6 under the conditions shown in Tables 3 and 4 is used. The coated tools 1 to 13 of the present invention shown in Table 6 were manufactured by vapor deposition.
The HT-TiCN layer shown in Table 3 shows a TiCN layer prepared at a reaction atmosphere temperature higher than that of the TiCN layer shown in paragraph 0016.
Further, in Table 3, the film forming conditions of the Ti compound layer in which crystal grains having a columnar longitudinal structure having an aspect ratio of 5 or more are likely to be formed are TiN layer-1 (first layer) and TiAlN layer.
また、比較の目的で、工具基体a〜dおよび工具基体eのそれぞれを、通常の化学蒸着装置に装入し、表3、表5に示される条件で、表7に示される目標層厚のTi化合物層を蒸着形成することにより、表7に示される比較例被覆工具1〜13をそれぞれ製造した。 Further, for the purpose of comparison, each of the tool substrates a to d and the tool substrate e is charged into a normal chemical vapor deposition apparatus, and the target layer thickness shown in Table 7 is obtained under the conditions shown in Tables 3 and 5. By forming the Ti compound layer by vapor deposition, Comparative Examples Covering Tools 1 to 13 shown in Table 7 were manufactured, respectively.
本発明被覆工具1〜13および比較被覆工具1〜13のTi化合物層のTiCN層について、X線回折により、各格子面からの回折ピーク強度を測定した。
図1に、本発明被覆工具1について求めたチャートを示す。
なお、X線回折は、装置としてスペクトリス社PANalytical Empyreanを用い、CuKα線による2θ‐θ法で測定した。
測定条件は、測定範囲(2θ):30〜130度、X線出力:45kV、40mA、発散スリット:0.5度、スキャンステップ:0.013度、1ステップ辺り測定時間:0.48sec/stepである。
上記で求めたチャートから、(200)面からの回折ピーク強度が、他の格子面からの回折ピーク強度に対して最大であるか否かを判定した。
表6、表7に、その判定結果を示す。
The diffraction peak intensities from the lattice planes of the TiCN layers of the Ti compound layers of the coating tools 1 to 13 of the present invention and the comparative coating tools 1 to 13 were measured by X-ray diffraction.
FIG. 1 shows a chart obtained for the covering tool 1 of the present invention.
The X-ray diffraction was measured by the 2θ-θ method using CuKα rays using PANalytical Empylean manufactured by Spectris as an apparatus.
The measurement conditions are measurement range (2θ): 30 to 130 degrees, X-ray output: 45 kV, 40 mA, divergence slit: 0.5 degrees, scan step: 0.013 degrees, measurement time per step: 0.48 sec / step. Is.
From the chart obtained above, it was determined whether or not the diffraction peak intensity from the (200) plane was the maximum with respect to the diffraction peak intensity from the other lattice planes.
Tables 6 and 7 show the determination results.
また、上記回折ピーク強度の測定結果に基づき、配向性指数Tc(200)を求めた。
配向性指数Tc(200)は、
の式によって算出した。
ここで、I(hkl)は測定された(hkl)面の回折ピーク強度を示し、I0(hkl)はJCPDSカード(Joint Committee on Powder Diffraction Standards(粉末X線回折標準))で表される(hkl)面を構成するTiCとTiNの粉末回折強度の平均値を示す。また、(hkl)は、(111)、(200)、(220)、(311)、(222)、(331)、(420)、(422)の8面である。
表6、表7に、上記で算出した配向性指数Tc(200)の値を示す。
Further, the orientation index Tc (200) was determined based on the measurement result of the diffraction peak intensity.
The orientation index Tc (200) is
It was calculated by the formula of.
Here, I (hkl) indicates the diffraction peak intensity of the measured (hkl) plane, and I 0 (hkl) is represented by a JCPDS card (Joint Committee on Powder Diffraction Standards) (powder X-ray diffraction standard). The average value of the powder diffraction intensities of TiC and TiN constituting the hkl) plane is shown. Further, (hkl) has eight surfaces of (111), (200), (220), (311), (222), (331), (420), and (422).
Tables 6 and 7 show the values of the orientation index Tc (200) calculated above.
また、本発明被覆工具1〜13および比較被覆工具1〜13のTi化合物層のTiCN層の縦断面について、走査型電子顕微鏡(倍率5000倍)を用いて、工具基体と平行な方向に10μm、工具基体と垂直な方向にTiCN層の層厚分の高さの領域内に存在するTiCN結晶粒のそれぞれについて最大粒子幅W、最大粒子長さLを測定するとともに、アスペクト比L/Wの値を求め、アスペクト比L/Wが5以上である結晶粒が、TiCN層の縦断面に占める面積割合を求めた。
表6、表7に、上記で求めた面積割合を示す。
Further, regarding the vertical cross section of the TiCN layer of the Ti compound layer of the coating tools 1 to 13 of the present invention and the comparative coating tools 1 to 13, using a scanning electron microscope (magnification 5000 times), 10 μm in the direction parallel to the tool substrate. The maximum particle width W and the maximum particle length L are measured for each of the TiCN crystal grains existing in the region at the height of the layer thickness of the TiCN layer in the direction perpendicular to the tool substrate, and the value of the aspect ratio L / W is measured. The area ratio of the crystal grains having an aspect ratio L / W of 5 or more to the vertical cross section of the TiCN layer was determined.
Tables 6 and 7 show the area ratios obtained above.
また、本発明被覆工具1〜13、比較例被覆工具1〜13の硬質被覆層の各構成層の厚さを、走査型電子顕微鏡を用いて測定(縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。 Further, when the thickness of each constituent layer of the hard coating layer of the coating tools 1 to 13 of the present invention and the coating tools 1 to 13 of the comparative example was measured using a scanning electron microscope (longitudinal cross-sectional measurement), all of them were the target layers. The average layer thickness (average value of 5-point measurement) substantially the same as the thickness was shown.
つぎに、本発明被覆工具1〜13、比較例被覆工具1〜13の各種の被覆工具について、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、次の切削条件A、切削条件Bで切削試験を実施した。
≪切削条件A≫
被削材:SUS630,
切削速度:120m/min,
切り込み:3.0mm
送り:0.3mm/rev.
切削時間:5分間
の条件でのステンレス鋼丸棒の乾式連続高切り込み切削試験、
≪切削条件B≫
被削材:SUS304,
切削速度:200m/min,
切り込み:2.0mm
送り:0.3mm/rev,
切削時間:5分間
の条件でのステンレス鋼4本スリット材の乾式断続切削試験、
上記の切削試験における切れ刃の逃げ面摩耗幅を測定するとともに、チッピング、欠損、剥離等の異常損傷の発生状況を肉眼で観察した。
表8、表9に、この試験結果を示す。
Next, with respect to the various covering tools of the covering tools 1 to 13 of the present invention and the covering tools 1 to 13 of the comparative example, the following cutting conditions are obtained while all of them are screwed to the tip of the tool steel cutting tool with a fixing jig. A cutting test was carried out under A and cutting condition B.
≪Cutting condition A≫
Work material: SUS630,
Cutting speed: 120 m / min,
Notch: 3.0 mm
Feed: 0.3 mm / rev.
Cutting time: 5 minutes
Dry continuous high depth cutting test of stainless steel round bar under the conditions of
≪Cutting condition B≫
Work material: SUS304,
Cutting speed: 200 m / min,
Notch: 2.0 mm
Feed: 0.3mm / rev,
Cutting time: 5 minutes
Dry intermittent cutting test of stainless steel 4-slit material under the conditions of
The flank wear width of the cutting edge in the above cutting test was measured, and the occurrence of abnormal damage such as chipping, chipping, and peeling was observed with the naked eye.
Tables 8 and 9 show the test results.
表8、表9に示される結果から、本発明被覆工具1〜13は、硬質被覆層のTi化合物層として、耐塑性変形性にすぐれるTiCN層が存在するため、TiCN結晶粒の脱落、これを原因とするチッピング、欠損、剥離の発生もなく、すぐれた耐摩耗性を発揮する。
これに対して、比較例被覆工具1〜13は、高負荷・低速切削加工においては、TiCN結晶粒の脱落、チッピング・欠損・剥離等の異常損傷の発生により、比較的短時間で使用寿命に至ることが明らかである。
From the results shown in Tables 8 and 9, in the coating tools 1 to 13 of the present invention, since the TiCN layer having excellent plastic deformation resistance is present as the Ti compound layer of the hard coating layer, TiCN crystal grains fall off. It exhibits excellent wear resistance without chipping, chipping, or peeling caused by.
On the other hand, the covering tools 1 to 13 of Comparative Examples have a relatively short service life due to abnormal damage such as falling off of TiCN crystal grains, chipping, chipping, and peeling in high-load / low-speed cutting. It is clear that it will reach.
前述のように、本発明の被覆工具は、切れ刃に高負荷(大きなせん断力)が作用する高負荷・低速切削において特にすぐれた切削性能を発揮するが、各種鋼や鋳鉄などの通常の条件での連続切削や断続切削にも勿論用いることができる。
As described above, the covering tool of the present invention exhibits particularly excellent cutting performance in high-load and low-speed cutting in which a high load (large shear force) acts on the cutting edge, but under normal conditions such as various steels and cast iron. Of course, it can also be used for continuous cutting and intermittent cutting.
Claims (3)
(a)前記硬質被覆層は、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、炭窒酸化物層およびTiとAlの窒化物層から選ばれる1層または2層以上からなり、かつ、その内の少なくとも1層は1.5μm以上の平均層厚のTiの炭窒化物層で構成された2〜15μmの合計平均層厚を有するTi化合物層からなり、
(b)前記Ti化合物層中の少なくとも1層のTiの炭窒化物層は、(200)面にX線回折による最大回折ピーク強度が現れ、かつ、配向性指数Tc(200)は2.0以上であることを特徴とする表面被覆切削工具。 In a surface-coated cutting tool in which a hard coating layer is formed on the surface of a tool substrate composed of a tungsten carbide-based cemented carbide or a titanium nitride-based cermet.
(A) The hard coating layer is composed of one layer or two or more layers selected from a Ti carbide layer, a nitride layer, a carbonitride layer, a carbon oxide layer, a carbonitride oxide layer, and a Ti and Al nitride layer. It becomes, and at least one layer of which consists of Ti compound layer having a total average layer thickness of 2~15μm comprised of carbonitride layer of Ti having an average layer thickness of more than 1.5 [mu] m,
(B) At least one Ti carbonitride layer in the Ti compound layer has a maximum diffraction peak intensity due to X-ray diffraction on the (200) plane, and an orientation index Tc (200) is 2.0. A surface-coated cutting tool characterized by the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/005848 WO2017142058A1 (en) | 2016-02-17 | 2017-02-17 | Surface coated cutting tool |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016027726 | 2016-02-17 | ||
JP2016027726 | 2016-02-17 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017144548A JP2017144548A (en) | 2017-08-24 |
JP6853449B2 true JP6853449B2 (en) | 2021-03-31 |
Family
ID=59681075
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017026574A Active JP6853449B2 (en) | 2016-02-17 | 2017-02-16 | Surface coating cutting tool |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6853449B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7205153B2 (en) * | 2018-10-16 | 2023-01-17 | 株式会社タンガロイ | coated cutting tools |
JP7141022B2 (en) * | 2019-02-27 | 2022-09-22 | 三菱マテリアル株式会社 | surface coated cutting tools |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE514737C2 (en) * | 1994-03-22 | 2001-04-09 | Sandvik Ab | Coated carbide cutting tool |
WO2012144088A1 (en) * | 2011-04-21 | 2012-10-26 | 住友電工ハードメタル株式会社 | Surface-coated cutting tool and method for manufacturing same |
EP2604720A1 (en) * | 2011-12-14 | 2013-06-19 | Sandvik Intellectual Property Ab | Coated cutting tool and method of manufacturing the same |
JP6311700B2 (en) * | 2013-03-12 | 2018-04-18 | 三菱日立ツール株式会社 | Hard coating, hard coating covering member, and manufacturing method thereof |
CN105308210B (en) * | 2013-06-14 | 2018-06-26 | 山特维克知识产权股份有限公司 | Coated cutting tool |
-
2017
- 2017-02-16 JP JP2017026574A patent/JP6853449B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017144548A (en) | 2017-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6677932B2 (en) | Surface coated cutting tool that demonstrates excellent chipping and wear resistance in heavy interrupted cutting | |
JP5831707B2 (en) | Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting | |
EP3202515A1 (en) | Surface-coated cutting tool having excellent chip resistance | |
JP5907406B2 (en) | Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting | |
EP3315232A1 (en) | Coated surface cutting tool | |
EP3150309A1 (en) | Surface-coated cutting tool | |
EP3505282B1 (en) | Surface-coated cutting tool with hard coating layer exhibiting excellent chipping resistance and peeling resistance | |
JP7098932B2 (en) | Surface coating cutting tool with excellent chipping resistance and wear resistance with a hard coating layer | |
JP7121234B2 (en) | A surface cutting tool with a hard coating that exhibits excellent chipping resistance | |
JP6853450B2 (en) | Surface coating cutting tool | |
JP6857298B2 (en) | Surface coating cutting tool with excellent chipping resistance due to the hard coating layer | |
JP5029825B2 (en) | Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high speed heavy cutting | |
JP6853449B2 (en) | Surface coating cutting tool | |
JP5402516B2 (en) | Surface coated cutting tool with excellent chipping resistance due to hard coating layer | |
JP3887811B2 (en) | Cutting tool made of surface-coated tungsten carbide based cemented carbide with a hard coating layer that provides excellent wear resistance in high-speed cutting | |
JP7043869B2 (en) | Surface coating cutting tool with excellent welding resistance and abnormal damage resistance for the hard coating layer | |
JP6774649B2 (en) | Surface coating cutting tool with excellent chipping resistance and peeling resistance with a hard coating layer | |
JP6940815B2 (en) | Surface coating cutting tool with excellent wear resistance and peeling resistance for the hard coating layer | |
JP6957824B2 (en) | Surface coating cutting tool with excellent chipping resistance and wear resistance with a hard coating layer | |
WO2017142058A1 (en) | Surface coated cutting tool | |
WO2017142061A1 (en) | Surface coated cutting tool | |
JP2019177424A (en) | Surface-coated cutting tool the hard coating layer of which exhibits excellent oxidation resistance and deposition resistance | |
JP5686294B2 (en) | Surface coated cutting tool with excellent chipping resistance due to hard coating layer | |
JP5569739B2 (en) | Surface coated cutting tool with excellent chipping resistance | |
JP7037121B2 (en) | Surface-coated TiN-based cermet cutting tool with excellent chipping resistance due to the hard coating layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190925 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200807 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201001 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201029 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201222 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210114 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210127 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6853449 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |