JP7043869B2 - Surface coating cutting tool with excellent welding resistance and abnormal damage resistance for the hard coating layer - Google Patents

Surface coating cutting tool with excellent welding resistance and abnormal damage resistance for the hard coating layer Download PDF

Info

Publication number
JP7043869B2
JP7043869B2 JP2018022739A JP2018022739A JP7043869B2 JP 7043869 B2 JP7043869 B2 JP 7043869B2 JP 2018022739 A JP2018022739 A JP 2018022739A JP 2018022739 A JP2018022739 A JP 2018022739A JP 7043869 B2 JP7043869 B2 JP 7043869B2
Authority
JP
Japan
Prior art keywords
layer
composite nitride
nitride layer
tilt angle
degrees
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018022739A
Other languages
Japanese (ja)
Other versions
JP2019136823A (en
Inventor
晃浩 村上
正樹 奥出
真 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2018022739A priority Critical patent/JP7043869B2/en
Publication of JP2019136823A publication Critical patent/JP2019136823A/en
Application granted granted Critical
Publication of JP7043869B2 publication Critical patent/JP7043869B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本発明は、切刃に対して高負荷が作用する、特に、耐熱鋼の高送り切削加工において、硬質被覆層がすぐれた耐溶着性、耐塑性変形性および耐異常損傷性を備えることにより、長期の使用に亘り、すぐれた切削性能を有する表面被覆切削工具に関するものである。 INDUSTRIAL APPLICABILITY According to the present invention, the hard coating layer has excellent welding resistance, plastic deformation resistance, and abnormal damage resistance in high feed cutting of heat-resistant steel, in which a high load acts on the cutting edge. It relates to a surface-coated cutting tool having excellent cutting performance over a long period of use.

従来、一般に、各種の鋼の切削加工においては、炭化タングステン基等の超硬合金基体表面に、下部層として化学蒸着形成されたTiの炭窒化物(TiCN)層等のTi化合物層を有し、上部層として化学蒸着形成された酸化アルミニウム層を有する硬質被覆層が形成された被覆工具が用いられている。
しかしながら、近年、各種鋼の切削加工における高能率化が求められる中、従来の前記被覆工具では、溶着や異常損傷による工具寿命の短命化が問題となっていた。
Conventionally, in general, in the cutting of various types of steel, a Ti compound layer such as a carbonitride (TiCN) layer of Ti formed by chemical vapor deposition as a lower layer is provided on the surface of a cemented carbide substrate such as a tungsten carbide group. , A coating tool having a hard coating layer having an aluminum oxide layer formed by chemical vapor deposition as an upper layer is used.
However, in recent years, while high efficiency is required in the cutting of various steels, the conventional coated tool has a problem of shortening the tool life due to welding or abnormal damage.

そこで、例えば、特許文献1では、切削工具等において、スパッタリング法あるいはプラズマCVD法を用いて高硬度で耐摩耗性に優れたTiZrN硬質被覆層を形成させることにより、長寿命化を図ることが提案されている。
また、特許文献2では、鋼管の切断時に用いるカッターとして、硬質相がWC、金属結合相がCo、Ni、Crからなる超硬合金母材にTiZrNなどからなるセラミックス被覆層を設けることにより、被加工物とカッターとの拡散を防止し、従来、鋼管の切断時において刃先に発生していた溶着や刃こぼれなどによる生産性や製品の品質の低下を改善することが提案されている。
また、特許文献3では、基体にCVD法によりfcc構造のTiZrN、TiHfN、TiZrHfNが成膜された切削工具においては、特に、ステンレス鋼の乾式旋削加工に用いた際に工具寿命が延びることが提案されている。
Therefore, for example, Patent Document 1 proposes to extend the life of a cutting tool or the like by forming a TiZrN hard coating layer having high hardness and excellent wear resistance by using a sputtering method or a plasma CVD method. Has been done.
Further, in Patent Document 2, as a cutter used when cutting a steel pipe, a ceramic coating layer made of TiZrN or the like is provided on a cemented carbide base material having a hard phase of WC and a metal bonding phase of Co, Ni, and Cr. It has been proposed to prevent diffusion between the work piece and the cutter, and to improve the deterioration of productivity and product quality due to welding and blade spillage that have conventionally occurred at the cutting edge when cutting a steel pipe.
Further, Patent Document 3 proposes that a cutting tool in which TiZrN, TiHfN, and TiZrHfN having an fcc structure are formed on a substrate by a CVD method has a longer tool life, particularly when used for dry turning of stainless steel. Has been done.

特開平3-267361号公報Japanese Unexamined Patent Publication No. 3-267361 特開平7-237030号公報Japanese Unexamined Patent Publication No. 7-237030 米国特許公開第2016/0298233号明細書U.S. Patent Publication No. 2016/0298233

近年の切削加工における省力化および省エネ化への要求は強く、これに伴い、被覆工具は一段と過酷な条件下にて使用されるようになってきており、耐熱鋼の高送り切削においては、すぐれた耐溶着性、耐塑性変形性および耐異常損傷性を有することが求められている。
しかしながら、前記特許文献1および特許文献2にて提案されている被覆工具については、耐熱鋼の高送り切削加工への適用についてはなんらの記載も見当たらず、また、前記特許文献3にて提案されている、TiZrN、TiHfNあるいはTiZrHfNを被覆層として有する被覆工具については、耐熱鋼の高送り切削加工に用いた場合に、耐溶着性については、一定レベルの効果は認められるものの、これらの被覆層は塑性変形に耐えられず、また、被覆層からの粒子の脱落により、異常摩耗が生じる等、十分な耐塑性変形性や耐異常損傷性を有しないため、依然として、早期に寿命に至るという問題を有していた。
In recent years, there has been a strong demand for labor saving and energy saving in cutting, and along with this, coated tools have come to be used under more severe conditions, and are excellent in high feed cutting of heat-resistant steel. It is required to have welding resistance, plastic deformation resistance and abnormal damage resistance.
However, regarding the covering tools proposed in Patent Document 1 and Patent Document 2, there is no description about the application of heat-resistant steel to high-feed cutting, and it is also proposed in Patent Document 3. The coating tools having TiZrN, TiHfN or TiZrHfN as the coating layer have a certain level of effect on welding resistance when used for high-feed cutting of heat-resistant steel, but these coating layers. Does not withstand plastic deformation, and does not have sufficient plastic deformation resistance and abnormal damage resistance such as abnormal wear due to falling of particles from the coating layer, so there is still a problem that the life is reached early. Had.

そこで、本発明者らは、前述の観点から、前記被覆工具において、切れ刃に高負荷が作用する耐熱鋼の高送り切削に用いた場合であっても、長期の使用にわたり、すぐれた耐溶着性、耐塑性変形性および耐異常損傷性を兼ね備え、工具寿命の向上をもたらす、被覆工具について、鋭意研究を行った結果、以下の知見を得たものである。
すなわち、本発明者らは、表面被覆切削工具において、工具基体の表面に下部層としてTiもしくはZrを含み、かつ炭素と窒素とを含む化合物層を少なくとも一層成膜した後、限定された条件にて、TiとZrの複合窒化物層、あるいは、TiとZrとHfの複合窒化物層を成膜し、工具基体の表面の法線に対するかかるこれら複合窒化物層の個々の結晶粒の{112}面の法線方向の傾斜角度を0~45度の範囲において、所定のピッチ毎(例えば、0.25度毎)に区分される傾斜角区分における個数分布(傾斜角度数分布)として測定を行ったときに、傾斜角が工具基体の法線方向に対して0~10度である領域における特定のピッチ毎に区分された傾斜角区分のいずれかにおいて傾斜角度数の最高ピークを有するとともに、前記工具基体の法線方向に対して0~10度である領域に存在する傾斜角度数が前記全測定領域の35%以上を占め、前記複合窒化物層の結晶粒の{112}面に対する配向傾向が高い場合には、塑性変形を生じにくい組織が得られ、加えて、基体表面に対し垂直方向に向かう縦長結晶粒を有する組織とすることにより、基体面に並行な方向の粒界を少なくでき、結晶粒の脱落が生じにくくなること、さらには、前記複合窒化物層中にきわめて微少量の塩素を、例えば、その上限を0.030at%以下にて含有させた場合には、被覆層の脆化を生じることなく、潤滑効果を発揮でき、切削中の摩擦による発熱を抑制できるため、被覆層の塑性変形を生じ難くし、前記結晶粒の脱落を一層抑制できることを見出したものである。
そして、かかる複合窒化物層を硬質被覆層として有する被覆切削工具は、すぐれた耐溶着性、耐塑性変形性および耐異常損傷性を兼ね備えているため、耐熱鋼の高送り切削加工用として、長期の使用にわたり、工具寿命の向上をもたらすことを見出したものである。
Therefore, from the above-mentioned viewpoint, the present inventors have excellent welding resistance over a long period of use even when the covering tool is used for high feed cutting of heat-resistant steel in which a high load acts on the cutting edge. The following findings were obtained as a result of diligent research on coated tools that have properties, plastic deformation resistance, and abnormal damage resistance, and that improve the tool life.
That is, in the surface-coated cutting tool, the present inventors have limited conditions after forming at least one layer of a compound layer containing Ti or Zr as a lower layer on the surface of the tool substrate and containing carbon and nitrogen. Then, a composite nitride layer of Ti and Zr or a composite nitride layer of Ti, Zr and Hf is formed, and {112 of each crystal grain of such composite nitride layer with respect to the normal on the surface of the tool substrate. } In the range of the inclination angle in the normal direction of the surface in the range of 0 to 45 degrees, the measurement is performed as the number distribution (inclination angle number distribution) in the inclination angle division divided into predetermined pitch intervals (for example, every 0.25 degrees). When performed, it has the highest peak of the number of tilt angles in any of the tilt angle divisions divided by a specific pitch in the region where the tilt angle is 0 to 10 degrees with respect to the normal direction of the tool substrate. The number of tilt angles existing in the region of 0 to 10 degrees with respect to the normal direction of the tool substrate occupies 35% or more of the total measurement region, and the orientation of the crystal grains of the composite nitride layer with respect to the {112} plane. When the tendency is high, a structure that is less likely to cause plastic deformation can be obtained, and in addition, by forming a structure having vertically elongated crystal grains that are directed in the direction perpendicular to the substrate surface, the grain boundaries in the direction parallel to the substrate surface are reduced. It is possible that the crystal grains are less likely to fall off, and further, when a very small amount of chlorine is contained in the composite nitride layer, for example, when the upper limit thereof is 0.030 at% or less, the coating layer is formed. It has been found that the lubrication effect can be exhibited without causing brittleness of the normal, and heat generation due to friction during cutting can be suppressed, so that plastic deformation of the coating layer is less likely to occur and the falling off of the crystal grains can be further suppressed. ..
A coated cutting tool having such a composite nitride layer as a hard coating layer has excellent welding resistance, plastic deformation resistance, and abnormal damage resistance, and therefore has long-term use for high feed cutting of heat-resistant steel. It has been found that the tool life is improved over the use of.

本発明は、前記知見に基づいてなされたものであって、
「(1)WC基超硬合金またはTiCN基サーメットからなる工具基体の表面に、硬質被覆層が形成されてなる表面被覆切削工具において、
(a)前記硬質被覆層は、前記工具基体の表面側から少なくとも下部層および複合窒化物層を有してなり、
(b)前記下部層は、TiもしくはZrを含み、かつ炭素と窒素を含む化合物層を少なくとも一層有し、その合計平均膜厚が1.0μm以上であり、
(c)前記複合窒化物層は、平均膜厚0.5~20μmのTiとZrの複合窒化物層またはTiとZrとHfの複合窒化物層を含み、
(d)前記複合窒化物層は、平均組成を組成式(Ti(1-x)ZrxyHfx(1-y))Nにて表わした場合、
ZrとHfとの合量のTiとZrとHfとの合量に占める含有割合x、および、ZrのZrとHfとの合量に占める含有割合y(但し、x、yはいずれも原子比)が、それぞれ、0.05≦x≦0.95、および、0<y≦1.0をそれぞれ満足する複合窒化物層であり、
(e)前記複合窒化物層において、電界放出型走査電子顕微鏡と電子線後方散乱回折装置を用い、その断面研磨面の測定範囲内に存在する岩塩型立方晶結晶格子を有する個々の結晶粒に電子線を照射し、前記工具基体の表面の法線に対して、前記結晶粒の結晶面である{112}面の法線がなす傾斜角を0~45度の範囲内で測定し、測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフを作成した場合、前記工具基体の表面の法線に対する傾斜角が0~10度の範囲内の傾斜角区分に最高ピークが存在するとともに、前記0~10度の範囲内の傾斜角区分に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の35%以上を占め、
(f)前記複合窒化物層は、縦断面にてアスペクト比2以上の縦長結晶粒が占める面積率が50%以上であることを特徴とする、表面被覆切削工具。
(2)前記複合窒化物層は、0.030原子%以下の塩素を含有することを特徴とする、(1)に記載された表面被覆切削工具。」を特徴とするものである。
The present invention has been made based on the above findings.
"(1) In a surface-coated cutting tool in which a hard coating layer is formed on the surface of a tool substrate made of a WC-based cemented carbide or a TiCN-based cermet.
(A) The hard coating layer has at least a lower layer and a composite nitride layer from the surface side of the tool substrate.
(B) The lower layer has at least one compound layer containing Ti or Zr and containing carbon and nitrogen, and the total average film thickness thereof is 1.0 μm or more.
(C) The composite nitride layer includes a composite nitride layer of Ti and Zr having an average thickness of 0.5 to 20 μm or a composite nitride layer of Ti, Zr and Hf.
(D) When the average composition of the composite nitride layer is represented by the composition formula (Ti (1-x) Zr xy Hf x (1-y) ) N,
The content ratio x of the total amount of Zr and Hf in the total amount of Ti, Zr and Hf, and the content ratio y of the total amount of Zr and Zr and Hf (however, x and y are both atomic ratios). ) Are composite nitride layers satisfying 0.05 ≦ x ≦ 0.95 and 0 <y ≦ 1.0, respectively.
(E) In the composite nitride layer, an electric field emission type scanning electron microscope and an electron beam backscattering diffractometer are used to form individual crystal grains having a rock salt type cubic crystal lattice existing within the measurement range of the cross-sectional polished surface. By irradiating with an electron beam, the inclination angle formed by the normal of the {112} plane, which is the crystal plane of the crystal grain, is measured within the range of 0 to 45 degrees with respect to the normal of the surface of the tool substrate. When the tilt angle is divided into pitches of 0.25 degrees and the tilt angle distribution graph is created by summing up the degrees existing in each division, the tilt angle with respect to the normal of the surface of the tool substrate is 0. The highest peak exists in the tilt angle division within the range of 10 degrees, and the total number of degrees existing in the tilt angle division within the range of 0 to 10 degrees is 35% or more of the total frequency in the tilt angle distribution graph. Occupy,
(F) The surface-coated cutting tool, wherein the composite nitride layer has an area ratio of 50% or more occupied by vertically elongated crystal grains having an aspect ratio of 2 or more in a vertical cross section.
(2) The surface-coated cutting tool according to (1), wherein the composite nitride layer contains 0.030 atomic% or less of chlorine. It is characterized by.

つぎに、本発明の被覆工具について、詳細に説明する。 Next, the covering tool of the present invention will be described in detail.

硬質被覆層;
本発明に係る硬質被覆層は、工具基体表面側より、少なくとも下部層および複合窒化物層を有しており、前記下部層は、TiもしくはZrを含み、かつ炭素と窒素とを含む化合物層を少なくとも一層含んでなり、また、前記複合窒化物層は、TiとZrの複合窒化物層またはTiとZrとHfの複合窒化物層を含んでなるものである。
また、必要に応じ、その他の層として、工具基体と下部層の間に中間層1を、下部層と複合窒化物層の間に中間層2を、また、複合窒化物層の上に上部層を設けることができる。
ここで、硬質被覆層の平均層厚は、1.5μm未満では、長期にわたる耐摩耗性を発揮することができず、一方、30μmを超えて厚くなると硬質被覆層全体として欠損やチッピングが発生しやすくなるため、1.5~30μmとすることが望ましい。
硬質被覆層の平均層厚は、例えば、工具基体に対し垂直方向断面において、SEM(走査型電子顕微鏡)またはTEM(透過型電子顕微鏡)を用いて測定することができる。
Hard coating layer;
The hard coating layer according to the present invention has at least a lower layer and a composite nitride layer from the surface side of the tool substrate, and the lower layer contains a compound layer containing Ti or Zr and containing carbon and nitrogen. It comprises at least one layer, and the composite nitride layer includes a composite nitride layer of Ti and Zr or a composite nitride layer of Ti, Zr and Hf.
If necessary, as other layers, an intermediate layer 1 is provided between the tool substrate and the lower layer, an intermediate layer 2 is provided between the lower layer and the composite nitride layer, and an upper layer is provided on the composite nitride layer. Can be provided.
Here, if the average thickness of the hard coating layer is less than 1.5 μm, long-term wear resistance cannot be exhibited, while if it becomes thicker than 30 μm, defects and chipping occur in the entire hard coating layer. It is desirable to set it to 1.5 to 30 μm because it is easy.
The average thickness of the hard coating layer can be measured, for example, using an SEM (scanning electron microscope) or a TEM (transmission electron microscope) in a cross section perpendicular to the tool substrate.

下部層;
工具基体上に形成する下部層は、TiもしくはZrを含み、かつ炭素と窒素を含む化合物層、例えば、Tiの炭窒化物層、炭窒酸化物層、炭窒硼化物層、または、Zrの炭窒化物層、炭窒酸化物、炭窒硼化物層、または、TiとZrの炭窒化物層、炭窒酸化物層、炭窒硼化物層などからなる少なくとも一層有することにより、工具基体とTiとZrの複合窒化物層またはTiとZrとHfの複合窒化物層を有する複合窒化物層との密着性を高めることができるため、欠損、剥離等の異常損傷の発生を抑制することができる。
また、この下部層の上に、後述の限定された方法で複合窒化物層を成膜することで、複合窒化物層を{112}面に配向させることができる。複合窒化物層が{112}面に配向する理由については、少なくとも下部層の最表面は{112}面に配向しており、後述の成膜方法(すなわち、表面反応によって成膜が進行し、気相反応の寄与がほとんど無い成膜方法)にて複合窒化物層を形成することで、複合窒化物層が下部層最表面から配向を引き継いだものと考えられる。
また、下部層と複合窒化物層の間に前記中間層2を設ける場合には、中間層2を、例えば、TiN層とし、後述の成膜方法を用いることにより、下部層最表面の{112}配向を中間層2を経て、複合窒化物層に引き継ぐことができる。
下部層の合計平均層厚は、1.0μm未満では、膜厚が薄く、下部層最表面において、配向面が{112}方位に揃わないため、複合窒化物層を{112}配向させることがむずかしい。一方20μmを超えると結晶粒が粗大化し易く、チッピングが発生しやすくなるため、下部層の合計平均層厚は、1.0~20μmとすることが好ましい。
Lower layer;
The lower layer formed on the tool substrate is a compound layer containing Ti or Zr and containing carbon and nitrogen, for example, a carbonitride layer of Ti, a carbonitride oxide layer, a carbonitride boride layer, or Zr. By having at least one layer composed of a carbonitride layer, a carbonitride oxide, a carbonitride boride layer, or a Ti and Zr carbonitride layer, a carbonitride oxide layer, a carbonitride boride layer, etc., the tool substrate can be used. Since the adhesion to the composite nitride layer of Ti and Zr or the composite nitride layer having the composite nitride layer of Ti, Zr and Hf can be enhanced, the occurrence of abnormal damage such as chipping and peeling can be suppressed. can.
Further, by forming a composite nitride layer on the lower layer by a limited method described later, the composite nitride layer can be oriented on the {112} plane. The reason why the composite nitride layer is oriented on the {112} plane is that at least the outermost surface of the lower layer is oriented on the {112} plane, and the film formation method described later (that is, the film formation proceeds by the surface reaction). It is considered that the composite nitride layer inherited the orientation from the outermost surface of the lower layer by forming the composite nitride layer by the film forming method) in which the contribution of the gas phase reaction is almost nonexistent.
When the intermediate layer 2 is provided between the lower layer and the composite nitride layer, the intermediate layer 2 is, for example, a TiN layer, and by using the film forming method described later, the outermost surface of the lower layer is {112. } The orientation can be passed on to the composite nitride layer via the intermediate layer 2.
If the total average layer thickness of the lower layer is less than 1.0 μm, the film thickness is thin and the orientation planes are not aligned in the {112} orientation on the outermost surface of the lower layer, so that the composite nitride layer may be oriented {112}. It's difficult. On the other hand, if it exceeds 20 μm, the crystal grains are likely to be coarsened and chipping is likely to occur. Therefore, the total average layer thickness of the lower layer is preferably 1.0 to 20 μm.

複合窒化物層;
(1)平均層厚、成分組成
前記下部層上に配置される複合窒化物層は、少なくとも平均層厚0.5μm以上20μm以下のTiとZrの複合窒化物層またはTiとZrとHfの複合窒化物層を含んでなるものであって、具体的には、前記複合窒化物層は、組成式(Ti(1-x)ZrxyHfx(1-y))Nにて表した場合、0.05≦x≦0.95、および、0<y≦1.0をそれぞれ満足するものである。
ここで、xは、ZrとHfとの合量のTiとZrとHfとの合量に占める含有割合を表し、yはZrのZrとHfとの合量に占める含有割合を表す。但し、x、yはいずれも原子比である。
本発明に係る複合窒化物層では、それぞれ固溶するTiNと、ZrNおよびHfNとの格子定数の違いによって生じる格子ひずみにより、硬さの向上を図るものであるが、xが0.05より小さい、もしくはxが0.95より大きい場合は、十分な格子ひずみが導入されず、十分な硬さを確保することができないため、xの値を0.05≦x≦0.95に限定した。
また、前記複合窒化物層の平均層厚は、0.5μm未満では、長期にわたる耐摩耗性を発揮することができず、一方、20μmを超えると欠損やチッピングが発生しやすくなるため、硬度および耐摩耗性の観点からすぐれた効果を発揮する、0.5~20μmとすることが好ましい。
以下、前記複合窒化物層を、TiZrN窒化物層およびTiZrHfN窒化物層、あるいは、TiZrN層およびTiZrHfN層ともいう。
TiZrN窒化物層およびTiZrHfN窒化物層は、さらに、微量の塩素を含有することにより、潤滑効果が発揮されるため、切削中の摩耗による発熱が低減し、さらに耐塑性変形性が向上する。
ここで、塩素の含有率は、TiとZrとHfとNとClとの合量に対して塩素(Cl)が占める比率を原子%として表現した場合、0.030原子%以下にて添加することが望ましい。
Composite nitride layer;
(1) Average layer thickness and component composition The composite nitride layer arranged on the lower layer is a Ti and Zr composite nitride layer having an average layer thickness of at least 0.5 μm or more and 20 μm or less, or a composite of Ti, Zr and Hf. A nitride layer is included, and specifically, the composite nitride layer is represented by the composition formula (Ti (1-x) Zr xy Hf x (1-y) ) N. It satisfies 0.05 ≦ x ≦ 0.95 and 0 <y ≦ 1.0, respectively.
Here, x represents the content ratio of the total amount of Zr and Hf in the total amount of Ti, Zr and Hf, and y represents the content ratio of Zr in the total amount of Zr and Hf. However, both x and y are atomic ratios.
In the composite nitride layer according to the present invention, the hardness is improved by the lattice strain caused by the difference in the lattice constant between TiN which is solid-solved and ZrN and HfN, but x is smaller than 0.05. Or, when x is larger than 0.95, sufficient lattice strain is not introduced and sufficient hardness cannot be secured. Therefore, the value of x is limited to 0.05 ≦ x ≦ 0.95.
Further, if the average layer thickness of the composite nitride layer is less than 0.5 μm, long-term wear resistance cannot be exhibited, while if it exceeds 20 μm, chipping and chipping are likely to occur, so that the hardness and chipping are likely to occur. It is preferably 0.5 to 20 μm, which exhibits an excellent effect from the viewpoint of wear resistance.
Hereinafter, the composite nitride layer is also referred to as a TiZrN nitride layer and a TiZrHfN nitride layer, or a TiZrN layer and a TiZrHfN layer.
Since the TiZrN nitride layer and the TiZrHfN nitride layer further contain a small amount of chlorine, a lubricating effect is exhibited, so that heat generation due to wear during cutting is reduced, and plastic deformation resistance is further improved.
Here, the chlorine content is added at 0.030 atomic% or less when the ratio of chlorine (Cl) to the total amount of Ti, Zr, Hf, N and Cl is expressed as atomic%. Is desirable.

(2)傾斜角度数分布
本発明において複合窒化物層の複合窒化物結晶粒における前記傾斜角度数分布は、電界放出型走査電子顕微鏡と電子線後方散乱回折装置を用い、その断面研磨面の測定範囲内に存在する岩塩型立方晶結晶格子を有する個々の結晶粒に電子線を照射することにより測定することができる。
すなわち、具体的には、前記工具基体の表面の法線に対して、前記複合窒化物層における複合窒化物結晶粒の結晶面である{112}面の法線がなす傾斜角を0~45度の範囲内で測定し、測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフを作成した場合に、前記工具基体の表面の法線に対する傾斜角が0~10度の範囲内の傾斜角区分に最高ピークが存在するとともに、前記0~10度の範囲内の傾斜角区分に存在する度数の合計が、前記傾斜角度数分布グラフにおける度数全体の35%以上を占めるものであって、前記複合窒化物層の結晶粒の{112}面に対する配向傾向が高く、塑性変形を生じにくい組織を有するものである。
(3)縦長結晶組織
また、本発明に係る複合窒化物層は、前記のとおり、縦長結晶組織を有することにより、被覆層からの粒子の脱落が抑制され、耐摩耗性および耐異常損傷性にすぐれた特性を発揮する。
なお、ここでいう縦長結晶組織とは、前記複合窒化物層の縦断面を観察した際に、個々の結晶粒について、層厚方向の結晶粒の高さ(長辺)にて、最も大きい値を最大粒子長さ(L)とし、層厚方向に垂直な方向の結晶粒の幅(短辺)にて、最も大きい値を最大粒子幅(W)としたとき、L/Wにて定義されるアスペクト比が2以上である結晶粒の前記複合窒化物層の縦断面において占める面積割合が50%以上である組織をいう。
アスペクト比および縦長結晶粒の面積割合の測定は、例えば、走査型電子顕微鏡(SEM)を用い、倍率5000にて断面観察により得られた縦断面画像について、電子線後方散乱回折法(EBSD)により、個々の結晶粒につき、長軸径(最大粒子長さ)、短軸径(最大粒子幅)、および、縦断面の面積を測定し、長軸径および短軸径よりアスペクト比を求め、次いで、アスペクト比が2以上である結晶粒の縦断面における面積の総和に対する測定対象となった縦断面の面積の比率を面積割合として求めた。
(2) Inclined angle number distribution In the present invention, the inclined angle number distribution in the composite nitride crystal grain of the composite nitride layer is measured on the cross-sectional polished surface by using a field emission scanning electron microscope and an electron backscatter diffraction device. It can be measured by irradiating individual crystal grains having a rock salt type cubic crystal lattice existing in the range with an electron beam.
That is, specifically, the inclination angle formed by the normal of the {112} plane, which is the crystal plane of the composite nitride crystal grains in the composite nitride layer, is 0 to 45 with respect to the normal of the surface of the tool substrate. When a tilt angle number distribution graph is created, which measures within the range of degrees, divides the measured tilt angle into pitches of 0.25 degrees, and aggregates the degrees existing in each section, the tool substrate The highest peak exists in the tilt angle section in which the tilt angle with respect to the normal of the surface of the surface is in the range of 0 to 10 degrees, and the total number of degrees existing in the tilt angle section in the range of 0 to 10 degrees is the tilt. It occupies 35% or more of the total frequency in the angle distribution graph, and has a structure in which the composite nitride layer has a high orientation tendency with respect to the {112} plane of the crystal grains and is less likely to cause plastic deformation.
(3) Vertical crystal structure Further, as described above, the composite nitride layer according to the present invention has a vertically long crystal structure, so that particles are suppressed from falling off from the coating layer, and wear resistance and abnormal damage resistance are improved. Demonstrates excellent characteristics.
The vertically long crystal structure referred to here is the largest value in the height (long side) of the crystal grains in the layer thickness direction for each crystal grain when the vertical cross section of the composite nitride layer is observed. Is the maximum grain length (L), the width (short side) of the crystal grains in the direction perpendicular to the layer thickness direction, and the largest value is the maximum particle width (W), defined by L / W. A structure in which the area ratio of the crystal grains having an aspect ratio of 2 or more in the vertical cross section of the composite nitride layer is 50% or more.
The aspect ratio and the area ratio of the vertically elongated crystal grains are measured by, for example, an electron backscatter diffraction method (EBSD) for a longitudinal cross-sectional image obtained by cross-sectional observation at a magnification of 5000 using a scanning electron microscope (SEM). For each crystal grain, measure the major axis diameter (maximum particle length), minor axis diameter (maximum particle width), and vertical cross-sectional area, and obtain the aspect ratio from the major axis diameter and minor axis diameter, and then The ratio of the area of the vertical cross section to be measured to the total area of the vertical cross section of the crystal grain having an aspect ratio of 2 or more was obtained as the area ratio.

その他の層;
(1)中間層1
本発明において、工具基体と下部層との間にはTiNやTiC等のTi化合物等を中間層1として設けることにより、工具基体と下部層との密着性向上などを図ることができる。
(2)中間層2
また、本発明において、下部層と複合窒化物層との間においても、例えばTiN層、TiC層等の中間層2を設けることができ、なかでも、特に、TiN層は、下部層最表面の{112}面の配向を引き継ぐことができ、また、耐剥離性にもすぐれた特性を有する。
これは、特に、TiN層は、下部層と複合窒化物層のいずれとも付着強度が高く、また、変形追従性が高いことによるものと考えられる。
なお、TiN層の成膜条件は中間層1と中間層2で共通であるが(表3参照)、中間層1では基体からCo、C等の基体成分が拡散するため、微細粒状組織となる一方、中間層2では中間層1のような拡散が生じないため、前記したとおり、下部層の組織を引き継いだ配向性の高い組織が得られたものと考えられる(図2参照)。
(3)上部層
本発明においては、複合窒化物層の上にさらにAl酸化物やTiN、TiCNなどのチタン化合物などの上部層を設けることができ、成膜後には、ピーニング処理等を行うこともできる。
Other layers;
(1) Intermediate layer 1
In the present invention, by providing a Ti compound such as TiN or TiC as the intermediate layer 1 between the tool substrate and the lower layer, it is possible to improve the adhesion between the tool substrate and the lower layer.
(2) Intermediate layer 2
Further, in the present invention, an intermediate layer 2 such as a TiN layer and a TiC layer can be provided between the lower layer and the composite nitride layer, and in particular, the TiN layer is the outermost surface of the lower layer. It can inherit the orientation of the {112} plane and has excellent peel resistance.
It is considered that this is because the TiN layer has high adhesion strength in both the lower layer and the composite nitride layer and has high deformation followability.
Although the film forming conditions of the TiN layer are common to the intermediate layer 1 and the intermediate layer 2 (see Table 3), the intermediate layer 1 has a fine granular structure because the substrate components such as Co and C diffuse from the substrate. On the other hand, since diffusion unlike the intermediate layer 1 does not occur in the intermediate layer 2, it is considered that a highly oriented structure inheriting the structure of the lower layer was obtained as described above (see FIG. 2).
(3) Upper layer In the present invention, an upper layer such as an Al oxide, a titanium compound such as TiN or TiCN can be further provided on the composite nitride layer, and a peening treatment or the like is performed after the film formation. You can also.

硬質被覆層の成膜方法;
本発明に係る硬質被覆層は、下部層、複合窒化物層の順に、例えば、以下に示す成膜法を用いて形成することができる。
(1)下部層の成膜方法
硬質被覆層の下部層は、TiもしくはZrを含み、かつ炭素と窒素を含む化合物層を少なくとも一層有するものであり、通常の化学蒸着法を用い、成膜する化合物層ごとに反応ガス組成、および、圧力、温度等の反応雰囲気を適正範囲に調整することにより、成膜することができる。(後述する表3等参照。)
Tiを含む化合物層としては、Tiの炭窒化物層、炭窒酸化物層、あるいは、炭窒硼化物層などを、また、Zrを含む化合物層としては、ZrCN層、ZrCNO層、ZrCNB層などを選択することができる。
さらに、TiおよびZrの両者を含むものとしては、TiZrCN層、TiZrCNO層、TiZrCNB層などを選択できる。
Method of forming a hard coating layer;
The hard coating layer according to the present invention can be formed in the order of the lower layer and the composite nitride layer, for example, by using the film forming method shown below.
(1) Method for forming a film on the lower layer The lower layer of the hard coating layer has at least one compound layer containing Ti or Zr and containing carbon and nitrogen, and is formed by using an ordinary chemical vapor deposition method. A film can be formed by adjusting the reaction gas composition for each compound layer and the reaction atmosphere such as pressure and temperature within an appropriate range. (See Table 3 etc. described later.)
The compound layer containing Ti includes a carbonitride layer, a carbonitride oxide layer, or a carbonitride boride layer of Ti, and the compound layer containing Zr includes a ZrCN layer, a ZrCNO layer, a ZrCNB layer, and the like. Can be selected.
Further, as those containing both Ti and Zr, a TiZrCN layer, a TiZrCNO layer, a TiZrCNB layer and the like can be selected.

(2)複合窒化物層(TiZrN窒化物層またはTiZrHfN窒化物層)の成膜方法
本発明にて規定する成分組成を有し、特定の傾斜角度数分布および縦長組織を有するTiZrN層およびTiZrHfN層は、一例として、例えば、成膜された前記下部層に対し、化学蒸着法を用い、以下の条件にて成膜を行うことにより形成することができる。
すなわち、TiZrN層またはTiZrHfN層の成膜条件は、原料として、TiClガス、ZrClガスまたはZrClガス+HfClガス、Nガス、NHガス、Hガスを用い、成膜温度は、830℃以上950℃未満、好ましくは、860℃以上950℃未満、圧力条件は、6kPa以上12kPa未満にて、周期供給可能なCVD装置を用いて行うことができる。
ただし、TiClガスとNHガスとの混合は、急激な気相反応を伴うものであり、また、ZrClガスとNHガスとの混合も気相反応を起こす場合があるため、複合窒化物層における{112}面への配向性の付与、複合窒化物結晶粒の縦長化を阻害するおそれが生じ、また、複合窒化物層中の塩素の含有量が増加し、被膜の脆化を助長するおそれもあるため、以下のとおり、ガス群をガス群A、ガス群B、ガス群Cに分け、特にTiClガスとNHガスが混合しないように各ガス群を調整した上で、ガス群A、ガス群B、ガス群C、ガス群Bにおける反応を一単位周期として、各反応を順次行わせることにより、前記課題を解決したものである。
なお、前記したとおり、本発明工具の作製には、気相反応の抑制が求められるため、例えば、プラズマCVD法などの気相反応を促進させる成膜方法では、{112}面への配向性や縦長組織の成長を阻害するため、好ましくない。
[成膜条件]
1)反応ガス組成(容量%):
ガス群A:TiCl:0.30~3.00、N:25.00~75.00、H:残
ガス群B:ZrCl:0.03~1.50、HfCl:0.00~1.00、
:残
ただし、ZrCl+HfCl:0.03~1.70
ガス群C:NH:0.30~1.50、H:残
2)供給周期:
(ガス群A→ガス群B→ガス群C→ガス群B)を一周期としてこれを繰り返す。
各ガス群の供給時間は、ガス群A、ガス群B、ガス群Cのいずれも2.0秒以上であり、一周期当たりのガス供給時間は、8秒以上(好ましくは8秒以上24秒以下)である。
なお、一周期当たりのガス供給時間を長くするに従い成膜速度が低下するため、一周期当たりのガス供給時間は24秒以下とすることが好ましい。
複合窒化物層の膜厚の調整は、前記ガス供給周期(ガス群A→ガス群B→ガス群C→ガス群B)の繰り返し回数を増減させることにより行う。
3)反応雰囲気温度:830℃以上950℃未満、好ましくは860℃以上950℃未満
4)反応雰囲気圧力:6kPa以上12kPa未満
(3)中間層1、中間層2、および、上部層の成膜方法
本発明においては、工具基体と下部層との間に前記中間層1を、下部層と複合窒化物層の間に前記中間層2を、複合窒化物層の上に上部層を成膜することができる。
なお、成膜する化合物および成膜条件については、段落0013および後記表3を参照。
(2) Film formation method of composite nitride layer (TiZrN nitride layer or TiZrHfN nitride layer) TiZrN layer and TiZrHfN layer having the component composition specified in the present invention and having a specific inclination angle number distribution and a vertically long structure. As an example, can be formed, for example, by forming a film on the formed lower layer using a chemical vapor deposition method under the following conditions.
That is, as the film forming conditions of the TiZrN layer or the TiZrHfN layer, TiCl 4 gas, ZrCl 4 gas or ZrCl 4 gas + HfCl 4 gas, N 2 gas, NH 3 gas, H 2 gas are used as raw materials, and the film forming temperature is set. It can be carried out using a CVD apparatus capable of periodic supply at 830 ° C. or higher and lower than 950 ° C., preferably 860 ° C. or higher and lower than 950 ° C., and the pressure condition is 6 kPa or higher and lower than 12 kPa.
However, since the mixing of TiCl 4 gas and NH 3 gas involves a rapid gas phase reaction, and the mixing of ZrCl 4 gas and NH 3 gas may also cause a gas phase reaction, composite nitride is used. There is a risk of imparting orientation to the {112} plane in the material layer and hindering the vertical lengthening of the composite nitride crystal grains, and the content of chlorine in the composite nitride layer increases, resulting in brittleness of the coating film. Since it may promote, the gas group is divided into gas group A, gas group B, and gas group C as follows, and in particular, after adjusting each gas group so that TiCl 4 gas and NH 3 gas do not mix, each gas group is adjusted. The above-mentioned problems are solved by sequentially performing each reaction with the reactions in the gas group A, the gas group B, the gas group C, and the gas group B as one unit cycle.
As described above, since the production of the tool of the present invention requires suppression of the gas phase reaction, for example, in a film forming method that promotes the gas phase reaction such as the plasma CVD method, the orientation toward the {112} plane is achieved. It is not preferable because it inhibits the growth of vertically elongated tissues.
[Film formation conditions]
1) Reaction gas composition (% by volume):
Gas group A: TiCl 4 : 0.30 to 3.00, N 2 : 25.00 to 75.00, H 2 : Residual gas group B: ZrCl 4 : 0.03 to 1.50, HfCl 4 : 0. 00-1.00,
H 2 : Remaining
However, ZrCl 4 + HfCl 4 : 0.03 to 1.70
Gas group C: NH 3 : 0.30 to 1.50, H 2 : Remaining 2) Supply cycle:
This is repeated with (gas group A → gas group B → gas group C → gas group B) as one cycle.
The supply time of each gas group is 2.0 seconds or more for all of the gas group A, the gas group B, and the gas group C, and the gas supply time per cycle is 8 seconds or more (preferably 8 seconds or more and 24 seconds or more). Below).
Since the film formation rate decreases as the gas supply time per cycle increases, the gas supply time per cycle is preferably 24 seconds or less.
The film thickness of the composite nitride layer is adjusted by increasing or decreasing the number of repetitions of the gas supply cycle (gas group A → gas group B → gas group C → gas group B).
3) Reaction atmosphere temperature: 830 ° C. or higher and lower than 950 ° C., preferably 860 ° C. or higher and lower than 950 ° C. 4) Reaction atmosphere pressure: 6 kPa or more and less than 12 kPa (3) In the present invention, the intermediate layer 1 is formed between the tool substrate and the lower layer, the intermediate layer 2 is formed between the lower layer and the composite nitride layer, and the upper layer is formed on the composite nitride layer. Can be done.
See paragraph 0013 and Table 3 below for the compounds to be formed and the conditions for forming the film.

本発明に係る表面被覆切削工具は、工具基体の表面に形成されている硬質被覆層の複合窒化物層であるTiZrN窒化物層またはTiZrHfN窒化物層が、{112}面配向比率が高いことにより、粒界強度が高く、耐塑性変形性にすぐれ、さらに、縦長結晶組織を有することにより、基体と並行な方向への粒界が少なく、被膜粒子の脱落が発生しにくいというすぐれた効果を発揮するものである。
そして、前記TiZrN窒化物層またはTiZrHfN窒化物層は、さらに、微量の塩素を含有させることにより、潤滑効果の発揮、および、切削中の摩耗の発熱の低減を図るものである。
以上のとおり、本発明に係る表面被覆切削工具は、従来のすぐれた耐溶着性に加え、耐塑性変形性および耐異常損傷性が付与されたことで、耐熱鋼の高送り切削加工において、長期の使用に亘り、すぐれた切削性能を有する特性を発揮し、工具寿命の向上をもたらすものである。
In the surface-coated cutting tool according to the present invention, the TiZrN nitride layer or the TiZrHfN nitride layer, which is a composite nitride layer of the hard coating layer formed on the surface of the tool substrate, has a high {112} plane orientation ratio. It has high grain boundary strength, excellent plastic deformation resistance, and has a vertically long crystal structure, so that it has few grain boundaries in the direction parallel to the substrate and exhibits excellent effects that coating particles are less likely to fall off. It is something to do.
The TiZrN nitride layer or the TiZrHfN nitride layer further contains a small amount of chlorine to exert a lubrication effect and reduce heat generation of wear during cutting.
As described above, the surface-coated cutting tool according to the present invention is provided with plastic deformation resistance and abnormal damage resistance in addition to the conventional excellent welding resistance, so that it can be used for a long period of time in high feed cutting of heat-resistant steel. Throughout the use of, it exhibits the characteristics of having excellent cutting performance and improves the tool life.

本発明の表面被覆切削工具11の硬質被覆層の複合窒化物層を構成するTiZrHfN窒化物層における{112}面の傾斜角度数分布グラフである。It is a tilt angle number distribution graph of the {112} plane in the TiZrHfN nitride layer constituting the composite nitride layer of the hard coating layer of the surface coating cutting tool 11 of this invention. 本発明の表面被覆切削工具11の硬質被覆層層の断面組織SEM写真の全体模式図を示す。The whole schematic diagram of the cross-sectional structure SEM photograph of the hard coating layer layer of the surface covering cutting tool 11 of this invention is shown.

つぎに、本発明の被覆工具を実施例により具体的に説明する。 Next, the covering tool of the present invention will be specifically described with reference to Examples.

原料粉末として、いずれも1~3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、TaC粉末、NbC粉末、Cr粉末、TiN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370~1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、ISO規格CNMG120408のインサート形状をもったWC基超硬合金製の工具基体A~Cをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, ZrC powder, TaC powder, NbC powder, Cr 3C 2 powder, TiN powder, and Co powder having an average particle size of 1 to 3 μm are prepared, and these raw material powders are prepared. , Add wax to the compounding composition shown in Table 1, mix in a ball mill for 24 hours in acetone, dry under reduced pressure, press-mold into a green compact of a predetermined shape at a pressure of 98 MPa, and press-mold this green compact. Is vacuum sintered in a vacuum of 5 Pa at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour, and after sintering, a tool made of WC-based superhard alloy having an insert shape of ISO standard CNMG120408. The substrates A to C were produced, respectively.

また、原料粉末として、いずれも0.5~2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、ZrC粉末、TaC粉末、NbC粉末、Mo2C粉末、WC粉末、Co粉末およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、ISO規格CNMG120408のインサート形状をもったTiCN基サーメット製の工具基体D、Eを作製した。 In addition, as raw material powder, TiCN (TiC / TiN = 50/50 by mass ratio) powder, ZrC powder, TaC powder, NbC powder, Mo 2C powder, WC powder, all having an average particle size of 0.5 to 2 μm. , Co powder and Ni powder are prepared, these raw material powders are blended into the compounding composition shown in Table 2, wet-mixed with a ball mill for 24 hours, dried, and then press-molded into a green compact at a pressure of 98 MPa. This green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, a tool substrate D made of TiCN-based cermet having an insert shape of ISO standard CNMG120408. E was prepared.

ついで、これらの工具基体A~Eのそれぞれを、化学蒸着装置に装入し、下部層、複合窒化物層の順で成膜を行うことにより、本発明被覆工具1~15をそれぞれ製造した。
なお、その際、それぞれ必要に応じ、工具基体と下部層との間に中間層1を、下部層と複合窒化物層との間に中間層2を、複合窒化物層の上に上部層を成膜により得た。
(a)まず、表5の工具基体記号に示される表1もしくは表2の工具基体に対し、直接または中間層1を形成した後、下部層として、表5にて示される目標層厚のTi化合物層もしくはZr化合物層を表3にて示される形成条件にて、蒸着形成を行った。
(b)次いで、下部層に対し、直接または中間層2を形成した後、表5の形成記号に基づき、表4にて示される形成条件により、表5にて示される目標層厚の複合窒化物層であるTiZrN層またはTiZrHfN層を蒸着形成し、本発明被覆工具2、11、13、15を製造し、または、TiZrN層またはTiZrHfN層を蒸着形成した後、上部層を蒸着形成することにより、本発明被覆工具1、3~10、12、14をそれぞれ製造した。
なお、前記中間層1、前記中間層2、および、上部層は、表3に示す条件にて成膜を行うことにより、形成した。
Then, each of these tool substrates A to E was charged into a chemical vapor deposition apparatus, and a film was formed in the order of a lower layer and a composite nitride layer to manufacture the coated tools 1 to 15 of the present invention, respectively.
At that time, if necessary, an intermediate layer 1 is provided between the tool substrate and the lower layer, an intermediate layer 2 is provided between the lower layer and the composite nitride layer, and an upper layer is provided on the composite nitride layer. Obtained by film formation.
(A) First, the intermediate layer 1 is formed directly or on the tool substrate of Table 1 or 2 shown in the tool substrate symbol of Table 5, and then Ti of the target layer thickness shown in Table 5 is formed as a lower layer. The compound layer or the Zr compound layer was vapor-deposited under the formation conditions shown in Table 3.
(B) Next, after forming the intermediate layer 2 directly or on the lower layer, the composite nitridation of the target layer thickness shown in Table 5 is performed according to the formation conditions shown in Table 4 based on the formation symbols in Table 5. The TiZrN layer or TiZrHfN layer, which is a physical layer, is formed by thin film deposition to produce the covering tools 2, 11, 13, 15 of the present invention, or the TiZrN layer or TiZrHfN layer is formed by thin film deposition, and then the upper layer is formed by thin film deposition. , The coated tools 1, 3 to 10, 12, and 14 of the present invention were manufactured, respectively.
The intermediate layer 1, the intermediate layer 2, and the upper layer were formed by forming a film under the conditions shown in Table 3.

また、比較の目的で、本発明被覆工具1~15と同様の手順にて、工具基体A~Eのそれぞれを、化学蒸着装置に装入し、以下の手順で比較例被覆工具1~10をそれぞれ製造した。すなわち、
(a)表6の工具基体記号に示される表1もしくは表2の工具基体に対し、直接または中間層1を形成した後、下部層として、表6にて示される目標層厚のTi化合物層もしくはZr化合物層を表3にて示される形成条件にて、蒸着形成を行った。
(b)次いで、下部層に対し、直接または中間層2を形成した後、表6の形成記号に基づき、表4にて示される形成条件により、表6にて示される目標層厚の複合窒化物層であるTiZrN層またはTiZrHfN層を蒸着形成し、比較例被覆工具9を製造し、または、TiZrN層またはTiZrHfN層を蒸着形成した後、上部層を蒸着形成することにより、比較例被覆工具1~8、10をそれぞれ製造した。
なお、前記中間層1、前記中間層2、および、上部層は、表3に示す条件にて成膜を行うことにより、形成した。
比較例被覆工具8については、複合窒化物層を成膜する際に周期供給を行わなかった。また、比較例被覆工具9については、複合窒化物層を成膜する際にマグネトロンスパッタ装置を用いた。
Further, for the purpose of comparison, each of the tool substrates A to E is charged into the chemical vapor deposition apparatus by the same procedure as that of the covering tools 1 to 15 of the present invention, and the comparative example covering tools 1 to 10 are used by the following procedure. Each was manufactured. That is,
(A) A Ti compound layer having a target layer thickness shown in Table 6 is formed as a lower layer directly or after forming an intermediate layer 1 with respect to the tool substrate of Table 1 or Table 2 shown by the tool substrate symbol of Table 6. Alternatively, the Zr compound layer was vapor-deposited under the formation conditions shown in Table 3.
(B) Next, after forming the intermediate layer 2 directly or on the lower layer, based on the formation symbols in Table 6, the composite nitride with the target layer thickness shown in Table 6 under the formation conditions shown in Table 4. Comparative Example Covering Tool 1 by depositing and forming a TiZrN layer or TiZrHfN layer, which is a physical layer, to manufacture a Comparative Example covering tool 9, or by forming a TiZrN layer or a TiZrHfN layer by vapor deposition and then forming an upper layer by vapor deposition. ~ 8 and 10 were manufactured respectively.
The intermediate layer 1, the intermediate layer 2, and the upper layer were formed by forming a film under the conditions shown in Table 3.
Comparative Example With respect to the covering tool 8, periodic supply was not performed when the composite nitride layer was formed. Further, for the comparative example covering tool 9, a magnetron sputtering apparatus was used when forming the composite nitride layer.

次いで、本発明被覆工具1~15および比較例被覆工具1~10の硬質被覆層の複合窒化物層を構成する結晶粒についての傾斜角度数分布を、電界放出型走査電子顕微鏡と電子線後方散乱回折装置を用いて測定した。
すなわち、前記下部層と前記複合窒化物層との界面から複合窒化物層の層厚方向へ0.3μm、また、工具基体表面と平行方向に50μmの断面研磨面の測定範囲(0.3μm×50μm)を、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流にて、それぞれの前記研磨面の測定範囲内に存在する岩塩型立方晶結晶格子を有する結晶粒個々に照射して、電界放出型走査電子顕微鏡と電子後方散乱回折像装置を用いて、0.3μm×50μmの測定領域を0.1μm/stepの間隔にて、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{112}面の法線がなす傾斜角を0~45度の範囲にわたって、0.25度のピッチ毎に区分して測定し、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで表し、この測定結果に基づいて、前記傾斜角区分が0~10度の範囲内にある結晶粒の度数の合計を求め、さらに、傾斜角度数分布グラフ全体に占める度数割合を求め、表5、表6に示す。
Next, the tilt angle number distribution of the crystal grains constituting the composite nitride layer of the hard coating layer of the covering tools 1 to 15 of the present invention and the comparative examples covering tools 1 to 10 was examined with a field emission scanning electron microscope and electron backscattering. It was measured using a diffractometer.
That is, the measurement range (0.3 μm ×) of the cross-sectional polished surface of 0.3 μm in the layer thickness direction of the composite nitride layer from the interface between the lower layer and the composite nitride layer and 50 μm in the direction parallel to the tool substrate surface. 50 μm) is set in the lens barrel of an electric field emission type scanning electron microscope, and an electron beam having an acceleration voltage of 15 kV at an incident angle of 70 degrees is measured on the polished surface with an irradiation current of 1 nA. By irradiating each crystal grain having a rock salt type cubic crystal lattice existing in the range, a measurement area of 0.3 μm × 50 μm is 0.1 μm using an electric field emission type scanning electron microscope and an electron backscattering diffraction image device. At intervals of / step, the inclination angle formed by the normal of the {112} surface, which is the crystal surface of the crystal grains, is 0.25 degrees over the range of 0 to 45 degrees with respect to the normal of the surface-polished surface. The tilt angle classification is within the range of 0 to 10 degrees based on the measurement results, which is represented by a tilt angle number distribution graph that is obtained by dividing the measurement for each pitch and summing up the degrees existing in each classification. The total frequency of a certain crystal grain is obtained, and the ratio of the frequency to the entire tilt angle distribution graph is obtained, which are shown in Tables 5 and 6.

また、本発明被覆工具1~15および比較例被覆工具1~10の硬質被覆層の複合窒化物層の縦断面について、走査型電子顕微鏡(SEM)を用い、倍率5000にて、工具基体と平行な方向に10μm、工具基体と垂直な方向に複合窒化物層の層厚分の高さの領域内に存在する複合窒化物結晶粒のそれぞれについて最大粒子幅W、最大粒子長さLを測定するとともに、アスペクト比L/Wの値を求め、アスペクト比L/Wが2以上である結晶粒が、複合窒化物層の縦断面に占める面積割合を求め、表5、表6に示す。 Further, the vertical cross section of the composite nitride layer of the hard coating layer of the covering tools 1 to 15 and the comparative examples covering tools 1 to 10 of the present invention is parallel to the tool substrate at a magnification of 5000 using a scanning electron microscope (SEM). The maximum particle width W and the maximum particle length L are measured for each of the composite nitride crystal grains existing in the region having a height of 10 μm in the direction perpendicular to the tool substrate and the height of the composite nitride layer. At the same time, the value of the aspect ratio L / W was obtained, and the area ratio of the crystal grains having the aspect ratio L / W of 2 or more to the vertical cross section of the composite nitride layer was obtained and shown in Tables 5 and 6.

また、本発明被覆工具1~15および比較例被覆工具1~10の硬質被覆層の各構成層の厚さを、走査型電子顕微鏡(SEM)を用いて縦断面測定を行い5点測定の平均値より求めたところ、いずれも目標層厚と実質的に同じ平均層厚を示した。 Further, the thickness of each constituent layer of the hard coating layer of the covering tools 1 to 15 of the present invention and the comparative example covering tools 1 to 10 was measured in a vertical cross section using a scanning electron microscope (SEM), and the average of five points was measured. When calculated from the values, all showed substantially the same average layer thickness as the target layer thickness.

Figure 0007043869000001
Figure 0007043869000001

Figure 0007043869000002
Figure 0007043869000002

Figure 0007043869000003
Figure 0007043869000003

Figure 0007043869000004
Figure 0007043869000004

Figure 0007043869000005
Figure 0007043869000005

Figure 0007043869000006
Figure 0007043869000006

つぎに、前記各種の被覆工具を工具鋼製バイト先端部に固定治具にてクランプした状態で、本発明被覆工具1~15、比較例被覆工具1~10について、以下に示す、耐熱鋼に対する(高速)高送り切削試験を実施し、切刃の逃げ面摩耗幅を測定するとともに、溶着の発生等の有無について観察を行い、結果を表7に示す。 Next, with respect to the coated tools 1 to 15 of the present invention and the coated tools 1 to 10 of the comparative example, with respect to the heat-resistant steel shown below, in a state where the various covering tools are clamped to the tip of the tool steel cutting tool with a fixing jig. A (high-speed) high-feed cutting test was carried out, the flank wear width of the cutting edge was measured, and the presence or absence of welding was observed, and the results are shown in Table 7.

≪切削条件A≫
切削試験:耐熱鋼湿式連続高送り切削加工試験
被削材: JIS・SCH13丸棒
切削速度:125m/min、
切り込み:2.0mm、
送り :0.60mm/rev.
切削時間:6分

≪切削条件B≫
切削試験:耐熱鋼1スリット材湿式断続高送り切削加工試験
被削材: JIS・SCH13の丸棒
切削速度:100m/min、
切り込み:1.3mm、
送り :0.50mm/刃、
切削時間:2分
≪Cutting condition A≫
Cutting test: Heat-resistant steel wet continuous high feed cutting test Work material: JIS / SCH13 round bar Cutting speed: 125 m / min,
Notch: 2.0 mm,
Feed: 0.60 mm / rev.
Cutting time: 6 minutes

≪Cutting condition B≫
Cutting test: Heat-resistant steel 1 slit material Wet intermittent high feed cutting processing test Work material: JIS / SCH13 round bar
Cutting speed: 100m / min,
Notch: 1.3 mm,
Feed: 0.50 mm / blade,
Cutting time: 2 minutes

Figure 0007043869000007
Figure 0007043869000007

表7の切削加工試験結果からも明らかなように、本発明被覆工具は、表5において示す、所望組成および縦長結晶組織を有するTiZrN複合窒化物もしくはTiZrHfN複合窒化物から成り、前記複合窒化物の結晶粒の{112}面の法線がなす傾斜角を測定、集計してなる傾斜角度数分布グラフにおいて、所定の傾斜角区分に最高ピークが存在し、かつ、前記所定の傾斜角区分における度数の比率が所望の範囲を満たす複合窒化物層を硬質被覆層として含むことにより、耐熱鋼の高送り切削加工において、剥離、チッピングの発生はなく、逃げ面最大摩耗幅も小さく、すぐれた耐溶着性、耐塑性変形性、および、耐異常損傷性を発揮する。
なお、本発明工具において、塩素含有量が0.030at%以下にて添加するものは、逃げ面最大摩耗幅が小さくすぐれた特性を有するものであった。
これに対し、比較例被覆工具は、硬質被覆層の複合窒化物が、所望の組成を満たしていない、複合窒化物の結晶粒の{112}面の法線がなす傾斜角を測定、集計してなる傾斜角度数分布グラフにおいて、所定の傾斜角区分に最高ピークが存在しない、前記所定の傾斜角区分における度数の比率が所望の範囲を満たしていない、所定のアスペクト比を有する縦長結晶粒の占める面積率が所望の値を満たしていない、などの理由により、所望の特性を有しておらず、摩耗の進展、溶着の発生、チッピングの発生等により、短時間で寿命に至るものであった。
As is clear from the cutting test results in Table 7, the covering tool of the present invention is composed of a TiZrN composite nitride or a TiZrHfN composite nitride having a desired composition and a vertically elongated crystal structure shown in Table 5, and the composite nitride is a composite nitride. In the tilt angle number distribution graph obtained by measuring and totaling the tilt angle formed by the normal of the {112} plane of the crystal grain, the highest peak exists in the predetermined tilt angle division and the frequency in the predetermined tilt angle division. By including a composite nitride layer as a hard coating layer in which the ratio of the above meets the desired range, peeling and chipping do not occur in high feed cutting of heat-resistant steel, the maximum wear width of the flank is small, and excellent welding resistance is achieved. Demonstrates properties, plastic deformation resistance, and abnormal damage resistance.
In the tool of the present invention, those added with a chlorine content of 0.030 at% or less had excellent characteristics with a small flank maximum wear width.
On the other hand, in the comparative example covering tool, the inclination angle formed by the normal of the {112} plane of the crystal grain of the composite nitride, in which the composite nitride of the hard coating layer does not satisfy the desired composition, is measured and totaled. In the tilt angle number distribution graph, the vertical crystal grains having a predetermined aspect ratio, in which the maximum peak does not exist in the predetermined tilt angle division, the ratio of the degrees in the predetermined tilt angle division does not satisfy the desired range, It does not have the desired characteristics because the area ratio does not meet the desired value, and it reaches the end of its life in a short time due to the progress of wear, the occurrence of welding, the occurrence of chipping, etc. rice field.

前述のとおり、本発明に係る被覆工具は、耐熱鋼の高送り切削という厳しい条件下においても、すぐれた耐溶着性、耐塑性変形性、および、耐異常損傷性を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに、低コスト化に十分満足するものである。

As described above, the coated tool according to the present invention exhibits excellent welding resistance, plastic deformation resistance, and abnormal damage resistance even under the severe conditions of high feed cutting of heat-resistant steel. We are fully satisfied with the high performance of the cutting equipment, labor saving and energy saving of the cutting process, and cost reduction.

Claims (2)

WC基超硬合金またはTiCN基サーメットからなる工具基体の表面に、硬質被覆層が形成されてなる表面被覆切削工具において、
(a)前記硬質被覆層は、前記工具基体の表面側から少なくとも下部層および複合窒化物層を有してなり、
(b)前記下部層は、TiもしくはZrを含み、かつ炭素と窒素を含む化合物層を少なくとも一層有し、その合計平均膜厚が1.0μm以上であり、
(c)前記複合窒化物層は、平均膜厚0.5~20μmのTiとZrの複合窒化物層またはTiとZrとHfの複合窒化物層を含み、
(d)前記複合窒化物層は、平均組成を組成式(Ti(1-x)ZrxyHfx(1-y))Nにて表わした場合、
ZrとHfとの合量のTiとZrとHfとの合量に占める含有割合x、および、ZrのZrとHfとの合量に占める含有割合y(但し、x、yはいずれも原子比)が、それぞれ、0.05≦x≦0.95、および、0<y≦1.0をそれぞれ満足する複合窒化物層であり、
(e)前記複合窒化物層において、電界放出型走査電子顕微鏡と電子線後方散乱回折装置を用い、その断面研磨面の測定範囲内に存在する岩塩型立方晶結晶格子を有する個々の結晶粒に電子線を照射し、前記工具基体の表面の法線に対して、前記結晶粒の結晶面である{112}面の法線がなす傾斜角を0~45度の範囲内で測定し、測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフを作成した場合、前記工具基体の表面の法線に対する傾斜角が0~10度の範囲内の傾斜角区分に最高ピークが存在するとともに、前記0~10度の範囲内の傾斜角区分に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の35%以上を占め、
(f)前記複合窒化物層は、縦断面にてアスペクト比2以上の縦長結晶粒が占める面積率が50%以上であることを特徴とする、表面被覆切削工具。
In a surface-coated cutting tool in which a hard coating layer is formed on the surface of a tool substrate made of WC-based cemented carbide or TiCN-based cermet.
(A) The hard coating layer has at least a lower layer and a composite nitride layer from the surface side of the tool substrate.
(B) The lower layer has at least one compound layer containing Ti or Zr and containing carbon and nitrogen, and the total average film thickness thereof is 1.0 μm or more.
(C) The composite nitride layer includes a composite nitride layer of Ti and Zr having an average thickness of 0.5 to 20 μm or a composite nitride layer of Ti, Zr and Hf.
(D) When the average composition of the composite nitride layer is represented by the composition formula (Ti (1-x) Zr xy Hf x (1-y) ) N,
The content ratio x of the total amount of Zr and Hf in the total amount of Ti, Zr and Hf, and the content ratio y of the total amount of Zr and Zr and Hf (however, x and y are both atomic ratios). ) Are composite nitride layers satisfying 0.05 ≦ x ≦ 0.95 and 0 <y ≦ 1.0, respectively.
(E) In the composite nitride layer, an electric field emission type scanning electron microscope and an electron beam backscattering diffractometer are used to form individual crystal grains having a rock salt type cubic crystal lattice existing within the measurement range of the cross-sectional polished surface. By irradiating with an electron beam, the inclination angle formed by the normal of the {112} plane, which is the crystal plane of the crystal grain, is measured within the range of 0 to 45 degrees with respect to the normal of the surface of the tool substrate. When the tilt angle is divided into pitches of 0.25 degrees and the tilt angle distribution graph is created by summing up the degrees existing in each division, the tilt angle with respect to the normal of the surface of the tool substrate is 0. The highest peak exists in the tilt angle division within the range of 10 degrees, and the total number of degrees existing in the tilt angle division within the range of 0 to 10 degrees is 35% or more of the total frequency in the tilt angle distribution graph. Occupy,
(F) The surface-coated cutting tool, wherein the composite nitride layer has an area ratio of 50% or more occupied by vertically elongated crystal grains having an aspect ratio of 2 or more in a vertical cross section.
前記複合窒化物層は、0.030原子%以下の塩素を含有することを特徴とする、請求項1に記載された表面被覆切削工具。
The surface-coated cutting tool according to claim 1, wherein the composite nitride layer contains 0.030 atomic% or less of chlorine.
JP2018022739A 2018-02-13 2018-02-13 Surface coating cutting tool with excellent welding resistance and abnormal damage resistance for the hard coating layer Active JP7043869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018022739A JP7043869B2 (en) 2018-02-13 2018-02-13 Surface coating cutting tool with excellent welding resistance and abnormal damage resistance for the hard coating layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018022739A JP7043869B2 (en) 2018-02-13 2018-02-13 Surface coating cutting tool with excellent welding resistance and abnormal damage resistance for the hard coating layer

Publications (2)

Publication Number Publication Date
JP2019136823A JP2019136823A (en) 2019-08-22
JP7043869B2 true JP7043869B2 (en) 2022-03-30

Family

ID=67692884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018022739A Active JP7043869B2 (en) 2018-02-13 2018-02-13 Surface coating cutting tool with excellent welding resistance and abnormal damage resistance for the hard coating layer

Country Status (1)

Country Link
JP (1) JP7043869B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021177406A1 (en) * 2020-03-06 2021-09-10 三菱マテリアル株式会社 Surface-coated cutting tool
CN115124348B (en) * 2022-05-31 2023-07-11 西北工业大学 Single phase (Hf) x Zr 1-x ) N solid solution superhigh temperature ablation-resistant ceramic coating and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009148856A (en) 2007-12-20 2009-07-09 Sumitomo Electric Ind Ltd Surface-coated cutting tool
JP2009166193A (en) 2008-01-18 2009-07-30 Mitsubishi Materials Corp Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting
JP2013139065A (en) 2012-01-04 2013-07-18 Mitsubishi Materials Corp Surface-coated cutting tool with hard coating layer exhibiting superior chipping resistance in high-speed intermittent cutting work
WO2019065683A1 (en) 2017-09-29 2019-04-04 三菱マテリアル株式会社 Surface-coated cutting tool in which hard coating layer exhibits exceptional adhesion resistance and anomalous damage resistance

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03267361A (en) * 1990-03-16 1991-11-28 Univ Osaka Hard film and its production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009148856A (en) 2007-12-20 2009-07-09 Sumitomo Electric Ind Ltd Surface-coated cutting tool
JP2009166193A (en) 2008-01-18 2009-07-30 Mitsubishi Materials Corp Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting
JP2013139065A (en) 2012-01-04 2013-07-18 Mitsubishi Materials Corp Surface-coated cutting tool with hard coating layer exhibiting superior chipping resistance in high-speed intermittent cutting work
WO2019065683A1 (en) 2017-09-29 2019-04-04 三菱マテリアル株式会社 Surface-coated cutting tool in which hard coating layer exhibits exceptional adhesion resistance and anomalous damage resistance

Also Published As

Publication number Publication date
JP2019136823A (en) 2019-08-22

Similar Documents

Publication Publication Date Title
JP6478100B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6738556B2 (en) Surface coated cutting tool
JP6590255B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6284034B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6578935B2 (en) Surface coated cutting tool with excellent chipping and wear resistance with excellent hard coating layer
JP6507959B2 (en) Surface coated cutting tool exhibiting excellent chipping resistance with hard coating layer
JP6233575B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP2017030076A (en) Surface-coated cutting tool with hard coated layer exhibiting superior chipping resistance
WO2016148056A1 (en) Surface-coated cutting tool with rigid coating layers exhibiting excellent chipping resistance
JP2018034216A (en) Surface-coated cutting tool whose hard coating layer exerts excellent chipping resistance and peeling resistance
JP6857298B2 (en) Surface coating cutting tool with excellent chipping resistance due to the hard coating layer
JP2019217579A (en) Surface-coated cutting tool with hard coating layer exhibiting excellent fracture resistance and chipping resistance
JP7043869B2 (en) Surface coating cutting tool with excellent welding resistance and abnormal damage resistance for the hard coating layer
JP2018164961A (en) Surface coat cutting tool by which hard coating layer exhibits excellent wear resistance and chipping resistance and manufacturing method therefor
JP5402516B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6709536B2 (en) Surface coated cutting tool with excellent hard coating layer and chipping resistance
JP2006198740A (en) Cutting tool made of surface coated cermet with hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting
JP6573171B2 (en) Surface coated cutting tool with excellent chipping and wear resistance with excellent hard coating layer
JP2018161739A (en) Surface coated cutting tool with hard coating layer exhibiting superior chipping resistance and abrasion resistance
JP7256978B2 (en) A surface-coated cutting tool with a hard coating layer that exhibits excellent adhesion resistance and abnormal damage resistance.
WO2016190332A1 (en) Surface-coated cutting tool with rigid coating layer exhibiting excellent chipping resistance
JP2017013211A (en) Surface coating and cutting tool
WO2019065683A1 (en) Surface-coated cutting tool in which hard coating layer exhibits exceptional adhesion resistance and anomalous damage resistance
JP2018149668A (en) Surface coated cutting tool with hard coating layer exhibiting superior chipping resistance and abrasion resistance
JP2019171488A (en) Surface coated cutting tool having excellent wear resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220228

R150 Certificate of patent or registration of utility model

Ref document number: 7043869

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150