JP2017030076A - Surface-coated cutting tool with hard coated layer exhibiting superior chipping resistance - Google Patents

Surface-coated cutting tool with hard coated layer exhibiting superior chipping resistance Download PDF

Info

Publication number
JP2017030076A
JP2017030076A JP2015150729A JP2015150729A JP2017030076A JP 2017030076 A JP2017030076 A JP 2017030076A JP 2015150729 A JP2015150729 A JP 2015150729A JP 2015150729 A JP2015150729 A JP 2015150729A JP 2017030076 A JP2017030076 A JP 2017030076A
Authority
JP
Japan
Prior art keywords
layer
composite
average
nitride
crystal grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015150729A
Other languages
Japanese (ja)
Other versions
JP6519952B2 (en
Inventor
佐藤 賢一
Kenichi Sato
佐藤  賢一
翔 龍岡
Sho Tatsuoka
翔 龍岡
健志 山口
Kenji Yamaguchi
健志 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2015150729A priority Critical patent/JP6519952B2/en
Publication of JP2017030076A publication Critical patent/JP2017030076A/en
Application granted granted Critical
Publication of JP6519952B2 publication Critical patent/JP6519952B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface- coated tool with a hard coated layer exhibiting superior chipping resistance.SOLUTION: In a surface-coated cutting tool with a hard coated layer on a tool base surface, the hard coated layer comprises at least a layer of a composite nitride layer or of a composite carbonitride represented by a composition formula:(TiAl)(CN), an average content proportion Xof Al and an average content proportion Y(each of Xand Yis an atomic ratio) of C satisfy 0.60≤X≤0.95 and 0≤Y≤0.005, pores are present on boundary layers of crystal grains constituting the composite nitride or composite carbonitride layers and, when observing cross-sections of the composite nitride or composite carbonitride layers over a range of 1 μm×1 μm with magnification 50000 times by means of a scanning type electronic microscope and calculating area proportion of the pores and average pore size of the pores, an area proportion occupied by the pores is 1% or more and is less than 20% and the average pore size of the pores is 2 to 50 nm.SELECTED DRAWING: Figure 3

Description

本発明は、合金鋼等の高熱発生を伴うとともに、切刃に対して衝撃的な負荷が作用する高速断続切削加工で、硬質被覆層がすぐれた耐チッピング性を備えることにより、長期の使用に亘ってすぐれた切削性能を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   The present invention is a high-speed intermittent cutting process that involves high heat generation of alloy steel and the like, and an impact load is applied to the cutting edge, and the hard coating layer has excellent chipping resistance, so that it can be used for a long time. The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent cutting performance.

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金、炭窒化チタン(以下、TiCNで示す)基サーメットあるいは立方晶窒化ホウ素(以下、cBNで示す)基超高圧焼結体で構成された工具基体(以下、これらを総称して工具基体という)の表面に、硬質被覆層として、Ti−Al系の複合窒化物層を物理蒸着法により被覆形成した被覆工具が知られており、これらは、すぐれた耐摩耗性を発揮することが知られている。
ただ、前記従来のTi−Al系の複合窒化物層を被覆形成した被覆工具は、比較的耐摩耗性にすぐれるものの、高速断続切削条件で用いた場合にチッピング等の異常損耗を発生しやすいことから、硬質被覆層の改善についての種々の提案がなされている。
Conventionally, generally composed of tungsten carbide (hereinafter referred to as WC) based cemented carbide, titanium carbonitride (hereinafter referred to as TiCN) based cermet or cubic boron nitride (hereinafter referred to as cBN) based ultra high pressure sintered body There is known a coated tool in which a Ti—Al-based composite nitride layer is formed by physical vapor deposition as a hard coating layer on the surface of a tool substrate (hereinafter collectively referred to as a tool substrate), These are known to exhibit excellent wear resistance.
However, the conventional coated tool formed with the Ti-Al composite nitride layer is relatively excellent in wear resistance, but it tends to cause abnormal wear such as chipping when used under high-speed intermittent cutting conditions. Accordingly, various proposals have been made for improving the hard coating layer.

例えば、特許文献1には、TiCN層、Al層を内層として、その上に、化学蒸着法により、立方晶構造あるいは六方晶構造を含む立方晶構造の(Ti1−xAl)N層(ただし、原子比で、xは0.65〜0.90)を外層として被覆するとともに該外層に100〜1100MPaの圧縮応力を付与することにより、被覆工具の耐熱性と疲労強度を改善することが提案されている。 For example, in Patent Document 1, a TiCN layer and an Al 2 O 3 layer are used as an inner layer, and a cubic structure (Ti 1-x Al x ) including a cubic structure or a hexagonal structure is formed thereon by chemical vapor deposition. Covering the N layer (however, in atomic ratio, x is 0.65 to 0.90) as an outer layer and applying a compressive stress of 100 to 1100 MPa to the outer layer improves the heat resistance and fatigue strength of the coated tool It has been proposed to do.

また、特許文献2には、TiCl、AlCl、NHの混合反応ガス中で、650〜900℃の温度範囲において化学蒸着を行うことにより、Alの含有割合xの値が0.65〜0.95である(Ti1−xAl)N層を蒸着形成することが記載されているが、この文献では、この(Ti1−xAl)N層の上にさらにAl層を被覆し、これによって断熱効果を高めることを目的としていることから、Alの含有割合xの値を0.65〜0.95まで高めた(Ti1−xAl)N層の形成によって、切削性能にどのような影響を及ぼすかについての開示はない。 Patent Document 2 discloses that the value of the Al content ratio x is 0.65 by performing chemical vapor deposition in a temperature range of 650 to 900 ° C. in a mixed reaction gas of TiCl 4 , AlCl 3 , and NH 3. It is described that a (Ti 1-x Al x ) N layer having a thickness of 0.95 is formed by vapor deposition, but in this document, an Al 2 O 3 layer is further formed on the (Ti 1-x Al x ) N layer. Since the purpose is to cover the layer and thereby enhance the heat insulation effect, the value of the Al content ratio x is increased from 0.65 to 0.95 by forming the (Ti 1-x Al x ) N layer There is no disclosure of how it affects cutting performance.

特許文献3には、硬質被覆層の上部層が(Ti1−xAl)N層ではなく、Al層で構成されている被覆工具についてではあるが、上部層のAl層中に、孔径2〜50nmであって、孔径分布がバイモーダルな分布をとる微小空孔を形成し、切削加工時に上部層に作用する衝撃の緩和を図るとともに熱遮蔽効果を発揮させることによって、高速断続切削加工における耐チッピング性、耐欠損性を改善することが提案されている。 In Patent Document 3, although the upper layer of the hard coating layer is not a (Ti 1-x Al x ) N layer but a coated tool composed of an Al 2 O 3 layer, the upper layer of Al 2 O 3 is used. By forming fine pores with a pore diameter distribution of 2 to 50 nm in the layer and having a bimodal distribution, the impact acting on the upper layer during cutting is mitigated and the heat shielding effect is exhibited. It has been proposed to improve chipping resistance and fracture resistance in high-speed intermittent cutting.

特表2011−513594号公報Special table 2011-513594 gazette 特表2011−516722号公報Special table 2011-516722 gazette 特開2012−161847号公報JP 2012-161847 A

近年の切削加工における省力化および省エネ化の要求は強く、これに伴い、切削加工は一段と高速化、高効率化の傾向にあり、被覆工具には、より一層、耐チッピング性、耐欠損性、耐剥離性等の耐異常損傷性が求められるとともに、長期の使用に亘ってのすぐれた耐摩耗性が求められている。
しかし、前記特許文献1に記載されている被覆工具は、所定の硬さを有し耐摩耗性にはすぐれるものの、靭性に劣ることから、合金鋼の高速断続切削加工等に供した場合には、チッピング、欠損、剥離等の異常損傷が発生しやすく、満足できる切削性能を発揮するとは言えないという課題があった。
また、前記特許文献2に記載されている化学蒸着法で蒸着形成した(Ti1−xAl)N層については、Alの含有割合xを高めることができ、また、立方晶構造を形成させることができることから、所定の硬さを有し耐摩耗性にすぐれた硬質被覆層が得られるものの、工具基体との密着強度は十分でなく、また、靭性に劣るという課題があった。
さらに、前記特許文献3に記載されている被覆工具は、上部層のAl層中に微小空孔が形成されていることによって、切削加工時の衝撃がある程度緩和されるものの、切削条件が厳しくなり、切れ刃により一段と高負荷が作用するような場合には、耐熱衝撃性および耐チッピング性が不十分であるという課題があった。
そこで、本発明は、合金鋼等の高速断続切削等に供した場合であっても、すぐれた耐チッピング性を備え、長期の使用に亘ってすぐれた切削性能を発揮する被覆工具を提供することを目的とする。
In recent years, there has been a strong demand for energy saving and energy saving in cutting, and along with this, cutting tends to be faster and more efficient, and the coated tool has even more chipping resistance, chipping resistance, Abnormal damage resistance such as peel resistance is required, and excellent wear resistance over long-term use is required.
However, although the coated tool described in Patent Document 1 has a predetermined hardness and excellent wear resistance, it is inferior in toughness, so when it is used for high-speed intermittent cutting of alloy steel, etc. However, there is a problem that abnormal damage such as chipping, chipping and peeling is likely to occur, and it cannot be said that satisfactory cutting performance is exhibited.
Moreover, the the Patent Document 2 is formed deposited by chemical vapor deposition as described in (Ti 1-x Al x) N layer, it is possible to increase the content ratio x of Al, also to form a cubic structure Therefore, although a hard coating layer having a predetermined hardness and excellent wear resistance can be obtained, there is a problem that the adhesion strength with the tool base is not sufficient and the toughness is inferior.
Furthermore, the coated tool described in the above-mentioned Patent Document 3 is formed with microvoids in the upper Al 2 O 3 layer, so that the impact during cutting is alleviated to some extent. When the load becomes more severe due to the cutting edge, there is a problem that the thermal shock resistance and chipping resistance are insufficient.
Accordingly, the present invention provides a coated tool that has excellent chipping resistance and exhibits excellent cutting performance over a long period of use even when subjected to high-speed intermittent cutting of alloy steel and the like. With the goal.

本発明者らは、前述の観点から、少なくともTiとAlの複合窒化物または複合炭窒化物(以下、「TiAlCN」で示すことがある)層を含む硬質被覆層を化学蒸着で蒸着形成した被覆工具において、耐チッピング性の改善をはかるべく、鋭意研究を重ねた結果、次のような知見を得た。   From the above viewpoint, the present inventors have formed a coating formed by chemical vapor deposition of a hard coating layer including at least a composite nitride or composite carbonitride (hereinafter sometimes referred to as “TiAlCN”) of Ti and Al. As a result of intensive research to improve the chipping resistance of the tool, the following findings were obtained.

即ち、本発明者らは、限定された条件で、TiAlCNを成膜することにより、TiAlCN層の粒界に沿ってポア(微小空孔)を形成することができること、さらに、層中に形成されるポアの平均面積割合と平均孔径の適正化を図ることにより、粒界を進展するクラックの進行を抑制し得るようになること、そしてその結果として、刃先に高負荷が作用する合金鋼等の高速断続切削加工で、すぐれた耐チッピング性を発揮するようになることを見出した。   That is, the present inventors can form pores (micropores) along the grain boundary of the TiAlCN layer by depositing TiAlCN under a limited condition, and further, formed in the layer. By optimizing the average area ratio of pores and the average pore diameter, it becomes possible to suppress the progress of cracks that propagate through the grain boundaries, and as a result, such as alloy steel with high load acting on the cutting edge. It has been found that excellent chipping resistance can be exhibited by high-speed intermittent cutting.

また、前記TiAlCN層を構成するNaCl型の面心立方構造(以下、単に「立方晶構造」という場合もある)を有するTiAlCN結晶粒について、工具基体表面の法線方向に対する前記TiAlCN結晶粒の{100}面の法線の傾斜角度数分布を求めた時、0〜12度の範囲内の度数を度数全体の35%以上とすることにより、前記TiAlCN層は、立方晶構造を維持したままで高硬度を有し、しかも、工具基体(あるいは下部層)との密着性が向上するため、さらに、耐チッピング性、耐摩耗性が向上することを見出した。   Further, regarding TiAlCN crystal grains having a NaCl-type face-centered cubic structure (hereinafter sometimes simply referred to as “cubic structure”) constituting the TiAlCN layer, the TiAlCN crystal grains { When the inclination angle frequency distribution of the normal of the 100} plane is obtained, the TiAlCN layer maintains the cubic structure by setting the frequency within the range of 0 to 12 degrees to 35% or more of the entire frequency. It has been found that since it has high hardness and adhesion to the tool base (or lower layer) is improved, chipping resistance and wear resistance are further improved.

また、前記立方晶構造のTiAlCN結晶粒内に、TiとAlの周期的な濃度変化が存在し(即ち、TiAlCN結晶粒内の組成を、組成式:(Ti1−xAl)(C1−y)で表した場合、xは一定値ではなく、周期的に変化する値である)、Alの含有割合xの周期的に変化するxの値の極大値の平均値をXmax、また、Alの含有割合xの周期的に変化するxの値の極小値の平均値をXminとした場合、XmaxとXminの差Δxが0.03〜0.25であり、前記周期的な濃度変化が存在する立方晶構造のTiAlCN結晶粒において、その工具基体表面の法線方向に沿った周期が3〜100nmであることにより、立方晶構造のTiAlCN結晶粒に歪みを生じさせて、該層の硬さと靭性を高め、その結果、耐チッピング性、耐欠損性、耐摩耗性が向上することを見出した。 Further, there is a periodic concentration change of Ti and Al in the TiAlCN crystal grains having the cubic structure (that is, the composition in the TiAlCN crystal grains is expressed by a composition formula: (Ti 1-x Al x ) (C y N 1-y ), x is not a constant value but a value that varies periodically), and the average value of the maximum values of the periodically changing value of the Al content ratio x is represented by X max Further, if the average value of the minimum value of the periodically value varying x in proportion x of Al was set to X min, the difference Δx of X max and X min is 0.03 to 0.25, wherein In the cubic structure TiAlCN crystal grains having periodic concentration changes, the period along the normal direction of the tool substrate surface is 3 to 100 nm, which causes distortion in the cubic structure TiAlCN crystal grains. Increasing the hardness and toughness of the layer, Chipping resistance, fracture resistance, wear resistance can be improved.

本発明は、前記知見に基づいてなされたものであって、
「(1) 炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体の表面に、硬質被覆層を設けた表面被覆切削工具において、
(a)前記硬質被覆層は、平均層厚1〜20μmのTiとAlの複合窒化物または複合炭窒化物層を少なくとも含み、
(b)前記複合窒化物または複合炭窒化物層は、NaCl型の面心立方構造を有する複合窒化物または複合炭窒化物の相を少なくとも含み、
(c)前記複合窒化物または複合炭窒化物層は、
組成式:(Ti1−xAl)(C1−y
で表した場合、AlのTiとAlの合量に占める平均含有割合XavgおよびCのCとNの合量に占める平均含有割合Yavg(但し、Xavg、Yavgはいずれも原子比)が、それぞれ、0.60≦Xavg≦0.95、0≦Yavg≦0.005を満足し、
(d)前記複合窒化物または複合炭窒化物層を構成する結晶粒の粒界にはポアが存在しており、前記複合窒化物または複合炭窒化物層の断面において
ポアが占める面積割合と平均孔径を算出した時、観察領域面積に対しポアが占める面積割合が1%以上20%未満であり、ポアの平均孔径は2〜50nmであることを特徴とする表面被覆切削工具。
(2) 前記複合窒化物または複合炭窒化物層について、前記複合窒化物または複合炭窒化物層の断面を、走査型電子顕微鏡によって倍率50000倍で1μm×1μmの範囲を観察し、工具基体表面と平行に層厚方向に50nm間隔で直線を引いた時、該直線上に少なくとも1個ポアが存在する直線の数の割合が全体の直線数に対して50%以上であり、かつ、ポアが線上に存在しない直線が3本以上連続していないことを特徴とする(1)に記載の表面被覆切削工具。
(3) 前記複合窒化物または複合炭窒化物層について、電子線後方散乱回折装置を用いて、複合窒化物または複合炭窒化物層内のNaCl型の面心立方構造を有する個々の結晶粒の結晶方位を、前記複合窒化物または複合炭窒化物層の縦断面方向から解析し、工具基体表面の法線方向に対して前記結晶粒の結晶面である{100}面の法線がなす傾斜角を測定し、該傾斜角のうち工具基体表面の法線方向に対して0〜45度の範囲内にある傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計し傾斜角度数分布を求めたとき、0〜12度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜12度の範囲内に存在する度数の合計が、前記傾斜角度数分布における度数全体の35%以上の割合を示すことを特徴とする(1)または(2)に記載の表面被覆切削工具。
(4) 前記複合窒化物または複合炭窒化物層には、TiとAlの周期的な濃度変化が存在するNaCl型の面心立方構造を有する結晶粒が存在し、濃度変化の周期は3〜100nmであり、周期的に変化するAlの含有割合xの値の極大値の平均値をXmax、また、周期的に変化するAlの含有割合xの値の極小値の平均値をXminとしたとき、XmaxとXminの差Δxが0.03〜0.25であること特徴とする(1)〜(3)のいずれかに記載の表面被覆切削工具。
(5) 前記複合窒化物または複合炭窒化物層について、該層の縦断面方向から観察した場合に、複合窒化物または複合炭窒化物層内のNaCl型の面心立方構造を有する個々の結晶粒からなる柱状組織の粒界部に、六方晶構造を有する微粒結晶粒が存在し、該微粒結晶粒の存在する面積割合が5面積%以下であり、該微粒結晶粒の平均粒径Rが0.01〜0.3μmであることを特徴とする(1)〜(4)のいずれかに記載の表面被覆切削工具。
(6) 前記工具基体と前記複合窒化物または複合炭窒化物層の間に、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなり、0.1〜20μmの合計平均層厚を有する下部層が存在することを特徴とする(1)〜(5)のいずれかに記載の表面被覆切削工具。
(7) 前記複合窒化物または複合炭窒化物層の上部に、少なくとも酸化アルミニウム層を含む上部層が1〜25μmの合計平均層厚で存在することを特徴とする(1)〜(6)のいずれかに記載の表面被覆切削工具。」
に特徴を有するものである。
The present invention has been made based on the above findings,
“(1) Surface-coated cutting tool in which a hard coating layer is provided on the surface of a tool base made of tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, or cubic boron nitride-based ultra-high pressure sintered body In
(A) The hard coating layer includes at least a composite nitride or composite carbonitride layer of Ti and Al having an average layer thickness of 1 to 20 μm,
(B) The composite nitride or composite carbonitride layer includes at least a composite nitride or composite carbonitride phase having a NaCl-type face-centered cubic structure,
(C) The composite nitride or composite carbonitride layer is
Composition formula: (Ti 1-x Al x ) (C y N 1-y )
The average content ratio X avg in the total amount of Ti and Al in Al and the average content ratio Y avg in the total amount of C and N in C (where X avg and Y avg are both atomic ratios) Satisfy 0.60 ≦ X avg ≦ 0.95 and 0 ≦ Y avg ≦ 0.005, respectively.
(D) There are pores at grain boundaries of the crystal grains constituting the composite nitride or composite carbonitride layer, and the area ratio and average occupied by pores in the cross section of the composite nitride or composite carbonitride layer A surface-coated cutting tool characterized in that when the pore diameter is calculated, the area ratio of the pore to the observation area is 1% or more and less than 20%, and the average pore diameter of the pore is 2 to 50 nm.
(2) For the composite nitride or composite carbonitride layer, the cross section of the composite nitride or composite carbonitride layer is observed with a scanning electron microscope in a range of 1 μm × 1 μm at a magnification of 50000, and the tool base surface When a straight line is drawn at an interval of 50 nm in the layer thickness direction parallel to the line thickness, the ratio of the number of straight lines having at least one pore on the straight line is 50% or more of the total number of straight lines, and the pores are The surface-coated cutting tool according to (1), wherein three or more straight lines not existing on the line are not continuous.
(3) For the composite nitride or composite carbonitride layer, using an electron beam backscatter diffractometer, individual crystal grains having a NaCl-type face-centered cubic structure in the composite nitride or composite carbonitride layer are used. The crystal orientation is analyzed from the longitudinal section direction of the composite nitride or composite carbonitride layer, and the inclination formed by the normal of the {100} plane that is the crystal plane of the crystal grain with respect to the normal direction of the tool substrate surface The angle is measured, and the inclination angle within the range of 0 to 45 degrees with respect to the normal direction of the surface of the tool substrate is divided for each pitch of 0.25 degrees, and the frequency existing in each section When the inclination angle frequency distribution is calculated and the maximum peak is present in the inclination angle section within the range of 0 to 12 degrees, the sum of the frequencies existing within the range of 0 to 12 degrees is the inclination angle. Characterized by showing a ratio of 35% or more of the total frequency in the number distribution The surface-coated cutting tool according to (1) or (2).
(4) In the composite nitride or composite carbonitride layer, there are crystal grains having a NaCl-type face-centered cubic structure in which periodic concentration changes of Ti and Al exist, and the concentration change cycle is 3 to 3. The average value of the maximum value of the Al content ratio x, which is 100 nm, and periodically changes, is X max , and the average value of the minimum value of the Al content ratio x, which changes periodically, is X min The surface-coated cutting tool according to any one of (1) to (3), wherein a difference Δx between X max and X min is 0.03 to 0.25.
(5) When the composite nitride or composite carbonitride layer is observed from the longitudinal cross-sectional direction of the layer, individual crystals having a NaCl-type face-centered cubic structure in the composite nitride or composite carbonitride layer There are fine crystal grains having a hexagonal crystal structure at the grain boundary portion of the columnar structure composed of grains, and the area ratio of the fine crystal grains is 5% by area or less, and the average grain size R of the fine crystal grains is The surface-coated cutting tool according to any one of (1) to (4), which is 0.01 to 0.3 μm.
(6) One of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride layer between the tool base and the composite nitride or composite carbonitride layer or The surface-coated cutting tool according to any one of (1) to (5), wherein a lower layer is formed of two or more Ti compound layers and has a total average layer thickness of 0.1 to 20 μm.
(7) The upper layer including at least an aluminum oxide layer is present at an upper portion of the composite nitride or composite carbonitride layer with a total average layer thickness of 1 to 25 μm. (1) to (6) The surface coating cutting tool in any one. "
It has the characteristics.

本発明について、以下に詳細に説明する。   The present invention will be described in detail below.

TiAlCN層の平均層厚:
図1に、本発明のTiとAlの複合窒化物または複合炭窒化物(TiAlCN)層の断面模式図を示す。
本発明の硬質被覆層は、組成式:(Ti1−xAl)(C1−y)で表されるTiとAlの複合窒化物または複合炭窒化物(TiAlCN)層を少なくとも含む。このTiAlCN層は、硬さが高く、すぐれた耐摩耗性を有するが、特に平均層厚が1〜20μmのとき、その効果が際立って発揮される。その理由は、平均層厚が1μm未満では、層厚が薄いため長期の使用に亘っての耐摩耗性を十分確保することができず、一方、その平均層厚が20μmを越えると、TiAlCN層の結晶粒が粗大化し易くなり、チッピングを発生しやすくなる。したがって、その平均層厚を1〜20μmと定めた。
Average thickness of the TiAlCN layer:
In FIG. 1, the cross-sectional schematic diagram of the composite nitride or composite carbonitride (TiAlCN) layer of Ti and Al of this invention is shown.
The hard coating layer of the present invention includes at least a composite nitride or composite carbonitride (TiAlCN) layer of Ti and Al represented by a composition formula: (Ti 1-x Al x ) (C y N 1-y ). . This TiAlCN layer has high hardness and excellent wear resistance, but the effect is particularly prominent when the average layer thickness is 1 to 20 μm. The reason is that if the average layer thickness is less than 1 μm, the layer thickness is so thin that sufficient wear resistance over a long period of time cannot be ensured. On the other hand, if the average layer thickness exceeds 20 μm, the TiAlCN layer The crystal grains are likely to be coarsened and chipping is likely to occur. Therefore, the average layer thickness was set to 1 to 20 μm.

TiAlCN層の組成:
本発明のTiAlCN層は、AlのTiとAlの合量に占める平均含有割合XavgおよびCのCとNの合量に占める平均含有割合Yavg(但し、Xavg、Yavgはいずれも原子比)が、それぞれ、0.60≦Xavg≦0.95、0≦Yavg≦0.005を満足するように制御する。
その理由は、Alの平均含有割合Xavgが0.60未満であると、TiAlCN層は耐酸化性に劣るため、合金鋼等の高速断続切削に供した場合には、耐摩耗性が十分でない。一方、Alの平均含有割合Xavgが0.95を超えると、硬さに劣る六方晶の析出量が増大し硬さが低下するため、耐摩耗性が低下する。したがって、Alの平均含有割合Xavgは、0.60≦Xavg≦0.95と定めた。
また、TiAlCN層に含まれるC成分の平均含有割合Yavgは、0≦Yavg≦0.005の範囲の微量であるとき、TiAlCN層と工具基体もしくは下部層との密着性が向上し、かつ、潤滑性が向上することによって切削時の衝撃を緩和し、結果としてTiAlCN層の耐欠損性および耐チッピング性が向上する。一方、C成分の平均含有割合Yavgが0≦Yavg≦0.005の範囲を外れると、TiAlCN層の靭性が低下するため耐欠損性および耐チッピング性が逆に低下するため好ましくない。したがって、Cの平均含有割合Yavgは、0≦Yavg≦0.005と定めた。ただしCの含有割合には、意図的にガス原料としてCを含むガスを用いなくても含まれる不可避的なCの含有割合を除外している。具体的にはCの供給量を0とした場合のTiAlCN層に含まれるC成分の含有割合(原子比)を不可避的なCの含有割合として求め、Cを意図的に供給した場合に得られるTiAlCN層に含まれるC成分の含有割合(原子比)から前記不可避的なCの含有割合を差し引いた値をYavgとして求めた。
Composition of TiAlCN layer:
In the TiAlCN layer of the present invention, the average content ratio X avg in the total amount of Ti and Al in Al and the average content ratio Y avg in the total amount of C and N in C (where X avg and Y avg are both atoms) The ratio is controlled so as to satisfy 0.60 ≦ X avg ≦ 0.95 and 0 ≦ Y avg ≦ 0.005, respectively.
The reason is that when the average content ratio X avg of Al is less than 0.60, the TiAlCN layer is inferior in oxidation resistance, so when it is subjected to high-speed intermittent cutting such as alloy steel, the wear resistance is not sufficient. . On the other hand, when the average content ratio X avg of Al exceeds 0.95, the precipitation amount of hexagonal crystals inferior in hardness increases and the hardness decreases, so that the wear resistance decreases. Therefore, the average content ratio X avg of Al was determined as 0.60 ≦ X avg ≦ 0.95.
Further, when the average content ratio Y avg of the C component contained in the TiAlCN layer is a minute amount in the range of 0 ≦ Y avg ≦ 0.005, the adhesion between the TiAlCN layer and the tool substrate or the lower layer is improved, and By improving the lubricity, the impact during cutting is relieved, and as a result, the fracture resistance and chipping resistance of the TiAlCN layer are improved. On the other hand, when the average content ratio Y avg of the component C is out of the range of 0 ≦ Y avg ≦ 0.005, the toughness of the TiAlCN layer is lowered, so that the chipping resistance and chipping resistance are adversely lowered. Therefore, the average content ratio Y avg of C was determined as 0 ≦ Y avg ≦ 0.005. However, the content ratio of C excludes the inevitable content ratio of C that is included without intentionally using a gas containing C as a gas raw material. Specifically, the content ratio (atomic ratio) of the C component contained in the TiAlCN layer when the supply amount of C 2 H 4 is 0 is determined as an unavoidable C content ratio, and C 2 H 4 is intentionally determined. A value obtained by subtracting the unavoidable C content from the content (atom ratio) of the C component contained in the TiAlCN layer obtained when supplied was determined as Y avg .

TiAlCN層に存在するポア:
図2に、本発明のTiAlCN層の部分拡大図を示す。
図2に示されるように、本発明のTiAlCN層は、該層の粒界に沿って、所定の平均孔径のポアが形成されており、切削加工時の高負荷によって層中にクラックが発生した場合であっても、このようなポアの存在によって、クラックが粒界に沿って進展することが抑制され、その結果、刃先に高負荷が作用する合金鋼等の高速断続切削加工条件においてもすぐれた耐チッピング性を発揮するようになる。
前記ポアの平均孔径は、2nm未満であるとクラック進展抑制効果が十分でなく、一方、平均孔径が50nmより大きいと、TiAlCN層の硬さが局所的に低下し、クラックの起点となりやすく、耐チッピング性、耐欠損性が低下する。
したがって、TiAlCN層の粒界に沿って形成されるポアの平均孔径は2nm以上50nm以下とする。
また、前記ポアの面積割合が1%未満となるとクラックの進展抑制の効果を十分に引き出すことができず、20%以上となるとTiAlCN層全体においてポアによる硬さの低下が生じ、クラック起点の増加および耐摩耗性の低下による耐チッピング性および耐欠損性の低下を招くため、ポアの面積割合を1%以上20%未満とした。
Pore present in the TiAlCN layer:
FIG. 2 shows a partially enlarged view of the TiAlCN layer of the present invention.
As shown in FIG. 2, in the TiAlCN layer of the present invention, pores having a predetermined average pore diameter are formed along the grain boundary of the layer, and cracks are generated in the layer due to a high load during cutting. Even in this case, the presence of such pores suppresses cracks from growing along the grain boundary, and as a result, it is excellent even in high-speed intermittent cutting conditions such as alloy steel in which a high load acts on the cutting edge. Demonstrates excellent chipping resistance.
If the average pore diameter of the pores is less than 2 nm, the effect of suppressing crack growth is not sufficient. On the other hand, if the average pore diameter is greater than 50 nm, the hardness of the TiAlCN layer is locally reduced, which tends to be the starting point of cracks. Chipping and chipping resistance are reduced.
Therefore, the average pore diameter of the pores formed along the grain boundary of the TiAlCN layer is set to 2 nm or more and 50 nm or less.
Further, if the area ratio of the pore is less than 1%, the effect of suppressing the progress of cracks cannot be sufficiently obtained, and if it exceeds 20%, the hardness of the TiAlCN layer is reduced due to pores, and the crack starting point is increased. In addition, since the chipping resistance and the chipping resistance are reduced due to a decrease in wear resistance, the pore area ratio is set to 1% or more and less than 20%.

ここで、ポアの面積割合、平均孔径とは、次のような方法で算出することができる。
図2に、ポアの面積割合を測定するための概略説明図を示す。
図2に示すように、研磨したTiAlCN層の縦断面の任意の1μm×1μmの領域を観察領域として、倍率50000倍の走査型電子顕微鏡で観察し、得られた画像に関して画像処理ソフト、例えばアドビ(登録商標)社のフォトショップ(登録商標)やその他公知のものによって、ポアとポアでない領域を特定し、色をつける。
そして、色が付けられた総面積を測定することで、観察領域面積に対して色が付けられた総面積の割合がポアの面積割合となる。また、ポアと同定された円もしくは楕円をカウントし、その総数でポアの総面積を割ることで、ポア1個あたりの平均面積を算出し、その面積を有するような円の直径を算出し、その値をポアの平均孔径とした。
Here, the area ratio of pores and the average pore diameter can be calculated by the following method.
FIG. 2 is a schematic explanatory diagram for measuring the area ratio of pores.
As shown in FIG. 2, an arbitrary 1 μm × 1 μm region in the longitudinal section of the polished TiAlCN layer is used as an observation region and observed with a scanning electron microscope with a magnification of 50000 times. The pores and non-pore areas are identified and colored by Photoshop (registered trademark) of (Registered Trademark) Co., Ltd. and others known in the art.
Then, by measuring the total area colored, the ratio of the total area colored to the observation area becomes the pore area ratio. In addition, the circle or ellipse identified as a pore is counted, and the total area of the pore is divided by the total number to calculate the average area per pore, and the diameter of the circle having that area is calculated. The value was taken as the average pore diameter.

また、本発明のTiAlCN層において、作成した直線上にポアが存在する直線の割合が50%以上であり、かつポアが線上に存在しない直線が3本以上連続して存在しないことで、該層中にクラック進展を抑制するポアが存在するとともに、ポアが偏析して存在しておらず、クラック進展抑制の効果がより大きくなることから、作成した直線上にポアが存在する直線の割合が全体の直線に対して50%以上であり、かつポアが線上に存在しない直線が3本以上連続して存在しないことが望ましい。 Further, in the TiAlCN layer of the present invention, the proportion of straight lines where pores exist on the created straight line is 50% or more, and three or more straight lines where pores do not exist on the line do not exist continuously. Since there are pores that suppress crack growth in the inside, pores do not segregate and exist, and the effect of crack growth suppression is greater, so the proportion of straight lines where pores exist on the created straight line It is desirable that there are no three or more straight lines that are 50% or more of the straight line and the pores do not exist on the line.

ここで、図3に、ポアの偏析の有無を確認するための概略説明図を示す。
図3に示すように、まず、研磨したTiAlCN層の縦断面の任意の1μm×1μmの領域を観察領域として、倍率50000倍の走査型電子顕微鏡で観察する。図3に示す模式図は、1μm×1μmの観察領域の一例である。
観察領域には、図3中で黒丸及び白丸として示すように、複数のポアが観察される。
次いで、該観察領域について、工具基体表面に平行にかつ層厚方向に50nm間隔で平行な直線を引き、両端の直線と合わせて21本の直線を作成する。
図3には、前記直線上に存在するポアが黒丸として示され、一方、直線上から外れて位置するポアが白丸として示されており、黒丸が線上に存在する直線をカウントする。
Here, FIG. 3 shows a schematic explanatory diagram for confirming the presence or absence of pore segregation.
As shown in FIG. 3, first, an arbitrary 1 μm × 1 μm region in the longitudinal section of the polished TiAlCN layer is used as an observation region and observed with a scanning electron microscope with a magnification of 50000 times. The schematic diagram shown in FIG. 3 is an example of an observation region of 1 μm × 1 μm.
In the observation region, a plurality of pores are observed as shown as black circles and white circles in FIG.
Next, with respect to the observation region, straight lines parallel to the tool base surface and parallel to the layer thickness direction at intervals of 50 nm are drawn, and 21 straight lines are created together with the straight lines at both ends.
In FIG. 3, pores existing on the straight line are shown as black circles, while pores located off the straight line are shown as white circles, and the black circles count straight lines existing on the line.

TiAlCN層内の立方晶構造を有する結晶粒の{100}面の法線の傾斜角度数分布:
本発明のTiAlCN層について、電子線後方散乱回折装置を用いて立方晶構造を有する個々の結晶粒の結晶方位を、その縦断面方向から解析した場合、工具基体表面の法線(工具基体表面と垂直な方向)に対する前記結晶粒の結晶面である{100}面の法線がなす傾斜角(図4(a)、(b)参照)を測定し、その傾斜角のうち、法線方向に対して0〜45度の範囲内にある傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計したとき、0〜12度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜12度の範囲内に存在する度数の合計が、傾斜角度数分布における度数全体の35%以上の割合となる傾斜角度数分布形態を示す場合に、前記TiAlCN層は、立方晶構造を維持したままで高硬度を有し、しかも、前述したような傾斜角度数分布形態によってTiAlCN層と工具基体あるいは下部層との密着性が飛躍的に向上する。
したがって、本発明のTiAlCN層の立方晶構造を有する結晶粒は、前記のような傾斜角度数分布形態を備えることが望ましい。
図5には、本発明のTiAlCN層の立方晶構造を有する結晶粒について上記の方法で測定した傾斜角度数分布の一例をグラフとして示す。
Tilt angle number distribution of normal line of {100} plane of crystal grains having cubic structure in TiAlCN layer:
With respect to the TiAlCN layer of the present invention, when the crystal orientation of each crystal grain having a cubic structure is analyzed from the longitudinal sectional direction using an electron beam backscattering diffractometer, the normal of the tool base surface (the tool base surface and The inclination angle (see FIGS. 4 (a) and 4 (b)) formed by the normal line of the {100} plane that is the crystal plane of the crystal grain is measured. On the other hand, when the inclination angles within the range of 0 to 45 degrees are divided into the pitches of 0.25 degrees and the frequencies existing in the respective sections are totaled, the inclination angles within the range of 0 to 12 degrees are the highest. The TiAlCN layer in the case where the TiAlCN layer is present when a peak is present and the sum of the frequencies existing in the range of 0 to 12 degrees indicates a tilt angle number distribution form in which the total frequency in the tilt angle frequency distribution is 35% or more. Has a high hardness while maintaining the cubic structure. , Moreover, adhesion between the TiAlCN layer and the tool substrate or the lower layer by the inclined angle frequency distribution form as described above is remarkably improved.
Therefore, it is desirable that the crystal grains having the cubic structure of the TiAlCN layer of the present invention have the above-described inclination angle number distribution form.
FIG. 5 is a graph showing an example of the tilt angle number distribution measured by the above method for the crystal grains having the cubic structure of the TiAlCN layer of the present invention.

TiAlCN層内の立方晶構造を有する結晶粒内に存在するTiとAlの濃度変化:
図6に、本発明のTiAlCN層の立方晶構造を有する結晶粒について、TiとAlの周期的な濃度変化が存在することを模式図として示す。
本発明のTiAlCN層における立方晶構造を有する結晶を組成式:(Ti1−xAl)(C1−y)で表した場合、結晶粒内にTiとAlの周期的な濃度変化が存在するとき(即ち、x、yは、一定値ではなく、周期的に変化する値であるとき)、結晶粒に歪みが生じ、硬さが向上する。しかしながら、TiとAlの濃度変化の大きさの指標である前記組成式におけるAlの含有割合xの周期的に変化するxの値の極大値の平均値をXmax、また、Alの含有割合xの周期的に変化するxの値の極小値の平均値をXminとした場合、XmaxとXminの差Δxが0.03より小さいと結晶粒に形成される歪みが小さく十分な硬さの向上が見込めない。一方、XmaxとXminの差Δxが0.25を超えると結晶粒の歪みが大きくなり過ぎ、格子欠陥が大きくなり、硬さが低下する。そこで、立方晶構造を有する結晶粒内に存在するTiとAlの濃度変化は、XmaxとXminの差Δxが0.03〜0.25であることが望ましい。
また、TiとAlの周期的な濃度変化は、その周期が3nm未満であると靭性が低下する。一方、100nmを超えると硬さの向上効果が見込めないため、濃度変化の周期は3〜100nmとすることが望ましい。
Changes in the concentration of Ti and Al present in the crystal grains having a cubic structure in the TiAlCN layer:
FIG. 6 is a schematic diagram showing that there is a periodic concentration change of Ti and Al in the crystal grains having the cubic structure of the TiAlCN layer of the present invention.
When a crystal having a cubic structure in the TiAlCN layer of the present invention is represented by a composition formula: (Ti 1-x Al x ) (C y N 1-y ), periodic concentration changes of Ti and Al in the crystal grains (Ie, when x and y are not constant values but values that change periodically), the crystal grains are distorted and the hardness is improved. However, the average value of the maximum value of the periodically changing x value of the Al content ratio x in the composition formula, which is an index of the change in the concentration of Ti and Al, is X max , and the Al content ratio x Assuming that the average value of the minimum values of x that periodically change is X min , if the difference Δx between X max and X min is smaller than 0.03, the strain formed in the crystal grains is small and sufficient hardness Improvement is not expected. On the other hand, if the difference Δx between X max and X min exceeds 0.25, the distortion of the crystal grains becomes too large, lattice defects become large, and the hardness decreases. Therefore, regarding the change in the concentration of Ti and Al present in the crystal grains having a cubic structure, the difference Δx between X max and X min is preferably 0.03 to 0.25.
Further, when the periodic concentration change of Ti and Al is less than 3 nm, the toughness is lowered. On the other hand, if the thickness exceeds 100 nm, the effect of improving the hardness cannot be expected. Therefore, the period of concentration change is desirably 3 to 100 nm.

TiAlCN層内の立方晶構造を有する結晶粒の粒界部に存在する微粒六方晶:
本発明のTiAlCN層では、柱状組織の立方晶の粒界に六方晶構造の微粒結晶粒を含有することができるが、柱状組織の立方晶粒界に靱性に優れた微粒六方晶が存在することで粒界すべりが抑制され、靱性が向上する。このときの六方晶構造の微粒結晶粒の面積割合が5面積%を超えると相対的に硬さが低下し好ましくなく、また、六方晶構造の微粒結晶粒の平均粒径Rが0.01μm未満であると靱性向上の効果が見られず、0.3μmを超えると、硬さが低下し、耐摩耗性が損なわれるため、平均粒径Rは0.01〜0.3μmとすることが好ましい。
なお、本発明でいう粒界中に存在する六方晶構造の微粒結晶粒は、透過型電子顕微鏡を用いて電子線回折図形を解析することにより同定することができ、また、六方晶構造の微粒結晶粒の平均粒子径は、粒界を含んだ1μm×1μmの測定範囲内に存在する粒子について、粒径を測定し、それらの平均値を算出することによって求めることができる。
Fine-grained hexagonal crystals present at grain boundaries of the crystal grains having a cubic structure in the TiAlCN layer:
The TiAlCN layer of the present invention can contain fine crystal grains having a hexagonal structure at the cubic grain boundaries of the columnar structure, but the presence of fine hexagonal crystals having excellent toughness at the cubic grain boundaries of the columnar structure. With this, grain boundary sliding is suppressed and toughness is improved. At this time, if the area ratio of the fine crystal grains having a hexagonal crystal structure exceeds 5% by area, the hardness is relatively lowered, and the average crystal grain size R of the fine crystal grains having a hexagonal crystal structure is less than 0.01 μm. If it is, the effect of improving toughness is not seen, and if it exceeds 0.3 μm, the hardness decreases and the wear resistance is impaired, so the average particle size R is preferably 0.01 to 0.3 μm. .
Incidentally, the hexagonal structure fine grains existing in the grain boundary referred to in the present invention can be identified by analyzing the electron diffraction pattern using a transmission electron microscope, and the hexagonal structure fine grains. The average particle diameter of the crystal grains can be obtained by measuring the particle diameters of the particles existing within the measurement range of 1 μm × 1 μm including the grain boundaries and calculating the average value thereof.

本発明のTiAlCN層の成膜方法:
本発明で規定する成分組成、ポアの面積割合・平均孔径、傾斜角度数分布、周期的な濃度変化、六方晶構造の微粒結晶粒を備えたTiAlCN層は、以下に示す成膜条件の化学蒸着法によって成膜することができる。なお、本発明のTiAlCN層中に存在するポアは原料ガスの供給量および供給速度によってポアの形成が変化し、ポアの面積割合および平均孔径は、金属原料ガスの割合および供給周期を変化させることによって、制御することができる。
[成膜条件]
反応ガス組成(容量%):
ガス群A:NH 1.0〜2.0%、H 65〜75%、
ガス群B:AlCl 0.2〜0.4%、TiCl 0.08〜0.10%、N:0〜12%,C 0〜0.05%、H:残、
反応雰囲気圧力:4.0〜5.0kPa、
供給周期:10〜30秒、
1周期当たりのガス供給時間:0.5〜2.0秒、
ガス群Aの供給とガス群Bの供給の位相差:0.5〜1.0秒、
Method for forming a TiAlCN layer of the present invention:
The TiAlCN layer provided with the component composition, pore area ratio / average pore diameter, gradient angle number distribution, periodic concentration change, and hexagonal fine crystal grains defined in the present invention is formed by chemical vapor deposition under the following film formation conditions. The film can be formed by the method. The pores present in the TiAlCN layer of the present invention vary in pore formation depending on the feed rate and feed rate of the source gas, and the pore area ratio and average pore size change the ratio of the metal feed gas and the feed cycle. Can be controlled.
[Film formation conditions]
Reaction gas composition (volume%):
Gas group A: NH 3 1.0 to 2.0%, H 2 65 to 75%,
Gas group B: AlCl 3 0.2 to 0.4%, TiCl 4 0.08 to 0.10%, N 2 : 0 to 12%, C 2 H 4 0 to 0.05%, H 2 : remaining,
Reaction atmosphere pressure: 4.0 to 5.0 kPa,
Supply cycle: 10 to 30 seconds,
Gas supply time per cycle: 0.5 to 2.0 seconds,
Phase difference between supply of gas group A and supply of gas group B: 0.5 to 1.0 second,

下部層および上部層:
本発明のTiAlCN層は、それだけでも十分な効果を奏するが、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなり、0.1〜20μmの合計平均層厚を有する下部層を設けた場合、および/または、少なくとも酸化アルミニウム層を含む上部層を1〜25μmの合計平均層厚で設けた場合には、これらの層が奏する効果と相俟って、一層すぐれた特性を創出することができる。Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなる下部層を設ける場合、下部層の合計平均層厚が0.1μm未満では、下部層の効果が十分に奏されず、一方、20μmを超えると結晶粒が粗大化し易くなり、チッピングを発生しやすくなる。また、少なくとも酸化アルミニウム層を含む上部層の合計平均層厚が1μm未満では、上部層の効果が十分に奏されず、一方、25μmを超えると結晶粒が粗大化し易くなり、チッピングを発生しやすくなる。
Lower layer and upper layer:
Although the TiAlCN layer of the present invention alone has a sufficient effect, one or two or more layers of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride oxide layer can be obtained. When a lower layer comprising a compound layer and having a total average layer thickness of 0.1 to 20 μm is provided, and / or when an upper layer including at least an aluminum oxide layer is provided with a total average layer thickness of 1 to 25 μm Combined with the effect of these layers, it can create better properties. When providing a lower layer made of one or two or more Ti compound layers of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride oxide layer, the total average layer of the lower layer If the thickness is less than 0.1 μm, the effect of the lower layer is not sufficiently achieved. On the other hand, if it exceeds 20 μm, the crystal grains are likely to be coarsened and chipping is likely to occur. Further, if the total average layer thickness of the upper layer including at least the aluminum oxide layer is less than 1 μm, the effect of the upper layer is not sufficiently achieved. On the other hand, if it exceeds 25 μm, the crystal grains are likely to be coarsened and chipping is likely to occur. Become.

本発明は、工具基体の表面に、硬質被覆層を設けた表面被覆切削工具において、硬質被覆層が、TiAlCN層を少なくとも含み、該TiAlCNを組成式:(Ti1−xAl)(C1−y)で表した場合、AlのTiとAlの合量に占める平均含有割合XavgおよびCのCとNの合量に占める平均含有割合Yavgは、それぞれ、0.60≦Xavg≦0.95、0≦Yavg≦0.005(但し、Xavg、Yavgはいずれも原子比)を満足し、該TiAlCN層を構成する結晶粒中に立方晶構造を有するものが存在し、また、該TiAlCN層中には所定の面積割合と平均孔径のポアが存在することによって、粒界に沿うクラックの伝播・進展が抑制されるため、刃先に高負荷が作用する合金鋼等の高速断続切削加工で、すぐれた耐チッピング性を発揮する。
また、本発明は、前記TiAlCN層を構成する立方晶構造を有するTiAlCN結晶粒について測定した{100}面の法線の傾斜角度数分布において、工具基体表面の法線方向に対して0〜12度の範囲内の度数を度数全体の35%以上とすることにより、工具基体(あるいは下部層)との密着性が向上し、耐チッピング性、耐摩耗性がさらに向上する。
また、本発明は、前記立方晶構造を有するTiAlCN結晶粒内に、TiとAlの周期的な濃度変化が存在することにより、結晶粒に歪みが生じ、TiAlCN層の硬さと靭性を高め、その結果、耐チッピング性、耐欠損性、耐摩耗性がさらに向上する。 そして、本発明の被覆工具は、前記の硬質被覆層を備えることにより、切れ刃に断続的・衝撃的負荷が作用する合金鋼等の高速断続切削加工に用いた場合においても、硬質被覆層がすぐれた耐チッピング性、耐欠損性を示し、その結果、長期の使用に亘ってすぐれた切削性能を発揮するのである。
The present invention provides a surface-coated cutting tool in which a hard coating layer is provided on the surface of a tool base, wherein the hard coating layer includes at least a TiAlCN layer, and the TiAlCN is represented by a composition formula: (Ti 1-x Al x ) (C y N 1-y ), the average content ratio X avg in the total amount of Ti and Al in Al and the average content ratio Y avg in the total amount of C and N in C are 0.60 ≦ X, respectively. avg ≦ 0.95, 0 ≦ Y avg ≦ 0.005 (where X avg and Y avg are both atomic ratios), and the crystal grains constituting the TiAlCN layer have a cubic structure In addition, the presence of pores having a predetermined area ratio and average pore diameter in the TiAlCN layer suppresses the propagation and propagation of cracks along the grain boundary, so that an alloy steel with a high load acting on the blade edge, etc. High-speed intermittent In processing, it exhibits excellent chipping resistance.
Further, the present invention provides a tilt angle number distribution of the normal line of the {100} plane measured for the TiAlCN crystal grains having a cubic structure constituting the TiAlCN layer, and 0 to 12 with respect to the normal direction of the tool base surface. By setting the power within the degree range to 35% or more of the whole power, adhesion to the tool base (or lower layer) is improved, and chipping resistance and wear resistance are further improved.
Further, in the present invention, since the TiAlCN crystal grains having the cubic structure have periodic concentration changes of Ti and Al, the crystal grains are distorted, and the hardness and toughness of the TiAlCN layer are increased. As a result, chipping resistance, chipping resistance, and wear resistance are further improved. And, when the coated tool of the present invention is provided with the above-mentioned hard coating layer, even when used for high-speed intermittent cutting such as alloy steel in which intermittent and impact loads act on the cutting edge, the hard coating layer is It exhibits excellent chipping resistance and chipping resistance, and as a result, exhibits excellent cutting performance over a long period of use.

本発明のTiAlCN層の断面を模式的に表した膜構成概略模式図である。It is the film | membrane structure schematic schematic diagram which represented typically the cross section of the TiAlCN layer of this invention. 図1に示されるTiAlCN層の部分拡大図であって、粒界部にポアが形成されている状態を示す。FIG. 2 is a partially enlarged view of the TiAlCN layer shown in FIG. 1 and shows a state in which pores are formed at grain boundaries. 図2に示されるTiAlCN層の部分拡大図において、ポアの偏析の有無を確認するための概略説明図である。FIG. 3 is a schematic explanatory diagram for confirming the presence or absence of pore segregation in the partially enlarged view of the TiAlCN layer shown in FIG. 2. 工具基体表面の法線(断面研磨面における工具基体表面と垂直な方向)に対する、立方晶構造のTiAlCN結晶粒の結晶面である{100}面の法線がなす傾斜角が、(a)0度の場合、(b)45度の場合を示す模式図である。The inclination angle formed by the normal of the {100} plane, which is the crystal plane of the cubic TiAlCN crystal grains, with respect to the normal of the tool base surface (the direction perpendicular to the tool base surface on the cross-section polished surface) is (a) 0 In the case of degrees, (b) is a schematic diagram showing a case of 45 degrees. 本発明のTiAlCN層の断面について測定した、立方晶構造を有する結晶粒の傾斜角度数分布の一例を示すグラフである。It is a graph which shows an example of inclination angle number distribution of the crystal grain which has measured the cross section of the TiAlCN layer of this invention, and has a cubic structure. 本発明のTiAlCN層の断面において、TiとAlの周期的な組成変化が存在することを表した模式図である。It is the schematic diagram showing that the periodic composition change of Ti and Al exists in the cross section of the TiAlCN layer of this invention.

つぎに、本発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、TaC粉末、NbC粉末、Cr32粉末およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、ISO規格SEEN1203AFSNのインサート形状をもったWC基超硬合金製の工具基体A〜Cをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, TaC powder, NbC powder, Cr 3 C 2 powder and Co powder all having an average particle diameter of 1 to 3 μm are prepared, and these raw material powders are blended as shown in Table 1. Blended into the composition, added with wax, mixed in a ball mill in acetone for 24 hours, dried under reduced pressure, pressed into a compact of a predetermined shape at a pressure of 98 MPa, and the compact was 1370 in a vacuum of 5 Pa. Vacuum sintered at a predetermined temperature within a range of ˜1470 ° C. for 1 hour, and after sintering, manufacture tool bases A to C made of WC-base cemented carbide with ISO standard SEEN1203AFSN insert shape, respectively. did.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、WC粉末、Co粉末およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、ISO規格SEEN1203AFSNのインサート形状をもったTiCN基サーメット製の工具基体Dを作製した。 In addition, as raw material powders, all TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, WC powder, Co powder having an average particle diameter of 0.5 to 2 μm. And Ni powder are prepared, these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and then pressed into a compact at a pressure of 98 MPa. The body was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, a tool base D made of TiCN-based cermet having an ISO standard SEEN1203AFSN insert shape was produced.

つぎに、これらの工具基体A〜Dの表面に、化学蒸着装置を用い、
表4に示される形成条件A〜H、すなわち、NHとHからなるガス群Aと、AlCl、TiCl、C、Hからなるガス群B、および、おのおのガスの供給方法として、反応ガス組成(ガス群Aおよびガス群Bを合わせた全体に対する容量%)を、ガス群AとしてNH:1.0〜2.0%、H:70〜80%、ガス群BとしてAlCl:0.03〜0.05%、TiCl:0.01〜0.02%、N:0〜12%,C:0〜0.05%、H:残、反応雰囲気圧力:4.5〜5.0kPa、反応雰囲気温度:700〜900℃、供給周期10〜30秒、1周期当たりのガス供給時間0.5〜2.0秒、ガス群Aの供給とガス群Bの供給の位相差0.5〜1.0秒として、所定時間、熱CVD法を行い、表6に示されるTiAlCN層を成膜することにより本発明被覆工具1〜12を製造した。
なお、本発明被覆工具5〜12については、表3に示される形成条件で、表5に示される下部層、上部層を形成した。
Next, a chemical vapor deposition apparatus is used on the surfaces of these tool bases A to D,
Formation conditions A to H shown in Table 4, that is, a gas group A composed of NH 3 and H 2 , a gas group B composed of AlCl 3 , TiCl 4 , C 2 H 4 and H 2 , and supply of each gas As a method, the reaction gas composition (capacity% with respect to the total of the gas group A and the gas group B) is set as the gas group A: NH 3 : 1.0 to 2.0%, H 2 : 70 to 80%, gas group As B, AlCl 3 : 0.03 to 0.05%, TiCl 4 : 0.01 to 0.02%, N 2 : 0 to 12%, C 2 H 4 : 0 to 0.05%, H 2 : remaining , Reaction atmosphere pressure: 4.5 to 5.0 kPa, reaction atmosphere temperature: 700 to 900 ° C., supply cycle 10 to 30 seconds, gas supply time 0.5 to 2.0 seconds per cycle, supply of gas group A And a gas phase B supply phase difference of 0.5 to 1.0 second, for a predetermined time, heat CV Law was performed to produce the present invention coated tool 12 by depositing TiAlCN layer shown in Table 6.
In addition, about this invention coated tools 5-12, the lower layer and upper layer which were shown in Table 5 were formed on the formation conditions shown in Table 3.

また、比較の目的で、工具基体A〜Dの表面に、表3および表4に示される比較成膜工程の条件で、表7に示される目標層厚(μm)で本発明被覆工具1〜12と同様に、少なくともTiAlCN層を含む硬質被覆層を蒸着形成し比較被覆工具1〜12を製造した。この時には、TiAlCN層の成膜工程中に、工具基体表面における反応ガス組成が時間的に変化しない様に硬質被覆層を形成することにより比較被覆工具1〜12を製造した。
なお、本発明被覆工具5〜12と同様に、比較被覆工具5〜12については、表3に示される形成条件で、表5に示される下部層、上部層を形成した。
Further, for the purpose of comparison, the coated tools 1 to 4 of the present invention are formed on the surfaces of the tool bases A to D with the target layer thickness (μm) shown in Table 7 under the conditions of the comparative film forming process shown in Tables 3 and 4. 12, comparative coating tools 1 to 12 were produced by vapor-depositing a hard coating layer containing at least a TiAlCN layer. At this time, comparative coating tools 1 to 12 were manufactured by forming a hard coating layer so that the reaction gas composition on the surface of the tool base did not change with time during the TiAlCN layer forming step.
In addition, similarly to this invention coated tools 5-12, about the comparative coated tools 5-12, the lower layer and upper layer which were shown in Table 5 were formed on the formation conditions shown in Table 3.

ついで、本発明被覆工具1〜12、比較被覆工具1〜12の各構成層の工具基体に垂直な方向の断面を、走査型電子顕微鏡(倍率5000倍)を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めたところ、いずれも表6および表7に示される目標層厚と実質的に同じ平均層厚を示した。
また、TiAlCN層の平均Al含有割合Xavgについては、電子線マイクロアナライザ(EPMA,Electron−Probe−Micro−Analyser)を用い、表面を研磨した試料において、電子線を試料表面側から照射し、得られた特性X線の解析結果の10点平均からAlの平均Al含有割合Xavgを求めた。平均C含有割合Yavgについては、二次イオン質量分析(SIMS,Secondary−Ion−Mass−Spectroscopy)により求めた。イオンビームを試料表面側から70μm×70μmの範囲に照射し、スパッタリング作用によって放出された成分について深さ方向の濃度測定を行った。平均C含有割合YavgはTiAlCN層についての深さ方向の平均値を示す。ただしCの含有割合には、意図的にガス原料としてCを含むガスを用いなくても含まれる不可避的なCの含有割合を除外している。具体的にはCの供給量を0とした場合のTiAlCN層に含まれるC成分の含有割合(原子比)を不可避的なCの含有割合として求め、Cを意図的に供給した場合に得られるTiAlCN層に含まれるC成分の含有割合(原子比)から前記不可避的なCの含有割合を差し引いた値をYavgとして求めた。
表6および表7に、XavgおよびYavgの値を示す。
Next, the cross section in the direction perpendicular to the tool base of each component layer of the coated tools 1 to 12 and comparative coated tools 1 to 12 of the present invention is measured using a scanning electron microscope (magnification 5000 times), and within the observation field of view. When the five layer thicknesses were measured and averaged to determine the average layer thickness, all showed the same average layer thickness as the target layer thicknesses shown in Tables 6 and 7.
Further, the average Al content ratio X avg of the TiAlCN layer was obtained by irradiating an electron beam from the sample surface side in a sample whose surface was polished using an electron beam microanalyzer (EPMA, Electron-Probe-Micro-Analyser). The average Al content ratio X avg of Al was determined from the 10-point average of the obtained characteristic X-ray analysis results. About average C content rate Yavg, it calculated | required by secondary ion mass spectrometry (SIMS, Secondary-Ion-Mass-Spectroscopy). The ion beam was irradiated in the range of 70 μm × 70 μm from the sample surface side, and the concentration in the depth direction was measured for the components emitted by the sputtering action. The average C content ratio Y avg indicates the average value in the depth direction for the TiAlCN layer. However, the content ratio of C excludes the inevitable content ratio of C that is included without intentionally using a gas containing C as a gas raw material. Specifically, the content ratio (atomic ratio) of the C component contained in the TiAlCN layer when the supply amount of C 2 H 4 is 0 is determined as an unavoidable C content ratio, and C 2 H 4 is intentionally determined. A value obtained by subtracting the unavoidable C content from the content (atom ratio) of the C component contained in the TiAlCN layer obtained when supplied was determined as Y avg .
Tables 6 and 7 show the values of X avg and Y avg .

ついで、本発明被覆工具1〜12、比較被覆工具1〜12について、それぞれ、TiAlCN層の縦断面を倍率50000倍の走査型電子顕微鏡で観察し、1μm×1μmの領域を観察領域として、該観察領域について、工具基体表面に平行にかつ層厚方向に50nm間隔で平行な直線を引いた。
図2に示すように、得られた画像に関して画像処理ソフトを用いてポアと同定した部分に色をつけ、色が付けられた総面積を測定し、観察領域面積に対するポアの面積割合を算出した。また、ポアと同定された円もしくは楕円をカウントし、その総数でポアの総面積を割ることで、ポア1個あたりの平均面積を算出し、その面積を有するような円の直径から得られるポアの平均孔径を算出した。そして、10箇所の観察領域で測定したポアの面積割合と孔径の平均値を、それぞれポアの面積割合とポアの平均孔径として算出した。
また、作成した直線上にポアが存在する直線の数をカウントし、さらに、10箇所の観察領域で測定したポアが存在する直線の数の割合を算出し、それぞれの観察領域においてポアが存在しない直線が3本以上連続していないかどうかを確認した。
表6および表7に、その結果を示す。
Next, for the inventive coated tools 1-12 and comparative coated tools 1-12, the longitudinal section of the TiAlCN layer was observed with a scanning electron microscope at a magnification of 50000 times, and the observation area was 1 μm × 1 μm. For the region, straight lines were drawn parallel to the surface of the tool substrate and parallel to the layer thickness direction at intervals of 50 nm.
As shown in FIG. 2, a portion of the obtained image identified as a pore using image processing software was colored, the total area colored was measured, and the area ratio of the pore to the observation area was calculated. . Also, by counting the circles or ellipses identified as pores, dividing the total area of the pores by the total number, the average area per pore is calculated, and the pores obtained from the diameter of the circle having that area The average pore diameter was calculated. Then, the pore area ratio and the average pore diameter measured in 10 observation regions were calculated as the pore area ratio and the pore average pore diameter, respectively.
Also, the number of straight lines with pores on the created straight line is counted, and the ratio of the number of straight lines with pores measured in 10 observation areas is calculated, and there is no pore in each observation area. It was confirmed whether three or more straight lines were not continuous.
Tables 6 and 7 show the results.

また、TiAlCN層の傾斜角度数分布については、工具基体表面に垂直な方向のTiAlCN層の断面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記断面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に照射し、電子後方散乱回折像装置を用いて、工具基体表面と水平方向に長さ100μm、工具基体表面と垂直な方向の断面に沿って膜厚以下の距離の測定範囲内の該TiAlCN層について0.01μm/stepの間隔で、基体表面の法線(断面研磨面における基体表面と垂直な方向)に対して、前記結晶粒の結晶面である{100}面の法線がなす傾斜角を測定し、この測定結果に基づいて、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより、0〜12度の範囲内に存在する度数のピークの存在の有無を確認し、かつ0〜12度の範囲内に存在する度数の割合を求めた。
表6および表7に、その結果を示す。
Also, regarding the tilt angle number distribution of the TiAlCN layer, with the cross section of the TiAlCN layer in the direction perpendicular to the surface of the tool base as a polished surface, it is set in a lens barrel of a field emission scanning electron microscope, and the polished surface is An electron backscatter diffraction image apparatus is irradiated with an electron beam with an acceleration voltage of 15 kV at an incident angle of 70 degrees and with an irradiation current of 1 nA on each crystal grain having a cubic crystal lattice existing within the measurement range of the cross-section polished surface. At a distance of 0.01 μm / step with respect to the TiAlCN layer within a measurement range of a distance of 100 μm or less in the horizontal direction from the tool substrate surface and a thickness equal to or less than the film thickness along a cross section in a direction perpendicular to the tool substrate surface, The inclination angle formed by the normal of the {100} plane, which is the crystal plane of the crystal grain, is measured with respect to the normal of the substrate surface (in the direction perpendicular to the substrate surface on the cross-section polished surface). The above Of the measured tilt angles, the measured tilt angles within the range of 0 to 45 degrees are divided for each pitch of 0.25 degrees, and by counting the frequencies existing in each section, the range of 0 to 12 degrees The presence or absence of a frequency peak existing in the interior was confirmed, and the ratio of the frequency existing in the range of 0 to 12 degrees was determined.
Tables 6 and 7 show the results.

また、透過型電子顕微鏡(倍率200000倍)を用いて、加速電圧200kVの条件においてTiAlCN層の微小領域の観察を行い、エネルギー分散型X線分光法(EDS)を用いて、断面側から面分析を行うことによって、前記立方晶構造を有する結晶粒内に、組成式:(Ti1−xAl)(C1−y)におけるTiとAlの周期的な濃度変化が存在することを確認した。
さらに、周期的な濃度変化が存在する前記立方晶構造を有する結晶粒について、同じく透過型電子顕微鏡を用いた微小領域の観察と、エネルギー分散型X線分光法(EDS)を用いた断面側からの面分析により、濃度変化の周期を測定するとともに、TiAlCN層中に存在する立方晶構造を有する結晶粒の5周期分のxの周期におけるxの極大値の平均値をXmaxとし、また、同じく5周期分のxの周期におけるxの極小値の平均値をXminとし、その差Δx(=Xmax−Xmin)を求めた。
In addition, using a transmission electron microscope (magnification 200000 times), a micro region of the TiAlCN layer is observed under the condition of an acceleration voltage of 200 kV, and surface analysis is performed from the cross-sectional side using energy dispersive X-ray spectroscopy (EDS). In the crystal grains having the cubic structure, a periodic concentration change of Ti and Al in the composition formula: (Ti 1-x Al x ) (C y N 1-y ) exists. confirmed.
Furthermore, for the crystal grains having the cubic structure in which the periodic concentration change exists, the microscopic region is observed using the transmission electron microscope and the cross section side using the energy dispersive X-ray spectroscopy (EDS) is used. In the surface analysis, the period of concentration change is measured, and the average value of the local maximum value of x in the period of x of 5 cycles of the crystal grains having a cubic structure existing in the TiAlCN layer is defined as X max , the average value of the minimum value of x and X min in the period of the same five cycles of x, was determined and the difference Δx (= X max -X min) .

前記本発明被覆工具1〜12、比較被覆工具1〜12の硬質被覆層を構成するTiAlCN層について、透過型電子顕微鏡を用いて複数視野に亘って観察し、立方晶構造を有する結晶粒からなる柱状組織の粒界部に存在する六方晶構造の微粒結晶粒の面積割合を測定するとともに、六方晶構造の微粒結晶粒の平均粒径Rを測定した。
なお、本発明でいう粒界中に存在する微粒六方晶の同定は透過型電子顕微鏡を用いて電子線回折図形を解析することにより同定した。微粒六方晶の平均粒子径は粒界を含んだ1μm×1μmの測定範囲内に存在する粒子について、粒径を測定し、微粒六方晶の総面積を算出した値から面積割合を求めた。なお、粒径は六方晶と同定した粒に対して外接円を作成し、その外接円の半径を求め、その平均値を粒径とした。
About the TiAlCN layer which comprises the hard coating layer of the said invention coating tool 1-12 and the comparative coating tool 1-12, it observes over several visual fields using a transmission electron microscope, and consists of a crystal grain which has a cubic structure. The area ratio of the fine crystal grains having a hexagonal structure existing in the grain boundary portion of the columnar structure was measured, and the average particle diameter R of the fine crystal grains having the hexagonal structure was measured.
In addition, the identification of the fine-grained hexagonal crystal which exists in the grain boundary as used in the field of this invention was identified by analyzing an electron beam diffraction pattern using a transmission electron microscope. The average particle size of the fine hexagonal crystals was determined by measuring the particle size of particles present in the measurement range of 1 μm × 1 μm including the grain boundaries and calculating the total area of the fine hexagonal crystals. For the grain size, a circumscribed circle was created for the grains identified as hexagonal crystals, the radius of the circumscribed circle was determined, and the average value was taken as the grain size.







つぎに、前記各種の被覆工具をいずれもカッタ径125mmの工具鋼製カッタ先端部に固定治具にてクランプした状態で、本発明被覆工具1〜12、比較被覆工具1〜12について、以下に示す、合金鋼の高速断続切削の一種である乾式高速正面フライス、センターカット切削加工試験を実施し、切刃の逃げ面摩耗幅を測定した。
その結果を表8に示す。
Next, the present invention coated tools 1 to 12 and comparative coated tools 1 to 12 are described below in a state where each of the various coated tools is clamped to a tool steel cutter tip portion having a cutter diameter of 125 mm by a fixing jig. The dry high-speed face milling, which is a kind of high-speed interrupted cutting of alloy steel, and a center-cut cutting test were performed, and the flank wear width of the cutting blade was measured.
The results are shown in Table 8.

工具基体:炭化タングステン基超硬合金、炭窒化チタン基サーメット、
切削試験: 乾式高速正面フライス、センターカット切削加工、
被削材: JIS・SCM440幅100mm、長さ400mmのブロック材、
回転速度: 994 min−1
切削速度: 390 m/min、
切り込み: 1.5 mm、
一刃送り量: 0.15 mm/刃、
切削時間: 8分、
(通常の切削速度は、220m/min)、
Tool substrate: Tungsten carbide-based cemented carbide, titanium carbonitride-based cermet,
Cutting test: Dry high-speed face milling, center cutting,
Work material: JIS / SCM440 block material with a width of 100 mm and a length of 400 mm,
Rotational speed: 994 min −1
Cutting speed: 390 m / min,
Cutting depth: 1.5 mm,
Single-blade feed amount: 0.15 mm / tooth,
Cutting time: 8 minutes,
(Normal cutting speed is 220 m / min),


原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末およびCo粉末を用意し、これら原料粉末を、表9に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO規格CNMG120412のインサート形状をもったWC基超硬合金製の工具基体α〜γをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, ZrC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder and Co powder all having an average particle diameter of 1 to 3 μm are prepared. Blended in the composition shown in Table 9, added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, pressed into a green compact of a predetermined shape at a pressure of 98 MPa. In a 5 Pa vacuum, vacuum sintering is performed at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour, and after sintering, the cutting edge is subjected to honing processing with an R of 0.07 mm. Tool bases α to γ made of a WC-base cemented carbide having an insert shape of CNMG12041 were manufactured.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、NbC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表10に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.09mmのホーニング加工を施すことによりISO規格・CNMG120412のインサート形状をもったTiCN基サーメット製の工具基体δを形成した。   In addition, as raw material powder, TiCN (mass ratio TiC / TiN = 50/50) powder, NbC powder, WC powder, Co powder, and Ni powder all having an average particle diameter of 0.5 to 2 μm are prepared, These raw material powders were blended into the composition shown in Table 10, wet mixed for 24 hours with a ball mill, dried, and then pressed into a green compact at a pressure of 98 MPa. Sintered in an atmosphere at a temperature of 1500 ° C. for 1 hour, and after sintering, the cutting edge part is subjected to a honing process of R: 0.09 mm so that the TiCN base has an insert shape of ISO standard / CNMG120212 A cermet tool substrate δ was formed.

つぎに、これらの工具基体α〜γおよび工具基体δの表面に、通常の化学蒸着装置を用い、表4に示される形成条件A〜H、すなわち、NHとHからなるガス群Aと、AlCl、TiCl、C、Hからなるガス群B、およびおのおのガスの供給方法として、反応ガス組成(ガス群Aおよびガス群Bを合わせた全体に対する容量%)を、ガス群AとしてNH:1.0〜2.0%、H:70〜80%、ガス群BとしてAlCl:0.03〜0.05%、TiCl:0.01〜0.02%、N:0〜12%,C:0〜0.05%、H:残、反応雰囲気圧力:4.5〜5.0kPa、反応雰囲気温度:700〜900℃、供給周期10〜30秒、1周期当たりのガス供給時間0.5〜2.0秒、ガス群Aの供給とガス群Bの供給の位相差0.5〜1.0秒として、所定時間、熱CVD法を行い、表12に示されるTiAlCN層を成膜することによりことにより本発明被覆工具13〜24を製造した。
なお、本発明被覆工具16〜24については、表3に示される形成条件で、表11に示される下部層、上部層を形成した。
Next, on the surfaces of these tool bases α to γ and tool base δ, using a normal chemical vapor deposition apparatus, formation conditions A to H shown in Table 4, that is, a gas group A composed of NH 3 and H 2 , , AlCl 3 , TiCl 4 , C 2 H 4 , H 2 , and a method for supplying each gas, the reaction gas composition (capacity% relative to the total of the gas group A and the gas group B) NH 3 as group A: 1.0 to 2.0%, H 2 : 70 to 80%, AlCl 3 as gas group B: 0.03 to 0.05%, TiCl 4 : 0.01 to 0.02% , N 2 : 0 to 12%, C 2 H 4 : 0 to 0.05%, H 2 : remaining, reaction atmosphere pressure: 4.5 to 5.0 kPa, reaction atmosphere temperature: 700 to 900 ° C, supply cycle 10 ~ 30 seconds, gas supply time per cycle 0.5 ~ 2.0 seconds, The present invention is performed by forming a TiAlCN layer shown in Table 12 by performing a thermal CVD method for a predetermined time with a phase difference of 0.5 to 1.0 seconds between the supply of gas group A and the supply of gas group B. Coated tools 13-24 were produced.
In addition, about this invention coated tools 16-24, the lower layer and upper layer which were shown in Table 11 on the formation conditions shown in Table 3 were formed.

また、比較の目的で、同じく工具基体α〜γおよび工具基体δの表面に、通常の化学蒸着装置を用い、表3および表4に示される条件かつ表13に示される目標層厚で本発明被覆工具と同様に硬質被覆層を蒸着形成することにより、表13に示される比較被覆工具13〜24を製造した。
なお、本発明被覆工具16〜24と同様に、比較被覆工具16〜24については、表3に示される形成条件で、表11に示される下部層、上部層を形成した。
For comparison purposes, the present invention is also applied to the surfaces of the tool bases α to γ and the tool base δ by using an ordinary chemical vapor deposition apparatus under the conditions shown in Tables 3 and 4 and the target layer thicknesses shown in Table 13. Comparative coating tools 13 to 24 shown in Table 13 were manufactured by vapor-depositing a hard coating layer in the same manner as the coating tool.
In addition, similarly to this invention coating | coated tool 16-24, about the comparison coating tools 16-24, the lower layer and upper layer which were shown in Table 11 on the formation conditions shown in Table 3 were formed.

本発明被覆工具13〜24、比較被覆工具13〜24の各構成層の断面を、走査電子顕微鏡(倍率5000倍)を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めたところ、いずれも表12および表13に示される目標層厚と実質的に同じ平均層厚を示した。
また、前記本発明被覆工具13〜24、比較被覆工具13〜24のTiAlCN層について、実施例1に示される方法と同様の方法を用いて、平均Al含有割合Xavg、平均C含有割合Yavgを測定した。
また、実施例1に示される方法と同様の方法を用いてTiAlCN層におけるポアの面積割合、平均孔径およびポアが存在する直線の数を算出し、ポアが存在しない直線が3本以上続けて存在しているか否かを確認した。
また、TiAlCN層を構成する立方晶構造を有する結晶粒の{100}面の法線が工具基体表面の法線となす傾斜角度数分布におけるピークの存在する傾斜角区分を確認するとともに、0〜12度の範囲内に存在する度数割合を測定した。
表12および表13に、その結果を示す。
The cross sections of the constituent layers of the inventive coated tools 13 to 24 and comparative coated tools 13 to 24 are measured using a scanning electron microscope (5000 times magnification), and the layer thicknesses at five points in the observation field are measured and averaged. As a result, the average layer thickness was found to be substantially the same as the target layer thickness shown in Tables 12 and 13.
For the TiAlCN layers of the inventive coated tools 13 to 24 and comparative coated tools 13 to 24, using the same method as the method shown in Example 1, the average Al content ratio X avg and the average C content ratio Y avg Was measured.
In addition, the pore area ratio, the average pore diameter, and the number of straight lines in which pores exist in the TiAlCN layer are calculated using a method similar to that shown in Example 1, and three or more straight lines in which pores do not exist are continuously present. I confirmed whether or not.
In addition, while confirming the inclination angle section where the peak exists in the inclination angle number distribution that the normal line of the {100} plane of the crystal grains having a cubic structure constituting the TiAlCN layer and the normal line of the tool base surface exists, The frequency ratio existing in the range of 12 degrees was measured.
Tables 12 and 13 show the results.

また、本発明被覆工具13〜24、比較被覆工具13〜24のTiAlCN層の立方晶構造を有する結晶粒内に、TiとAlの周期的な濃度分布が存在していることを透過型電子顕微鏡(倍率200000倍)を用いて、エネルギー分散型X線分光法(EDS)による面分析により確認し、さらに、5周期分のxの周期におけるxの極大値の平均値をXmaxとxの極小値の平均値をXminの差Δx(=Xmax−Xmin)と周期を求めた。
表12および表13に、その結果を示す。
Further, it is confirmed that a periodic concentration distribution of Ti and Al is present in the crystal grains having the cubic structure of the TiAlCN layer of the inventive coated tools 13 to 24 and the comparative coated tools 13 to 24. (Magnification 200,000 times), and is confirmed by surface analysis by energy dispersive X-ray spectroscopy (EDS), and the average value of the local maximum value of x in the period of x for 5 periods is the minimum of X max and x the average value of the values obtained the difference Δx (= X max -X min) and the cycle of X min.
Tables 12 and 13 show the results.

また、前記TiAlCN層について、透過型電子顕微鏡を用いて電子線回折図形を解析することにより、立方晶構造を有する結晶粒からなる柱状組織の粒界部に存在する六方晶構造の微粒結晶粒の面積割合、平均粒径Rを測定した。
表12および表13に、これらの結果を示す。
In addition, by analyzing the electron diffraction pattern of the TiAlCN layer using a transmission electron microscope, the hexagonal structure fine crystal grains present in the grain boundary portion of the columnar structure composed of crystal grains having a cubic structure are obtained. The area ratio and average particle size R were measured.
Tables 12 and 13 show these results.






つぎに、前記各種の被覆工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆工具13〜24、比較被覆工具13〜24について、以下に示す、炭素鋼の乾式高速断続切削試験、鋳鉄の湿式高速断続切削試験を実施し、いずれも切刃の逃げ面摩耗幅を測定した。
切削条件1:
被削材:JIS・S45Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:390 m/min、
切り込み:2.0 mm、
送り:0.25 mm/rev、
切削時間:5 分、
(通常の切削速度は、220m/min)、
切削条件2:
被削材:JIS・FCD700の長さ方向等間隔4本縦溝入り丸棒、
切削速度:330 m/min、
切り込み:1.2 mm、
送り:0.1 mm/rev、
切削時間:5 分、
(通常の切削速度は、200m/min)、
表14に、前記切削試験の結果を示す。
Next, in the state where all the various coated tools are screwed to the tip of the tool steel tool with a fixing jig, the present coated tools 13 to 24 and comparative coated tools 13 to 24 are shown below. A dry high-speed intermittent cutting test for carbon steel and a wet high-speed intermittent cutting test for cast iron were performed, and the flank wear width of the cutting edge was measured for both.
Cutting condition 1:
Work material: JIS · S45C lengthwise equal 4 round grooved round bars,
Cutting speed: 390 m / min,
Cutting depth: 2.0 mm,
Feed: 0.25 mm / rev,
Cutting time: 5 minutes,
(Normal cutting speed is 220 m / min),
Cutting condition 2:
Work material: JIS / FCD700 lengthwise equal length 4 round bar with round groove,
Cutting speed: 330 m / min,
Cutting depth: 1.2 mm,
Feed: 0.1 mm / rev,
Cutting time: 5 minutes,
(Normal cutting speed is 200 m / min),
Table 14 shows the results of the cutting test.


原料粉末として、いずれも0.5〜4μmの範囲内の平均粒径を有するcBN粉末、TiN粉末、TiCN粉末、TiC粉末、Al粉末、Al粉末を用意し、これら原料粉末を表15に示される配合組成に配合し、ボールミルで80時間湿式混合し、乾燥した後、120MPaの圧力で直径:50mm×厚さ:1.5mmの寸法をもった圧粉体にプレス成形し、ついでこの圧粉体を、圧力:1Paの真空雰囲気中、900〜1300℃の範囲内の所定温度に60分間保持の条件で焼結して切刃片用予備焼結体とし、この予備焼結体を、別途用意した、Co:8質量%、WC:残りの組成、並びに直径:50mm×厚さ:2mmの寸法をもったWC基超硬合金製支持片と重ね合わせた状態で、通常の超高圧焼結装置に装入し、通常の条件である圧力:4GPa、温度:1200〜1400℃の範囲内の所定温度に保持時間:0.8時間の条件で超高圧焼結し、焼結後上下面をダイヤモンド砥石を用いて研磨し、ワイヤー放電加工装置にて所定の寸法に分割し、さらにCo:5質量%、TaC:5質量%、WC:残りの組成およびJIS規格CNGA120408の形状(厚さ:4.76mm×内接円直径:12.7mmの80°菱形)をもったWC基超硬合金製インサート本体のろう付け部(コーナー部)に、質量%で、Zr:37.5%、Cu:25%、Ti:残りからなる組成を有するTi−Zr−Cu合金のろう材を用いてろう付けし、所定寸法に外周加工した後、切刃部に幅:0.13mm、角度:25°のホーニング加工を施し、さらに仕上げ研摩を施すことによりISO規格CNGA120408のインサート形状をもった工具基体イ、ロをそれぞれ製造した。 As the raw material powder, cBN powder, TiN powder, TiCN powder, TiC powder, Al powder, and Al 2 O 3 powder each having an average particle diameter in the range of 0.5 to 4 μm were prepared. The mixture is blended in the composition shown in FIG. 1, wet mixed with a ball mill for 80 hours, dried, and then pressed into a green compact having a diameter of 50 mm × thickness: 1.5 mm under a pressure of 120 MPa. The green compact is sintered in a vacuum atmosphere at a pressure of 1 Pa at a predetermined temperature within a range of 900 to 1300 ° C. for 60 minutes to obtain a presintered body for a cutting edge piece. In addition, Co: 8% by mass, WC: remaining composition, and diameter: 50 mm × thickness: 2 mm, superposed on a WC-based cemented carbide support piece with a normal super-high pressure Insert into the sintering machine, normal conditions A certain pressure: 4 GPa, temperature: 1200 ° C. to 1400 ° C. within a predetermined temperature, holding time: 0.8 hour sintering, and after sintering, the upper and lower surfaces are polished with a diamond grindstone, and wire discharge It is divided into predetermined dimensions by a processing apparatus, and further Co: 5 mass%, TaC: 5 mass%, WC: remaining composition and shape of JIS standard CNGA120408 (thickness: 4.76 mm × inscribed circle diameter: 12. The brazing part (corner part) of the WC-based cemented carbide insert body having a 7 mm 80 ° rhombus) has a composition consisting of Zr: 37.5%, Cu: 25%, Ti: the rest in mass%. After brazing using a brazing material of Ti-Zr-Cu alloy and having a predetermined dimension, the cutting edge is subjected to honing with a width of 0.13 mm and an angle of 25 °, followed by finishing polishing. ISO regulations CNGA120408 tool substrate b having the insert shape, were manufactured, respectively b.


つぎに、これらの工具基体イ、ロの表面に、通常の化学蒸着装置を用い、実施例1と同様の方法により表3および表4に示される条件で、少なくともTiAlCN層を含む硬質被覆層を目標層厚で蒸着形成することにより、表17に示される本発明被覆工具25〜30を製造した。
なお、本発明被覆工具28〜30については、表3に示される形成条件で、表16に示すような下部層、上部層を形成した。
Next, a hard coating layer containing at least a TiAlCN layer is formed on the surface of these tool bases a and b under the conditions shown in Tables 3 and 4 by the same method as in Example 1 using a normal chemical vapor deposition apparatus. The present coated tools 25 to 30 shown in Table 17 were manufactured by vapor deposition with a target layer thickness.
In addition, about this invention coated tools 28-30, the lower layer and upper layer as shown in Table 16 were formed on the formation conditions shown in Table 3.

また、比較の目的で、同じく工具基体イ、ロの表面に、通常の化学蒸着装置を用い、表3および表4に示される条件で、少なくともTiAlCN層を含む硬質被覆層を目標層厚で蒸着形成することにより、表18に示される比較被覆工具25〜30を製造した。
なお、本発明被覆工具28〜30と同様に、比較被覆工具28〜30については、表3に示される形成条件で、表16に示すような下部層、上部層を形成した。
Also, for comparison purposes, a hard coating layer containing at least a TiAlCN layer is deposited at the target layer thickness under the conditions shown in Tables 3 and 4 on the surfaces of the tool bases A and B using a normal chemical vapor deposition apparatus. By forming, comparative coated tools 25-30 shown in Table 18 were produced.
In addition, similarly to this invention covering tool 28-30, about the comparison covering tool 28-30, the lower layer and upper layer as shown in Table 16 were formed on the formation conditions shown in Table 3.

また、本発明被覆工具25〜30、比較被覆工具25〜30の各構成層の断面を、走査電子顕微鏡(倍率5000倍)を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めたところ、いずれも表17および表18に示される目標層厚と実質的に同じ平均層厚を示した。   Moreover, the cross section of each component layer of this invention coated tool 25-30 and comparative coated tool 25-30 is measured using a scanning electron microscope (5000 times magnification), and the layer thickness of five points in an observation visual field is measured. When the average layer thickness was obtained by averaging, all showed the average layer thickness substantially the same as the target layer thickness shown in Table 17 and Table 18.

また、前記本発明被覆工具25〜30、比較被覆工具25〜30の硬質被覆層について、実施例1に示される方法と同様の方法を用いて、平均Al含有割合Xavg、平均C含有割合Yavgを測定した。
また、実施例1に示される方法と同様の方法を用いてTiAlCN層におけるポアの面積割合、平均孔径およびポアが存在する直線の数を算出し、ポアが存在しない直線が3本以上続けて存在しているか否かを確認した。また、TiAlCN層を構成する立方晶構造を有する結晶粒の{100}面の法線が工具基体表面の法線となす傾斜角度数分布におけるピークの存在する傾斜角区分を確認するとともに、0〜12度の範囲内に存在する度数割合を測定した。
さらに、実施例1に示される方法と同様な方法を用いて、立方晶結晶粒内に存在するTiとAlの周期的な濃度変化におけるxの極大値の平均値Xmaxとxの極小値の平均値Xminの差Δx(=Xmax−Xmin)と周期を測定した。
表17および表18に、これらの結果を示す。
Moreover, about the hard coating layer of the said invention coating tool 25-30 and the comparison coating tool 25-30, using the method similar to the method shown in Example 1, average Al content rate Xavg , average C content rate Y avg was measured.
In addition, the pore area ratio, the average pore diameter, and the number of straight lines in which pores exist in the TiAlCN layer are calculated using a method similar to that shown in Example 1, and three or more straight lines in which pores do not exist are continuously present. I confirmed whether or not. In addition, while confirming the inclination angle section where the peak exists in the inclination angle number distribution that the normal line of the {100} plane of the crystal grains having a cubic structure constituting the TiAlCN layer and the normal line of the tool base surface exists, The frequency ratio existing in the range of 12 degrees was measured.
Further, by using a method similar to the method shown in Example 1, the average value X max of the maximum value X max and the minimum value of x in the periodic concentration change of Ti and Al existing in the cubic crystal grains are determined. The difference Δx (= X max −X min ) and the period of the average value X min were measured.
Tables 17 and 18 show these results.

また、前記本発明被覆工具25〜30、比較被覆工具25〜30の硬質被覆層について、透過型電子顕微鏡を用いて電子線回折図形を解析することにより、立方晶構造を有する結晶粒からなる柱状組織の粒界部に存在する六方晶構造の微粒結晶粒の面積割合、平均粒径Rを測定した。
表17および表18に、これらの結果を示す。
Moreover, about the hard coating layer of the said invention coating tool 25-30 and the comparison coating tool 25-30, the columnar shape which consists of a crystal grain which has a cubic structure by analyzing an electron beam diffraction pattern using a transmission electron microscope The area ratio of the fine crystal grains having a hexagonal structure existing in the grain boundary portion of the structure and the average particle diameter R were measured.
Tables 17 and 18 show these results.




つぎに、各種の被覆工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆工具25〜30、比較被覆工具25〜30について、以下に示す、浸炭焼入れ合金鋼の乾式高速断続切削加工試験を実施し、切刃の逃げ面摩耗幅を測定した。
工具基体:立方晶窒化ホウ素基超高圧焼結体、
切削試験: 浸炭焼入れ合金鋼の乾式高速断続切削加工、
被削材: JIS・SCr420(硬さ:HRC62)の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 265 m/min、
切り込み: 0.12 mm、
送り: 0.1 mm/rev、
切削時間: 4分、
表19に、前記切削試験の結果を示す。
Next, carburization shown below about this invention covering tool 25-30 and comparative covering tool 25-30 in the state where all the various covering tools were screwed to the front-end | tip part of a tool steel cutting tool with a fixing jig. A dry high-speed intermittent cutting test was performed on the quenched alloy steel, and the flank wear width of the cutting edge was measured.
Tool substrate: Cubic boron nitride-based ultra-high pressure sintered body,
Cutting test: Dry high-speed intermittent cutting of carburized and quenched alloy steel,
Work material: JIS · SCr420 (Hardness: HRC62) lengthwise equidistant four round bars with vertical grooves,
Cutting speed: 265 m / min,
Cutting depth: 0.12 mm,
Feed: 0.1 mm / rev,
Cutting time: 4 minutes
Table 19 shows the results of the cutting test.


表8、表14および表19に示される結果から、本発明の被覆工具は、TiAlCN層に所定のポアの面積割合と平均孔径を有するポアが存在することで、粒界に沿うクラックの伝播・進展が抑制され、刃先に高負荷が作用する合金鋼等の高速断続切削加工で、すぐれた耐チッピング性を発揮する。
また、立方晶構造を有するTiAlCN結晶粒の{100}面の法線の傾斜角度数分布において、工具基体表面の法線方向に対して0〜12度の範囲内の度数を度数全体の35%以上とした本発明の被覆工具は、工具基体(あるいは下部層)との密着性が向上し、耐チッピング性、耐摩耗性が向上し、さらに、立方晶構造を有する結晶粒内に、TiとAlの濃度変化が存在する本発明の被覆工具は、結晶粒の歪みにより、硬さが向上し、高い耐摩耗性を保ちつつ、靱性が向上する。
そして、本発明の被覆工具は、刃先に高負荷が作用する合金鋼等の高速断続切削加工で、長期の使用に亘ってすぐれた耐チッピング性、耐摩耗性を発揮するのである。
From the results shown in Table 8, Table 14 and Table 19, the coated tool of the present invention has the presence of pores having a predetermined pore area ratio and average pore diameter in the TiAlCN layer, so that propagation of cracks along grain boundaries Providing excellent chipping resistance in high-speed intermittent cutting of alloy steel, etc., where progress is suppressed and a high load acts on the cutting edge.
Further, in the tilt angle frequency distribution of the normal line of the {100} plane of TiAlCN crystal grains having a cubic structure, the frequency within the range of 0 to 12 degrees with respect to the normal direction of the tool substrate surface is set to 35% of the total frequency. The above-described coated tool of the present invention has improved adhesion to the tool substrate (or lower layer), improved chipping resistance, wear resistance, and further, Ti and crystal grains having a cubic structure have Ti and The coated tool of the present invention in which the concentration change of Al is present is improved in hardness due to distortion of crystal grains, and toughness is improved while maintaining high wear resistance.
The coated tool of the present invention exhibits excellent chipping resistance and wear resistance over a long period of use in high-speed intermittent cutting of alloy steel or the like in which a high load acts on the cutting edge.

これに対して、TiAlCN層に本発明で規定するポアの面積割合を有さない、もしくは、本発明で規定する平均孔径を有するポアが存在しない比較被覆工具については、高熱発生を伴い、しかも、切れ刃に断続的・衝撃的高負荷が作用する高速断続切削加工に用いた場合、チッピング、欠損等の発生により短時間で寿命にいたることが明らかである。   On the other hand, the TiAlCN layer does not have the pore area ratio defined in the present invention, or the comparative coated tool having no pore having the average pore diameter defined in the present invention is accompanied by high heat generation, When used for high-speed intermittent cutting where intermittent and impactful high loads act on the cutting edge, it is clear that chipping, chipping, etc. will lead to short life.

前述のように、本発明の被覆工具は、合金鋼の高速断続切削加工ばかりでなく、各種の被削材の被覆工具として用いることができ、しかも、長期の使用に亘ってすぐれた耐チッピング性、耐摩耗性を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention can be used not only for high-speed intermittent cutting of alloy steel but also as a coated tool for various work materials, and has excellent chipping resistance over a long period of use. Since it exhibits wear resistance, it can sufficiently satisfy the high performance of the cutting device, the labor saving and energy saving of the cutting work, and the cost reduction.

Claims (7)

炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体の表面に、硬質被覆層を設けた表面被覆切削工具において、
(a)前記硬質被覆層は、平均層厚1〜20μmのTiとAlの複合窒化物または複合炭窒化物層を少なくとも含み、
(b)前記複合窒化物または複合炭窒化物層は、NaCl型の面心立方構造を有する複合窒化物または複合炭窒化物の相を少なくとも含み、
(c)前記複合窒化物または複合炭窒化物層は、
組成式:(Ti1−xAl)(C1−y
で表した場合、AlのTiとAlの合量に占める平均含有割合XavgおよびCのCとNの合量に占める平均含有割合Yavg(但し、Xavg、Yavgはいずれも原子比)が、それぞれ、0.60≦Xavg≦0.95、0≦Yavg≦0.005を満足し、
(d)前記複合窒化物または複合炭窒化物層を構成する結晶粒の粒界にはポアが存在しており、前記複合窒化物または複合炭窒化物層の断面を、走査型電子顕微鏡によって倍率50000倍で1μm×1μmの範囲を観察し、ポアが占める面積割合と平均孔径を算出した時、観察領域面積に対しポアが占める面積割合が1%以上20%未満であり、ポアの平均孔径は2〜50nmであることを特徴とする表面被覆切削工具。
In a surface-coated cutting tool in which a hard coating layer is provided on the surface of a tool base composed of any of tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, or cubic boron nitride-based ultrahigh-pressure sintered body,
(A) The hard coating layer includes at least a composite nitride or composite carbonitride layer of Ti and Al having an average layer thickness of 1 to 20 μm,
(B) The composite nitride or composite carbonitride layer includes at least a composite nitride or composite carbonitride phase having a NaCl-type face-centered cubic structure,
(C) The composite nitride or composite carbonitride layer is
Composition formula: (Ti 1-x Al x ) (C y N 1-y )
The average content ratio X avg in the total amount of Ti and Al in Al and the average content ratio Y avg in the total amount of C and N in C (where X avg and Y avg are both atomic ratios) Satisfy 0.60 ≦ X avg ≦ 0.95 and 0 ≦ Y avg ≦ 0.005, respectively.
(D) There are pores at grain boundaries of the crystal grains constituting the composite nitride or composite carbonitride layer, and the cross section of the composite nitride or composite carbonitride layer is magnified by a scanning electron microscope. When observing a range of 1 μm × 1 μm at 50000 times and calculating the area ratio and the average pore diameter occupied by the pore, the area ratio occupied by the pore with respect to the observation area is 1% or more and less than 20%, and the average pore diameter of the pore is A surface-coated cutting tool having a thickness of 2 to 50 nm.
前記複合窒化物または複合炭窒化物層について、前記複合窒化物または複合炭窒化物層の断面を、走査型電子顕微鏡によって倍率50000倍で1μm×1μmの範囲を観察し、工具基体表面と平行に層厚方向に50nm間隔で直線を引いた時、該直線上に少なくとも1個ポアが存在する直線の数の割合が全体の直線数に対して50%以上であり、かつ、ポアが線上に存在しない直線が3本以上連続していないことを特徴とする請求項1に記載の表面被覆切削工具。   For the composite nitride or composite carbonitride layer, the cross section of the composite nitride or composite carbonitride layer was observed with a scanning electron microscope at a magnification of 50000 times in a range of 1 μm × 1 μm, and parallel to the tool substrate surface When straight lines are drawn at 50 nm intervals in the layer thickness direction, the ratio of the number of straight lines having at least one pore on the straight line is 50% or more of the total number of straight lines, and the pores are present on the line. The surface-coated cutting tool according to claim 1, wherein three or more straight lines that are not continuous are not continuous. 前記複合窒化物または複合炭窒化物層について、電子線後方散乱回折装置を用いて、複合窒化物または複合炭窒化物層内のNaCl型の面心立方構造を有する個々の結晶粒の結晶方位を、前記複合窒化物または複合炭窒化物層の縦断面方向から解析し、工具基体表面の法線方向に対して前記結晶粒の結晶面である{100}面の法線がなす傾斜角を測定し、該傾斜角のうち工具基体表面の法線方向に対して0〜45度の範囲内にある傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計し傾斜角度数分布を求めたとき、0〜12度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜12度の範囲内に存在する度数の合計が、前記傾斜角度数分布における度数全体の35%以上の割合を示すことを特徴とする請求項1または2に記載の表面被覆切削工具。 With respect to the composite nitride or composite carbonitride layer, the crystal orientation of individual crystal grains having a NaCl-type face-centered cubic structure in the composite nitride or composite carbonitride layer is determined using an electron beam backscattering diffraction apparatus. Analyzing from the longitudinal section direction of the composite nitride or composite carbonitride layer, and measuring the inclination angle formed by the normal of the {100} plane, which is the crystal plane of the crystal grain, with respect to the normal direction of the tool substrate surface Then, the inclination angles within the range of 0 to 45 degrees with respect to the normal direction of the tool base surface among the inclination angles are divided into pitches of 0.25 degrees, and the frequencies existing in each division are totaled. When the inclination angle frequency distribution is obtained, the highest peak is present in the inclination angle section within the range of 0 to 12 degrees, and the sum of the frequencies existing within the range of 0 to 12 degrees is in the inclination angle number distribution. A contract characterized by a ratio of 35% or more of the entire frequency The surface-coated cutting tool according to claim 1 or 2. 前記複合窒化物または複合炭窒化物層には、TiとAlの周期的な濃度変化が存在するNaCl型の面心立方構造を有する結晶粒が存在し、濃度変化の周期は3〜100nmであり、周期的に変化するAlの含有割合xの値の極大値の平均値をXmax、また、周期的に変化するAlの含有割合xの値の極小値の平均値をXminとしたとき、XmaxとXminの差Δxが0.03〜0.25であること特徴とする請求項1乃至3のいずれかに記載の表面被覆切削工具。 In the composite nitride or composite carbonitride layer, there are crystal grains having a NaCl-type face-centered cubic structure in which periodic concentration changes of Ti and Al exist, and the concentration change period is 3 to 100 nm. , the average value X max of the maximum value of the value of the content x of Al changes periodically, also when the average value of the minimum value of the values of the content x of the periodically varying Al was X min, The surface-coated cutting tool according to any one of claims 1 to 3, wherein a difference Δx between X max and X min is 0.03 to 0.25. 前記複合窒化物または複合炭窒化物層について、該層の縦断面方向から観察した場合に、複合窒化物または複合炭窒化物層内のNaCl型の面心立方構造を有する個々の結晶粒からなる柱状組織の粒界部に、六方晶構造を有する微粒結晶粒が存在し、該微粒結晶粒の存在する面積割合が5面積%以下であり、該微粒結晶粒の平均粒径Rが0.01〜0.3μmであることを特徴とする請求項1乃至4のいずれかに記載の表面被覆切削工具。   When the composite nitride or the composite carbonitride layer is observed from the longitudinal cross-sectional direction of the layer, the composite nitride or the composite carbonitride layer is composed of individual crystal grains having a NaCl-type face-centered cubic structure in the composite nitride or the composite carbonitride layer. There are fine crystal grains having a hexagonal structure in the grain boundary portion of the columnar structure, the area ratio of the fine crystal grains is 5 area% or less, and the average grain size R of the fine crystal grains is 0.01. The surface-coated cutting tool according to any one of claims 1 to 4, wherein the surface-coated cutting tool is -0.3 µm. 前記工具基体と前記複合窒化物または複合炭窒化物層の間に、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなり、0.1〜20μmの合計平均層厚を有する下部層が存在することを特徴とする請求項1乃至5のいずれかに記載の表面被覆切削工具。   Between the tool substrate and the composite nitride or composite carbonitride layer, one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride layer The surface-coated cutting tool according to any one of claims 1 to 5, wherein a lower layer is formed of the Ti compound layer and has a total average layer thickness of 0.1 to 20 µm. 前記複合窒化物または複合炭窒化物層の上部に、少なくとも酸化アルミニウム層を含む上部層が1〜25μmの合計平均層厚で存在することを特徴とする請求項1乃至6のいずれかに記載の表面被覆切削工具。









































7. The upper layer including at least an aluminum oxide layer is present at a total average layer thickness of 1 to 25 [mu] m above the composite nitride or composite carbonitride layer. Surface coated cutting tool.









































JP2015150729A 2015-07-30 2015-07-30 Surface coated cutting tool exhibiting excellent chipping resistance with hard coating layer Active JP6519952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015150729A JP6519952B2 (en) 2015-07-30 2015-07-30 Surface coated cutting tool exhibiting excellent chipping resistance with hard coating layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015150729A JP6519952B2 (en) 2015-07-30 2015-07-30 Surface coated cutting tool exhibiting excellent chipping resistance with hard coating layer

Publications (2)

Publication Number Publication Date
JP2017030076A true JP2017030076A (en) 2017-02-09
JP6519952B2 JP6519952B2 (en) 2019-05-29

Family

ID=57986969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015150729A Active JP6519952B2 (en) 2015-07-30 2015-07-30 Surface coated cutting tool exhibiting excellent chipping resistance with hard coating layer

Country Status (1)

Country Link
JP (1) JP6519952B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018034277A (en) * 2016-09-02 2018-03-08 三菱マテリアル株式会社 Surface-coated cutting tool comprising hard coating layer exerting excellent chipping resistance and wear resistance
JP2018144224A (en) * 2017-03-08 2018-09-20 三菱マテリアル株式会社 Surface-coated cutting tool
JP2019018286A (en) * 2017-07-18 2019-02-07 三菱マテリアル株式会社 Surface-coated cutting tool having hard coating layer exerting excellent wear resistance and chipping resistance
JP2019063900A (en) * 2017-09-29 2019-04-25 三菱マテリアル株式会社 Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance and wear resistance
JP2019119045A (en) * 2018-01-04 2019-07-22 三菱マテリアル株式会社 Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance
CN112672839A (en) * 2018-09-05 2021-04-16 京瓷株式会社 Coated cutting tool and cutting tool
JPWO2020050262A1 (en) * 2018-09-05 2021-09-02 京セラ株式会社 Covering tools and cutting tools
WO2023190000A1 (en) * 2022-03-30 2023-10-05 三菱マテリアル株式会社 Surface-coated cutting tool

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012161847A (en) * 2011-02-03 2012-08-30 Mitsubishi Materials Corp Surface coated cutting tool with hard coating layer having excellent chipping resistance and defect resistance
JP2014024131A (en) * 2012-07-25 2014-02-06 Mitsubishi Materials Corp Surface coated cutting tool coated with hard coating layer providing excellent chipping resistance in high-speed intermittent cutting
JP2014210333A (en) * 2013-04-01 2014-11-13 三菱マテリアル株式会社 Surface-coated cutting tool with hard coated layer exerting excellent chipping resistance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012161847A (en) * 2011-02-03 2012-08-30 Mitsubishi Materials Corp Surface coated cutting tool with hard coating layer having excellent chipping resistance and defect resistance
JP2014024131A (en) * 2012-07-25 2014-02-06 Mitsubishi Materials Corp Surface coated cutting tool coated with hard coating layer providing excellent chipping resistance in high-speed intermittent cutting
JP2014210333A (en) * 2013-04-01 2014-11-13 三菱マテリアル株式会社 Surface-coated cutting tool with hard coated layer exerting excellent chipping resistance

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018034277A (en) * 2016-09-02 2018-03-08 三菱マテリアル株式会社 Surface-coated cutting tool comprising hard coating layer exerting excellent chipping resistance and wear resistance
JP2018144224A (en) * 2017-03-08 2018-09-20 三菱マテリアル株式会社 Surface-coated cutting tool
JP7068646B2 (en) 2017-03-08 2022-05-17 三菱マテリアル株式会社 Surface coating cutting tool
JP2019018286A (en) * 2017-07-18 2019-02-07 三菱マテリアル株式会社 Surface-coated cutting tool having hard coating layer exerting excellent wear resistance and chipping resistance
JP2019063900A (en) * 2017-09-29 2019-04-25 三菱マテリアル株式会社 Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance and wear resistance
JP2019119045A (en) * 2018-01-04 2019-07-22 三菱マテリアル株式会社 Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance
JP7183522B2 (en) 2018-01-04 2022-12-06 三菱マテリアル株式会社 A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance
CN112672839A (en) * 2018-09-05 2021-04-16 京瓷株式会社 Coated cutting tool and cutting tool
JPWO2020050262A1 (en) * 2018-09-05 2021-09-02 京セラ株式会社 Covering tools and cutting tools
JP7089038B2 (en) 2018-09-05 2022-06-21 京セラ株式会社 Covering tools and cutting tools
CN112672839B (en) * 2018-09-05 2024-02-23 京瓷株式会社 Coated cutting tool and cutting tool
WO2023190000A1 (en) * 2022-03-30 2023-10-05 三菱マテリアル株式会社 Surface-coated cutting tool

Also Published As

Publication number Publication date
JP6519952B2 (en) 2019-05-29

Similar Documents

Publication Publication Date Title
JP6478100B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5924507B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6620482B2 (en) Surface coated cutting tool with excellent chipping resistance
JP6284034B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6296294B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6590255B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6417959B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6548073B2 (en) Surface coated cutting tool exhibiting excellent chipping resistance with hard coating layer
JP6391045B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6578935B2 (en) Surface coated cutting tool with excellent chipping and wear resistance with excellent hard coating layer
JP2017030076A (en) Surface-coated cutting tool with hard coated layer exhibiting superior chipping resistance
JP2015193071A (en) Surface coated cutting tool and manufacturing method of the same
JP2014210313A (en) Surface-coated cutting tool with hard coated layer exerting excellent chipping resistance
WO2016148056A1 (en) Surface-coated cutting tool with rigid coating layers exhibiting excellent chipping resistance
JP2017056497A (en) Surface coat cutting tool allowing hard coat layer to exhibit superior chipping resistance
JP2016049573A (en) Surface-coated cutting tool allowing hard coating layer to exhibit superior chipping resistance
JP6709526B2 (en) Surface coated cutting tool
JP6709536B2 (en) Surface coated cutting tool with excellent hard coating layer and chipping resistance
JP6617917B2 (en) Surface coated cutting tool
JP6171800B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP2016124098A (en) Surface coated cutting tool excellent in chipping resistance and wear resistance
JP6573171B2 (en) Surface coated cutting tool with excellent chipping and wear resistance with excellent hard coating layer
WO2016190332A1 (en) Surface-coated cutting tool with rigid coating layer exhibiting excellent chipping resistance
JP2018034277A (en) Surface-coated cutting tool comprising hard coating layer exerting excellent chipping resistance and wear resistance
JP6651130B2 (en) Surface coated cutting tool with excellent chipping and wear resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190414

R150 Certificate of patent or registration of utility model

Ref document number: 6519952

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150