JP6391045B2 - A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting - Google Patents

A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting Download PDF

Info

Publication number
JP6391045B2
JP6391045B2 JP2015009265A JP2015009265A JP6391045B2 JP 6391045 B2 JP6391045 B2 JP 6391045B2 JP 2015009265 A JP2015009265 A JP 2015009265A JP 2015009265 A JP2015009265 A JP 2015009265A JP 6391045 B2 JP6391045 B2 JP 6391045B2
Authority
JP
Japan
Prior art keywords
layer
composite
crystal
nitride
average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015009265A
Other languages
Japanese (ja)
Other versions
JP2015163424A (en
Inventor
佐藤 賢一
佐藤  賢一
翔 龍岡
翔 龍岡
健志 山口
健志 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2015009265A priority Critical patent/JP6391045B2/en
Priority to CN201510044883.0A priority patent/CN104801941A/en
Publication of JP2015163424A publication Critical patent/JP2015163424A/en
Application granted granted Critical
Publication of JP6391045B2 publication Critical patent/JP6391045B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、ステンレス鋼等の高熱発生を伴うとともに、切刃に対して衝撃的な負荷が作用する高速断続切削加工等で、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   The present invention is a surface-coated cutting tool that exhibits high chipping resistance with a hard coating layer, such as high-speed intermittent cutting with high heat generation such as stainless steel and an impact load acting on the cutting edge. Hereinafter, this is referred to as a coated tool).

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金、炭窒化チタン(以下、TiCNで示す)基サーメットあるいは立方晶窒化ホウ素(以下、cBNで示す)基超高圧焼結体で構成された基体(以下、これらを総称して基体という)の表面に、硬質被覆層として、Ti−Al系の複合窒化物層を物理蒸着法により被覆形成した被覆工具が知られている。このような被覆工具は、すぐれた耐摩耗性を発揮することが知られており、マシニングセンタや複合加工機など、さまざまな用途への利用が進んでいる。
しかしながら、従来のTi−Al系の複合窒化物層を被覆形成した被覆工具は、比較的耐摩耗性にすぐれるものの、高速断続切削条件で用いた場合にチッピング等の異常損耗を発生しやすいことから、硬質被覆層の改善についての種々の提案がなされている。
Conventionally, generally composed of tungsten carbide (hereinafter referred to as WC) based cemented carbide, titanium carbonitride (hereinafter referred to as TiCN) based cermet or cubic boron nitride (hereinafter referred to as cBN) based ultra high pressure sintered body 2. Description of the Related Art A coated tool is known in which a Ti—Al-based composite nitride layer is formed as a hard coating layer on a surface of a substrate (hereinafter collectively referred to as a substrate) by physical vapor deposition. Such a coated tool is known to exhibit excellent wear resistance, and is being used for various purposes such as a machining center and a multi-task machine.
However, the conventional coated tool formed by coating a Ti-Al based composite nitride layer has relatively high wear resistance, but it tends to cause abnormal wear such as chipping when used under high-speed interrupted cutting conditions. Therefore, various proposals for improving the hard coating layer have been made.

例えば、特許文献1には、基体表面に、組成式(Al1−X Ti )N(ただし、原子比で、Xは0.40〜0.60)を満足するAlとTiの複合窒化物層からなり、かつ、前記複合窒化物層について電子線後方散乱回折装置による結晶方位解析を行った場合、表面研磨面の法線方向から0〜15度の範囲内に結晶方位{111}を有する結晶粒の面積割合が50%以上、また、隣り合う結晶粒同士のなす角を測定した場合に、小角粒界(0<θ≦15゜)の割合が50%以上であるような、結晶配列を示す改質(Al,Ti)N層からなる硬質被覆層を蒸着形成することにより、高速重切削加工で硬質被覆層がすぐれた耐欠損性を発揮する被覆工具が得られることが開示されている。 For example, Patent Document 1 discloses a composite nitride of Al and Ti that satisfies the composition formula (Al 1-X Ti X ) N (wherein X is 0.40 to 0.60 in atomic ratio) on the substrate surface. When the crystal orientation analysis is performed on the composite nitride layer using an electron beam backscattering diffractometer, the crystal orientation {111} is within a range of 0 to 15 degrees from the normal direction of the surface polished surface. A crystal arrangement in which the area ratio of crystal grains is 50% or more, and the ratio of small-angle grain boundaries (0 <θ ≦ 15 °) is 50% or more when the angle between adjacent crystal grains is measured It is disclosed that a coated tool exhibiting excellent fracture resistance can be obtained by high-speed heavy cutting by depositing a hard coating layer composed of a modified (Al, Ti) N layer showing Yes.

また、特許文献2には、TiとAlの複合窒化物、炭窒化物、炭化物を被覆したエンドミルにおいて、硬質被覆層のX線回折における{111}面の回折強度をI(111)、{200}面の回折強度をI(200)とした時にI(200)/I(111)の値が2.0以下とすることにより、ロックウェル硬度50(Cスケール)を越える高硬度スチールの切削加工において、硬質被覆層の密着性ならびに耐摩耗性を改善した被覆工具が開示されている。   Further, in Patent Document 2, in an end mill coated with a composite nitride, carbonitride, and carbide of Ti and Al, the diffraction intensity of the {111} plane in the X-ray diffraction of the hard coating layer is I (111), {200 } When the diffraction intensity of the surface is I (200), the value of I (200) / I (111) is 2.0 or less, so that cutting of high hardness steel exceeding Rockwell hardness 50 (C scale) Discloses a coated tool with improved adhesion and wear resistance of a hard coating layer.

しかしながら、前述した特許文献1、2に開示された被覆工具は、物理蒸着法により硬質被覆層を成膜しているため、Alの含有割合Xを0.6以上にはできず、より一段と切削性能を向上させることが望まれている。
このような観点から、化学蒸着法で硬質被覆層を形成することで、Alの含有割合Xを、0.9程度にまで高める技術も提案されている。
However, since the coated tools disclosed in Patent Documents 1 and 2 described above have a hard coating layer formed by physical vapor deposition, the Al content ratio X cannot be increased to 0.6 or more, and cutting is further performed. It is desired to improve performance.
From such a viewpoint, a technique for increasing the Al content ratio X to about 0.9 by forming a hard coating layer by chemical vapor deposition has also been proposed.

例えば、特許文献3には、TiCl、AlCl、NHの混合反応ガス中で、650〜900℃の温度範囲において化学蒸着を行うことにより、Alの含有割合Xの値が0.65〜0.95である(Ti1−XAl)N層を成膜できることが記載されているが、この文献では、この(Ti1−XAl)N層の上にさらにAl層を被覆し、これによって断熱効果を高めることを目的とするものであるから、Xの値を0.65〜0.95まで高めた(Ti1−XAl)N層の形成によって、切削性能へ如何なる影響があるかという点については解明されていない。 For example, Patent Document 3 discloses that the value of the Al content ratio X is 0.65 by performing chemical vapor deposition in a temperature range of 650 to 900 ° C. in a mixed reaction gas of TiCl 4 , AlCl 3 , and NH 3. Although it is described that a (Ti 1-X Al X ) N layer having a thickness of 0.95 can be formed, this document further describes an Al 2 O 3 layer on the (Ti 1-X Al X ) N layer. Therefore, the cutting performance is improved by forming the (Ti 1-X Al X ) N layer in which the value of X is increased from 0.65 to 0.95. It has not been elucidated what kind of influence it has.

さらに、特許文献4には、上部層としてTi1−xAlN、Ti1−xAlC、および/またはTi1−xAlCNでできており、0.65≦x≦0.9、好ましくは0.7≦x≦0.9であり該上部層は100〜1100MPaの間、好ましくは400〜800MPaの間の圧縮応力を有し、TiCN層またはAl層が前記上部層の下に配置された硬質被覆層が化学蒸着法で形成された被覆工具が、すぐれた耐熱性およびサイクル疲労強度を有することが開示されている。 Further, in Patent Document 4, the upper layer is made of Ti 1-x Al x N, Ti 1-x Al x C, and / or Ti 1-x Al x CN, and 0.65 ≦ x ≦ 0. 9, preferably 0.7 ≦ x ≦ 0.9, and the upper layer has a compressive stress between 100 and 1100 MPa, preferably between 400 and 800 MPa, and the TiCN layer or Al 2 O 3 layer is the upper layer It is disclosed that a coated tool in which a hard coating layer disposed under the layer is formed by chemical vapor deposition has excellent heat resistance and cycle fatigue strength.

特開2008−264890号公報JP 2008-264890 A 特開平9−291353号公報Japanese Patent Laid-Open No. 9-291353 特表2011−516722号公報Special table 2011-516722 gazette 特表2011−513594号公報Special table 2011-513594 gazette

近年の切削加工における省力化および省エネ化の要求は強く、これに伴い、切削加工は一段と高速化、高効率化の傾向にあり、被覆工具には、より一層、耐チッピング性、耐欠損性、耐剥離性等の耐異常損傷性が求められるとともに、長期の使用に亘ってすぐれた耐摩耗性が求められている。
しかし、前述した特許文献1,2に記載される被覆工具は、(Ti1−XAl)N層からなる硬質被覆層が物理蒸着法で成膜され、膜中のAl含有量Xを高めることができないため、例えば、合金鋼の高速断続切削に供した場合には、耐チッピング性が十分でないという課題があった。
In recent years, there has been a strong demand for energy saving and energy saving in cutting, and along with this, cutting tends to be faster and more efficient, and the coated tool has even more chipping resistance, chipping resistance, Abnormal damage resistance such as peeling resistance is required, and excellent wear resistance is required over a long period of use.
However, in the coating tools described in Patent Documents 1 and 2 described above, a hard coating layer made of a (Ti 1-X Al X ) N layer is formed by physical vapor deposition, and the Al content X in the film is increased. Therefore, for example, when the alloy steel is subjected to high-speed intermittent cutting, there is a problem that the chipping resistance is not sufficient.

一方、前述した特許文献3,4に記載される化学蒸着法で被覆形成した(Ti1−XAl)N層については、Al含有量Xを高めることができ、また、立方晶構造を形成させることができることから、所定の硬さを有し耐摩耗性にはすぐれた硬質被覆層が得られるものの、基体との密着強度は十分でなく、また、靭性に劣ることから、合金鋼の高速断続切削に供する被覆工具として用いた場合には、チッピング、欠損、剥離等の異常損傷が発生しやすく、満足できる切削性能を発揮するとは言えない。 On the other hand, with respect to the (Ti 1-X Al X ) N layer formed by the chemical vapor deposition method described in Patent Documents 3 and 4 described above, the Al content X can be increased and a cubic structure is formed. Although a hard coating layer having a predetermined hardness and excellent wear resistance can be obtained, the adhesion strength with the substrate is not sufficient and the toughness is inferior. When used as a coated tool for intermittent cutting, abnormal damage such as chipping, chipping and peeling is likely to occur, and it cannot be said that satisfactory cutting performance is exhibited.

そこで、本発明は、ステンレス鋼の高速断続切削等に供した場合であっても、すぐれた耐チッピング性を発揮するとともに、長期の使用に亘ってすぐれた耐摩耗性を発揮する被覆工具を提供することを目的とするものである。   Therefore, the present invention provides a coated tool that exhibits excellent chipping resistance and excellent wear resistance over a long period of use even when subjected to high-speed intermittent cutting of stainless steel, etc. It is intended to do.

本発明者らは、前述の観点から、TiとAlの複合窒化物または複合炭窒化物(以下、「(Ti1−XAl)(C1−Y)」で示すことがある)からなる硬質被覆層を化学蒸着で被覆形成した被覆工具の耐チッピング性、耐摩耗性の改善をはかるべく、鋭意研究を重ねた結果、次のような知見を得た。 From the above-mentioned viewpoints, the present inventors have combined Ti and Al nitrides or carbonitrides (hereinafter sometimes referred to as “(Ti 1-X Al X ) (C Y N 1-Y )”). As a result of earnest research to improve the chipping resistance and wear resistance of the coated tool formed by chemical vapor deposition of the hard coating layer made of the following, the following knowledge was obtained.

WC基超硬合金、TiCN基サーメットまたはcBN基超高圧焼結体のいずれかで構成された基体の表面に、例えば、硬質被覆層として、トリメチルアルミニウム(Al(CH)を反応ガス成分として含有する熱CVD法等の化学蒸着法により成膜されたTiとAlの複合窒化物または複合炭窒化物層を少なくとも含み、組成式:(Ti1−XAl)(C1−Y)で表した場合、AlのTiとAlの合量に占める平均含有割合XavgおよびCのCとNの合量に占める平均含有割合Yavg(但し、Xavg、Yavgはいずれも原子比)が、それぞれ、0.60≦Xavg≦0.95、0≦Yavg≦0.005を満足し、複合窒化物または複合炭窒化物層を構成する結晶粒中に立方晶構造を有するものが存在し、蒸着時の成膜条件を調整することにより、硬質被覆層が、電子線後方散乱回折装置を用いて個々の結晶粒の結晶方位を、上記TiとAlの複合窒化物または複合炭窒化物層の縦断面方向から解析した場合、立方晶結晶格子の電子後方散乱回折像が観測される立方晶結晶相が存在し、工具基体表面の法線方向に対する前記立方晶結晶粒の結晶面である{100}面の法線がなす傾斜角を測定し該傾斜角のうち法線方向に対して0〜45度の範囲内にある傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計し、傾斜角度数分布を求めたとき、0〜12度の範囲内の傾斜角区分に最高ピークが存在するとともに、前記0〜12度の範囲内に存在する度数の合計が、前記傾斜角度数分布における度数全体の45%以上の割合を示し、また、前記複合窒化物または複合炭窒化物層の表面側から走査電子顕微鏡で該層の組織観察をした場合に、前記複合窒化物または複合炭窒化物層内の立方晶構造を有する個々の結晶粒が層厚方向に垂直な面内で90度未満の角度を有さない多角形状のファセットを有し該ファセットが前記結晶粒の{100}で表される等価な結晶面のうちの一つに形成され該ファセットが前記層厚方向に垂直な面内において全体の50%以上の面積割合を占めるという新規な構成を有する場合に、硬質被覆層の表面と被削材との摩擦抵抗が軽減し、切削時の潤滑性が向上するとともに、すぐれた耐チッピング性を示すようになることを見出した。 For example, as a hard coating layer, trimethylaluminum (Al (CH 3 ) 3 ) is used as a reactive gas component on the surface of a substrate composed of either a WC-based cemented carbide, a TiCN-based cermet, or a cBN-based ultrahigh-pressure sintered body. At least a Ti-Al composite nitride or composite carbonitride layer formed by chemical vapor deposition such as thermal CVD, and the composition formula: (Ti 1-X Al X ) (C Y N 1- Y )), the average content ratio X avg in the total amount of Ti and Al in Al and the average content ratio Y avg in the total amount of C and N in C (where X avg and Y avg are both atoms) Ratio) satisfies 0.60 ≦ X avg ≦ 0.95 and 0 ≦ Y avg ≦ 0.005, respectively, and has a cubic structure in crystal grains constituting the composite nitride or composite carbonitride layer Exist, and the film formation conditions during the deposition are adjusted. When the hard coating layer analyzes the crystal orientation of individual crystal grains from the longitudinal cross-sectional direction of the Ti and Al composite nitride or composite carbonitride layer using an electron beam backscattering diffractometer There is a cubic crystal phase in which an electron backscatter diffraction image of the cubic crystal lattice is observed, and a normal of the {100} plane that is the crystal plane of the cubic crystal grain with respect to the normal direction of the surface of the tool base is formed. The inclination angle is measured, and the inclination angle within the range of 0 to 45 degrees with respect to the normal direction among the inclination angles is divided for each pitch of 0.25 degrees, and the frequencies existing in each division are tabulated. When the inclination angle frequency distribution is obtained, the highest peak is present in the inclination angle section within the range of 0 to 12 degrees, and the total of the frequencies existing within the range of 0 to 12 degrees is in the inclination angle number distribution. Shows a ratio of 45% or more of the total frequency, When the structure of the layer or the composite carbonitride layer is observed with a scanning electron microscope from the surface side, the individual crystal grains having a cubic structure in the composite nitride or the composite carbonitride layer are in the layer thickness direction. A polygonal facet having no angle of less than 90 degrees in a plane perpendicular to the surface, the facet being formed on one of the equivalent crystal planes represented by {100} of the crystal grain. In the plane perpendicular to the layer thickness direction, the frictional resistance between the surface of the hard coating layer and the work material is reduced, and the area ratio of 50% or more of the whole is reduced. It has been found that the lubricity is improved and the chipping resistance is improved.

したがって、前述のような硬質被覆層を備えた被覆工具を、例えば、合金鋼の高速断続切削等に用いた場合には、チッピング、欠損、剥離等の発生が抑えられるとともに、長期の使用に亘ってすぐれた耐摩耗性を発揮することができる。   Therefore, when a coated tool having a hard coating layer as described above is used for, for example, high-speed intermittent cutting of alloy steel, the occurrence of chipping, chipping, peeling, etc. can be suppressed, and over a long period of use. Excellent wear resistance can be demonstrated.

本発明は、前述したような研究結果に基づいてなされたものであって、
「(1) 炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体の表面に硬質被覆層を設けた表面被覆切削工具において、前記硬質被覆層は、化学蒸着法により成膜された平均層厚1〜20μmのTiとAlの複合窒化物または複合炭窒化物層を少なくとも含み、組成式:(Ti1−XAl)(C1−Y)で表した場合、AlのTiとAlの合量に占める平均含有割合XavgおよびCのCとNの合量に占める平均含有割合Yavg(但し、Xavg、Yavgはいずれも原子比)が、それぞれ、0.60≦Xavg≦0.95、0≦Yavg≦0.005を満足し、
前記複合窒化物または複合炭窒化物層は、NaCl型の面心立方構造を有するTiとAlの複合窒化物または複合炭窒化物の相を少なくとも含み、
前記複合窒化物または複合炭窒化物層について、電子線後方散乱回折装置を用いて個々の結晶粒の結晶方位を、上記TiとAlの複合窒化物または複合炭窒化物層の縦断面方向から解析した場合、立方晶結晶格子の電子後方散乱回折像が観測される立方晶結晶相が存在し、工具基体表面の法線方向に対する前記立方晶結晶粒の結晶面である{100}面の法線がなす傾斜角を測定し該傾斜角のうち法線方向に対して0〜45度の範囲内にある傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計し、傾斜角度数分布を求めたとき、0〜12度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜12度の範囲内に存在する度数の合計が、前記傾斜角度数分布における度数全体の45%以上の割合を示し、また、前記複合窒化物または複合炭窒化物層の表面側から走査電子顕微鏡で該層の組織観察をした場合に、前記複合窒化物または複合炭窒化物層内の立方晶構造を有する個々の結晶粒が層厚方向に垂直な面内で90度未満の角度を有さない多角形状のファセットを有し該ファセットが前記結晶粒の{100}で表される等価な結晶面のうちの一つに形成され該ファセットが前記層厚方向に垂直な面内において全体の50%以上の面積割合を占めることを特徴とする表面被覆切削工具。
(2) 前記複合窒化物または複合炭窒化物層は、NaCl型の面心立方構造を有するTiとAlの複合窒化物または複合炭窒化物の単相からなることを特徴とする(1)に記載の表面被覆切削工具。
(3) 前記複合窒化物または複合炭窒化物層は、2種以上の複数の相が共存する混合相からなり、該混合相は、NaCl型の面心立方構造を有するTiとAlの複合窒化物または複合炭窒化物の相を少なくとも含み、混合相に共存するその他の各相はTiとAlから選ばれる少なくとも1種の元素と、CとNから選ばれる少なくとも一種の元素からなる化合物からなることを特徴とする(1)に記載の表面被覆切削工具。
(4) 前記複合窒化物または複合炭窒化物層についてX線回折による結晶構造解析を行った場合、立方晶構造に由来するピークと六方晶に由来するピークとが観察され、立方晶構造の{200}によるピーク強度Ic{200}と六方晶構造の{200}によるピーク強度Ih{200}とのピーク強度比Ic{200}/Ih{200}が3.0より大きいことを特徴とする(1)または(3)に記載の表面被覆切削工具。
(5) 前記複合窒化物または複合炭窒化物層は、立方晶構造を有する上部層と六方晶構造を有する下部層から構成され、前記下部層の平均層厚が0.3〜1.0μmであり、結晶粒の平均粒径Rが0.01〜0.30μmであることを特徴とする(1)、(3)または(4)に記載の表面被覆切削工具。
(6) 前記炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体と前記TiとAlの複合窒化物または複合炭窒化物層の間に、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、かつ、0.1〜20μmの合計平均層厚を有するTi化合物層が存在することを特徴とする(1)乃至(5)のいずれかに記載の表面被覆切削工具。
(7) 前記複合窒化物または複合炭窒化物層の上部に、少なくとも1〜25μmの平均層厚を有する酸化アルミニウム層を含む上部層が存在することを特徴とする(1)乃至(6)のいずれかに記載の表面被覆切削工具。
(8) 前記複合窒化物または複合炭窒化物層は、少なくとも、トリメチルアルミニウムを反応ガス成分として含有する化学蒸着法により成膜されたものであることを特徴とする(1)乃至(7)のいずれかに記載の表面被覆切削工具。」
に特徴を有するものである。
The present invention has been made based on the research results as described above,
“(1) In a surface-coated cutting tool in which a hard coating layer is provided on the surface of a tool base composed of tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, or cubic boron nitride-based ultrahigh-pressure sintered body The hard coating layer includes at least a composite nitride or composite carbonitride layer of Ti and Al having an average layer thickness of 1 to 20 μm formed by a chemical vapor deposition method, and has a composition formula: (Ti 1-X Al X ) When expressed as (C Y N 1-Y ), the average content ratio X avg in the total amount of Ti and Al in Al and the average content ratio Y avg in the total amount of C and N in C (where X avg , Y avg is an atomic ratio) satisfying 0.60 ≦ X avg ≦ 0.95 and 0 ≦ Y avg ≦ 0.005, respectively.
The composite nitride or composite carbonitride layer includes at least a Ti and Al composite nitride or composite carbonitride phase having a NaCl-type face-centered cubic structure,
For the composite nitride or composite carbonitride layer, the crystal orientation of each crystal grain is analyzed from the longitudinal cross-sectional direction of the Ti and Al composite nitride or composite carbonitride layer using an electron beam backscattering diffractometer. In this case, there is a cubic crystal phase in which an electron backscatter diffraction image of the cubic crystal lattice is observed, and the normal of the {100} plane that is the crystal plane of the cubic crystal grain with respect to the normal direction of the tool base surface Measures the tilt angle formed by, and divides the tilt angle within the range of 0 to 45 degrees with respect to the normal direction among the tilt angles by pitch of 0.25 degrees, and counts the frequencies existing in each section When the inclination angle distribution is obtained, the highest peak is present in the inclination angle section within the range of 0 to 12 degrees, and the sum of the frequencies existing within the range of 0 to 12 degrees is the inclination angle number. Indicates a proportion of 45% or more of the total frequency in the distribution, and When the structure of the composite nitride or composite carbonitride layer is observed with a scanning electron microscope from the surface side, the individual crystal grains having a cubic structure in the composite nitride or composite carbonitride layer are A polygonal facet that does not have an angle of less than 90 degrees in a plane perpendicular to the layer thickness direction, and the facet is formed on one of the equivalent crystal planes represented by {100} of the crystal grains The surface-coated cutting tool is characterized in that the facet occupies an area ratio of 50% or more of the whole in a plane perpendicular to the layer thickness direction.
(2) The composite nitride or composite carbonitride layer is composed of a single phase of Ti and Al composite nitride or composite carbonitride having a NaCl-type face-centered cubic structure. The surface-coated cutting tool described.
(3) The composite nitride or composite carbonitride layer is composed of a mixed phase in which two or more kinds of phases coexist, and the mixed phase is a composite nitriding of Ti and Al having a NaCl type face centered cubic structure. Each of the other phases coexisting in the mixed phase includes at least one element selected from Ti and Al and at least one element selected from C and N. The surface-coated cutting tool according to (1), wherein
(4) When a crystal structure analysis by X-ray diffraction is performed on the composite nitride or composite carbonitride layer, a peak derived from a cubic structure and a peak derived from a hexagonal crystal are observed, and the { The peak intensity ratio Ic {200} / Ih {200} between the peak intensity Ic {200} due to 200} and the peak intensity Ih {200} due to {200} having a hexagonal structure is larger than 3.0 ( The surface-coated cutting tool according to 1) or (3).
(5) The composite nitride or composite carbonitride layer is composed of an upper layer having a cubic structure and a lower layer having a hexagonal structure, and the average layer thickness of the lower layer is 0.3 to 1.0 μm. The surface-coated cutting tool according to (1), (3) or (4), wherein the average grain size R of the crystal grains is 0.01 to 0.30 μm.
(6) A tool base composed of any one of the tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, or cubic boron nitride-based ultrahigh-pressure sintered body, and a composite nitride or composite carbonitride of Ti and Al. Between the layers, it consists of one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride layer, and a total average of 0.1 to 20 μm The surface-coated cutting tool according to any one of (1) to (5), wherein a Ti compound layer having a layer thickness exists.
(7) The upper layer including an aluminum oxide layer having an average layer thickness of at least 1 to 25 μm is present on the upper part of the composite nitride or composite carbonitride layer. (1) to (6) The surface coating cutting tool in any one.
(8) The composite nitride or composite carbonitride layer is formed by a chemical vapor deposition method containing at least trimethylaluminum as a reactive gas component. (1) to (7) The surface coating cutting tool in any one. "
It has the characteristics.

つぎに、本発明の被覆工具の硬質被覆層について、より具体的に説明する。   Next, the hard coating layer of the coated tool of the present invention will be described more specifically.

TiとAlの複合窒化物または複合炭窒化物層の平均層厚:
本発明の硬質被覆層におけるTiとAlの複合窒化物または複合炭窒化物層は、その平均層厚が1μm未満では、長期の使用に亘っての耐摩耗性を十分確保することができず、一方、その平均層厚が20μmを越えると、高熱発生を伴う高速断続切削で熱塑性変形を起し易くなり、これが偏摩耗の原因となる。したがって、その平均層厚は1〜20μmとすることが好ましく、より好ましくは1〜10μmとする。
また、炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体とTiとAlの複合窒化物または複合炭窒化物層の間に形成するTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層の平均合計層厚に関しては、0.1μm未満では層厚が薄いため、長期の使用に亘って耐摩耗性が確保されず、一方、平均層厚が20μmより大きくなると、工具基体およびTiとAlの複合窒化物または複合炭窒化物層との付着強度が低下し、耐剥離性が低下するため、その平均層厚は0.1〜20μmとするのが望ましい。
上部層として、酸化アルミニウム層を含む場合、酸化アルミニウム層の平均層厚が1μm未満であると、層厚が薄いため長期の使用に亘って耐摩耗性が確保されず、25μmを超えると結晶粒が粗大化し易くなり、チッピングを発生しやすくなることから、酸化アルミニウム層の平均層厚は、1〜25μmとすることが望ましい。
Average layer thickness of composite nitride or composite carbonitride layer of Ti and Al:
In the hard coating layer of the present invention, the composite nitride or composite carbonitride layer of Ti and Al, if the average layer thickness is less than 1 μm, it is not possible to ensure sufficient wear resistance over a long period of use, On the other hand, when the average layer thickness exceeds 20 μm, it becomes easy to cause thermoplastic deformation by high-speed intermittent cutting with high heat generation, which causes uneven wear. Therefore, the average layer thickness is preferably 1 to 20 μm, more preferably 1 to 10 μm.
In addition, between a tool base made of tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, or cubic boron nitride-based ultra-high pressure sintered body and Ti and Al composite nitride or composite carbonitride layer The average total layer thickness of the Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride layer formed on the thin layer is less than 0.1 μm, so that it can be used over a long period of time. On the other hand, if the average layer thickness is larger than 20 μm, the adhesion strength between the tool base and the composite nitride or composite carbonitride layer of Ti and Al is lowered, and the peel resistance is lowered. Therefore, the average layer thickness is desirably 0.1 to 20 μm.
When the upper layer includes an aluminum oxide layer, if the average layer thickness of the aluminum oxide layer is less than 1 μm, the layer thickness is too thin to ensure wear resistance over a long period of use. Therefore, the average layer thickness of the aluminum oxide layer is desirably 1 to 25 μm.

TiとAlの複合窒化物または複合炭窒化物層((Ti1−XAl)(C1−Y)層)の組成:
本発明の硬質被覆層の主たる層を構成する(Ti1−XAl)(C1−Y)層は、Alの平均含有割合Xavg(原子比)の値が0.60未満になると、高温硬さが不足し耐摩耗性が低下するようになり、一方、Xavg(原子比)の値が0.95を超えると、相対的なTi含有割合の減少により、(Ti1−XAl)(C1−Y)層自体の高温強度が低下し、チッピング、欠損を発生しやすくなる。したがって、Alの平均含有割合Xavg(原子比)の値は、0.60以上0.95以下とすることが必要である。
また、前記(Ti1−XAl)(C1−Y)層において、C成分には硬さを向上させ、一方、N成分には高温強度を向上させる作用があるが、C成分の平均含有割合Yavg(原子比)が0.005を超えると、高温強度が低下する。したがって、C成分の平均含有割合Yavg(原子比)は、0≦Yavg≦0.005と定めた。
Composition of Ti and Al composite nitride or composite carbonitride layer ((Ti 1-X Al X ) (C Y N 1-Y ) layer):
The (Ti 1-X Al X ) (C Y N 1-Y ) layer constituting the main layer of the hard coating layer of the present invention has an average Al content ratio X avg (atomic ratio) of less than 0.60. When the value of X avg (atomic ratio) exceeds 0.95, on the other hand, when the value of X avg (atomic ratio) exceeds 0.95, (Ti 1- X Al X) (C Y N 1-Y) layer high-temperature strength of itself is lowered, chipping, it becomes defective likely to occur. Therefore, the value of the average content ratio X avg (atomic ratio) of Al needs to be 0.60 or more and 0.95 or less.
Further, in the (Ti 1-X Al X ) (C Y N 1-Y ) layer, the C component improves the hardness, while the N component has the effect of improving the high temperature strength. When the average content ratio Y avg (atomic ratio) of exceeds 0.005, the high-temperature strength decreases. Therefore, the average content ratio Y avg (atomic ratio) of the C component was determined as 0 ≦ Y avg ≦ 0.005.

なお、通常、物理蒸着法によって前記組成、即ち、Alの平均含有割合Xavg(原子比)が0.60以上0.95以下の(Ti1−XAl)(C1−Y)層を成膜した場合は、結晶構造は六方晶構造となるが、本発明では、後述する化学蒸着法によって成膜していることから、立方晶構造を維持したままで前述したような組成の(Ti1−XAl)(C1−Y)層を得ることができる。それにより、硬質被覆層の硬さの低下を回避している。 In general, the above composition, that is, the average Al content ratio X avg (atomic ratio) is 0.60 or more and 0.95 or less (Ti 1-X Al X ) (C Y N 1-Y ) by physical vapor deposition. When the layer is formed, the crystal structure becomes a hexagonal structure, but in the present invention, since the film is formed by the chemical vapor deposition method described later, the composition as described above is maintained while maintaining the cubic structure. (Ti 1-X Al X) (C Y N 1-Y) layer can be obtained. Thereby, the fall of the hardness of a hard coating layer is avoided.

TiとAlの複合窒化物または複合炭窒化物層((Ti1−XAl)(C1−Y)層)内の立方晶構造を有する個々の結晶粒結晶面である{100}面についての傾斜角度数分布:
本発明の前記(Ti1−XAl)(C1−Y)層について、電子線後方散乱回折装置を用いて個々の結晶粒の結晶方位を、その縦断面方向から解析した場合、立方晶結晶格子の電子後方散乱回折像が観測される立方晶結晶相が存在し、基体表面の法線(断面研磨面における基体表面と垂直な方向)に対する前記結晶粒の結晶面である{100}面の法線がなす傾斜角(図1(a)、(b)参照)を測定し、その傾斜角のうち、法線方向に対して0〜45度の範囲内にある傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計したとき、0〜12度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜12度の範囲内に存在する度数の合計が、傾斜角度数分布における度数全体の45%以上の割合となる傾斜角度数分布形態を示す場合に、前記TiとAlの複合窒化物または複合炭窒化物層からなる硬質被覆層は、立方晶構造を維持したままで高硬度を有し、しかも、前述したような傾斜角度数分布形態によって硬質被覆層と基体との密着性が飛躍的に向上する。
したがって、このような被覆工具は、例えば、ステンレス鋼の高速断続切削等に用いた場合であっても、チッピング、欠損、剥離等の発生が抑えられ、しかも、すぐれた耐摩耗性を発揮する。
電子線後方散乱回折装置を用いて個々の結晶粒の結晶方位を解析する際に傾斜角が12度より大きい結晶面は{100}配向しているとみなすことができず、硬度が低下するため、{100}配向が強く、かつ硬度が低下しない範囲が0〜12度までであり、傾斜角区分を0〜12度と定めた。
Composite nitride of Ti and Al or composite carbonitride layer ((Ti 1-X Al X ) (C Y N 1-Y) layer) is an individual crystal grains the crystal surface having a cubic structure in the {100} Inclination angle number distribution on the surface:
For the (Ti 1-X Al X ) (C Y N 1-Y ) layer of the present invention, when the crystal orientation of each crystal grain is analyzed from the longitudinal sectional direction using an electron beam backscattering diffractometer, There is a cubic crystal phase in which an electron backscatter diffraction image of the cubic crystal lattice is observed, which is the crystal plane of the crystal grain with respect to the normal of the substrate surface (direction perpendicular to the substrate surface in the cross-section polished surface) {100 } Measure the inclination angle formed by the normal of the surface (see FIGS. 1A and 1B), and set the inclination angle within the range of 0 to 45 degrees with respect to the normal direction among the inclination angles to 0. When the frequency existing in each section is tabulated by dividing each pitch by 25 degrees, the highest peak exists in the inclination angle section in the range of 0 to 12 degrees, and within the range of 0 to 12 degrees. The total of the existing frequencies is a ratio of 45% or more of the total frequencies in the tilt angle frequency distribution. The hard coating layer made of the composite nitride or composite carbonitride layer of Ti and Al has a high hardness while maintaining the cubic structure, Such an inclination angle number distribution form dramatically improves the adhesion between the hard coating layer and the substrate.
Therefore, even when such a coated tool is used for, for example, high-speed intermittent cutting of stainless steel, the occurrence of chipping, chipping, peeling and the like is suppressed, and excellent wear resistance is exhibited.
When analyzing the crystal orientation of each crystal grain using an electron beam backscattering diffractometer, a crystal plane with an inclination angle larger than 12 degrees cannot be regarded as being {100} oriented, and the hardness decreases. The range where the {100} orientation is strong and the hardness does not decrease is 0 to 12 degrees, and the inclination angle section is set to 0 to 12 degrees.

TiとAlの複合窒化物または複合炭窒化物層((Ti1−XAl)(C1−Y)層)内の立方晶構造を有する個々の結晶粒が層厚方向に垂直な面内で90度未満の角度を有さない多角形状のファセットを有し該ファセットが前記結晶粒の{100}で表される等価な結晶面のうちの一つに形成され該ファセットが前記層厚方向に垂直な面内において全体を100%とした時の面積割合:
複合窒化物または複合炭窒化物層の表面側から走査電子顕微鏡で該層の組織観察をした場合に、前記複合窒化物または複合炭窒化物層内の立方晶構造を有する個々の結晶粒が層厚方向に垂直な面内で90度未満の角度を有さない多角形状のファセットを有し該ファセットが前記結晶粒の{100}で表される等価な結晶面のうちの一つに形成されている場合に、被削材との摩耗抵抗が軽減し、切削における初期なじみ性が向上し、耐チッピング性が向上するという知見を得た。90度未満の角度が存在すると、該角において切削による負荷が大きくなり、潤滑性が損なわれるため、90度未満の角度を有さないとした。
しかしながら、層厚方向に垂直な面内において該面全体を100%とした時の前記ファセットの面積割合が50%未満であると、前述した本発明に特有の効果が十分に奏されないため好ましくない。したがって、前記ファセットの層厚方向に垂直な面内における面積割合を50%以上と定めた。
Individual crystal grains having a cubic structure in a composite nitride or composite carbonitride layer of Ti and Al ((Ti 1-X Al X ) (C Y N 1-Y ) layer) are perpendicular to the layer thickness direction. A polygonal facet having no angle of less than 90 degrees in the plane, the facet formed on one of the equivalent crystal planes represented by {100} of the crystal grain, the facet Area ratio when the whole is 100% in a plane perpendicular to the thickness direction:
When the structure of the composite nitride or composite carbonitride layer is observed with a scanning electron microscope from the surface side, individual crystal grains having a cubic structure in the composite nitride or composite carbonitride layer are layers. A polygonal facet that does not have an angle of less than 90 degrees in a plane perpendicular to the thickness direction, and the facet is formed on one of the equivalent crystal planes represented by {100} of the crystal grains. In this case, it was found that wear resistance with the work material is reduced, initial conformability in cutting is improved, and chipping resistance is improved. If there is an angle of less than 90 degrees, the load due to cutting increases at that angle, and the lubricity is impaired.
However, if the area ratio of the facet is less than 50% in the plane perpendicular to the layer thickness direction when the entire surface is taken as 100%, the above-described effects specific to the present invention are not sufficiently achieved, which is not preferable. . Therefore, the area ratio in the plane perpendicular to the layer thickness direction of the facet is set to 50% or more.

立方晶構造の{200}によるピーク強度Ic{200}と六方晶構造の{200}によるピーク強度Ih{200}とのピーク強度比Ic{200}/Ih{200}:
本発明の複合窒化物または複合炭窒化物層は、立方晶構造を主とする結晶構造であることにより、耐摩耗性が向上するものであるが、六方晶構造の割合が増加するにつれて、複合窒化物または複合炭窒化物層の硬さが低下し、耐摩耗性が損なわれるため好ましくない。
そこで、六方晶構造が存在する場合、六方晶構造に対する立方晶構造の比と耐摩耗性との関係について探求したところ、立方晶構造の{200}によるピーク強度Ic{200}と六方晶構造の{200}によるピーク強度Ih{200}とのピーク強度比Ic{200}/Ih{200}が3.0を超える場合に、耐摩耗性の改善効果が顕著に表れることが明らかになった。したがって、立方晶構造の{200}によるピーク強度Ic{200}と六方晶構造の{200}によるピーク強度Ih{200}とのピーク強度比Ic{200}/Ih{200}は、3.0より大きくすることが好ましい。
なお、Ic{200}の値はJCPDS00−038−1420立方晶TiNとJCPDS00−046−1200立方晶AlNに示される同一結晶面{200}の回折角度の間43.59〜44.77°に存在する回折ピークのピーク強度値とし、Ih{200}の値はJCPDS00−025−1133六方晶AlNに示される同一結晶面{200}の回折角度の36.00°に存在する回折ピークのピーク強度とする。
Peak intensity ratio Ic {200} / Ih {200} between peak intensity Ic {200} due to {200} having a cubic structure and peak intensity Ih {200} due to {200} having a hexagonal structure:
Although the composite nitride or composite carbonitride layer of the present invention has a crystal structure mainly composed of a cubic structure, the wear resistance is improved. However, as the proportion of the hexagonal structure increases, the composite nitride Since the hardness of a nitride or a composite carbonitride layer falls and abrasion resistance is impaired, it is unpreferable.
Therefore, when a hexagonal crystal structure exists, the relationship between the ratio of the cubic crystal structure to the hexagonal crystal structure and the wear resistance was investigated, and the peak intensity Ic {200} due to {200} of the cubic crystal structure and the hexagonal crystal structure It has been clarified that when the peak intensity ratio Ic {200} / Ih {200} to the peak intensity Ih {200} by {200} exceeds 3.0, the effect of improving the wear resistance is remarkably exhibited. Therefore, the peak intensity ratio Ic {200} / Ih {200} between the peak intensity Ic {200} due to {200} having a cubic structure and the peak intensity Ih {200} due to {200} having a hexagonal structure is 3.0. It is preferable to make it larger.
In addition, the value of Ic {200} exists in 43.59-44.77 degrees between the diffraction angles of the same crystal plane {200} shown in JCPDS00-038-1420 cubic TiN and JCPDS00-046-1200 cubic AlN. The value of Ih {200} is the peak intensity of the diffraction peak existing at 36.00 ° of the diffraction angle of the same crystal plane {200} shown in JCPDS00-025-1133 hexagonal AlN. To do.

微粒六方晶構造を有する層の平均層厚および粒径R:
本発明では六方晶構造を有する微粒結晶粒層を、柱状立方晶層の下部層として設けることができるが、これにより、柱状立方晶層との付着強度が向上し、靱性が向上する。六方晶微粒結晶粒層の平均層厚が0.3μm未満であると靱性向上の効果が見られず、1.0μmより大きくなると硬さが低下し、耐摩耗性が損なわれるため平均層厚は0.3〜1.0μmとするのが好ましい。また、微粒結晶粒の平均粒径Rが大きくなり過ぎると、上部層の柱状組織の成長を阻害するため好ましくない。したがって、微粒六方晶から成る層の微粒結晶粒の平均粒径Rは0.01〜0.30μmとすることが好ましい。
Average layer thickness and particle size R of the layer having a fine hexagonal crystal structure:
In the present invention, a fine crystal grain layer having a hexagonal crystal structure can be provided as a lower layer of a columnar cubic crystal layer, whereby adhesion strength with the columnar cubic crystal layer is improved and toughness is improved. If the average layer thickness of the hexagonal fine crystal grain layer is less than 0.3 μm, the effect of improving toughness is not seen, and if it exceeds 1.0 μm, the hardness decreases and the wear resistance is impaired, so the average layer thickness is It is preferable to set it as 0.3-1.0 micrometer. Further, if the average grain size R of the fine crystal grains becomes too large, it is not preferable because the growth of the columnar structure of the upper layer is inhibited. Therefore, it is preferable that the average grain size R of the fine crystal grains of the layer made of fine hexagonal crystals is 0.01 to 0.30 μm.

本発明の(Ti1−XAl)(C1−Y)層の成膜は、例えば、工具基体もしくはTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層上に、立方晶層のみを成膜する場合は、柱状立方晶を有し表面に多角形組織を有する層を成膜する。粒状六方晶層と柱状立方晶層を成膜する場合は、≪第1段階≫として、粒状六方晶層を成膜した後に、≪第2段階≫として、柱状立方晶を有し表面に多角形組織を有する層を成膜するという、二段階の蒸着法によって行うことができる。 Film formation of the (Ti 1-X Al X ) (C Y N 1-Y ) layer of the present invention includes, for example, a tool base or a Ti carbide layer, a nitride layer, a carbonitride layer, a carbonate layer, and a carbonitride. In the case where only a cubic layer is formed over the oxide layer, a layer having a columnar cubic structure and a polygonal structure on the surface is formed. When a granular hexagonal layer and a columnar cubic layer are formed, the first step is used to form a granular hexagonal layer, and then the second step is used to form a columnar cubic crystal having a polygonal surface. It can be performed by a two-stage vapor deposition method in which a layer having a structure is formed.

本発明の(Ti1−XAl)(C1−Y)層の成膜は、通常の化学蒸着装置を用い、柱状立方晶単層、もしくは粒状六方晶層と柱状立方晶から成る2層の成膜を以下の条件で行う。
≪第1段階≫
反応ガス組成(容量%):
NH 6〜10%、TiCl 0.5〜1.5%、 AlCl 3〜5%、N 6〜11%、 残りH
反応雰囲気温度: 800〜900℃、
反応雰囲気圧力: 2〜5kPa、
という条件下で粒状六方晶の(Ti1−XAl)(C1−Y)層を蒸着形成し、
≪第2段階≫
反応ガス組成(容量%):
NH 2〜6%、TiCl 0.1〜0.5%、 AlCl 0.5〜2.5%、N 10〜15%、 Al(CH0〜0.5%、 残り:H
反応雰囲気温度: 800〜900℃、
反応雰囲気圧力: 2〜3kPa、
という条件下でガス組成および反応雰囲気温度を変化させて柱状立方晶の所定の目標層厚の(Ti1−XAl)(C1−Y)層の蒸着形成を行う。柱状立方晶を有し表面に多角形状を有する層のみを成膜する場合は上記の第2段階条件で蒸着する。
The (Ti 1-X Al X ) (C Y N 1-Y ) layer of the present invention is formed from a columnar cubic single layer, or a granular hexagonal layer and a columnar cubic crystal using an ordinary chemical vapor deposition apparatus. Two layers are formed under the following conditions.
≪First stage≫
Reaction gas composition (volume%):
NH 3 6-10%, TiCl 4 0.5-1.5%, AlCl 3 3-5%, N 2 6-11%, remaining H 2 ,
Reaction atmosphere temperature: 800-900 ° C
Reaction atmosphere pressure: 2 to 5 kPa,
Particulate hexagonal a (Ti 1-X Al X) (C Y N 1-Y) layer was vapor deposited under the condition that,
≪Second stage≫
Reaction gas composition (volume%):
NH 3 2~6%, TiCl 4 0.1~0.5 %, AlCl 3 0.5~2.5%, N 2 10~15%, Al (CH 3) 3 0~0.5%, remainder : H 2 ,
Reaction atmosphere temperature: 800-900 ° C
Reaction atmosphere pressure: 2-3 kPa,
Performing vapor deposition formation of columnar cubic predetermined target layer thickness of crystal of (Ti 1-X Al X) (C Y N 1-Y) layer by changing the gas composition and reaction atmosphere temperature under the condition that. In the case of forming only a layer having a columnar cubic crystal and a polygonal shape on the surface, vapor deposition is performed under the above-mentioned second stage condition.

本発明の被覆工具は、例えば、トリメチルアルミニウム(Al(CH)を反応ガス成分として含有する熱CVD法等の化学蒸着法により、組成式:(Ti1−XAl)(C1−Y)で表した場合、AlのTiとAlの合量に占める平均含有割合XavgおよびCのCとNの合量に占める平均含有割合Yavg(但し、Xavg、Yavgはいずれも原子比)が、それぞれ、0.60≦Xavg≦0.95、0≦Yavg≦0.005を満足し、立方晶構造の複合窒化物または複合炭窒化物層からなる硬質被覆層が成膜され、該硬質被覆層は、電子線後方散乱回折装置を用いて、複合窒化物または複合炭窒化物層内の立方晶構造を有する個々の結晶粒の結晶方位を、前記TiとAlの複合窒化物または複合炭窒化物層の縦断面方向から解析した場合、工具基体表面の法線方向に対する前記結晶粒の結晶面である{100}面の法線がなす傾斜角を測定し該傾斜角のうち法線方向に対して0〜45度の範囲内にある傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計し、傾斜角度数分布を求めたとき、0〜12度の範囲内の傾斜角区分に最高ピークが存在すると共に該0〜12度の範囲内に存在する度数の合計が、前記傾斜角度数分布における度数全体の45%以上の割合を示し、また、前記複合窒化物または複合炭窒化物層の表面側から走査電子顕微鏡で該層の組織観察をした場合に、前記複合窒化物または複合炭窒化物層内の立方晶構造を有する個々の結晶粒が層厚方向に垂直な面内で90度未満の角度を有さない多角形状を有し該結晶粒の{100}で表される等価な結晶面で形成されたファセットが、前記層厚方向に垂直な面内において全体の50%以上の面積割合を占めるという本発明に特有の構成により、高熱発生を伴うとともに、切れ刃に断続的・衝撃的負荷が作用するステンレス鋼などの高速断続切削に用いた場合でも、チッピング、欠損、剥離等の異常損傷を発生することなく、長期の使用に亘ってすぐれた耐摩耗性を発揮する。 The coated tool of the present invention is obtained, for example, by chemical vapor deposition such as thermal CVD containing trimethylaluminum (Al (CH 3 ) 3 ) as a reaction gas component, with a composition formula: (Ti 1-X Al X ) (C Y N 1 -Y ), the average content ratio X avg in the total amount of Ti and Al in Al and the average content ratio Y avg in the total amount of C and N in C (where X avg and Y avg are The hard coating layer is composed of a composite nitride or a composite carbonitride layer having a cubic structure, each satisfying an atomic ratio of 0.60 ≦ X avg ≦ 0.95 and 0 ≦ Y avg ≦ 0.005, respectively. The hard coating layer is formed by using an electron beam backscatter diffractometer to change the crystal orientation of the individual crystal grains having a cubic structure in the composite nitride or composite carbonitride layer, the Ti and Al Analysis of the composite nitride or composite carbonitride layer from the longitudinal section In this case, the inclination angle formed by the normal line of the {100} plane which is the crystal plane of the crystal grain with respect to the normal direction of the tool base surface is measured, and the range of 0 to 45 degrees with respect to the normal direction of the inclination angle. When the inclination angle within the range is divided into 0.25 degree pitches and the frequencies existing in each division are tabulated and the inclination angle number distribution is obtained, it is the highest in the inclination angle division within the range of 0 to 12 degrees. The sum of the frequencies existing in the range of 0 to 12 degrees with a peak presents a ratio of 45% or more of the total frequencies in the tilt angle frequency distribution, and the composite nitride or composite carbonitride layer When the structure of the layer is observed with a scanning electron microscope from the surface side, the individual crystal grains having a cubic structure in the composite nitride or composite carbonitride layer are 90 in a plane perpendicular to the layer thickness direction. Represented by {100} of the crystal grains having a polygonal shape having no angle less than The facet formed with an equivalent crystal plane that occupies 50% or more of the total area in the plane perpendicular to the layer thickness direction is accompanied by high heat generation, and the cutting edge Even when used for high-speed intermittent cutting such as stainless steel that is subjected to intermittent and impact loads, it exhibits excellent wear resistance over long-term use without causing abnormal damage such as chipping, chipping, and peeling. To do.

(a)、(b)は、硬質被覆層を構成する(Ti1−XAl)(C1−Y)層における結晶粒の結晶面である{100}面で表される等価な結晶面のうちの一つである(001)面の法線が、基体表面の法線に対してなす傾斜角の測定範囲を示す概略説明図である。(A), (b) is an equivalent represented by a {100} plane which is a crystal plane of a crystal grain in the (Ti 1-X Al X ) (C Y N 1-Y ) layer constituting the hard coating layer. It is a schematic explanatory drawing which shows the measuring range of the inclination angle which the normal line of (001) plane which is one of crystal planes makes with respect to the normal line of a substrate surface. 本発明被覆工具のTiとAlの複合窒化物または複合炭窒化物について作成した{100}面の傾斜角度数分布グラフの一例である。It is an example of the inclination angle number distribution graph of the {100} plane created about the composite nitride or composite carbonitride of Ti and Al of this invention coated tool. 本発明被覆工具の硬質被覆層表面の走査電子顕微鏡による観察画像の一例を示す。An example of the observation image by the scanning electron microscope of the hard coating layer surface of this invention coated tool is shown.

本発明は、炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体などの超硬質工具材料で構成された工具基体の表面に硬質被覆層を設けた表面被覆切削工具であって、硬質被覆層が、化学蒸着法により成膜された平均層厚1〜20μmのTiとAlの複合窒化物または複合炭窒化物層を少なくとも含み、組成式:(Ti1−XAl)(C1−Y)で表した場合、AlのTiとAlの合量に占める平均含有割合XavgおよびCのCとNの合量に占める平均含有割合Yavg(但し、Xavg、Yavgはいずれも原子比)が、それぞれ、0.60≦Xavg≦0.95、0≦Yavg≦0.005を満足し、複合窒化物または複合炭窒化物層を構成する結晶粒中に立方晶構造を有するものが存在し、前記複合窒化物または複合炭窒化物層について、電子線後方散乱回折装置を用いて個々の結晶粒の結晶方位を、上記TiとAlの複合窒化物または複合炭窒化物層の縦断面方向から解析した場合、立方晶結晶格子の電子後方散乱回折像が観測される立方晶結晶相が存在し、前記TiとAlの複合窒化物または複合炭窒化物層の縦断面方向から解析した場合、工具基体表面の法線方向に対する前記結晶粒の結晶面である{100}面の法線がなす傾斜角を測定し該傾斜角のうち法線方向に対して0〜45度の範囲内にある傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計し、傾斜角度数分布を求めたとき、0〜12度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜12度の範囲内に存在する度数の合計が、前記傾斜角度数分布における度数全体の45%以上の割合を示し、また、前記複合窒化物または複合炭窒化物層の表面側から走査電子顕微鏡で該層の組織観察をした場合に、前記複合窒化物または複合炭窒化物層内の立方晶構造を有する個々の結晶粒が層厚方向に垂直な面内で90度未満の角度を有さない多角形状を有し該結晶粒の{100}で表される等価な結晶面で形成されたファセットが、前記層厚方向に垂直な面内において全体の50%以上の面積割合を占めているという本発明に特有の構成により、高熱発生を伴うとともに、切れ刃に断続的・衝撃的負荷が作用するステンレス鋼の高速断続切削に用いた場合でも、チッピング、欠損、剥離等の異常損傷を発生することなく、長期の使用に亘ってすぐれた耐摩耗性を発揮するという効果を奏するものであれば、その具体的な実施の形態は、いかなるものであっても構わない。
つぎに、本発明の被覆工具を、実施例に基づき具体的に説明する。
The present invention provides a surface coating in which a hard coating layer is provided on the surface of a tool base made of an ultra-hard tool material such as a tungsten carbide-based cemented carbide, a titanium carbonitride-based cermet, or a cubic boron nitride-based ultra-high pressure sintered body. A cutting tool, wherein the hard coating layer includes at least a composite nitride or composite carbonitride layer of Ti and Al having an average layer thickness of 1 to 20 μm formed by a chemical vapor deposition method, and has a composition formula: (Ti 1− X Al X) (when expressed in C Y N 1-Y), the average content of Y avg occupying the total amount of the average content ratio X avg and C of C and N occupying the total amount of Ti and Al Al (although , X avg , and Y avg are both atomic ratios) satisfy 0.60 ≦ X avg ≦ 0.95 and 0 ≦ Y avg ≦ 0.005, respectively, and constitute a composite nitride or composite carbonitride layer There are those having a cubic structure in the crystal grains, For the compound nitride or composite carbonitride layer, the crystal orientation of each crystal grain was analyzed from the longitudinal cross-sectional direction of the Ti and Al composite nitride or composite carbonitride layer using an electron beam backscatter diffraction device. If there is a cubic crystal phase in which an electron backscattering diffraction image of a cubic crystal lattice is observed, and the analysis is performed from the longitudinal section direction of the Ti and Al composite nitride or composite carbonitride layer, the surface of the tool substrate The inclination angle formed by the normal line of the {100} plane which is the crystal plane of the crystal grain with respect to the normal direction is measured, and an inclination angle within the range of 0 to 45 degrees with respect to the normal direction is included in the inclination angle. When the pitch is divided into 0.25 degree pitches and the frequencies existing in each section are tabulated and the inclination angle number distribution is obtained, the highest peak is present in the inclination angle section within the range of 0 to 12 degrees, The total number of frequencies existing in the range of 0 to 12 degrees is 45% or more of the entire frequency in the tilt angle number distribution, and when the structure of the composite nitride or composite carbonitride layer is observed with a scanning electron microscope from the surface side, the composite nitridation The individual crystal grains having a cubic structure in the metal or composite carbonitride layer have a polygonal shape having no angle of less than 90 degrees in a plane perpendicular to the layer thickness direction, and {100} of the crystal grains The facets formed by the equivalent crystal planes represented by the present invention occupy 50% or more of the total area in the plane perpendicular to the layer thickness direction, resulting in high heat generation. Even when used for high-speed intermittent cutting of stainless steel where intermittent and impact loads are applied to the cutting edge, it has excellent wear resistance over long-term use without causing abnormal damage such as chipping, chipping and peeling. The effect of demonstrating As long as it exhibits the form of its specific implementation, it may be any one.
Next, the coated tool of the present invention will be specifically described based on examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、TaC粉末、NbC粉末、Cr32粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、ISO規格SEEN1203AFSNのインサート形状をもったWC基超硬合金製の基体A〜Dをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, ZrC powder, TaC powder, NbC powder, Cr 3 C 2 powder, and Co powder all having an average particle diameter of 1 to 3 μm were prepared. Then, after adding wax, ball mill mixing in acetone for 24 hours, drying under reduced pressure, press-molding into a green compact of a predetermined shape at a pressure of 98 MPa. Substrates A to D made of WC-base cemented carbide having an ISO standard SEEN1203AFSN insert shape after vacuum sintering under vacuum at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour. Were manufactured respectively.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、ISO規格SEEN1203AFSNのインサート形状をもったTiCN基サーメット製の基体a〜bを作製した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after sintering, a substrate made of TiCN-based cermet having an insert shape of ISO standard SEEN1203AFSN b was produced.



つぎに、これらの工具基体A〜Dおよび工具基体a〜bの表面に、通常の化学蒸着装置を用い、まず、表4に示される条件で、所定の組成を有する(Ti1−XAl)(C1−Y)層を目標層厚になるまで蒸着形成することにより、表7に示される本発明被覆工具1〜15を製造した。
なお、本発明被覆工具6〜13については、表3に示される形成条件で、表6に示される下部層および/または表7に示される上部層を形成した。
Next, a normal chemical vapor deposition apparatus is used on the surfaces of the tool bases A to D and the tool bases a and b, and first, under the conditions shown in Table 4, the composition has a predetermined composition (Ti 1-X Al X ) The coated tools 1 to 15 of the present invention shown in Table 7 were manufactured by vapor-depositing the (C Y N 1-Y ) layer until the target layer thickness was reached.
In addition, about this invention coated tools 6-13, the lower layer shown in Table 6 and / or the upper layer shown in Table 7 were formed on the formation conditions shown in Table 3.

また、比較の目的で、同じく工具基体A〜Dおよび工具基体a〜bの表面に通常の化学蒸着装置を用い、表5に示される条件で、比較例の(Ti1−XAl)(C1−Y)層を目標層厚で蒸着形成することにより、表8に示される比較例被覆工具1〜13を製造した。 Further, for the purpose of comparison, an ordinary chemical vapor deposition apparatus was similarly used on the surfaces of the tool bases A to D and the tool bases a and b, and under the conditions shown in Table 5, (Ti 1-X Al X ) ( Comparative example-coated tools 1 to 13 shown in Table 8 were manufactured by vapor-depositing a C Y N 1-Y ) layer with a target layer thickness.

参考のため、工具基体Aおよび工具基体aの表面に、従来の物理蒸着装置を用いて、アークイオンプレーティングにより、参考例の(Ti1−XAl)(C1−Y)層を目標層厚で蒸着形成することにより、表8に示される参考例被覆工具14,15を製造した。
なお、アークイオンプレーティングの条件は、次のとおりである。
(a)前記工具基体Aおよびaを、アセトン中で超音波洗浄し、乾燥した状態で、アークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、また、カソード電極(蒸発源)として、所定組成のAl−Ti合金を配置し、
(b)まず、装置内を排気して10−2Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する工具基体に−1000Vの直流バイアス電圧を印加し、かつAl−Ti合金からなるカソード電極とアノード電極との間に200Aの電流を流してアーク放電を発生させ、装置内にAlおよびTiイオンを発生させ、もって工具基体表面をボンバード洗浄し、
(c)次に、装置内に反応ガスとして窒素ガスを導入して4Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−50Vの直流バイアス電圧を印加し、かつ、前記Al−Ti合金からなるカソード電極(蒸発源)とアノード電極との間に120Aの電流を流してアーク放電を発生させ、前記工具基体の表面に、表8に示される目標平均組成、目標平均層厚の(Ti1−XAl)(C1−Y)層を蒸着形成し、
参考例被覆工具14,15を製造した。
For reference, the (Ti 1-X Al X ) (C Y N 1-Y ) layer of the reference example is applied to the surfaces of the tool base A and the tool base a by arc ion plating using a conventional physical vapor deposition apparatus. Were formed by vapor deposition with a target layer thickness to produce reference example coated tools 14 and 15 shown in Table 8.
The conditions for arc ion plating are as follows.
(A) The tool bases A and a are ultrasonically cleaned in acetone and dried, and at the outer peripheral portion at a predetermined distance in the radial direction from the central axis on the rotary table in the arc ion plating apparatus. Along with this, an Al-Ti alloy having a predetermined composition is arranged as a cathode electrode (evaporation source),
(B) First, the inside of the apparatus is evacuated and kept at a vacuum of 10 −2 Pa or less, the inside of the apparatus is heated to 500 ° C. with a heater, and then the tool base that rotates while rotating on the rotary table is −1000 V. A DC bias voltage is applied, and a current of 200 A is passed between a cathode electrode and an anode electrode made of an Al—Ti alloy to generate an arc discharge, thereby generating Al and Ti ions in the apparatus, thereby providing a tool base. Clean the surface with bombard,
(C) Next, nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 4 Pa, a DC bias voltage of −50 V is applied to the tool base that rotates while rotating on the rotary table, and A current of 120 A is passed between the cathode electrode (evaporation source) made of the Al—Ti alloy and the anode electrode to generate an arc discharge, and the target average composition and target shown in Table 8 are formed on the surface of the tool base. the average layer thickness of (Ti 1-X Al X) (C Y N 1-Y) layer and the vapor deposited,
Reference Example Coated tools 14 and 15 were produced.

また、本発明被覆工具1〜15、比較例被覆工具1〜13および参考例被覆工具14,15の各構成層の縦断面を、走査電子顕微鏡を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めたところ、いずれも表7および表8に示される目標平均層厚と実質的に同じ平均層厚を示した。
ついで、前述した本発明被覆工具1〜15の硬質被覆層について、硬質被覆層の平均Al含有割合Xavg、平均C含有割合Yavg、XRDにおける立方晶構造の{200}によるピーク強度Ic{200}と六方晶構造の{200}によるピーク強度Ih{200}とのピーク強度比Ic{200}/Ih{200}、基体表面の法線方向に対する{100}面の法線がなす傾斜角についての傾斜角度数分布における0〜12度の範囲内に存在する度数の割合(α)を測定した。
また、硬質被覆層表面を、走査電子顕微鏡を用いて観察し、その観察画像の画像解析することにより、{100}面配向している結晶粒の{100}で表される等価な結晶面で形成された90度未満の角度を有さない多角形状を有するファセットの前記観察画像全体を100%とした時の面積割合(β)を測定した。
なお、図2に本発明被覆工具について測定した{100}面の傾斜角度数分布グラフの一例を示す。
また、図3(a)に本発明被覆工具の硬質被覆層表面の走査電子顕微鏡による観察画像の一例を示し、図3(b)にその模式図を示す。
Moreover, the longitudinal cross-section of each component layer of this invention coated tool 1-15, comparative example coated tool 1-13, and reference example coated tool 14,15 was measured using a scanning electron microscope, and five points within the observation visual field were measured. When the layer thickness was measured and averaged to determine the average layer thickness, both showed the average layer thickness substantially the same as the target average layer thickness shown in Tables 7 and 8.
Next, with respect to the hard coating layers of the above-described coated tools 1 to 15 of the present invention, the average Al content ratio X avg , the average C content ratio Y avg of the hard coating layer, and the peak intensity Ic {200 due to {200} of the cubic structure in XRD. } And the peak intensity ratio Ic {200} / Ih {200} between the peak intensity Ih {200} due to {200} of the hexagonal crystal structure, and the inclination angle formed by the normal of the {100} plane with respect to the normal direction of the substrate surface The ratio (α) of the frequency existing in the range of 0 to 12 degrees in the inclination angle frequency distribution was measured.
Further, by observing the surface of the hard coating layer using a scanning electron microscope and analyzing the image of the observed image, the equivalent crystal plane represented by {100} of the {100} -oriented crystal grains is obtained. The area ratio (β) of the facet having a polygonal shape that does not have an angle of less than 90 degrees when the entire observation image is 100% was measured.
In addition, FIG. 2 shows an example of a {100} plane inclination angle number distribution graph measured for the coated tool of the present invention.
Moreover, an example of the observation image by the scanning electron microscope of the hard coating layer surface of this invention coated tool is shown in FIG. 3 (a), and the schematic diagram is shown in FIG.3 (b).

なお、前記それぞれの具体的な測定法は次のとおりである。
硬質被覆層の平均Al含有割合Xavg、平均C含有割合Yavgについては、二次イオン質量分析(Secondary‐Ion‐Mass‐Spectroscopy:SIMS)により求めた。イオンビームを試料表面側から70μm×70μmの範囲に照射し、スパッタリング作用によって放出された成分について深さ方向の濃度測定を行った。平均Al含有割合Xavg、平均C含有割合Yavgは深さ方向の平均値を示す。
The specific measuring methods for each of the above are as follows.
The average Al content ratio X avg and the average C content ratio Y avg of the hard coating layer were determined by secondary ion mass spectrometry (Secondary-Ion-Mass-Spectroscopy: SIMS). The ion beam was irradiated in the range of 70 μm × 70 μm from the sample surface side, and the concentration in the depth direction was measured for the components emitted by the sputtering action. The average Al content ratio X avg and the average C content ratio Y avg indicate average values in the depth direction.

また、硬質被覆層の傾斜角度数分布については、立方晶構造のTiとAlの複合窒化物または複合炭窒化物層からなる硬質被覆層の断面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記断面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に照射し、電子後方散乱回折像装置を用いて、工具基体と水平方向に長さ100μmに亘り硬質被覆層について0.1μm/stepの間隔で、基体表面の法線(断面研磨面における基体表面と垂直な方向)に対して、前記結晶粒の結晶面である{100}面の法線がなす傾斜角を測定し、この測定結果に基づいて、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより、0〜12度の範囲内に存在する度数の割合(α)を求めた。   In addition, regarding the inclination angle number distribution of the hard coating layer, field emission scanning electrons are obtained with the cross section of the hard coating layer made of a composite nitride or composite carbonitride layer of Ti and Al having a cubic structure as a polished surface. A cubic crystal lattice that is set in a lens barrel of a microscope and has an electron beam with an acceleration voltage of 15 kV at an incident angle of 70 degrees and an irradiation current of 1 nA on the polished surface is present in the measurement range of the polished surface of the cross section. Irradiate each individual crystal grain, and use a backscatter diffraction imaging device, the normal surface of the substrate surface (cross-section polished surface) at a spacing of 0.1 μm / step with respect to the hard substrate over a length of 100 μm in the horizontal direction from the tool substrate. The tilt angle formed by the normal line of the {100} plane which is the crystal plane of the crystal grain is measured with respect to the direction perpendicular to the substrate surface of Measurements in the range of ~ 45 degrees The inclination angle was divided for each pitch of 0.25 degrees, and the frequencies (α) existing in the range of 0 to 12 degrees were obtained by counting the frequencies existing in each section.

また、硬質被覆層の表面における{100}面配向している結晶粒の{100}で表される等価な結晶面で形成された層厚方向に垂直な面内で90度未満の角度を有さない多角形状を有するファセットの面積割合は、走査電子顕微鏡とそれに付随する画像解析ソフトを用いて測定する。具体的には、次のように測定した。まず、硬質被覆層の表面を走査電子顕微鏡で100μm×100μmの範囲にて観察する。そして、観察画像をモニターで観察しながら、90度未満の角度を有さない多角形状を有するファセット、すなわち、画像面内に観察される結晶面をマーキングし、すべての90度未満の角度を有さない多角形状を有するファセットについてのマーキングが終わった時点で、観察画像面全体に対するマーキングされたファセットの面積全体の面積割合(β)を求めた。   In addition, the surface of the hard coating layer has an angle of less than 90 degrees in a plane perpendicular to the layer thickness direction formed by an equivalent crystal plane represented by {100} of {100} plane oriented crystal grains. The area ratio of the facets having a polygonal shape not to be measured is measured using a scanning electron microscope and image analysis software accompanying the scanning electron microscope. Specifically, the measurement was performed as follows. First, the surface of the hard coating layer is observed with a scanning electron microscope in a range of 100 μm × 100 μm. While observing the observed image on the monitor, the facets having a polygonal shape not having an angle of less than 90 degrees, that is, crystal planes to be observed in the image plane are marked, and all the angles of less than 90 degrees are present. When the marking on the facet having a polygonal shape not to be finished was completed, the area ratio (β) of the entire area of the marked facet with respect to the entire observation image plane was obtained.

なお、硬質被覆層の結晶構造については、X線回折装置を用い、Cu−Kα線を線源としてX線回折を行った場合、JCPDS00−038−1420立方晶TiNとJCPDS00−046−1200立方晶AlN、各々に示される同一結晶面の回折角度の間(例えば、36.66〜38.53°、43.59〜44.77°、61.81〜65.18°)に回折ピークが現れることを確認することによって調査した。
表7にその結果を示す。
As for the crystal structure of the hard coating layer, when X-ray diffraction is performed using an X-ray diffractometer and Cu—Kα ray as a radiation source, JCPDS00-038-1420 cubic TiN and JCPDS00-046-1200 cubic crystal A diffraction peak appears between the diffraction angles of the same crystal plane shown in each of AlN (for example, 36.66 to 38.53 °, 43.59 to 44.77 °, 61.81 to 65.18 °). Investigated by confirming.
Table 7 shows the results.

ついで、比較例被覆工具1〜13および参考例被覆工具14,15のそれぞれについても、本発明被覆工具1〜15と同様にして、硬質被覆層の平均Al含有割合Xavg、平均C含有割合Yavg、XRDにおける立方晶構造の{200}によるピーク強度Ic{200}と六方晶構造の{200}によるピーク強度Ih{200}とのピーク強度比Ic{200}/Ih{200}、基体表面の法線方向に対する{100}面の法線がなす傾斜角についての傾斜角度数分布における0〜12度の範囲内に存在する度数の割合(α)ならびに観察画像面全体に対するマーキングされたファセットの面積全体の面積割合(β)を求めた。
また、硬質被覆層の結晶構造についても、本発明被覆工具1〜15と同様にして、調査した。表8に、その結果を示す。
Subsequently, the average Al content ratio X avg and the average C content ratio Y of the hard coating layer were also obtained for each of the comparative coated tools 1 to 13 and the reference coated tools 14 and 15 in the same manner as the coated tools 1 to 15 of the present invention. avg , a peak intensity ratio Ic {200} / Ih {200} between a peak intensity Ic {200} due to {200} of a cubic structure in XRD and a peak intensity Ih {200} due to {200} in a hexagonal structure, The ratio (α) of the frequency existing in the range of 0 to 12 degrees in the tilt angle number distribution with respect to the tilt angle formed by the normal of the {100} plane with respect to the normal direction, and the marked facet for the entire observation image plane The area ratio (β) of the entire area was determined.
Further, the crystal structure of the hard coating layer was also investigated in the same manner as the coated tools 1 to 15 of the present invention. Table 8 shows the results.







つぎに、前記の各種の被覆工具をいずれもカッタ径125mmの工具鋼製カッタ先端部に固定治具にてクランプした状態で、本発明被覆工具1〜15、比較例被覆工具1〜13および参考例被覆工具14,15について、以下に示す、合金鋼の高速断続切削の一種である乾式高速正面フライス、センターカット切削加工試験(通常の回転速度、切削速度、切り込み、一刃送り量は、それぞれ、800min−1、200 m/min、1.0mm、0.08mm/刃)を実施し、切刃の逃げ面摩耗幅を測定した。
被削材: JIS・SCM440幅100mm、長さ400mmのブロック材
回転速度: 955min−1
切削速度: 375m/min、
切り込み: 1.0mm、
一刃送り量: 0.10mm/刃、
切削時間: 8分、
表9に、前記切削試験の結果を示す。
Next, in the state where each of the above various coated tools is clamped to a tool steel cutter tip portion having a cutter diameter of 125 mm by a fixing jig, the coated tools 1 to 15 of the present invention, the comparative coated tools 1 to 13 and the reference Example For coated tools 14 and 15, the following dry high-speed face milling, which is a kind of high-speed intermittent cutting of alloy steel, center-cut cutting test (normal rotation speed, cutting speed, cutting, single-blade feed amount are respectively 800 min −1 , 200 m / min, 1.0 mm, 0.08 mm / tooth), and the flank wear width of the cutting edge was measured.
Work material: Block material of JIS / SCM440 width 100mm, length 400mm
Rotational speed: 955 min −1
Cutting speed: 375 m / min,
Cutting depth: 1.0mm,
Single blade feed amount: 0.10 mm / tooth,
Cutting time: 8 minutes,
Table 9 shows the results of the cutting test.


原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末およびCo粉末を用意し、これら原料粉末を、表10に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO規格CNMG120412のインサート形状をもったWC基超硬合金製の工具基体α〜γをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, ZrC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder and Co powder all having an average particle diameter of 1 to 3 μm are prepared. Compounded in the formulation shown in Table 10, added with wax, ball mill mixed in acetone for 24 hours, dried under reduced pressure, press-molded into a green compact of a predetermined shape at a pressure of 98 MPa. In a 5 Pa vacuum, vacuum sintering is performed at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour, and after sintering, the cutting edge is subjected to honing processing with an R of 0.07 mm. Tool bases α to γ made of a WC-base cemented carbide having an insert shape of CNMG12041 were manufactured.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、NbC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表11に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.09mmのホーニング加工を施すことによりISO規格・CNMG120412のインサート形状をもったTiCN基サーメット製の工具基体δを形成した。   In addition, as raw material powder, TiCN (mass ratio TiC / TiN = 50/50) powder, NbC powder, WC powder, Co powder, and Ni powder all having an average particle diameter of 0.5 to 2 μm are prepared, These raw material powders were blended into the composition shown in Table 11, wet mixed with a ball mill for 24 hours, dried, and then pressed into a green compact at a pressure of 98 MPa. Sintered in an atmosphere at a temperature of 1500 ° C. for 1 hour, and after sintering, the cutting edge part is subjected to a honing process of R: 0.09 mm so that the TiCN base has an insert shape of ISO standard / CNMG120212 A cermet tool substrate δ was formed.

つぎに、これらの工具基体α〜γおよび工具基体δの表面に、通常の化学蒸着装置を用い、まず、表4に示される条件で、所定の組成を有する(Ti1−XAl)(C1−Y)層を目標層厚になるまで蒸着形成することにより、表13に示される本発明被覆工具16〜30を製造した。
なお、本発明被覆工具19〜28については、表3に示される形成条件で、表12に示される下部層および/または表13に示される上部層を形成した。
Next, a normal chemical vapor deposition apparatus is used on the surfaces of the tool base α to γ and the tool base δ, and first, under the conditions shown in Table 4, (Ti 1-X Al X ) ( The present invention coated tools 16 to 30 shown in Table 13 were manufactured by vapor-depositing the C Y N 1-Y ) layer until the target layer thickness was reached.
In addition, about this invention coated tools 19-28, the lower layer shown in Table 12 and / or the upper layer shown in Table 13 were formed on the formation conditions shown in Table 3.

また、比較の目的で、同じく工具基体α〜γおよび工具基体δの表面に、通常の化学蒸着装置を用い、表5に示される条件で、比較例の(Ti1−XAl)(C1−Y)層を目標層厚で蒸着形成することにより、表14に示される比較例被覆工具16〜28を製造した。
なお、本発明被覆工具19〜28と同様に、比較例被覆工具19〜28については、表3に示される形成条件で、表12に示される下部層および/または表14に示される上部層を形成した。
Further, for the purpose of comparison, (Ti 1-X Al X ) (C) of the comparative example was similarly used on the surfaces of the tool bases α to γ and the tool base δ using the usual chemical vapor deposition apparatus under the conditions shown in Table 5. YN 1-Y ) layers were deposited at the target layer thickness to produce comparative example coated tools 16-28 shown in Table 14.
As with the present invention coated tools 19 to 28, the comparative example coated tools 19 to 28 were formed with the lower layer shown in Table 12 and / or the upper layer shown in Table 14 under the formation conditions shown in Table 3. Formed.

参考のため、工具基体βおよび工具基体γの表面に、従来の物理蒸着装置を用いて、アークイオンプレーティングにより、参考例の(Ti1−XAl)(C1−Y)層を目標層厚で蒸着形成することにより、表14に示される参考例被覆工具29,30を製造した。
なお、アークイオンプレーティングの条件は、実施例1に示される条件と同様の条件を用いた。
For reference, the (Ti 1-X Al X ) (C Y N 1-Y ) layer of the reference example is formed on the surfaces of the tool base β and the tool base γ by arc ion plating using a conventional physical vapor deposition apparatus. Were formed by vapor deposition with a target layer thickness to produce reference example coated tools 29 and 30 shown in Table 14.
In addition, the conditions similar to the conditions shown in Example 1 were used for the conditions of arc ion plating.

また、本発明被覆工具16〜30、比較例被覆工具16〜28および参考例被覆工具29、30の各構成層の断面を、走査電子顕微鏡を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めたところ、いずれも表13および表14に示される目標平均層厚と実質的に同じ平均層厚を示した。
ついで、前記の本発明被覆工具16〜30の硬質被覆層について、硬質被覆層の平均Al含有割合Xavg、平均C含有割合Yavg、XRDにおける立方晶構造の{200}によるピーク強度Ic{200}と六方晶構造の{200}によるピーク強度Ih{200}とのピーク強度比Ic{200}/Ih{200}、基体表面の法線方向に対する{100}面の法線がなす傾斜角0〜12度の範囲内に存在する度数の割合(α)および観察画像面全体に対するマーキングされたファセットの面積全体の面積割合(β)を求めた。さらに、硬質被覆層の結晶構造について、実施例1に示される方法と同様の方法を用い測定した。
表13に、その結果を示す。
Moreover, the cross section of each component layer of this invention coated tool 16-30, comparative example coated tool 16-28, and reference example coated tool 29,30 is measured using a scanning electron microscope, and five layers in an observation visual field When the thickness was measured and averaged to determine the average layer thickness, both showed the same average layer thickness as the target average layer thickness shown in Table 13 and Table 14.
Next, with respect to the hard coating layers of the above-described coated tools 16 to 30 of the present invention, the average Al content ratio X avg , the average C content ratio Y avg of the hard coating layer, and the peak intensity Ic {200 due to {200} of the cubic structure in XRD. } And the peak intensity ratio Ic {200} / Ih {200} between the peak intensity Ih {200} due to {200} of the hexagonal crystal structure, and the inclination angle 0 formed by the normal of the {100} plane with respect to the normal direction of the substrate surface The ratio (α) of the frequency existing in the range of ˜12 degrees and the area ratio (β) of the entire area of the marked facet with respect to the entire observation image plane were obtained. Furthermore, the crystal structure of the hard coating layer was measured using the same method as shown in Example 1.
Table 13 shows the results.

ついで、比較例被覆工具16〜28および参考例被覆工具29、30のそれぞれについても、本発明被覆工具16〜30と同様にして、硬質被覆層の平均Al含有割合Xavg、平均C含有割合Yavg、XRDにおける立方晶構造の{200}によるピーク強度Ic{200}と六方晶構造の{200}によるピーク強度Ih{200}とのピーク強度比Ic{200}/Ih{200}、基体表面の法線方向に対する{100}面の法線がなす傾斜角0〜12度の範囲内に存在する度数の割合(α)および観察画像面全体に対するマーキングされたファセットの面積全体の面積割合(β)を求めた。さらに、硬質被覆層の結晶構造について、実施例1に示される方法と同様の方法を用い測定した。
表14に、その結果を示す。
Then, the average Al content ratio X avg and the average C content ratio Y of the hard coating layer were also applied to each of the comparative coated tools 16 to 28 and the reference coated tools 29 and 30 in the same manner as the coated tools 16 to 30 of the present invention. avg , a peak intensity ratio Ic {200} / Ih {200} between a peak intensity Ic {200} due to {200} of a cubic structure in XRD and a peak intensity Ih {200} due to {200} in a hexagonal structure, The ratio (α) of the power existing within the inclination angle of 0 to 12 degrees formed by the normal of the {100} plane with respect to the normal direction of the image and the area ratio of the entire area of the marked facet to the entire observation image plane (β ) Furthermore, the crystal structure of the hard coating layer was measured using the same method as shown in Example 1.
Table 14 shows the results.






つぎに、前記各種の被覆工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆工具16〜30、比較例被覆工具16〜28および参考例被覆工具29、30について、以下に示す、炭素鋼の乾式高速断続切削試験、鋳鉄の湿式高速断続切削試験を実施し、いずれも切刃の逃げ面摩耗幅を測定した。
切削条件1:
被削材:JIS・SCM435の長さ方向等間隔4本縦溝入り丸棒、
切削速度:380m/min、
切り込み:1.0mm、
送り:0.2mm/rev、
切削時間:5分、
(通常の切削速度は、220m/min)、
切削条件2:
被削材:JIS・FCD700の長さ方向等間隔4本縦溝入り丸棒、
切削速度:310m/min、
切り込み:1.0mm、
送り:0.2mm/rev、
切削時間:5分、
(通常の切削速度は、180m/min)、
表15に、前記切削試験の結果を示す。
Next, the coated tools 16 to 30 of the present invention, the comparative coated tools 16 to 28, and the reference coated tools are used in the state where all of the various coated tools are screwed to the tip of the tool steel tool with a fixing jig. About 29 and 30, the dry high-speed intermittent cutting test of carbon steel and the wet high-speed intermittent cutting test of cast iron which were shown below were implemented, and all measured the flank wear width of the cutting edge.
Cutting condition 1:
Work material: JIS · SCM435 lengthwise equally spaced four round grooved round bars,
Cutting speed: 380 m / min,
Cutting depth: 1.0 mm,
Feed: 0.2mm / rev,
Cutting time: 5 minutes
(Normal cutting speed is 220 m / min),
Cutting condition 2:
Work material: JIS / FCD700 lengthwise equal length 4 round bar with round groove,
Cutting speed: 310 m / min,
Cutting depth: 1.0 mm,
Feed: 0.2mm / rev,
Cutting time: 5 minutes
(Normal cutting speed is 180 m / min),
Table 15 shows the results of the cutting test.


原料粉末として、いずれも0.5〜4μmの範囲内の平均粒径を有するcBN粉末、TiN粉末、TiCN粉末、TiC粉末、Al粉末、Al粉末を用意し、これら原料粉末を表16に示される配合組成に配合し、ボールミルで80時間湿式混合し、乾燥した後、120MPaの圧力で直径:50mm×厚さ:1.5mmの寸法をもった圧粉体にプレス成形し、ついでこの圧粉体を、圧力:1Paの真空雰囲気中、900〜1300℃の範囲内の所定温度に60分間保持の条件で焼結して切刃片用予備焼結体とし、この予備焼結体を、別途用意した、Co:8質量%、WC:残りの組成、並びに直径:50mm×厚さ:2mmの寸法をもったWC基超硬合金製支持片と重ね合わせた状態で、通常の超高圧焼結装置に装入し、通常の条件である圧力:4GPa、温度:1200〜1400℃の範囲内の所定温度に保持時間:0.8時間の条件で超高圧焼結し、焼結後上下面をダイヤモンド砥石を用いて研磨し、ワイヤー放電加工装置にて所定の寸法に分割し、さらにCo:5質量%、TaC:5質量%、WC:残りの組成およびJIS規格CNGA120412の形状(厚さ:4.76mm×内接円直径:12.7mmの80°菱形)をもったWC基超硬合金製インサート本体のろう付け部(コーナー部)に、質量%で、Zr:37.5%、Cu:25%、Ti:残りからなる組成を有するTi−Zr−Cu合金のろう材を用いてろう付けし、所定寸法に外周加工した後、切刃部に幅:0.13mm、角度:25°のホーニング加工を施し、さらに仕上げ研摩を施すことによりISO規格CNGA120412のインサート形状をもった工具基体イ〜ニをそれぞれ製造した。 As the raw material powder, cBN powder, TiN powder, TiCN powder, TiC powder, Al powder, and Al 2 O 3 powder each having an average particle diameter in the range of 0.5 to 4 μm are prepared. The mixture is blended in the composition shown in FIG. 1, wet mixed with a ball mill for 80 hours, dried, and then pressed into a green compact having a diameter of 50 mm × thickness: 1.5 mm under a pressure of 120 MPa. The green compact is sintered in a vacuum atmosphere at a pressure of 1 Pa at a predetermined temperature within a range of 900 to 1300 ° C. for 60 minutes to obtain a presintered body for a cutting edge piece. In addition, Co: 8% by mass, WC: remaining composition, and diameter: 50 mm × thickness: 2 mm, superposed on a WC-based cemented carbide support piece with a normal super-high pressure Insert into the sintering machine, normal conditions A certain pressure: 4 GPa, temperature: 1200 ° C. to 1400 ° C. within a predetermined temperature, holding time: 0.8 hour sintering, and after sintering, the upper and lower surfaces are polished with a diamond grindstone, and wire discharge It is divided into predetermined dimensions by a processing apparatus, and further Co: 5 mass%, TaC: 5 mass%, WC: remaining composition and shape of JIS standard CNGA12041 (thickness: 4.76 mm × inscribed circle diameter: 12. The brazing part (corner part) of the WC-based cemented carbide insert body having a 7 mm 80 ° rhombus) has a composition consisting of Zr: 37.5%, Cu: 25%, Ti: the rest in mass%. After brazing using a brazing material of Ti-Zr-Cu alloy and having a predetermined dimension, the cutting edge is subjected to honing with a width of 0.13 mm and an angle of 25 °, followed by finishing polishing. ISO regulations The tool substrate (a) to (k) two having the insert shape of CNGA120412 were produced, respectively.


つぎに、これらの工具基体イ〜ニの表面に、通常の化学蒸着装置を用い、表3に示される条件で、本発明の(Ti1−XAl)(C1−Y)層を目標層厚で蒸着形成することにより、表18に示される本発明被覆工具31〜40を製造した。なお、本発明被覆工具34〜38については、表3に示される形成条件で、表17に示される下部層および/または表18に示される上部層を形成した。 Then, these tool substrate i ~ the surface of the two, using a conventional chemical vapor deposition apparatus under the conditions shown in Table 3, (Ti 1-X Al X) of the present invention (C Y N 1-Y) layer The present invention coated tools 31 to 40 shown in Table 18 were manufactured by vapor deposition with a target layer thickness. In addition, about this invention coated tools 34-38, the lower layer shown in Table 17 and / or the upper layer shown in Table 18 were formed on the formation conditions shown in Table 3.

また、比較の目的で、同じく工具基体イ〜ニの表面に、通常の化学蒸着装置を用い表4に示される条件で、比較例の(Ti1−XAl)(C1−Y)層を目標層厚で蒸着形成することにより、表19に示される比較例被覆工具31〜39を製造した。 Further, for the purpose of comparison, (Ti 1-X Al X ) (C Y N 1-Y ) of the comparative example was similarly formed on the surfaces of the tool bases a to d under the conditions shown in Table 4 using a normal chemical vapor deposition apparatus. The comparative example coated tools 31-39 shown in Table 19 were manufactured by vapor-depositing layers with the target layer thickness.

参考のため、工具基体イの表面に、従来の物理蒸着装置を用いて、アークイオンプレーティングにより、参考例の(Ti1−XAl)(C1−Y)層を目標層厚で蒸着形成することにより、表19に示される参考例被覆工具40を製造した。
なお、アークイオンプレーティングの条件は、実施例1に示される条件と同様の条件を用い、前記工具基体の表面に、表19に示される目標平均組成、目標平均層厚の(Ti1−XAl)(C1−Y)層を蒸着形成し、参考例被覆工具40を製造した。
For reference, the (Ti 1-X Al X ) (C Y N 1-Y ) layer of the reference example is formed on the surface of the tool base A by a conventional physical vapor deposition device and arc ion plating with a target layer thickness. The reference example-coated tool 40 shown in Table 19 was manufactured by vapor deposition.
The arc ion plating conditions are the same as the conditions shown in Example 1, and the target average composition and target average layer thickness (Ti 1-X shown in Table 19) are formed on the surface of the tool base. An Al X ) (C Y N 1-Y ) layer was formed by vapor deposition to produce a reference example-coated tool 40.

また、本発明被覆工具31〜40、比較例被覆工具31〜39および参考例被覆工具40の各構成層の断面を、走査電子顕微鏡を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めたところ、いずれも表18および表19に示される目標平均層厚と実質的に同じ平均層厚を示した。
ついで、前記の本発明被覆工具31〜40の硬質被覆層について、硬質被覆層の平均Al含有割合Xavg、平均C含有割合Yavg、XRDにおける立方晶構造の{200}によるピーク強度Ic{200}と六方晶構造の{200}によるピーク強度Ih{200}とのピーク強度比Ic{200}/Ih{200}、基体表面の法線方向に対する{100}面の法線がなす傾斜角0〜12度の範囲内に存在する度数の割合(α)ならびに観察画像面全体に対するマーキングされたファセットの面積全体の面積割合(β)を求めた。さらに、硬質被覆層の結晶構造について、実施例1に示される方法と同様の方法を用い測定した。
表18に、その結果を示す。
Moreover, the cross section of each component layer of this invention coated tool 31-40, comparative example coated tool 31-39, and reference example coated tool 40 is measured using a scanning electron microscope, and the layer thickness of five points in an observation visual field is measured. When measured and averaged to determine the average layer thickness, both showed the average layer thickness substantially the same as the target average layer thickness shown in Table 18 and Table 19.
Next, with respect to the hard coating layers of the above-described coated tools 31 to 40 of the present invention, the average Al content ratio X avg , the average C content ratio Y avg of the hard coating layer, and the peak intensity Ic {200 due to {200} of the cubic structure in XRD. } And the peak intensity ratio Ic {200} / Ih {200} between the peak intensity Ih {200} due to {200} of the hexagonal crystal structure, and the inclination angle 0 formed by the normal of the {100} plane with respect to the normal direction of the substrate surface The ratio (α) of the frequency existing in the range of ˜12 degrees and the area ratio (β) of the entire area of the marked facet with respect to the entire observation image plane were obtained. Furthermore, the crystal structure of the hard coating layer was measured using the same method as shown in Example 1.
Table 18 shows the results.

ついで、比較例被覆工具31〜39および参考例被覆工具40のそれぞれについても、本発明被覆工具31〜40と同様にして、硬質被覆層の平均Al含有割合Xavg、平均C含有割合Yavg、XRDにおける立方晶構造の{200}によるピーク強度Ic{200}と六方晶構造の{200}によるピーク強度Ih{200}とのピーク強度比Ic{200}/Ih{200}、基体表面の法線方向に対する{100}面の法線がなす傾斜角0〜12度の範囲内に存在する度数の割合(α)ならびに観察画像面全体に対するマーキングされたファセットの面積全体の面積割合(β)を求めた。さらに、硬質被覆層の結晶構造について、実施例1に示される方法と同様の方法を用い測定した。
表19に、その結果を示す。
Next, for each of the comparative example coated tools 31 to 39 and the reference example coated tool 40, the average Al content ratio X avg , the average C content ratio Y avg of the hard coating layer is the same as in the present invention coated tools 31 to 40. The peak intensity ratio Ic {200} / Ih {200} between the peak intensity Ic {200} due to {200} in the cubic structure and the peak intensity Ih {200} due to {200} in the hexagonal structure in XRD, the method of the substrate surface The ratio (α) of the frequency existing in the range of the inclination angle of 0 to 12 degrees formed by the normal of the {100} plane with respect to the line direction and the area ratio (β) of the entire area of the marked facet to the entire observation image plane Asked. Furthermore, the crystal structure of the hard coating layer was measured using the same method as shown in Example 1.
Table 19 shows the results.




つぎに、前記の各種の被覆工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆工具31〜40、比較例被覆工具31〜39および参考例被覆工具40について、以下に示す、浸炭焼入れ合金鋼の乾式高速断続切削加工試験を実施し、切刃の逃げ面摩耗幅を測定した。
被削材: JIS・SCr420(硬さ:HRC60)の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 235m/min、
切り込み: 0.12mm、
送り: 0.1mm/rev、
切削時間: 5分、
表20に、前記切削試験の結果を示す。
Next, in the state where each of the above various coated tools is screwed to the tip of the tool steel tool with a fixing jig, the present coated tools 31 to 40, the comparative coated tools 31 to 39, and the reference coated samples About the tool 40, the dry high-speed intermittent cutting test of the carburizing hardening alloy steel shown below was implemented, and the flank wear width of the cutting edge was measured.
Work material: JIS · SCr420 (Hardness: HRC60) lengthwise equidistant 4 round bars with longitudinal grooves,
Cutting speed: 235 m / min,
Cutting depth: 0.12mm,
Feed: 0.1mm / rev,
Cutting time: 5 minutes
Table 20 shows the results of the cutting test.


表7〜9、表13〜15および表18〜20に示される結果から、本発明被覆工具1〜40は、立方晶構造の(Ti1−XAl)(C1−Y)層が成膜され、傾斜角度数分布全体に占めるαの値が45%以上、{100}面配向している結晶粒の{100}で表される等価な結晶面で形成された90度未満の角度を有さない多角形状を有するファセットの表面全体を100%とした時の面積割合が50%以上であることから、ステンレス鋼などの高速断続切削加工ですぐれた耐チッピング性、耐摩耗性を発揮する。
これに対して、比較例被覆工具1〜13,16〜28、31〜39、参考例被覆工具9,10,14、15、40については、いずれも、硬質被覆層にチッピング、欠損、剥離等の異常損傷が発生するばかりか、比較的短時間で使用寿命に至ることが明らかである。
From the results shown in Tables 7 to 9, Tables 13 to 15, and Tables 18 to 20, the coated tools 1 to 40 of the present invention are (Ti 1-X Al X ) (C Y N 1-Y ) layers having a cubic structure. Is formed, and the value of α in the entire distribution of the number of tilt angles is 45% or more and less than 90 degrees formed by an equivalent crystal plane represented by {100} of {100} -oriented crystal grains. Since the area ratio when the entire surface of the facet having a polygonal shape without an angle is 100% is 50% or more, it has excellent chipping resistance and wear resistance in high-speed intermittent cutting processing such as stainless steel. Demonstrate.
On the other hand, all of the comparative example coated tools 1 to 13, 16 to 28, 31 to 39 and the reference example coated tools 9, 10, 14, 15, and 40 are chipped, chipped, peeled, etc. on the hard coating layer. It is clear that not only abnormal damage occurs, but also the service life is reached in a relatively short time.

前述のように、本発明の被覆工具は、ステンレス鋼、炭素鋼、鋳鉄などの高速断続切削加工ばかりでなく、各種の被削材の被覆工具として用いることができ、しかも、長期の使用に亘ってすぐれた耐チッピング性、耐摩耗性を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention can be used not only for high-speed intermittent cutting of stainless steel, carbon steel, cast iron, etc., but also as a coated tool for various work materials. Since it exhibits excellent chipping resistance and wear resistance, it can satisfactorily respond to higher performance of cutting equipment, labor saving and energy saving of cutting, and cost reduction.

Claims (8)

炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体の表面に硬質被覆層を設けた表面被覆切削工具において、
前記硬質被覆層は、化学蒸着法により成膜された平均層厚1〜20μmのTiとAlの複合窒化物または複合炭窒化物層を少なくとも含み、組成式:(Ti1−XAl)(C1−Y)で表した場合、AlのTiとAlの合量に占める平均含有割合XavgおよびCのCとNの合量に占める平均含有割合Yavg(但し、Xavg、Yavgはいずれも原子比)が、それぞれ、0.60≦Xavg≦0.95、0≦Yavg≦0.005を満足し、
前記複合窒化物または複合炭窒化物層は、NaCl型の面心立方構造を有するTiとAlの複合窒化物または複合炭窒化物の相を少なくとも含み、
前記複合窒化物または複合炭窒化物層について、電子線後方散乱回折装置を用いて個々の結晶粒の結晶方位を、上記TiとAlの複合窒化物または複合炭窒化物層の縦断面方向から解析した場合、立方晶結晶格子の電子後方散乱回折像が観測される立方晶結晶相が存在し、電子線後方散乱回折装置を用いて、複合窒化物または複合炭窒化物層内の立方晶構造を有する個々の結晶粒の結晶方位を、前記TiとAlの複合窒化物または複合炭窒化物層の縦断面方向から解析した場合、工具基体表面の法線方向に対する前記結晶粒の結晶面である{100}面の法線がなす傾斜角を測定し該傾斜角のうち法線方向に対して0〜45度の範囲内にある傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計し、傾斜角度数分布を求めたとき、0〜12度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜12度の範囲内に存在する度数の合計が、前記傾斜角度数分布における度数全体の45%以上の割合を示し、
また、前記複合窒化物または複合炭窒化物層の表面側から走査電子顕微鏡で該層の組織観察をした場合に、前記複合窒化物または複合炭窒化物層内の立方晶構造を有する個々の結晶粒が層厚方向に垂直な面内で90度未満の角度を有さない多角形状のファセットを有し該ファセットが前記結晶粒の{100}で表される等価な結晶面のうちの一つに形成され該ファセットが前記層厚方向に垂直な面内において全体の50%以上の面積割合を占めることを特徴とする表面被覆切削工具。
In a surface-coated cutting tool in which a hard coating layer is provided on the surface of a tool base composed of tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, or cubic boron nitride-based ultrahigh-pressure sintered body,
The hard coating layer includes at least a composite nitride or composite carbonitride layer of Ti and Al having an average layer thickness of 1 to 20 μm formed by chemical vapor deposition, and has a composition formula: (Ti 1-X Al X ) ( C Y N 1-Y ), the average content ratio X avg in the total amount of Ti and Al in Al and the average content ratio Y avg in the total amount of C and N in C (where X avg , Y avg is an atomic ratio) satisfying 0.60 ≦ X avg ≦ 0.95 and 0 ≦ Y avg ≦ 0.005, respectively.
The composite nitride or composite carbonitride layer includes at least a Ti and Al composite nitride or composite carbonitride phase having a NaCl-type face-centered cubic structure,
For the composite nitride or composite carbonitride layer, the crystal orientation of each crystal grain is analyzed from the longitudinal cross-sectional direction of the Ti and Al composite nitride or composite carbonitride layer using an electron beam backscattering diffractometer. In this case, there is a cubic crystal phase in which an electron backscatter diffraction image of the cubic crystal lattice is observed, and an electron beam backscatter diffractometer is used to change the cubic structure in the composite nitride or composite carbonitride layer. When the crystal orientation of the individual crystal grains is analyzed from the longitudinal cross-sectional direction of the Ti and Al composite nitride or composite carbonitride layer, it is the crystal plane of the crystal grains with respect to the normal direction of the tool base surface { Inclination angle formed by the normal line of the 100} plane is measured, and the inclination angle within the range of 0 to 45 degrees with respect to the normal direction is divided for each 0.25 degree pitch. Count the frequencies present in the When the highest peak exists in the inclination angle section within the range of 0 to 12 degrees, the total of the frequencies existing within the range of 0 to 12 degrees is 45% or more of the entire frequencies in the inclination angle frequency distribution. Show the percentage,
Further, when the structure of the composite nitride or composite carbonitride layer is observed with a scanning electron microscope from the surface side, the individual crystals having a cubic structure in the composite nitride or composite carbonitride layer One of the equivalent crystal faces represented by {100} of the crystal grains, wherein the grains have polygonal facets that do not have an angle of less than 90 degrees in a plane perpendicular to the layer thickness direction. A surface-coated cutting tool characterized in that the facet occupies an area ratio of 50% or more of the whole in a plane perpendicular to the layer thickness direction.
前記複合窒化物または複合炭窒化物層は、NaCl型の面心立方構造を有するTiとAlの複合窒化物または複合炭窒化物の単相からなることを特徴とする請求項1に記載の表面被覆切削工具。 2. The surface according to claim 1, wherein the composite nitride or composite carbonitride layer is composed of a single phase of Ti and Al composite nitride or composite carbonitride having a NaCl-type face-centered cubic structure. Coated cutting tool. 前記複合窒化物または複合炭窒化物層は、2種以上の複数の相が共存する混合相からなり、該混合相は、NaCl型の面心立方構造を有するTiとAlの複合窒化物または複合炭窒化物の相を少なくとも含み、混合相に共存するその他の各相はTiとAlから選ばれる少なくとも1種の元素と、CとNから選ばれる少なくとも一種の元素からなる化合物からなることを特徴とする請求項1に記載の表面被覆切削工具。 The composite nitride or composite carbonitride layer is composed of a mixed phase in which two or more kinds of phases coexist, and the mixed phase is a composite nitride or composite of Ti and Al having an NaCl type face-centered cubic structure. Each of the other phases coexisting in the mixed phase including at least a carbonitride phase is composed of a compound composed of at least one element selected from Ti and Al and at least one element selected from C and N. The surface-coated cutting tool according to claim 1. 前記複合窒化物または複合炭窒化物層についてX線回折による結晶構造解析を行った場合、立方晶構造に由来するピークと六方晶に由来するピークとが観察され、立方晶構造の{200}によるピーク強度Ic{200}と六方晶構造の{200}によるピーク強度Ih{200}とのピーク強度比Ic{200}/Ih{200}が3.0より大きいことを特徴とする請求項1または3に記載の表面被覆切削工具。   When a crystal structure analysis by X-ray diffraction is performed on the composite nitride or the composite carbonitride layer, a peak derived from a cubic structure and a peak derived from a hexagonal crystal are observed, and the cubic structure is {200} The peak intensity ratio Ic {200} / Ih {200} between the peak intensity Ic {200} and the peak intensity Ih {200} due to {200} having a hexagonal structure is greater than 3.0. 3. The surface-coated cutting tool according to 3. 前記複合窒化物または複合炭窒化物層は、立方晶構造を有する上部層と六方晶構造を有する下部層から構成され、前記下部層の平均層厚が0.3〜1.0μmであり、結晶粒の平均粒径Rが0.01〜0.30μmであることを特徴とする請求項1、3または4のいずれか一項に記載の表面被覆切削工具。   The composite nitride or composite carbonitride layer is composed of an upper layer having a cubic structure and a lower layer having a hexagonal structure, and the average layer thickness of the lower layer is 0.3 to 1.0 μm, 5. The surface-coated cutting tool according to claim 1, wherein the average particle diameter R of the grains is 0.01 to 0.30 μm. 前記炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体と前記TiとAlの複合窒化物または複合炭窒化物層の間に、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、かつ、0.1〜20μmの合計平均層厚を有するTi化合物層が存在することを特徴とする請求項1乃至5のいずれか一項に記載の表面被覆切削工具。   Between a tool base composed of any one of the tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, or cubic boron nitride-based ultrahigh pressure sintered body, and the Ti / Al composite nitride or composite carbonitride layer. And consisting of one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride layer, and a total average layer thickness of 0.1 to 20 μm. The surface-coated cutting tool according to any one of claims 1 to 5, wherein a Ti compound layer is present. 前記複合窒化物または複合炭窒化物層の上部に、少なくとも1〜25μmの平均層厚を有する酸化アルミニウム層を含む上部層が存在することを特徴とする請求項1乃至6のいずれか一項に記載の表面被覆切削工具。   7. The upper layer including an aluminum oxide layer having an average layer thickness of at least 1 to 25 μm exists above the composite nitride or composite carbonitride layer. The surface-coated cutting tool described. 前記複合窒化物または複合炭窒化物層は、少なくとも、トリメチルアルミニウムを反応ガス成分として含有する化学蒸着法により成膜されたものであることを特徴とする請求項1乃至7のいずれか一項に記載の表面被覆切削工具。   The composite nitride or composite carbonitride layer is formed by a chemical vapor deposition method containing at least trimethylaluminum as a reaction gas component, according to any one of claims 1 to 7. The surface-coated cutting tool described.
JP2015009265A 2014-01-29 2015-01-21 A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting Active JP6391045B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015009265A JP6391045B2 (en) 2014-01-29 2015-01-21 A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
CN201510044883.0A CN104801941A (en) 2014-01-29 2015-01-29 Surface coating cutting tool

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014014015 2014-01-29
JP2014014015 2014-01-29
JP2015009265A JP6391045B2 (en) 2014-01-29 2015-01-21 A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting

Publications (2)

Publication Number Publication Date
JP2015163424A JP2015163424A (en) 2015-09-10
JP6391045B2 true JP6391045B2 (en) 2018-09-19

Family

ID=54186597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015009265A Active JP6391045B2 (en) 2014-01-29 2015-01-21 A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting

Country Status (1)

Country Link
JP (1) JP6391045B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6931452B2 (en) * 2015-10-30 2021-09-08 三菱マテリアル株式会社 Surface coating cutting tool with excellent wear resistance and chipping resistance for the hard coating layer
EP3382058A4 (en) * 2015-11-25 2019-07-03 Mitsubishi Hitachi Tool Engineering, Ltd. Titanium aluminum nitride hard film, hard film coated tool, method for producing titanium aluminum nitride hard film, and method for producing hard film coated tool
JP6578935B2 (en) * 2015-12-24 2019-09-25 三菱マテリアル株式会社 Surface coated cutting tool with excellent chipping and wear resistance with excellent hard coating layer
JP6037255B1 (en) * 2016-04-08 2016-12-07 住友電工ハードメタル株式会社 Surface-coated cutting tool and manufacturing method thereof
EP3572172B1 (en) 2017-01-18 2022-06-22 Mitsubishi Materials Corporation Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance and wear resistance
JP7098932B2 (en) 2017-01-18 2022-07-12 三菱マテリアル株式会社 Surface coating cutting tool with excellent chipping resistance and wear resistance with a hard coating layer
JP6780514B2 (en) * 2017-01-19 2020-11-04 株式会社Moldino Hard film, hard film coating tool, and their manufacturing method
JP6858346B2 (en) * 2017-06-26 2021-04-14 三菱マテリアル株式会社 Surface coating cutting tool with excellent chipping resistance due to the hard coating layer
KR102534906B1 (en) * 2018-12-27 2023-05-26 니테라 컴퍼니 리미티드 surface coating cutting tools
WO2020166683A1 (en) * 2019-02-14 2020-08-20 三菱マテリアル株式会社 Surface-coated cutting tool
JP7453613B2 (en) 2019-02-14 2024-03-21 三菱マテリアル株式会社 surface coated cutting tools

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5207109B2 (en) * 2007-08-31 2013-06-12 三菱マテリアル株式会社 Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
DE102008013965A1 (en) * 2008-03-12 2009-09-17 Kennametal Inc. Hard material coated body
US8440328B2 (en) * 2011-03-18 2013-05-14 Kennametal Inc. Coating for improved wear resistance
JP5838769B2 (en) * 2011-12-01 2016-01-06 三菱マテリアル株式会社 Surface coated cutting tool
JP6024981B2 (en) * 2012-03-09 2016-11-16 三菱マテリアル株式会社 A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP5946017B2 (en) * 2012-05-30 2016-07-05 三菱マテリアル株式会社 A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting

Also Published As

Publication number Publication date
JP2015163424A (en) 2015-09-10

Similar Documents

Publication Publication Date Title
JP6394898B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP5924507B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6391045B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6478100B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6268530B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6402662B2 (en) Surface-coated cutting tool and manufacturing method thereof
JP5939508B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6024981B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6090063B2 (en) Surface coated cutting tool
JP6037113B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP5946017B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6417959B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6150109B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6296294B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5939509B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6548073B2 (en) Surface coated cutting tool exhibiting excellent chipping resistance with hard coating layer
JP6284034B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP2016068252A (en) Surface coated cutting tool excellent in chipping resistance
JP6296298B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5946016B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6171800B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6726403B2 (en) Surface-coated cutting tool with excellent hard coating layer and chipping resistance
WO2017038840A1 (en) Surface-coated cutting tool having rigid coating layer exhibiting excellent chipping resistance
JP2007168029A (en) Surface coated cermet-made cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed cutting material hard to cut

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180730

R150 Certificate of patent or registration of utility model

Ref document number: 6391045

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180812