JP5939508B2 - A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting - Google Patents

A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting Download PDF

Info

Publication number
JP5939508B2
JP5939508B2 JP2012164443A JP2012164443A JP5939508B2 JP 5939508 B2 JP5939508 B2 JP 5939508B2 JP 2012164443 A JP2012164443 A JP 2012164443A JP 2012164443 A JP2012164443 A JP 2012164443A JP 5939508 B2 JP5939508 B2 JP 5939508B2
Authority
JP
Japan
Prior art keywords
coating layer
layer
crystal
hard coating
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012164443A
Other languages
Japanese (ja)
Other versions
JP2014024130A (en
Inventor
翔 龍岡
翔 龍岡
五十嵐 誠
誠 五十嵐
直之 岩崎
直之 岩崎
健志 山口
健志 山口
長田 晃
晃 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2012164443A priority Critical patent/JP5939508B2/en
Priority to CN201310295763.9A priority patent/CN103572250B/en
Publication of JP2014024130A publication Critical patent/JP2014024130A/en
Application granted granted Critical
Publication of JP5939508B2 publication Critical patent/JP5939508B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

この発明は、合金鋼等の高熱発生を伴うとともに、切刃に対して衝撃的な負荷が作用する高速断続切削加工で、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   The present invention is a surface-coated cutting tool that exhibits high chipping resistance with a hard coating layer in high-speed intermittent cutting with high heat generation of alloy steel and the like, and an impact load acting on the cutting edge (hereinafter referred to as “chip coating”). , Referred to as a coated tool).

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金、炭窒化チタン(以下、TiCNで示す)基サーメットあるいは立方晶窒化ホウ素(以下、cBNで示す)基超高圧焼結体で構成された基体(以下、これらを総称して基体という)の表面に、硬質被覆層として、Ti−Al系の複合窒化物層を物理蒸着法により被覆形成した被覆工具が知られており、これらは、すぐれた耐摩耗性を発揮することが知られている。
ただ、上記従来のTi−Al系の複合窒化物層を被覆形成した被覆工具は、比較的耐摩耗性に優れるものの、高速断続切削条件で用いた場合にチッピング等の異常損耗を発生しやすいことから、硬質被覆層の改善についての種々の提案がなされている。
Conventionally, generally composed of tungsten carbide (hereinafter referred to as WC) based cemented carbide, titanium carbonitride (hereinafter referred to as TiCN) based cermet or cubic boron nitride (hereinafter referred to as cBN) based ultra high pressure sintered body There is known a coated tool in which a Ti—Al based composite nitride layer is formed by physical vapor deposition on a surface of a substrate (hereinafter collectively referred to as a substrate) as a hard coating layer. It is known that it exhibits excellent wear resistance.
However, although the above-mentioned conventional coated tool coated with a Ti-Al based composite nitride layer is relatively excellent in wear resistance, it tends to cause abnormal wear such as chipping when used under high-speed intermittent cutting conditions. Therefore, various proposals for improving the hard coating layer have been made.

例えば、特許文献1には、基体表面に、組成式(Ti1−XAl)N(ただし、原子比で、Xは0.40〜0.60)を満足する複合窒化物層であって、該層についてEBSDによる結晶方位解析を行った場合、表面研磨面の法線方向から0〜15度の範囲内に結晶方位<100>を有する結晶粒の面積割合が50%以上、また、表面研磨面の法線と直交する任意の方位に対して0〜45度の範囲内に存在する最高ピークを中心とした15度の範囲内に結晶方位<100>を有する結晶粒の面積割合が50%以上であるような、2軸結晶配向性を示すTiとAlの複合窒化物層からなる硬質被覆層を被覆した被覆工具が提案されており、この被覆工具は、重切削加工ですぐれた耐欠損性を発揮するとされている。 For example, Patent Document 1 discloses a composite nitride layer satisfying the composition formula (Ti 1-X Al X ) N (wherein X is 0.40 to 0.60 in atomic ratio) on the substrate surface. When the crystal orientation analysis by EBSD is performed on the layer, the area ratio of the crystal grains having the crystal orientation <100> in the range of 0 to 15 degrees from the normal direction of the surface polished surface is 50% or more. The area ratio of crystal grains having a crystal orientation <100> within a range of 15 degrees centered on the highest peak existing within a range of 0 to 45 degrees with respect to an arbitrary orientation orthogonal to the normal line of the polished surface is 50. %, A coated tool coated with a hard coating layer composed of a composite nitride layer of Ti and Al showing biaxial crystal orientation has been proposed. This coated tool has excellent resistance to heavy cutting. It is said to exhibit deficiency.

また、特許文献2には、基体表面に、バイポーラパルスバイアスを印加し、750〜850℃の成膜温度で蒸着することにより、表面研磨面の法線に対して、{100}面の法線がなす傾斜角を測定して作成した傾斜角度数分布グラフにおいて、30〜40度の傾斜角区分に最高ピークが存在し、その度数合計が、全体の60%以上であり、また、表面研磨面の法線に対して、{112}面の法線がなす傾斜角を測定して作成した構成原子共有格子点分布グラフにおいて、Σ3に最高ピークが存在し、その分布割合が全体の50%以上である(Ti1−XAl)N(X=0.4〜0.6)層からなる硬質被覆層を備えた被覆工具が提案されており、この被覆工具は、重切削加工ですぐれた耐欠損性を発揮するとされている。
ただ、上記特許文献1、2に示される被覆工具は、物理蒸着法により硬質被覆層を成膜するため、Alの含有割合Xを0.6以上にはできず、より一段と切削性能を向上させることが望まれている。
Patent Document 2 discloses that a normal of the {100} plane is applied to the normal of the surface polished surface by applying a bipolar pulse bias to the surface of the substrate and depositing it at a film forming temperature of 750 to 850 ° C. In the inclination angle frequency distribution graph created by measuring the inclination angle formed by, the highest peak is present in the inclination angle section of 30 to 40 degrees, the total frequency is 60% or more of the whole, and the surface polished surface In the constituent atomic shared lattice distribution graph created by measuring the inclination angle formed by the normal of the {112} plane with respect to the normal of Σ3, the highest peak exists at Σ3, and the distribution ratio is 50% or more of the whole A coated tool having a hard coating layer composed of a (Ti 1-X Al X ) N (X = 0.4 to 0.6) layer is proposed, and this coated tool was excellent in heavy cutting. It is said to exhibit flaw resistance.
However, since the coating tools shown in Patent Documents 1 and 2 form a hard coating layer by physical vapor deposition, the Al content ratio X cannot be increased to 0.6 or more, and the cutting performance is further improved. It is hoped that.

このような観点から、化学蒸着法で硬質被覆層を形成することで、Alの含有割合Xを、0.9程度にまで高める技術も提案されている。
例えば、特許文献3には、TiCl、AlCl、NHの混合反応ガス中で、650〜900℃の温度範囲において化学蒸着を行うことにより、Alの含有割合Xの値が0.65〜0.95である(Ti1−XAl)N層を成膜できることが記載されているが、この文献では、この(Ti1−XAl)N層の上にさらにAl層を被覆し、これによって断熱効果を高めることを目的とするものであるから、Xの値を0.65〜0.95まで高めた(Ti1−XAl)N層の形成によって、切削性能へ如何なる影響があるかという点についてまでの開示はない。
From such a viewpoint, a technique for increasing the Al content ratio X to about 0.9 by forming a hard coating layer by chemical vapor deposition has also been proposed.
For example, Patent Document 3 discloses that the value of the Al content ratio X is 0.65 by performing chemical vapor deposition in a temperature range of 650 to 900 ° C. in a mixed reaction gas of TiCl 4 , AlCl 3 , and NH 3. Although it is described that a (Ti 1-X Al X ) N layer having a thickness of 0.95 can be formed, this document further describes an Al 2 O 3 layer on the (Ti 1-X Al X ) N layer. Therefore, the cutting performance is improved by forming the (Ti 1-X Al X ) N layer in which the value of X is increased from 0.65 to 0.95. There is no disclosure up to the point of how this will be affected.

例えば、特許文献4には、TiCl、AlCl、NH、Nの混合反応ガス中、700〜900℃の温度でプラズマを用いない化学蒸着を行うことにより、Alの含有割合Xの値が0.75〜0.93である立方晶の(Ti1−XAl)N層からなる硬質被覆層を成膜できることが記載されているが、特許文献3と同様、被覆工具としての適用可能性については何らの開示もない。 For example, in Patent Document 4, chemical vapor deposition without using plasma at a temperature of 700 to 900 ° C. in a mixed reaction gas of TiCl 4 , AlCl 3 , NH 3 , and N 2 H 4 , the content ratio X of Al Although it is described that a hard coating layer composed of a cubic (Ti 1-X Al X ) N layer having a value of 0.75 to 0.93 can be formed, as in Patent Document 3, There is no disclosure about the applicability of.

また、特許文献5には、膜の密着性、膜硬度の向上を目的として、被覆層の少なくとも一層を窒化チタンアルミニウム膜(例えば、膜中のアルミニウム含有量は0.3〜60.0質量%、膜中含有塩素量は0.01〜2質量%)で構成した窒化チタンアルミニウム膜被覆工具において、該窒化チタンアルミニウム膜を、チタンのハロゲン化ガス、アルミニウムのハロゲン化ガスおよびNHガスを少なくとも原料ガスとする熱CVD法で成膜し、該窒化チタンアルミニウム膜を立方晶構造とし、また、引張り残留応力を形成し、さらに、該窒化チタンアルミニウム膜のX線回折強度は(111)面または(311)面において最大となるようにした被覆工具が提案されている。 In Patent Document 5, for the purpose of improving film adhesion and film hardness, at least one layer of the coating layer is a titanium aluminum nitride film (for example, the aluminum content in the film is 0.3 to 60.0% by mass). In this case, the titanium aluminum nitride film is coated with a titanium halide gas, an aluminum halide gas, and an NH 3 gas at least. The titanium nitride film is formed into a cubic structure and a tensile residual stress is formed by a thermal CVD method using a source gas, and the X-ray diffraction intensity of the titanium aluminum nitride film is (111) plane or A coated tool that is maximized in the (311) plane has been proposed.

特開2008−100320号公報JP 2008-100320 A 特開2008−307615号公報JP 2008-307615 A 特表2011−516722号公報Special table 2011-516722 gazette 米国特許第7767320号明細書US Pat. No. 7,767,320 特開2001−341008号公報JP 2001-341008 A

近年の切削加工における省力化および省エネ化の要求は強く、これに伴い、切削加工は一段と高速化、高効率化の傾向にあり、被覆工具には、より一層、耐チッピング性、耐欠損性、耐剥離性等の耐異常損傷性が求められるとともに、長期の使用に亘ってのすぐれた耐摩耗性が求められている。
しかし、上記特許文献1,2に記載される被覆工具は、(Ti1−XAl)N層からなる硬質被覆層が物理蒸着法で成膜され、膜中のAl含有量Xを高めることができないため、例えば、合金鋼の高速断続切削に供した場合には、耐チッピング性が十分であるとは言えない。
In recent years, there has been a strong demand for energy saving and energy saving in cutting, and along with this, cutting tends to be faster and more efficient, and the coated tool has even more chipping resistance, chipping resistance, Abnormal damage resistance such as peel resistance is required, and excellent wear resistance over long-term use is required.
However, in the coated tools described in Patent Documents 1 and 2, a hard coating layer made of a (Ti 1-X Al X ) N layer is formed by physical vapor deposition to increase the Al content X in the film. Therefore, for example, when it is subjected to high-speed intermittent cutting of alloy steel, it cannot be said that the chipping resistance is sufficient.

一方、上記特許文献3,4に記載される化学蒸着法で被覆形成した(Ti1−XAl)N層については、Al含有量Xを高めることができ、また、立方晶構造を形成させることができることから、所定の硬さを有し耐摩耗性にはすぐれた硬質被覆層が得られるものの、基体との密着強度は十分でなく、また、靭性に劣ることから、合金鋼の高速断続切削に供する被覆工具として用いた場合には、チッピング、欠損、剥離等の異常損傷が発生しやすく、満足できる切削性能を発揮するとは言えない。 On the other hand, for the (Ti 1-X Al X ) N layer formed by the chemical vapor deposition method described in Patent Documents 3 and 4, the Al content X can be increased, and a cubic structure is formed. Therefore, although a hard coating layer having a predetermined hardness and excellent wear resistance can be obtained, the adhesion strength with the substrate is not sufficient and the toughness is inferior. When used as a coated tool for cutting, abnormal damage such as chipping, chipping and peeling tends to occur, and it cannot be said that satisfactory cutting performance is exhibited.

さらに、上記特許文献5に記載される被覆工具は、これを炭素鋼の連続切削加工に用いた場合には、ある程度の密着性、耐摩耗性を示すものの、例えば、切刃に対して衝撃的な負荷が作用する合金鋼等の高速断続切削加工に用いた場合には、チッピング、欠損、剥離等の発生により、長期の使用に亘って満足できる切削性能を発揮することはできない。   Furthermore, when the coated tool described in Patent Document 5 is used for continuous cutting of carbon steel, it exhibits a certain degree of adhesion and wear resistance. When used for high-speed interrupted cutting of alloy steel or the like on which a heavy load acts, it is impossible to exhibit satisfactory cutting performance over a long period of use due to occurrence of chipping, chipping, peeling, and the like.

そこで、本発明は、合金鋼の高速断続切削等に供した場合であっても、すぐれた耐チッピング性を発揮するとともに、長期の使用に亘ってすぐれた耐摩耗性を発揮する被覆工具を提供することを目的とするものである。   Therefore, the present invention provides a coated tool that exhibits excellent chipping resistance and excellent wear resistance over a long period of use even when subjected to high-speed intermittent cutting of alloy steel, etc. It is intended to do.

本発明者等は、上述の観点から、TiとAlの複合炭窒化物(以下、「(Ti1−XAl)(C1−Y)」で示すことがある)からなる硬質被覆層を化学蒸着で被覆形成した被覆工具の耐チッピング性、耐摩耗性の改善をはかるべく、鋭意研究を重ねた結果、次のような知見を得た。 From the above-mentioned viewpoint, the present inventors have made a hard coating made of a composite carbonitride of Ti and Al (hereinafter sometimes referred to as “(Ti 1-X Al X ) (C Y N 1-Y )”). As a result of intensive studies to improve the chipping resistance and wear resistance of the coated tool formed by chemical vapor deposition, the following knowledge was obtained.

炭化タングステン基超硬合金(以下、「WC基超硬合金」で示す)、炭窒化チタン基サーメット(以下、「TiCN基サーメット」で示す)、または立方晶窒化ホウ素基超高圧焼結体(以下、「cBN基超高圧焼結体」で示す)のいずれかで構成された基体の表面に、例えば、トリメチルアルミニウム(Al(CH)を反応ガス成分として含有する熱CVD法等の化学蒸着法により、硬質被覆層として、立方晶構造の(Ti1−XAl)(C1−Y)層(但し、X、Yは原子比であって、0.55≦X≦0.95、0.0005≦Y≦0.005)を成膜するとともに、蒸着時の成膜条件を調整することにより、硬質被覆層について電子線後方散乱回折装置を用いて個々の結晶粒の結晶方位を解析した場合、基体表面の法線方向に対する結晶粒の{111}面の法線がなす傾斜角を測定して、0〜45度の範囲内にある測定傾斜角の度数を集計したとき、2〜12度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記2〜12度の範囲内に存在する度数の合計が、傾斜角度数分布における度数全体の45%以上の割合を示し、硬質被覆層の基体との密着性が向上し、すぐれた耐チッピング性を示すようになることを見出したのである。 Tungsten carbide-based cemented carbide (hereinafter referred to as “WC-based cemented carbide”), titanium carbonitride-based cermet (hereinafter referred to as “TiCN-based cermet”), or cubic boron nitride-based ultrahigh pressure sintered body (hereinafter referred to as “TiCN-based cemented carbide”) , Such as a thermal CVD method in which trimethylaluminum (Al (CH 3 ) 3 ) is contained as a reactive gas component on the surface of a substrate composed of any one of “cBN-based ultra-high pressure sintered body”. by vapor deposition, as a hard coating layer, the cubic (Ti 1-X Al X) of the structure (C Y N 1-Y) layer (where, X, Y is an atomic ratio, 0.55 ≦ X ≦ 0 .95, 0.0005 ≦ Y ≦ 0.005), and by adjusting the film forming conditions during vapor deposition, the hard coating layer is crystallized using an electron beam backscatter diffractometer. When analyzing the orientation, When the inclination angle formed by the normal of the {111} plane of the crystal grain with respect to the line direction is measured and the frequency of the measurement inclination angle within the range of 0 to 45 degrees is counted, the inclination within the range of 2 to 12 degrees The highest peak exists in the corner section, and the total frequency within the range of 2 to 12 degrees indicates a ratio of 45% or more of the entire frequency in the inclination angle frequency distribution, and the hard coating layer adheres to the substrate. It has been found that the property is improved and the chipping resistance is improved.

さらに、本発明者等は、熱CVD法等の化学蒸着法により成膜した上記(Ti1−XAl)(C1−Y)層からなる硬質被覆層について、結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定し、構成原子共有格子点分布グラフを求めた場合、基体界面側のΣN+1全体に占めるΣ3の分布割合を小さくし(20%以下とする)、一方、被覆層表面側のΣN+1全体に占めるΣ3の分布割合を大きくする(50%以上とする)ことにより、基体界面側においてΣ3の分布割合が少なく、見掛け上、結晶粒径が微細な結晶組織となるため被覆層の密着性にすぐれ、また、被覆層表面側においてはΣ3の分布割合が高くなるため高温強度にすぐれることから、硬質被覆層の密着性が向上し、また、高温強度向上が図られるために、一段と耐チッピング性が向上することを見出したのである。 Furthermore, the present inventors have described the crystal planes of crystal grains in the hard coating layer comprising the above (Ti 1-X Al X ) (C Y N 1-Y ) layer formed by chemical vapor deposition such as thermal CVD. When the inclination angle formed by the normal lines of the (001) plane and the (011) plane is measured to obtain a constituent atom shared lattice point distribution graph, the distribution ratio of Σ3 in the entire ΣN + 1 on the substrate interface side is reduced ( On the other hand, by increasing the distribution ratio of Σ3 in the entire ΣN + 1 on the surface side of the coating layer (50% or more), the distribution ratio of Σ3 is small on the substrate interface side, and apparently crystals Since the grain size is a fine crystal structure, the coating layer has excellent adhesion, and on the surface side of the coating layer, the distribution ratio of Σ3 is high and the high temperature strength is excellent, so the adhesion of the hard coating layer is improved. Also suitable for high temperature strength To is achieved, it is more of chipping resistance can be improved.

したがって、上記のような硬質被覆層を備えた被覆工具を、例えば、合金鋼の高速断続切削等に用いた場合には、チッピング、欠損、剥離等の発生が抑えられるとともに、長期の使用にわたってすぐれた耐摩耗性を発揮することができるのである。   Therefore, when the coated tool having the hard coating layer as described above is used for, for example, high-speed intermittent cutting of alloy steel, the occurrence of chipping, chipping, peeling, etc. can be suppressed, and it is excellent over a long period of use. The wear resistance can be exhibited.

この発明は、上記の研究結果に基づいてなされたものであって、
「(1) 炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された基体の表面に、平均層厚1〜20μmの層厚で硬質被覆層が被覆された表面被覆切削工具であって、
(a)上記硬質被覆層は、立方晶構造のTiとAlの複合炭窒化物層からなり、その平均組成を、
組成式:(Ti1−XAl)(C1−Y
で表した場合、Al含有割合XおよびC含有割合Y(但し、X、Yは何れも原子比)は、それぞれ、0.55≦X≦0.95、0.0005≦Y≦0.005を満足し、
(b)上記TiとAlの複合炭窒化物層について、電子線後方散乱回折装置を用いて個々の結晶粒の結晶方位を、上記TiとAlの複合炭窒化物層の縦断面方向から解析した場合、基体表面の法線方向に対する前記結晶粒の結晶面である{111}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、法線方向に対して0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計したとき、2〜12度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記2〜12度の範囲内に存在する度数の合計が、傾斜角度数分布における度数全体の45%以上の割合を示し、
(c)上記TiとAlの複合炭窒化物層について、電界放出型走査電子顕微鏡を用い、縦断面の測定範囲内に存在する結晶粒個々に電子線を照射して、基体表面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にTi、Al、炭素および窒素からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(NはNaCl型面心立方晶の結晶構造上2以上の偶数となる)存在する構成原子共有格子点形態をΣN+1で表した場合、個々のΣN+1がΣN+1全体(ただし、頻度の関係でNの上限値を28とする)に占める分布割合を示す構成原子共有格子点分布グラフにおいて、基体界面から被覆層内部に0.1〜0.5μmの範囲においてΣ3のΣN+1全体に占める分布割合が20%以下であり、また、被覆層表面から、被覆層の平均層厚の50%に相当する範囲において前記Σ3のΣN+1全体に占める分布割合が50%以上であり、かつ、Σ3に最高ピークが存在する構成原子共有格子点分布グラフを示すことを特徴とする表面被覆切削工具。
(2)上記硬質被覆層は、少なくとも、トリメチルアルミニウムを反応ガス成分として含有する化学蒸着法により成膜することを特徴とする前記(1)に記載の表面被覆切削工具の製造方法。」
に特徴を有するものである。
This invention was made based on the above research results,
“(1) Hard with an average layer thickness of 1 to 20 μm on the surface of a substrate composed of tungsten carbide-based cemented carbide, titanium carbonitride-based cermet or cubic boron nitride-based ultrahigh pressure sintered body A surface-coated cutting tool coated with a coating layer,
(A) the hard coating layer is made of a composite carbonitride layer of Ti and Al stand-cubic structure, the average composition,
Formula: (Ti 1-X Al X ) (C Y N 1-Y)
In this case, the Al content ratio X and the C content ratio Y (where X and Y are atomic ratios) satisfy 0.55 ≦ X ≦ 0.95 and 0.0005 ≦ Y ≦ 0.005, respectively. Satisfied,
(B) For the Ti and Al composite carbonitride layer, the crystal orientation of each crystal grain was analyzed from the longitudinal cross-sectional direction of the Ti and Al composite carbonitride layer using an electron beam backscattering diffractometer. In this case, the inclination angle formed by the normal line of the {111} plane, which is the crystal plane of the crystal grain, with respect to the normal direction of the substrate surface is measured, and 0 to 45 degrees with respect to the normal direction among the measurement inclination angles. When the measured inclination angle within the range is divided for each pitch of 0.25 degrees and the frequencies existing in each division are tabulated, the highest peak is present in the inclination angle division within the range of 2 to 12 degrees, The sum of the frequencies existing within the range of 2 to 12 degrees indicates a ratio of 45% or more of the entire frequencies in the inclination angle frequency distribution,
(C) About the composite carbonitride layer of Ti and Al, using a field emission scanning electron microscope, irradiate each crystal grain existing in the measurement range of the longitudinal section with an electron beam to obtain a normal to the substrate surface. On the other hand, the inclination angle formed by the normal lines of the (001) plane and (011) plane which are crystal planes of the crystal grains is measured. In this case, the crystal grains are composed of Ti, Al, carbon and nitrogen at lattice points. Each of the constituent atoms has a crystal structure of an NaCl type face centered cubic crystal in which each constituent atom exists, and at the interface between adjacent crystal grains based on the measurement tilt angle obtained as a result. The distribution of lattice points (constituent atom shared lattice points) that share one constituent atom between each other is calculated, and N lattice points that do not share constituent atoms between the constituent atom shared lattice points (N is a NaCl type face center) Due to the cubic crystal structure, it will be an even number of 2 or more) In the constituent atom shared lattice point distribution graph showing the distribution ratio of each ΣN + 1 in the whole ΣN + 1 (however, the upper limit value of N is 28 in relation to the frequency) In the range of 0.1 to 0.5 μm from the substrate interface to the inside of the coating layer, the distribution ratio of Σ3 to the entire ΣN + 1 is 20% or less, and from the coating layer surface to 50% of the average thickness of the coating layer A surface-coated cutting tool characterized by showing a constituent atomic shared lattice point distribution graph in which the distribution ratio of Σ3 to the entire ΣN + 1 in the corresponding range is 50% or more and the highest peak exists in Σ3.
(2) the hard coating layer, at least, the manufacturing method of the surface-coated cutting tool according to (1), characterized in that the deposition by chemical vapor deposition containing trimethyl aluminum as a reaction gas component. "
It has the characteristics.

つぎに、この発明の被覆工具の硬質被覆層について、より具体的に説明する。   Next, the hard coating layer of the coated tool of the present invention will be described more specifically.

TiとAlの立方晶複合炭窒化物層((Ti1−XAl)(C1−Y)層)の平均組成:
上記(Ti1−XAl)(C1−Y)層において、Alの含有割合X(原子比)の値が0.55未満になると、高温硬さが不足し耐摩耗性が低下するようになり、一方、X(原子比)の値が0.95を超えると、相対的なTi含有割合の減少により、(Ti1−XAl)(C1−Y)層自体の高温強度が低下し、チッピング、欠損を発生しやすくなることから、X(原子比)の値は、0.55以上0.95以下とすることが必要である。
また、上記(Ti1−XAl)(C1−Y)層において、C成分には硬さを向上させ、一方、N成分には高温強度を向上させる作用があるが、C成分の含有割合Y(原子比)が0.0005未満となると高硬度が得られなくなり、一方、Y(原子比)が0.005を超えると、高温強度が低下してくることから、Y(原子比)の値は、0.0005以上0.005以下と定めた。
なお、PVD法によって上記組成の(Ti1−XAl)(C1−Y)層を成膜した場合には、結晶構造は六方晶であるが、本発明では、後記する化学蒸着法によって成膜していることから、立方晶構造を維持したままで上記組成の(Ti1−XAl)(C1−Y)層を得ることができるので、皮膜硬さの低下はない。
The average composition of the cubic composite carbonitride layer of Ti and Al ((Ti 1-X Al X) (C Y N 1-Y) layer):
In the above (Ti 1-X Al X ) (C Y N 1-Y ) layer, if the Al content ratio X (atomic ratio) is less than 0.55, the high temperature hardness is insufficient and the wear resistance is reduced. On the other hand, when the value of X (atomic ratio) exceeds 0.95, the (Ti 1-X Al X ) (C Y N 1-Y ) layer itself is caused by a decrease in the relative Ti content. Therefore, the value of X (atomic ratio) needs to be 0.55 or more and 0.95 or less.
In the (Ti 1-X Al X ) (C Y N 1-Y ) layer, the C component has the effect of improving the hardness, while the N component has the effect of improving the high temperature strength. When the Y content ratio (atomic ratio) is less than 0.0005, high hardness cannot be obtained. On the other hand, when Y (atomic ratio) exceeds 0.005, the high-temperature strength decreases. The ratio was determined to be 0.0005 or more and 0.005 or less.
When the (Ti 1-X Al X ) (C Y N 1-Y ) layer having the above composition is formed by the PVD method, the crystal structure is a hexagonal crystal. Since the film is formed by the method, the (Ti 1-X Al X ) (C Y N 1-Y ) layer having the above composition can be obtained while maintaining the cubic structure, and the film hardness is reduced. There is no.

TiとAlの立方晶複合炭窒化物層((Ti1−XAl)(C1−Y)層)の{111}面についての傾斜角度数分布:
この発明の上記(Ti1−XAl)(C1−Y)層について、電子線後方散乱回折装置を用いて個々の結晶粒の結晶方位を、その縦断面方向から解析した場合、基体表面の法線(断面研磨面における基体表面と垂直な方向)に対する前記結晶粒の結晶面である{111}面の法線がなす傾斜角(図1(a)、(b)参照)を測定し、前記測定傾斜角のうち、法線方向に対して0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計したとき、2〜12度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記2〜12度の範囲内に存在する度数の合計が、傾斜角度数分布における度数全体の45%以上の割合となる傾斜角度数分布形態を示す場合に、上記TiとAlの複合炭窒化物層からなる硬質被覆層は、立方晶構造を維持したままで高硬度を有し、しかも、上記傾斜角度数分布形態によって硬質被覆層の基体との密着性を向上させる。
したがって、このような被覆工具は、例えば、合金鋼の高速断続切削等に用いた場合であっても、チッピング、欠損、剥離等の発生が抑えられ、しかも、すぐれた耐摩耗性を発揮する。
Ti and Al cubic carbonitride layer ((Ti 1-X Al X ) (C Y N 1-Y ) layer) tilt angle number distribution about {111} plane:
For the (Ti 1-X Al X ) (C Y N 1-Y ) layer of the present invention, when the crystal orientation of each crystal grain is analyzed from the longitudinal section direction using an electron beam backscattering diffractometer, An inclination angle (see FIGS. 1A and 1B) formed by a normal line of the {111} plane which is a crystal plane of the crystal grain with respect to a normal line of the substrate surface (a direction perpendicular to the substrate surface in the cross-section polished surface). Measured, and the measured inclination angles within the range of 0 to 45 degrees with respect to the normal direction among the measured inclination angles were divided into pitches of 0.25 degrees, and the frequencies existing in each division were tabulated. When the highest peak exists in the inclination angle section within the range of 2 to 12 degrees, the total of the frequencies existing within the range of 2 to 12 degrees is a ratio of 45% or more of the entire frequencies in the inclination angle distribution. Ti and Al composite charcoal in the case of showing an inclination angle number distribution form Hard layer made of oxide layer has a high hardness while maintaining the cubic structure, moreover, improve the adhesion between the substrate of the hard coating layer by the above-described inclination angle frequency distribution form.
Therefore, even when such a coated tool is used for, for example, high-speed intermittent cutting of alloy steel, the occurrence of chipping, chipping, peeling and the like is suppressed, and excellent wear resistance is exhibited.

ただ、上記硬質被覆層は、その平均層厚が1μm未満では、長期の使用に亘っての耐摩耗性を十分確保することができず、一方、その平均層厚が20μmを越えると、高熱発生を伴う高速断続切削で熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その合計平均層厚は1〜20μm、望ましくは1〜10μmと定めた。   However, if the average thickness of the hard coating layer is less than 1 μm, sufficient wear resistance over a long period of time cannot be secured. On the other hand, if the average thickness exceeds 20 μm, high heat generation occurs. The high-speed interrupted cutting with a tendency to cause thermoplastic deformation, which causes uneven wear. Therefore, the total average layer thickness is set to 1 to 20 μm, preferably 1 to 10 μm.

さらに、この発明では、上記(Ti1−XAl)(C1−Y)層について、電界放出型走査電子顕微鏡を用い、硬質被覆層の縦断面の測定範囲内に存在する結晶粒個々に電子線を照射して、基体表面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角(図2(a)、(b)参照)を測定し、この場合、前記結晶粒は、格子点にTi、Al、炭素、窒素からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(NはNaCl型面心立方晶の結晶構造上2以上の偶数となる)存在する構成原子共有格子点形態をΣN+1で表し、個々のΣN+1がΣN+1全体(ただし、頻度の関係でNの上限値を28とする)に占める分布割合を示す構成原子共有格子点分布グラフを求めた場合、基体界面から被覆層内部に0.1〜0.5μmの範囲におけるΣ3のΣN+1全体に占める分布割合が20%以下であり、一方、被覆層表面から被覆層の平均層厚の50%に相当する範囲においては、Σ3に最高ピークが存在し、かつ、Σ3のΣN+1全体に占める分布割合が50%以上である構成原子共有格子点分布グラフを示す。
図4の(a)、(b)は、本発明被覆工具について作成した構成原子共有格子点分布グラフの一例を示し、(a)は、硬質被覆層の基体界面側について作成した構成原子共有格子点分布グラフ、また、(b)は、硬質被覆層の被覆層表面側について作成した構成原子共有格子点分布グラフを示す。
したがって、この発明の被覆工具は、基体界面側においてΣ3の分布割合が少なく、見掛け上、結晶粒径が微細な結晶組織となるため被覆層の密着性にすぐれ、また、被覆層表面側においてはΣ3の分布割合が高くなるため高温強度にすぐれることから、高熱発生を伴い、しかも、切刃に対して衝撃的な負荷が作用する合金鋼等の高速断続切削加工において、一段とすぐれた耐チッピング性を発揮し、チッピング、欠損、剥離等の異常損傷の発生もなく、長期の使用に亘ってすぐれた耐摩耗性を発揮する。
Further, in this invention, described above for (Ti 1-X Al X) (C Y N 1-Y) layer, crystal grains with a field emission scanning electron microscope, exists within the measurement range of a longitudinal section of the hard coating layer Individually irradiated with an electron beam, the inclination angles formed by the normal lines of the (001) plane and the (011) plane, which are crystal planes of the crystal grains, with respect to the normal line of the substrate surface (FIG. 2 (a), ( In this case, the crystal grains have a NaCl-type face-centered cubic crystal structure in which constituent atoms composed of Ti, Al, carbon, and nitrogen are present at lattice points. Based on the measured tilt angle, distribution of lattice points (constituent atom shared lattice points) in which each of the constituent atoms shares one constituent atom between the crystal grains at the interface between adjacent crystal grains is determined. The case where the constituent atoms are not shared between the constituent atomic shared lattice points is calculated. Constituent atomic shared lattice point form where N points (N is an even number of 2 or more in the crystal structure of NaCl type face-centered cubic crystal) is represented by ΣN + 1, and each ΣN + 1 is an entire ΣN + 1 (however, depending on the frequency) When the constituent atomic shared lattice point distribution graph showing the distribution ratio in the upper limit of N is 28), the entire ΣN + 1 of Σ3 in the range of 0.1 to 0.5 μm from the substrate interface to the inside of the coating layer is obtained. On the other hand, in the range corresponding to 50% of the average layer thickness of the coating layer from the surface of the coating layer, the distribution peak occupies the highest peak in Σ3 and the distribution ratio of Σ3 in the entire ΣN + 1 The constituent atom shared lattice point distribution graph which is 50% or more is shown.
FIGS. 4A and 4B show an example of a constituent atomic shared lattice point distribution graph created for the coated tool of the present invention, and FIG. 4A shows a constituent atomic shared lattice created for the substrate interface side of the hard coating layer. A point distribution graph and (b) show a constituent atom shared lattice point distribution graph created on the surface side of the hard coating layer.
Therefore, the coated tool of the present invention has a small distribution ratio of Σ3 on the substrate interface side, and apparently has a fine crystalline structure, so that the coating layer has excellent adhesion, and on the coating layer surface side, Since the distribution ratio of Σ3 is high, it has excellent high-temperature strength, so it is accompanied by high heat generation, and chipping resistance that is even better in high-speed intermittent cutting of alloy steel and the like that impacts the cutting blade. It exhibits excellent wear resistance over the long-term use without occurrence of abnormal damage such as chipping, chipping and peeling.

この発明の(Ti1−XAl)(C1−Y)層、即ち、基体表面の法線方向に対する結晶粒の結晶面である{111}面の法線がなす傾斜角を測定した際に、2〜12度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記2〜12度の範囲内に存在する度数の合計が、度数全体の45%以上の割合となる傾斜角度数分布を示す立方晶の(Ti1−XAl)(C1−Y)層であって、しかも、基体界面側においてはΣ3の分布割合が20%以下であり、一方、被覆層表面側においては、Σ3の分布割合が50%以上である構成原子共有格子点分布グラフを示す立方晶の(Ti1−XAl)(C1−Y)層、の成膜は、例えば、以下の二段階の蒸着法によって行うことができる。
≪第1段階≫
即ち、通常の化学蒸着法によって
反応ガス組成(容量%):
TiCl 0.5〜1.5%、 Al(CH0〜2%、
AlCl 6〜10%、 NH 13〜15%、
6〜7%、 C 0〜1%、
Ar 0〜10% 残りH
反応雰囲気温度: 700〜900 ℃、
反応雰囲気圧力: 4〜5 kPa、
という条件下で蒸着した後、
≪第2段階≫
反応ガス組成(容量%):
TiCl 0.5〜1.5%、 Al(CH3〜5%、
AlCl 6〜10%、 NH 10〜12%、
6〜7%、 C 0〜1%、
Ar 0〜10% 残りH
反応雰囲気温度: 700〜900 ℃、
反応雰囲気圧力: 2〜3 kPa、
という条件下で蒸着することによって、0.55≦X≦0.95、0.0005≦Y≦0.005(但し、X、Yは何れも原子比)を満足し、また、基体表面の法線方向に対して{111}面の法線がなす傾斜角を測定した傾斜角度数分布において、2〜12度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記2〜12度の範囲内に存在する傾斜角度数分布の割合が45%以上であり、さらに、基体界面側におけるΣ3の分布割合が20%以下、被覆層表面側におけるΣ3の分布割合が50%以上である本発明の立方晶構造の(Ti1−XAl)(C1−Y)層からなる硬質被覆層を形成することができる。
(Ti 1-X Al X) (C Y N 1-Y) layer of the present invention, i.e., measuring the angle of inclination is normal of a crystal plane of the crystal grain relative to the normal direction of the substrate surface {111} plane In this case, the highest peak is present in the inclination angle section within the range of 2 to 12 degrees, and the total of the frequencies existing within the range of 2 to 12 degrees is a ratio of 45% or more of the entire frequency. A cubic (Ti 1-X Al X ) (C Y N 1-Y ) layer showing an angular number distribution, and the distribution ratio of Σ3 is 20% or less on the substrate interface side. On the surface side of the layer, the formation of a cubic (Ti 1-X Al X ) (C Y N 1-Y ) layer showing a constituent atom shared lattice point distribution graph in which the distribution ratio of Σ3 is 50% or more is For example, it can be performed by the following two-stage vapor deposition method.
≪First stage≫
That is, the reaction gas composition (volume%) by the usual chemical vapor deposition method:
TiCl 4 0.5~1.5%, Al (CH 3) 3 0~2%,
AlCl 3 6-10%, NH 3 13-15%,
N 2 6-7%, C 2 H 4 0-1%,
Ar 0-10% H 2 remaining,
Reaction atmosphere temperature: 700 to 900 ° C.
Reaction atmosphere pressure: 4-5 kPa,
After vapor deposition under the conditions
≪Second stage≫
Reaction gas composition (volume%):
TiCl 4 0.5~1.5%, Al (CH 3) 3 3~5%,
AlCl 3 6-10%, NH 3 10-12%,
N 2 6-7%, C 2 H 4 0-1%,
Ar 0-10% H 2 remaining,
Reaction atmosphere temperature: 700 to 900 ° C.
Reaction atmosphere pressure: 2-3 kPa,
The conditions of 0.55 ≦ X ≦ 0.95 and 0.0005 ≦ Y ≦ 0.005 (where X and Y are atomic ratios) are satisfied, and In the inclination angle number distribution obtained by measuring the inclination angle formed by the normal of the {111} plane with respect to the line direction, the highest peak exists in the inclination angle section within the range of 2 to 12 degrees, and the 2 to 12 degrees The ratio of the distribution of the number of inclination angles existing in the range is 45% or more, the distribution ratio of Σ3 on the substrate interface side is 20% or less, and the distribution ratio of Σ3 on the coating layer surface side is 50% or more. it is possible to form a cubic structure of (Ti 1-X Al X) hard coating layer consisting of (C Y N 1-Y) layer.

本発明の被覆工具は、例えば、トリメチルアルミニウム(Al(CH)を反応ガス成分として含有する熱CVD法等の化学蒸着法により、立方晶構造の(Ti1−XAl)(C1−Y)層が硬質被覆層として成膜され、該硬質被覆層は、基体表面の法線方向に対する結晶粒の{111}面の法線がなす傾斜角を測定した傾斜角度数分布において、2〜12度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記2〜12度の範囲内の度数割合の合計が度数全体の45%以上であり、さらに、硬質被覆層の基体界面側におけるΣ3の分布割合が20%以下、被覆層表面側におけるΣ3の分布割合が50%以上であることから、高熱発生を伴うとともに、切れ刃に断続的・衝撃的負荷が作用する合金鋼の高速断続切削に用いた場合でも、チッピング、欠損、剥離等の異常損傷を発生することなく、長期の使用にわたってすぐれた耐摩耗性を発揮するのである。 The coated tool of the present invention is obtained by, for example, (Ti 1-X Al X ) (C) having a cubic structure by chemical vapor deposition such as thermal CVD containing trimethylaluminum (Al (CH 3 ) 3 ) as a reaction gas component. Y N 1-Y ) layer is formed as a hard coating layer, and the hard coating layer has an inclination angle distribution obtained by measuring the inclination angle formed by the normal of the {111} plane of the crystal grains with respect to the normal direction of the substrate surface. In addition, the highest peak exists in the inclination angle section within the range of 2 to 12 degrees, the total of the frequency ratios within the range of 2 to 12 degrees is 45% or more of the entire frequency, An alloy in which the distribution ratio of Σ3 on the substrate interface side is 20% or less and the distribution ratio of Σ3 on the surface side of the coating layer is 50% or more. For high-speed intermittent cutting of steel Even when it is used, it exhibits excellent wear resistance over a long period of use without causing abnormal damage such as chipping, chipping or peeling.

(a)、(b)は、硬質被覆層を構成する(Ti1−XAl)(C1−Y)層における結晶粒の結晶面である{111}面の法線が、基体表面の法線に対してなす傾斜角の測定範囲を示す概略説明図である。(A), (b) constitutes the hard coating layer (Ti 1-X Al X) normal to the (C Y N 1-Y) is a crystal plane of the crystal grains in the layer {111} plane, the substrate It is a schematic explanatory drawing which shows the measurement range of the inclination angle made with respect to the normal line of a surface. (a)、(b)は、硬質被覆層を構成する(Ti,Al)(C1−Y)層が有するNaCl型面心立方晶の結晶構造、(001)面、(011)面を示す概略模式図である。(A), (b) is the crystal structure of the NaCl type face centered cubic crystal of the (Ti, Al) (C Y N 1-Y ) layer constituting the hard coating layer, (001) plane, (011) plane FIG. 本発明被覆工具のTiとAlの複合炭窒化物について作成した{111}面の傾斜角度数分布グラフの一例である。It is an example of the inclination angle number distribution graph of the {111} plane created about the composite carbonitride of Ti and Al of this invention coated tool. (a)、(b)は、本発明被覆工具のTiとAlの複合炭窒化物層について作成した構成原子共有格子点分布グラフの一例であり、(a)は、基体界面側における構成原子共有格子点分布グラフ、また、(b)は、被覆層表面側における構成原子共有格子点分布グラフを示す。(A), (b) is an example of the constituent atom sharing lattice distribution graph created for the composite carbonitride layer of Ti and Al of the coated tool of the present invention, and (a) shows constituent atom sharing on the substrate interface side. A lattice point distribution graph and (b) show a constituent atom shared lattice point distribution graph on the surface side of the coating layer.

つぎに、この発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、TaC粉末、NbC粉末、Cr32粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、ISO規格SEEN1203AFSNのインサート形状をもったWC基超硬合金製の基体A〜Dをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, ZrC powder, TaC powder, NbC powder, Cr 3 C 2 powder, and Co powder all having an average particle diameter of 1 to 3 μm were prepared. Then, after adding wax, ball mill mixing in acetone for 24 hours, drying under reduced pressure, press-molding into a green compact of a predetermined shape at a pressure of 98 MPa. Substrates A to D made of WC-base cemented carbide having an ISO standard SEEN1203AFSN insert shape after vacuum sintering under vacuum at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour. Were manufactured respectively.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、ISO規格SEEN1203AFSNのインサート形状をもったTiCN基サーメット製の基体a〜dを作製した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after sintering, a substrate made of TiCN-based cermet having an insert shape of ISO standard SEEN1203AFSN d was produced.



つぎに、これらの工具基体A〜Dおよび工具基体a〜dの表面に、通常の化学蒸着装置を用い、表3に示される条件で、本発明の(Ti1−XAl)(C1−Y)層を目標層厚で蒸着形成することにより、表5に示される本発明被覆工具1〜10を製造した。 Next, on the surfaces of the tool bases A to D and the tool bases a to d, (Ti 1-X Al X ) (C Y ) of the present invention is used under the conditions shown in Table 3 using a normal chemical vapor deposition apparatus. The present invention coated tools 1 to 10 shown in Table 5 were manufactured by vapor-depositing N 1 -Y ) layers at a target layer thickness.

また、比較の目的で、同じく工具基体A〜Dおよび工具基体a〜dの表面に、通常の化学蒸着装置を用い、表4に示される条件で、比較例の(Ti1−XAl)(C1−Y)層を目標層厚で蒸着形成することにより、表6に示される比較例被覆工具1〜8を製造した。 Further, for the purpose of comparison, similarly to the surface of the tool bases A to D and the tool bases a to d, an ordinary chemical vapor deposition apparatus was used, and under the conditions shown in Table 4, (Ti 1-X Al X ) of the comparative example. Comparative example-coated tools 1 to 8 shown in Table 6 were manufactured by vapor-depositing (C Y N 1-Y ) layers at a target layer thickness.

参考のため、工具基体Aおよび工具基体aの表面に、従来の物理蒸着装置を用いて、アークイオンプレーティングにより、参考例の(Ti1−XAl)(C1−Y)層を目標層厚で蒸着形成することにより、表6に示される参考例被覆工具9、10を製造した。
なお、アークイオンプレーティングの条件は、次のとおりである。
(a)上記工具基体Aおよびaを、アセトン中で超音波洗浄し、乾燥した状態で、アークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、また、カソード電極(蒸発源)として、所定組成のAl−Ti合金を配置し、
(b)まず、装置内を排気して10−2Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する工具基体に−1000Vの直流バイアス電圧を印加し、かつAl−Ti合金からなるカソード電極とアノード電極との間に200Aの電流を流してアーク放電を発生させ、装置内にAlおよびTiイオンを発生させ、もって工具基体表面をボンバード洗浄し、
(c)次に、装置内に反応ガスとして窒素ガスを導入して4Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−50Vの直流バイアス電圧を印加し、かつ、上記Al−Ti合金からなるカソード電極(蒸発源)とアノード電極との間に120Aの電流を流してアーク放電を発生させ、前記工具基体の表面に、表6に示される目標平均組成、目標平均層厚の(Ti1−XAl)(C1−Y)層を蒸着形成し、
参考例被覆工具9、10を製造した。
For reference, the (Ti 1-X Al X ) (C Y N 1-Y ) layer of the reference example is applied to the surfaces of the tool base A and the tool base a by arc ion plating using a conventional physical vapor deposition apparatus. Were formed by vapor deposition with a target layer thickness to produce reference example coated tools 9 and 10 shown in Table 6.
The conditions for arc ion plating are as follows.
(A) The tool bases A and a are ultrasonically cleaned in acetone and dried, and in the outer peripheral portion at a predetermined distance in the radial direction from the central axis on the rotary table in the arc ion plating apparatus. Along with this, an Al-Ti alloy having a predetermined composition is arranged as a cathode electrode (evaporation source),
(B) First, the inside of the apparatus is evacuated and kept at a vacuum of 10 −2 Pa or less, the inside of the apparatus is heated to 500 ° C. with a heater, and then the tool base that rotates while rotating on the rotary table is −1000 V. A DC bias voltage is applied, and a current of 200 A is passed between a cathode electrode and an anode electrode made of an Al—Ti alloy to generate an arc discharge, thereby generating Al and Ti ions in the apparatus, thereby providing a tool base. Clean the surface with bombard,
(C) Next, nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 4 Pa, a DC bias voltage of −50 V is applied to the tool base that rotates while rotating on the rotary table, and A current of 120 A is passed between the cathode electrode (evaporation source) made of the Al—Ti alloy and the anode electrode to generate arc discharge, and the target average composition and target shown in Table 6 are formed on the surface of the tool base. the average layer thickness of (Ti 1-X Al X) (C Y N 1-Y) layer and the vapor deposited,
Reference Example Coated tools 9, 10 were produced.

また、本発明被覆工具1〜10、比較例被覆工具1〜8および参考例被覆工具9、10の各構成層の断面を、走査電子顕微鏡を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めたところ、いずれも表5および表6に示される目標平均層厚と実質的に同じ平均層厚を示した。
ついで、上記の本発明被覆工具1〜10の硬質被覆層について、硬質被覆層の平均Al含有割合X、平均C含有割合Y、基体表面の法線方向に対する{111}面の法線がなす傾斜角についての傾斜角度数分布における2〜12度の範囲内に存在する度数の割合(α)を測定した。
また、基体界面側(即ち、基体界面から被覆層内部に0.1〜0.5μmの範囲)におけるΣN+1全体に占めるΣ3の分布割合(β)、被覆層表面側(即ち、被覆層表面から被覆層の平均層厚の50%に相当する範囲)におけるΣN+1全体に占めるΣ3の分布割合(γ)を測定した。
なお、図3に本発明被覆工具について測定した{111}面の傾斜角度数分布グラフの一例を示す。
また、図4(a)、(b)に、本発明被覆工具について測定した構成原子共有格子点分布グラフの一例を示す。
Moreover, the cross section of each component layer of this invention coated tool 1-10, comparative example coated tool 1-8, and reference example coated tool 9,10 is measured using a scanning electron microscope, and five layers in an observation visual field When the thickness was measured and averaged to determine the average layer thickness, both showed the average layer thickness substantially the same as the target average layer thickness shown in Tables 5 and 6.
Next, with respect to the hard coating layers of the above-mentioned coated tools 1 to 10 of the present invention, the average Al content ratio X, the average C content ratio Y of the hard coating layer, and the inclination formed by the normal of the {111} plane with respect to the normal direction of the substrate surface The ratio (α) of the frequency existing in the range of 2 to 12 degrees in the inclination angle frequency distribution for the corners was measured.
Further, the distribution ratio (β) of Σ3 occupying the entire ΣN + 1 on the substrate interface side (that is, in the range of 0.1 to 0.5 μm from the substrate interface to the inside of the coating layer), the coating layer surface side (that is, coating from the coating layer surface) The distribution ratio (γ) of Σ3 in the entire ΣN + 1 in a range corresponding to 50% of the average layer thickness) was measured.
FIG. 3 shows an example of a {111} plane inclination angle number distribution graph measured for the coated tool of the present invention.
4 (a) and 4 (b) show examples of constituent atomic shared lattice point distribution graphs measured for the coated tool of the present invention.

なお、上記それぞれの具体的な測定法は次のとおりである。
硬質被覆層の平均Al含有割合X、平均C含有割合Yについては、二次イオン質量分析(SIMS, Secondary‐Ion‐Mass‐Spectroscopy)により求めた。イオンビームを試料表面側から70μm×70μmの範囲に照射し、スパッタリング作用によって放出された成分について深さ方向の濃度測定を行った。平均Al含有割合X、平均C含有割合Yは深さ方向の平均値を示す。
The specific measurement methods for each of the above are as follows.
The average Al content ratio X and the average C content ratio Y of the hard coating layer were determined by secondary ion mass spectrometry (SIMS, Secondary-Ion-Mass-Spectroscope). The ion beam was irradiated in the range of 70 μm × 70 μm from the sample surface side, and the concentration in the depth direction was measured for the components emitted by the sputtering action. The average Al content ratio X and the average C content ratio Y indicate average values in the depth direction.

また、硬質被覆層の傾斜角度数分布については、立方晶構造のTiとAlの複合炭窒化物層からなる硬質被覆層の断面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記断面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に照射し、電子後方散乱回折像装置を用いて、工具基体と水平方向に長さ100μmに亘り硬質被覆層について0.1μm/stepの間隔で、基体表面の法線(断面研磨面における基体表面と垂直な方向)に対して、前記結晶粒の結晶面である{111}面の法線がなす傾斜角を測定し、この測定結果に基づいて、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより、2〜12度の範囲内に存在する度数の割合(α)を求めた。 In addition, regarding the inclination angle number distribution of the hard coating layer, the column of the field emission scanning electron microscope with the cross section of the hard coating layer made of a composite carbonitride layer of Ti and Al having a cubic structure as a polished surface Each crystal grain having a cubic crystal lattice existing in the measurement range of the cross-sectional polished surface is irradiated with an electron beam with an acceleration voltage of 15 kV at an incident angle of 70 degrees on the polished surface with an irradiation current of 1 nA. Irradiate and use the electron backscatter diffraction imaging apparatus, the normal surface of the substrate surface (with respect to the substrate surface on the cross-section polished surface) at a spacing of 0.1 μm / step with respect to the tool substrate and a length of 100 μm in the horizontal direction. (In the vertical direction), the inclination angle formed by the normal of the {111} plane that is the crystal plane of the crystal grain is measured, and based on the measurement result, 0 to 45 degrees of the measurement inclination angle. The measured tilt angle within the range is 0.25 While dividing into pitches of degrees, the frequencies (α) existing in the range of 2 to 12 degrees were obtained by counting the frequencies existing in each section.

また、硬質被覆層の基体界面側、被覆層表面側における構成原子共有格子点分布については、それぞれ、次のように測定した。まず、基体界面側については、硬質被覆層の基体界面から被覆層内部に0.1〜0.5μmの範囲の基体表面の法線(断面研磨面における基体表面と垂直な方向)に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(NはNaCl型面心立方晶の結晶構造上2以上の偶数となる)存在する構成原子共有格子点形態をΣN+1で表した場合、個々のΣN+1がΣN+1全体(ただし、頻度の関係で上限値を28 とする) に占める分布割合を求めることにより構成原子共有格子点分布グラフ作成し、ΣN+1全体に占めるΣ3の分布割合(β)を求めた。
被覆層表面側についても、同様に、被覆層表面から被覆層の平均層厚の50%に相当する範囲の断面研磨面におけるΣ3の分布割合(γ)を求めた。
In addition, the constituent atomic shared lattice point distributions on the substrate interface side and the coating layer surface side of the hard coating layer were measured as follows. First, for the substrate interface side, with respect to the normal of the substrate surface in the range of 0.1 to 0.5 μm from the substrate interface of the hard coating layer to the inside of the coating layer (direction perpendicular to the substrate surface on the cross-section polished surface), The inclination angle formed by the normal lines of the (001) plane and the (011) plane, which are the crystal planes of the crystal grains, is measured, and based on the measurement tilt angles obtained as a result, at the interface between adjacent crystal grains, A distribution of lattice points (constituent atom shared lattice points) in which each of the constituent atoms shares one constituent atom among the crystal grains is calculated, and lattice points that do not share constituent atoms between the constituent atom shared lattice points are calculated. When the constituent atomic shared lattice point form of N pieces (N is an even number of 2 or more in the crystal structure of the NaCl type face centered cubic crystal) is represented by ΣN + 1, each ΣN + 1 is an entire ΣN + 1 (however, depending on the frequency) Distribution with an upper limit of 28) By calculating the ratio, a constituent atom shared lattice point distribution graph was created, and the distribution ratio (β) of Σ3 in the entire ΣN + 1 was determined.
Similarly, on the surface side of the coating layer, the distribution ratio (γ) of Σ3 in the cross-sectional polished surface in a range corresponding to 50% of the average layer thickness of the coating layer from the surface of the coating layer was determined.

なお、硬質被覆層の結晶構造については、X線回折装置を用い、Cu−Kα線を線源としてX線回折を行った場合、JCPDS00−038−1420立方晶TiNとJCPDS00−046−1200立方晶AlN、各々に示される同一結晶面の回折角度の間(例えば、36.66〜38.53°、43.59〜44.77°、61.81〜65.18°)に回折ピークが現れることを確認することによって調査した。
表5に、その結果を示す。
As for the crystal structure of the hard coating layer, when X-ray diffraction is performed using an X-ray diffractometer and Cu—Kα ray as a radiation source, JCPDS00-038-1420 cubic TiN and JCPDS00-046-1200 cubic crystal A diffraction peak appears between the diffraction angles of the same crystal plane shown in each of AlN (for example, 36.66 to 38.53 °, 43.59 to 44.77 °, 61.81 to 65.18 °). Investigated by confirming.
Table 5 shows the results.

ついで、比較例被覆工具1〜8および参考例被覆工具9、10のそれぞれについても、本発明被覆工具1〜10と同様にして、硬質被覆層の平均Al含有割合X、平均C含有割合Y、基体表面の法線方向に対する{111}面の法線がなす傾斜角についての傾斜角度数分布における2〜12度の範囲内に存在する度数の割合(α)、基体界面側、被覆層表面側におけるΣN+1全体に占めるΣ3の分布割合(β)、(γ)を測定した。
また、硬質被覆層の結晶構造についても、本発明被覆工具1〜10と同様にして、調査した。
表6に、その結果を示す。
Then, for each of the comparative example coated tools 1 to 8 and the reference example coated tools 9 and 10, as in the present invention coated tools 1 to 10, the average Al content ratio X, the average C content ratio Y of the hard coating layer, The ratio (α) of the frequency existing in the range of 2 to 12 degrees in the tilt angle number distribution with respect to the tilt angle formed by the normal of the {111} plane relative to the normal direction of the substrate surface, the substrate interface side, the coating layer surface side The distribution ratios (β) and (γ) of Σ3 in the entire ΣN + 1 in were measured.
Further, the crystal structure of the hard coating layer was also investigated in the same manner as in the present coated tools 1 to 10.
Table 6 shows the results.





つぎに、上記の各種の被覆工具をいずれもカッタ径125mmの工具鋼製カッタ先端部に固定治具にてクランプした状態で、本発明被覆工具1〜10、比較例被覆工具1〜8および参考例被覆工具9,10について、以下に示す、合金鋼の高速断続切削の一種である乾式高速正面フライス、センターカット切削加工試験を実施し、切刃の逃げ面摩耗幅を測定した。
被削材: JIS・SCM440幅100mm、長さ400mmのブロック材
回転速度: 930 min−1
切削速度: 365 m/min、
切り込み: 1.2 mm、
一刃送り量: 0.12 mm/刃、
切削時間: 8分、
表7に、上記切削試験の結果を示す。
Next, the present coated tools 1 to 10, the comparative coated tools 1 to 8 and the reference in the state where each of the various coated tools is clamped to the tip of the cutter made of tool steel having a cutter diameter of 125 mm by a fixing jig. Example The coated tools 9 and 10 were subjected to the following dry high-speed face milling and center-cut cutting test, which is a kind of high-speed intermittent cutting of alloy steel, and the flank wear width of the cutting edge was measured.
Work material: Block material of JIS / SCM440 width 100mm, length 400mm
Rotational speed: 930 min −1
Cutting speed: 365 m / min,
Cutting depth: 1.2 mm,
Single blade feed amount: 0.12 mm / tooth,
Cutting time: 8 minutes,
Table 7 shows the results of the cutting test.


原料粉末として、いずれも0.5〜4μmの範囲内の平均粒径を有するcBN粉末、TiN粉末、TiCN粉末、TiC粉末、Al粉末、Al粉末を用意し、これら原料粉末を表8に示される配合組成に配合し、ボールミルで80時間湿式混合し、乾燥した後、120MPaの圧力で直径:50mm×厚さ:1.5mmの寸法をもった圧粉体にプレス成形し、ついでこの圧粉体を、圧力:1Paの真空雰囲気中、900〜1300℃の範囲内の所定温度に60分間保持の条件で焼結して切刃片用予備焼結体とし、この予備焼結体を、別途用意した、Co:8質量%、WC:残りの組成、並びに直径:50mm×厚さ:2mmの寸法をもったWC基超硬合金製支持片と重ね合わせた状態で、通常の超高圧焼結装置に装入し、通常の条件である圧力:4GPa、温度:1200〜1400℃の範囲内の所定温度に保持時間:0.8時間の条件で超高圧焼結し、焼結後上下面をダイヤモンド砥石を用いて研磨し、ワイヤー放電加工装置にて所定の寸法に分割し、さらにCo:5質量%、TaC:5質量%、WC:残りの組成およびJIS規格CNGA120412の形状(厚さ:4.76mm×内接円直径:12.7mmの80°菱形)をもったWC基超硬合金製インサート本体のろう付け部(コーナー部)に、質量%で、Zr:37.5%、Cu:25%、Ti:残りからなる組成を有するTi−Zr−Cu合金のろう材を用いてろう付けし、所定寸法に外周加工した後、切刃部に幅:0.13mm、角度:25°のホーニング加工を施し、さらに仕上げ研摩を施すことによりISO規格CNGA120412のインサート形状をもった工具基体イ〜ニをそれぞれ製造した。 As the raw material powder, cBN powder, TiN powder, TiCN powder, TiC powder, Al powder, and Al 2 O 3 powder each having an average particle diameter in the range of 0.5 to 4 μm were prepared. The mixture is blended in the composition shown in FIG. 1, wet mixed with a ball mill for 80 hours, dried, and then pressed into a green compact having a diameter of 50 mm × thickness: 1.5 mm under a pressure of 120 MPa. The green compact is sintered in a vacuum atmosphere at a pressure of 1 Pa at a predetermined temperature within a range of 900 to 1300 ° C. for 60 minutes to obtain a presintered body for a cutting edge piece. In addition, Co: 8% by mass, WC: remaining composition, and diameter: 50 mm × thickness: 2 mm, superposed on a WC-based cemented carbide support piece with a normal super-high pressure Insert into the sintering machine and under normal conditions Pressure: 4 GPa, temperature: 1200 ° C. to 1400 ° C. at a predetermined temperature holding time: 0.8 hour sintering, and after sintering, the upper and lower surfaces are polished using a diamond grindstone, and wire discharge It is divided into predetermined dimensions by a processing apparatus, and further Co: 5 mass%, TaC: 5 mass%, WC: remaining composition and shape of JIS standard CNGA12041 (thickness: 4.76 mm × inscribed circle diameter: 12. The brazing part (corner part) of the WC-based cemented carbide insert body having a 7 mm 80 ° rhombus) has a composition consisting of Zr: 37.5%, Cu: 25%, Ti: the rest in mass%. After brazing using a brazing material of Ti-Zr-Cu alloy and having a predetermined dimension, the cutting edge is subjected to honing with a width of 0.13 mm and an angle of 25 °, followed by finishing polishing. ISO standard The tool substrate (a) to (k) two having the insert shape of NGA120412 were produced, respectively.


つぎに、これらの工具基体イ〜ニの表面に、通常の化学蒸着装置を用い、表3に示される条件で、本発明の(Ti1−XAl)(C1−Y)層を目標層厚で蒸着形成することにより、表9に示される本発明被覆工具11〜15を製造した。 Then, these tool substrate i ~ the surface of the two, using a conventional chemical vapor deposition apparatus under the conditions shown in Table 3, (Ti 1-X Al X) of the present invention (C Y N 1-Y) layer The present invention coated tools 11 to 15 shown in Table 9 were manufactured by vapor-depositing with a target layer thickness.

また、比較の目的で、同じく工具基体イ〜ニの表面に、通常の化学蒸着装置を用い、表4に示される条件で、比較例の(Ti1−XAl)(C1−Y)層を目標層厚で蒸着形成することにより、表10に示される比較例被覆工具11〜14を製造した。 For the purpose of comparison, the same tool substrate i ~ the surface of the two, using a conventional chemical vapor deposition apparatus under the conditions shown in Table 4, (Ti 1-X Al X) of Comparative Example (C Y N 1- The comparative example-coated tools 11 to 14 shown in Table 10 were manufactured by vapor-depositing the Y ) layer with a target layer thickness.

参考のため、工具基体イの表面に、従来の物理蒸着装置を用いて、アークイオンプレーティングにより、参考例の(Ti1−XAl)(C1−Y)層を目標層厚で蒸着形成することにより、表10に示される参考例被覆工具15を製造した。
なお、アークイオンプレーティングの条件は、実施例1に示される条件と同様の条件を用い、前記工具基体の表面に、表10に示される目標平均組成、目標平均層厚の(Ti1−XAl)(C1−Y)層を蒸着形成し、参考例被覆工具15を製造した。
For reference, the (Ti 1-X Al X ) (C Y N 1-Y ) layer of the reference example is formed on the surface of the tool base A by a conventional physical vapor deposition device and arc ion plating with a target layer thickness. The reference example coated tool 15 shown in Table 10 was manufactured by vapor deposition.
The arc ion plating conditions are the same as the conditions shown in Example 1, and the target average composition and target average layer thickness (Ti 1-X shown in Table 10) are formed on the surface of the tool base. An Al X ) (C Y N 1-Y ) layer was formed by vapor deposition to produce a reference example coated tool 15.

また、本発明被覆工具11〜15、比較例被覆工具11〜14および参考例被覆工具15の各構成層の断面を、走査電子顕微鏡を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めたところ、いずれも表9および表10に示される目標平均層厚と実質的に同じ平均層厚を示した。
ついで、上記の本発明被覆工具11〜15の硬質被覆層について、硬質被覆層の平均Al含有割合X、平均C含有割合Y、基体表面の法線方向に対する{111}面の法線がなす傾斜角2〜12度の範囲内に存在する度数の割合(α)、基体界面側および被覆層表面側の構成原子共有格子点分布グラフにおいて、ΣN+1全体に占めるΣ3の分布割合(β)、(γ)、結晶構造について、実施例1に示される方法と同様の方法を用い測定した。
表9に、その結果を示す。
Moreover, the cross section of each component layer of this invention coated tool 11-15, comparative example coated tool 11-14, and reference example coated tool 15 is measured using a scanning electron microscope, and the layer thickness of five points in an observation visual field is measured. When the average layer thickness was measured and averaged, both average layer thicknesses substantially the same as the target average layer thicknesses shown in Table 9 and Table 10 were obtained.
Next, with respect to the hard coating layers of the above-described coated tools 11 to 15 of the present invention, the average Al content ratio X, the average C content ratio Y of the hard coating layer, and the inclination formed by the normal of the {111} plane with respect to the normal direction of the substrate surface The ratio (α) of the frequency existing within the angle range of 2 to 12 degrees, the distribution ratio (β) of Σ3 occupying the entire ΣN + 1 in the constituent atomic shared lattice point distribution graph on the substrate interface side and the coating layer surface side, (γ The crystal structure was measured using the same method as that shown in Example 1.
Table 9 shows the results.

ついで、比較例被覆工具11〜14および参考例被覆工具15のそれぞれについても、本発明被覆工具11〜15と同様にして、硬質被覆層の平均Al含有割合X、平均C含有割合Y、基体表面の法線方向に対する{111}面の法線がなす傾斜角2〜12度の範囲内に存在する度数の割合(α)、基体界面側および被覆層表面側の構成原子共有格子点分布グラフにおいて、ΣN+1全体に占めるΣ3の分布割合(β)、(γ)、結晶構造について、実施例1に示される方法と同様の方法を用いて測定した。
表10に、その結果を示す。
Then, the comparative coated tools 11 to 14 and the reference coated tool 15 were each made in the same manner as the coated tools 11 to 15 of the present invention, with the average Al content ratio X, the average C content ratio Y, and the substrate surface of the hard coating layer. In the constituent atomic shared lattice point distribution graph on the substrate interface side and the coating layer surface side, the ratio (α) of the power existing in the range of the inclination angle of 2 to 12 degrees formed by the normal of the {111} plane with respect to the normal direction of The distribution ratio (β), (γ) and crystal structure of Σ3 in the entire ΣN + 1 were measured using the same method as that shown in Example 1.
Table 10 shows the results.



つぎに、上記の各種の被覆工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆工具11〜15、比較例被覆工具11〜14および参考例被覆工具15について、以下に示す、浸炭焼入れ合金鋼の乾式高速断続切削加工試験を実施し、切刃の逃げ面摩耗幅を測定した。
被削材: JIS・SCM415(硬さ:HRC62)の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 230 m/min、
切り込み: 0.15mm、
送り: 0.15mm/rev、
切削時間: 4分、
表11に、上記切削試験の結果を示す。
Next, in the state where each of the above various coated tools is screwed to the tip of the tool steel tool with a fixing jig, the present coated tools 11 to 15, the comparative coated tools 11 to 14, and the reference coated samples The tool 15 was subjected to the following dry high-speed intermittent cutting test of carburized and quenched alloy steel, and the flank wear width of the cutting edge was measured.
Work material: JIS SCM415 (Hardness: HRC62) lengthwise equidistant four round grooved round bars,
Cutting speed: 230 m / min,
Cutting depth: 0.15mm,
Feed: 0.15mm / rev,
Cutting time: 4 minutes
Table 11 shows the results of the cutting test.


表5〜7および表9〜11に示される結果から、本発明被覆工具1〜15は、立方晶構造の(Ti1−XAl)(C1−Y)層が成膜され、傾斜角度数分布全体に占めるαの値が45%以上、基体界面側におけるΣ3の分布割合βが20%以下、基体界面側におけるΣ3の分布割合γが50%以上であることから、合金鋼の高速断続切削加工ですぐれた耐チッピング性、耐摩耗性を発揮する。
これに対して、比較例被覆工具1〜8,11〜14、参考例被覆工具9,10,15については、いずれも、硬質被覆層にチッピング、欠損、剥離等の異常損傷が発生するばかりか、比較的短時間で使用寿命に至ることが明らかである。
From the results shown in Tables 5 to 7 and Tables 9 to 11, in the present invention coated tools 1 to 15, a (Ti 1-X Al X ) (C Y N 1-Y ) layer having a cubic structure is formed, The value of α occupying the entire inclination angle number distribution is 45% or more, the distribution ratio β of Σ3 on the substrate interface side is 20% or less, and the distribution ratio γ3 of Σ3 on the substrate interface side is 50% or more. Excellent chipping and wear resistance due to high-speed intermittent cutting.
On the other hand, all of the comparative example coated tools 1 to 8, 11 to 14 and the reference example coated tools 9, 10, and 15 not only cause abnormal damage such as chipping, chipping, and peeling on the hard coating layer. It is clear that the service life is reached in a relatively short time.

上述のように、この発明の被覆工具は、合金鋼の高速断続切削加工ばかりでなく、各種の被削材の被覆工具として用いることができ、しかも、長期の使用に亘ってすぐれた耐チッピング性、耐摩耗性を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。










As described above, the coated tool of the present invention can be used not only for high-speed intermittent cutting of alloy steel but also as a coated tool for various work materials, and has excellent chipping resistance over a long period of use. Since it exhibits wear resistance, it can sufficiently satisfy the high performance of the cutting device, the labor saving and energy saving of the cutting work, and the cost reduction.










Claims (2)

炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された基体の表面に、平均層厚1〜20μmの層厚で硬質被覆層が被覆された表面被覆切削工具であって、
(a)上記硬質被覆層は、立方晶構造のTiとAlの複合炭窒化物層からなり、その平均組成を、
組成式:(Ti1−XAl)(C1−Y
で表した場合、Al含有割合XおよびC含有割合Y(但し、X、Yは何れも原子比)は、それぞれ、0.55≦X≦0.95、0.0005≦Y≦0.005を満足し、
(b)上記TiとAlの複合炭窒化物層について、電子線後方散乱回折装置を用いて個々の結晶粒の結晶方位を、上記TiとAlの複合炭窒化物層の縦断面方向から解析した場合、基体表面の法線方向に対する前記結晶粒の結晶面である{111}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、法線方向に対して0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計したとき、2〜12度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記2〜12度の範囲内に存在する度数の合計が、傾斜角度数分布における度数全体の45%以上の割合を示し、
(c)上記TiとAlの複合炭窒化物層について、電界放出型走査電子顕微鏡を用い、縦断面の測定範囲内に存在する結晶粒個々に電子線を照射して、基体表面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にTi、Al、炭素および窒素からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(NはNaCl型面心立方晶の結晶構造上2以上の偶数となる)存在する構成原子共有格子点形態をΣN+1で表した場合、個々のΣN+1がΣN+1全体(ただし、頻度の関係でNの上限値を28とする)に占める分布割合を示す構成原子共有格子点分布グラフにおいて、基体界面から被覆層内部に0.1〜0.5μmの範囲においてΣ3のΣN+1全体に占める分布割合が20%以下であり、また、被覆層表面から、被覆層の平均層厚の50%に相当する範囲において前記Σ3のΣN+1全体に占める分布割合が50%以上であり、かつ、Σ3に最高ピークが存在する構成原子共有格子点分布グラフを示すことを特徴とする表面被覆切削工具。
A hard coating layer with an average layer thickness of 1 to 20 μm is coated on the surface of a substrate made of tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, or cubic boron nitride-based ultrahigh pressure sintered body. A surface-coated cutting tool,
(A) the hard coating layer is made of a composite carbonitride layer of Ti and Al stand-cubic structure, the average composition,
Formula: (Ti 1-X Al X ) (C Y N 1-Y)
In this case, the Al content ratio X and the C content ratio Y (where X and Y are atomic ratios) satisfy 0.55 ≦ X ≦ 0.95 and 0.0005 ≦ Y ≦ 0.005, respectively. Satisfied,
(B) For the Ti and Al composite carbonitride layer, the crystal orientation of each crystal grain was analyzed from the longitudinal cross-sectional direction of the Ti and Al composite carbonitride layer using an electron beam backscattering diffractometer. In this case, the inclination angle formed by the normal line of the {111} plane, which is the crystal plane of the crystal grain, with respect to the normal direction of the substrate surface is measured, and 0 to 45 degrees with respect to the normal direction among the measurement inclination angles. When the measured inclination angle within the range is divided for each pitch of 0.25 degrees and the frequencies existing in each division are tabulated, the highest peak is present in the inclination angle division within the range of 2 to 12 degrees, The sum of the frequencies existing within the range of 2 to 12 degrees indicates a ratio of 45% or more of the entire frequencies in the inclination angle frequency distribution,
(C) About the composite carbonitride layer of Ti and Al, using a field emission scanning electron microscope, irradiate each crystal grain existing in the measurement range of the longitudinal section with an electron beam to obtain a normal to the substrate surface. On the other hand, the inclination angle formed by the normal lines of the (001) plane and (011) plane which are crystal planes of the crystal grains is measured. In this case, the crystal grains are composed of Ti, Al, carbon and nitrogen at lattice points. Each of the constituent atoms has a crystal structure of an NaCl type face centered cubic crystal in which each constituent atom exists, and at the interface between adjacent crystal grains based on the measurement tilt angle obtained as a result. The distribution of lattice points (constituent atom shared lattice points) that share one constituent atom between each other is calculated, and N lattice points that do not share constituent atoms between the constituent atom shared lattice points (N is a NaCl type face center) Due to the cubic crystal structure, it will be an even number of 2 or more) In the constituent atom shared lattice point distribution graph showing the distribution ratio of each ΣN + 1 in the whole ΣN + 1 (however, the upper limit value of N is 28 in relation to the frequency) In the range of 0.1 to 0.5 μm from the substrate interface to the inside of the coating layer, the distribution ratio of Σ3 to the entire ΣN + 1 is 20% or less, and from the coating layer surface to 50% of the average thickness of the coating layer A surface-coated cutting tool characterized by showing a constituent atomic shared lattice point distribution graph in which the distribution ratio of Σ3 to the entire ΣN + 1 in the corresponding range is 50% or more and the highest peak exists in Σ3.
上記硬質被覆層は、少なくとも、トリメチルアルミニウムを反応ガス成分として含有する化学蒸着法により成膜することを特徴とする請求項1に記載の表面被覆切削工具の製造方法
The hard coating layer, at least, the manufacturing method of the surface-coated cutting tool according to claim 1, characterized in that the deposition by chemical vapor deposition containing trimethyl aluminum as a reaction gas component.
JP2012164443A 2012-07-25 2012-07-25 A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting Active JP5939508B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012164443A JP5939508B2 (en) 2012-07-25 2012-07-25 A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
CN201310295763.9A CN103572250B (en) 2012-07-25 2013-07-15 Surface coating cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012164443A JP5939508B2 (en) 2012-07-25 2012-07-25 A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting

Publications (2)

Publication Number Publication Date
JP2014024130A JP2014024130A (en) 2014-02-06
JP5939508B2 true JP5939508B2 (en) 2016-06-22

Family

ID=50044943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012164443A Active JP5939508B2 (en) 2012-07-25 2012-07-25 A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting

Country Status (2)

Country Link
JP (1) JP5939508B2 (en)
CN (1) CN103572250B (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014103220A1 (en) * 2014-03-11 2015-09-17 Walter Ag TiAIN layers with lamellar structure
JP6548071B2 (en) * 2014-04-23 2019-07-24 三菱マテリアル株式会社 Surface coated cutting tool exhibiting excellent chipping resistance with hard coating layer
JP6548073B2 (en) * 2014-05-28 2019-07-24 三菱マテリアル株式会社 Surface coated cutting tool exhibiting excellent chipping resistance with hard coating layer
US10300533B2 (en) * 2014-08-01 2019-05-28 Tungaloy Corporation Coated cutting tool
JP5924507B2 (en) * 2014-09-25 2016-05-25 三菱マテリアル株式会社 Surface coated cutting tool with excellent chipping resistance due to hard coating layer
EP3000913B1 (en) * 2014-09-26 2020-07-29 Walter Ag Coated cutting tool insert with MT-CVD TiCN on TiAI(C,N)
CN105693253B (en) * 2014-11-28 2020-12-11 三菱综合材料株式会社 Cubic boron nitride sintered body cutting tool having excellent chipping resistance
WO2016084938A1 (en) * 2014-11-28 2016-06-02 三菱マテリアル株式会社 Surface-coated cutting tool
JP6617917B2 (en) * 2014-11-28 2019-12-11 三菱マテリアル株式会社 Surface coated cutting tool
JP6726403B2 (en) * 2015-08-31 2020-07-22 三菱マテリアル株式会社 Surface-coated cutting tool with excellent hard coating layer and chipping resistance
JP6931454B2 (en) * 2015-10-30 2021-09-08 三菱マテリアル株式会社 Surface coating cutting tool with excellent wear resistance and chipping resistance for the hard coating layer
JP6931453B2 (en) * 2015-10-30 2021-09-08 三菱マテリアル株式会社 Surface coating cutting tool with excellent chipping resistance due to the hard coating layer
WO2017073790A1 (en) * 2015-10-30 2017-05-04 三菱マテリアル株式会社 Surface-coated cutting tool, and production method therefor
WO2017073792A1 (en) * 2015-10-30 2017-05-04 三菱マテリアル株式会社 Surface-coated cutting tool, and production method therefor
JP6931452B2 (en) * 2015-10-30 2021-09-08 三菱マテリアル株式会社 Surface coating cutting tool with excellent wear resistance and chipping resistance for the hard coating layer
WO2017073789A1 (en) * 2015-10-30 2017-05-04 三菱マテリアル株式会社 Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance, and production method therefor
JP6044861B1 (en) * 2016-04-08 2016-12-14 住友電工ハードメタル株式会社 Surface-coated cutting tool and manufacturing method thereof
JP6973699B2 (en) * 2016-04-14 2021-12-01 住友電工ハードメタル株式会社 Surface coating cutting tool and its manufacturing method
JP6045010B1 (en) * 2016-04-14 2016-12-14 住友電工ハードメタル株式会社 Surface-coated cutting tool and manufacturing method thereof
CN111482622B (en) * 2020-05-22 2022-02-18 株洲钻石切削刀具股份有限公司 Coated cutting tool and preparation method thereof
CN112160184A (en) * 2020-10-11 2021-01-01 杭州天朗金属科技有限公司 Coating film wrinkling scraper and preparation method thereof
CN113342906B (en) * 2021-06-09 2023-10-20 海光信息技术股份有限公司 Method and device for classifying wafer measurement data distribution forms

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT301299B (en) * 1970-09-09 1972-08-25 Plansee Metallwerk Use of cutting tools to process steel that forms deposits
JPS59229479A (en) * 1983-05-24 1984-12-22 Mitsubishi Metal Corp Production of surface coated sintered hard member for cutting tool
JPS59229749A (en) * 1983-06-10 1984-12-24 Seiko Instr & Electronics Ltd Objective lens driver
JP2001341008A (en) * 2000-06-02 2001-12-11 Hitachi Tool Engineering Ltd Titanium nitride-aluminum film coated tool and manufacturing method therefor
JP3931325B2 (en) * 2001-10-03 2007-06-13 三菱マテリアル株式会社 Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP3844285B2 (en) * 2001-10-30 2006-11-08 三菱マテリアル神戸ツールズ株式会社 Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed cutting and hard coating layer
JP4817799B2 (en) * 2004-10-26 2011-11-16 京セラ株式会社 Surface covering
JP4748450B2 (en) * 2006-02-06 2011-08-17 三菱マテリアル株式会社 A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP5029099B2 (en) * 2006-09-01 2012-09-19 三菱マテリアル株式会社 Surface coated cutting tool with excellent wear resistance with high hard coating layer in high speed cutting
JP5207105B2 (en) * 2007-04-16 2013-06-12 三菱マテリアル株式会社 Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
DE102008013966A1 (en) * 2008-03-12 2009-09-17 Kennametal Inc. Hard material coated body
DE102008013965A1 (en) * 2008-03-12 2009-09-17 Kennametal Inc. Hard material coated body
JP5287125B2 (en) * 2008-10-15 2013-09-11 三菱マテリアル株式会社 A surface-coated cutting tool with a hard coating layer that provides excellent fracture resistance and wear resistance
JP5287124B2 (en) * 2008-10-15 2013-09-11 三菱マテリアル株式会社 Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
DE102009046667B4 (en) * 2009-11-12 2016-01-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Coated bodies of metal, hardmetal, cermet or ceramic, and methods of coating such bodies

Also Published As

Publication number Publication date
CN103572250A (en) 2014-02-12
JP2014024130A (en) 2014-02-06
CN103572250B (en) 2017-05-10

Similar Documents

Publication Publication Date Title
JP5939508B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP5946017B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP5939509B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6402662B2 (en) Surface-coated cutting tool and manufacturing method thereof
JP5924507B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6090063B2 (en) Surface coated cutting tool
JP6268530B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6394898B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6024981B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6548073B2 (en) Surface coated cutting tool exhibiting excellent chipping resistance with hard coating layer
JP6391045B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6296294B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6150109B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6233575B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP5946016B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6296298B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5935479B2 (en) Surface-coated cutting tool with excellent chipping resistance with a hard coating layer in high-speed milling and high-speed intermittent cutting
JP6171638B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6044401B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6171800B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6213066B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP2009142972A (en) Surface coated cutting tool with hard coating layer having improved chipping resistance during heavy cutting work

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160425

R150 Certificate of patent (=grant) or registration of utility model

Ref document number: 5939508

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160508