JP2001341008A - Titanium nitride-aluminum film coated tool and manufacturing method therefor - Google Patents

Titanium nitride-aluminum film coated tool and manufacturing method therefor

Info

Publication number
JP2001341008A
JP2001341008A JP2000166575A JP2000166575A JP2001341008A JP 2001341008 A JP2001341008 A JP 2001341008A JP 2000166575 A JP2000166575 A JP 2000166575A JP 2000166575 A JP2000166575 A JP 2000166575A JP 2001341008 A JP2001341008 A JP 2001341008A
Authority
JP
Japan
Prior art keywords
film
aluminum nitride
nitride film
titanium aluminum
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000166575A
Other languages
Japanese (ja)
Inventor
Yuzo Fukunaga
有三 福永
Toshio Ishii
敏夫 石井
Shiro Okayama
史郎 岡山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP2000166575A priority Critical patent/JP2001341008A/en
Publication of JP2001341008A publication Critical patent/JP2001341008A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To inexpensively provide a titanium nitride-aluminum film coated tool excellent in film adhesion as compared with a conventional coated tool, dense and high in film hardness and extremely excellent in performance by a comparatively easy method. SOLUTION: The titanium nitride-aluminum film coated tool is constituted so as to impart tensile residual stress to a titanium nitride-aluminum film, to make a crystal structure as a cubic phase and to contain chlorine by 0.01 to 2 mass %.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、切削工具、耐摩工
具等として用いる被覆工具に関し、より詳しくは、窒化
チタンアルミニウム膜を被覆してなる工具に関する。
The present invention relates to a coated tool used as a cutting tool, a wear-resistant tool or the like, and more particularly, to a tool coated with a titanium aluminum nitride film.

【0002】[0002]

【従来の技術】窒化チタンアルミニウム膜は一般にPV
D法により400〜500℃で成膜されており、回転工
具用被覆膜として多用されている。しかし、PVD法に
より成膜された窒化チタンアルミニウム膜は、比較的良
好な耐摩耗性を示すものの、成膜温度が比較的低温であ
ることもあり、膜と基体あるいは膜間の密着性が劣る欠
点がある。さらに、PVD法による一般的な欠点とし
て、CVD法に較べ膜の付き回りが悪く、複雑形状に適
さない、量産性に劣る、などの問題がある。
2. Description of the Related Art Titanium aluminum nitride films are generally PV
The film is formed at 400 to 500 ° C. by the method D, and is frequently used as a coating film for a rotating tool. However, although the titanium aluminum nitride film formed by the PVD method shows relatively good wear resistance, the film formation temperature may be relatively low, and the adhesion between the film and the substrate or the film is poor. There are drawbacks. Further, as a general drawback of the PVD method, there are problems such as poor rotation of the film as compared with the CVD method, unsuitability for complicated shapes, and poor mass productivity.

【0003】一方、CVD法で成膜する窒化チタンアル
ミニウム膜も特開平05−337705号公報や特許第
2999346号公報等で提案されているが、プラズマ
を用い比較的低温で成膜されるため、膜間の密着性が劣
るとともに膜中に塩素が残留し膜硬度が低く、耐摩耗性
が劣る欠点がある。また膜の付き回りの点でも、PVD
法よりは改善されるものの、プラズマの不均一に起因す
る膜厚、膜質の不均一は避けられなず、複雑形状の工
具、大型の工具、数量が多い工具などに不適である。さ
らに安定した品質のためにはプラズマの厳格な管理が不
可欠であることもあり、大型装置による量産は難しく、
複雑かつ高価な設備費と相まって製造コストが非常に高
く、よって商業ベースでの生産はまったく行われていな
いのが実状である。
On the other hand, a titanium aluminum nitride film formed by a CVD method has also been proposed in Japanese Patent Application Laid-Open No. 05-337705, Japanese Patent No. 2999346, and the like. There is a disadvantage that the adhesion between the films is poor, chlorine remains in the films, the film hardness is low, and the abrasion resistance is poor. In addition, PVD is applied to
Although it is better than the method, it is inevitable that the film thickness and film quality due to the non-uniformity of the plasma are unavoidable, and it is unsuitable for tools having complicated shapes, large-sized tools, tools in large quantities, and the like. Strict control of plasma may be indispensable for more stable quality, so mass production with large equipment is difficult,
The fact is that the production costs are very high, coupled with complex and expensive equipment costs, so that no commercial production takes place.

【0004】[0004]

【発明が解決しようとする課題】これらの実状を踏ま
え、本発明が解決しようとする課題は、従来に比して膜
の密着性が優れ、緻密で膜硬度の高い、格段に性能の優
れる窒化チタンアルミニウム膜被覆工具を比較的簡単な
製法で安価に提供することにある。
SUMMARY OF THE INVENTION Based on these facts, the problem to be solved by the present invention is to provide a film having excellent adhesion, dense and high film hardness, and extremely excellent performance as compared with the prior art. An object of the present invention is to provide a tool coated with a titanium aluminum film at a low cost by a relatively simple manufacturing method.

【0005】[0005]

【課題を解決するための手段】本発明に係る窒化チタン
アルミニウム膜被覆工具は、窒化チタンアルミニウム膜
に引張り残留応力を付与するとともに、結晶構造を立方
晶とし、かつ含有塩素量を0.01〜2質量%とする事
を要旨とする。
The titanium aluminum nitride film-coated tool according to the present invention imparts a tensile residual stress to the titanium aluminum nitride film, has a cubic crystal structure, and has a chlorine content of 0.01 to 0.01. The gist is to make it 2% by mass.

【0006】本発明に係る窒化チタンアルミニウム膜被
覆工具は、窒化チタンアルミニウム膜が引張り残留応力
を有することにより膜の密着性を高め、結晶構造を立方
晶とし、六方晶が混在していない膜とすることで、結晶
性が高く緻密で耐摩耗性の優れた窒化チタンアルミニウ
ム膜が実現でき、塩素量が0.01〜2質量%であるこ
とにより、膜硬度が高くなり、工具の耐摩耗性が高く、
更に優れた性能が実現される。塩素量が2質量%を越え
ると膜の硬度が低下し工具としての耐摩耗性が低下する
欠点が現れる。
The titanium-aluminum nitride film-coated tool according to the present invention improves the adhesion of the titanium-aluminum nitride film by having a residual tensile stress, makes the crystal structure cubic, and has a hexagonal-free film. By doing so, a titanium aluminum nitride film having high crystallinity and denseness and excellent wear resistance can be realized. When the chlorine content is 0.01 to 2% by mass, the film hardness increases and the wear resistance of the tool increases. Is high,
Even better performance is achieved. When the amount of chlorine exceeds 2% by mass, there is a disadvantage in that the hardness of the film decreases and the wear resistance as a tool decreases.

【0007】また、本発明は、前記窒化チタンアルミニ
ウム膜中にアルミニウム含有量が0.3〜60質量%で
あることが好ましく、10〜50質量%が更に好まし
く、20〜45質量%であることが最も好ましい。窒化
チタンアルミニウム膜中のアルミニウム含有量が0.3
〜60質量%であることにより、膜の耐酸化性が向上
し、更に良好な性能が実現されており、膜中のアルミニ
ウム保有量が10〜50質量%であることにより、膜の
耐酸化性が更に向上し、更に良好な性能が実現され、膜
中のアルミニウム含有量が20〜45質量%であること
により最も優れた耐酸化性が得られ最も優れた性能が実
現されていると判断される。
In the present invention, the aluminum content in the titanium aluminum nitride film is preferably 0.3 to 60% by mass, more preferably 10 to 50% by mass, and more preferably 20 to 45% by mass. Is most preferred. The aluminum content in the titanium aluminum nitride film is 0.3
When the content of aluminum is in the range of 10 to 50% by mass, the oxidation resistance of the film is improved. Is further improved, more excellent performance is realized, and it is judged that the most excellent oxidation resistance is obtained and the most excellent performance is realized when the aluminum content in the film is 20 to 45% by mass. You.

【0008】また、本発明は、前記窒化チタンアルミニ
ウム膜のX線回折強度が最も強い面が、(111)面ま
たは(311)面であることが好ましい。窒化チタンア
ルミニウム膜のX線回折ピーク最強度面が、(111)
面または(311)面であることにより、結晶性が高い
膜が実現され、更に良好な性能が実現されていると判断
される。
In the present invention, it is preferable that the surface of the titanium aluminum nitride film having the highest X-ray diffraction intensity is the (111) plane or the (311) plane. The maximum intensity plane of the X-ray diffraction peak of the titanium aluminum nitride film is (111)
By determining that the surface is the (311) plane, it is determined that a film having high crystallinity is realized, and further excellent performance is realized.

【0009】本発明は、前記窒化チタンアルミニウム膜
が、原料ガスとして少なくともチタンのハロゲン化ガ
ス、アルミニウムのハロゲン化ガスおよびNHガスを
用い、700〜900℃で熱CVD法により成膜するこ
とにより製造される。NHガスを用いることにより熱
CVD法により成膜出来、ハロゲン化ガスを用いること
により、より安価に工業的に安定して成膜することが出
きる。少なくとも、窒化チタンアルミニウム膜が、成膜
温度が高い熱CVD法により成膜されていることによ
り、緻密で膜の密着性が優れた窒化チタンアルミニウム
膜が得られ、耐摩耗性が優れた、更に良好な性能が実現
されていると判断される。
According to the present invention, the titanium aluminum nitride film is formed by a thermal CVD method at 700 to 900 ° C. using at least a halogenated gas of titanium, a halogenated gas of aluminum and an NH 3 gas as a raw material gas. Manufactured. By using NH 3 gas, a film can be formed by a thermal CVD method, and by using a halogenated gas, a film can be formed more inexpensively and industrially stably. At least, since the titanium aluminum nitride film is formed by a thermal CVD method having a high film formation temperature, a dense titanium aluminum nitride film having excellent film adhesion is obtained, and abrasion resistance is excellent. It is determined that good performance has been achieved.

【0010】[0010]

【発明の実施の形態】以下に本発明を詳説する。本発明
の被覆工具を製作するために熱CVD法を用いる場合
は、通常のPVD法やプラズマCVD法より成膜温度を
高くすることで、膜の密着性を改善し、膜中の塩素の残
留が少なくなるように調整する。さらに成膜条件は、本
発明者らによって見出された次の知見に基づき設定され
る。即ち、成膜温度を比較的高く設定することで窒化チ
タンアルミニウム膜のX線回折強度の(311)面が強
くなり、更に温度を上げると(220)面が強くなる傾
向にある。また、当然のことながら本発明品の窒化チタ
ンアルミニウム膜は、アルミニウムのハロゲン化ガス/
チタンのハロゲン化ガスの濃度比を上げると窒化チタン
アルミニウム膜中のアルミニウム含有量が増える傾向に
ある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail. When the thermal CVD method is used to manufacture the coated tool of the present invention, the film deposition temperature is increased compared to the normal PVD method or the plasma CVD method, thereby improving the adhesion of the film and the residual chlorine in the film. Adjust so that is less. Further, the film forming conditions are set based on the following findings discovered by the present inventors. That is, by setting the film forming temperature relatively high, the (311) plane of the X-ray diffraction intensity of the titanium aluminum nitride film tends to increase, and when the temperature is further increased, the (220) plane tends to increase. Also, needless to say, the titanium aluminum nitride film of the present invention is made of an aluminum halide gas /
Increasing the titanium halide gas concentration ratio tends to increase the aluminum content in the titanium aluminum nitride film.

【0011】本発明に係る窒化チタンアルミニウム膜被
覆工具の用途は切削工具に限るものではなく、窒化チタ
ンアルミニウム膜を含む単層あるいは多層の硬質皮膜を
被覆した耐摩耗材や金型、溶湯部品等でもよい。本発明
の被覆工具において、窒化チタンアルミニウム膜は(T
i、Al)N膜に限るものではない。例えば(Ti、A
l)NにCr、Zr、Ta、Mg、Y、Si、Bを単独
または複数組み合わせて各元素を0.3〜10質量%添
加した膜でも良い。また、本発明の被覆工具において、
下地膜はTiNに限るものではなく、例えば下地膜とし
てTiC膜やAlN膜、ZrN膜、ZrCN膜、TiC
N膜を成膜した場合も下記実施例と略同様の作用効果を
得ることができる。本発明の被覆工具において、窒化チ
タンアルミニウム膜は必ずしも最外膜である必要はな
く、例えばさらにその上に酸化アルミニウム膜、チタン
化合物(例えばTiN膜やTiCN膜およびTiN膜と
TiCN膜の多層膜等)等を被覆してもよい。
The application of the titanium aluminum nitride film-coated tool according to the present invention is not limited to a cutting tool, but may also be applied to abrasion-resistant materials, molds, molten metal parts, etc. coated with a single-layer or multilayer hard film containing a titanium aluminum nitride film. Good. In the coated tool of the present invention, the titanium aluminum nitride film is (T
It is not limited to i, Al) N films. For example, (Ti, A
l) A film obtained by adding Cr to Zr, Ta, Mg, Y, Si, or B alone or in combination of a plurality of elements to 0.3 to 10% by mass of N may be used. Further, in the coated tool of the present invention,
The underlayer is not limited to TiN. For example, a TiC film, an AlN film, a ZrN film, a ZrCN film, a TiC film
When an N film is formed, substantially the same operation and effect as those of the following embodiments can be obtained. In the coated tool of the present invention, the titanium aluminum nitride film does not necessarily have to be the outermost film. For example, an aluminum oxide film, a titanium compound (eg, a TiN film or a TiCN film, a multilayer film of a TiN film and a TiCN film, etc.) ) May be coated.

【0012】[0012]

【実施例】次に本発明の被覆工具を実施例によって具体
的に説明するが、これら実施例により本発明が限定され
るものではない。WC72質量%、TiC8質量%、
(Ta、Nb)C11質量%、Co9質量%の組成より
なるスローアウェイチップの切削工具用超硬合金基板を
熱CVD炉内にセットし、HキャリヤーガスとTiC
ガスとNガスとを原料ガスに用い、基板表面に
0.3μm厚さのTiNを900℃でまず形成した。続
いて、温度:700〜900℃、原料ガスをTiCl
ガス:0.05〜4.0vol%、AlClガス:
0.03〜2.5vol%、NHガス:0.05〜
3.0vol%、の範囲で変化させ、残部はHとN
のキャリヤーガスとして毎分6000mlだけCVD炉
内に流し、成膜圧力:2.7〜15.9KPaの範囲で
変化させた条件で反応させることにより厚さ8μmの、
様々な窒化チタンアルミニウム膜を成膜し、表1に示す
試料番号1〜32の本発明例を得た。
EXAMPLES Next, the coated tool of the present invention will be specifically described with reference to examples, but the present invention is not limited by these examples. WC 72% by mass, TiC 8% by mass,
(Ta, Nb) A cemented carbide substrate for a cutting tool having a composition of 11% by mass of C and 9% by mass of Co was set in a thermal CVD furnace, and H 2 carrier gas and TiC were used.
using a l 4 gas and N 2 gas to the raw material gas, it was first formed 0.3μm thick of TiN at 900 ° C. on the substrate surface. Subsequently, at a temperature of 700 to 900 ° C., the source gas is TiCl 4
Gas: 0.05 to 4.0 vol%, AlCl 3 gas:
0.03~2.5vol%, NH 3 gas: 0.05
3.0 vol%, and the balance was H 2 and N 2
Of 6000 ml per minute as a carrier gas in a CVD furnace, and reacting under conditions changed in a film forming pressure range of 2.7 to 15.9 KPa to obtain a film having a thickness of 8 μm.
Various titanium aluminum nitride films were formed, and the present invention examples of sample numbers 1 to 32 shown in Table 1 were obtained.

【0013】[0013]

【表1】 [Table 1]

【0014】図1は試料番号11の工具側面平坦部の皮
膜部分を測定面として、理学電気株株式会社製のX線回
折装置、RU−200BHを用いて2θ−θ走査法によ
り2θ=10〜145゜の範囲で測定した、本発明品の
代表的X線回折パターンである。X線源にはCuKα
線(λ=0.15405nm)を用い、バックグラウン
ドは装置に内蔵されたソフトにより除去した。図1のX
線回折パターンから求めた本発明品の窒化チタンアルミ
ニウム膜の各ピークの2θ値とX線回折強度および各2
θ値から求めた格子定数とを表2にまとめて示す。図1
と表2より、本発明品の窒化チタンアルミニウム膜はX
線回折パターンが立方晶構造のX線回折パターンと良く
一致していることがわかる。また、表2より、窒化チタ
ンアルミの格子定数は0.39〜0.42nmであり、
X線回折強度は(111)面が最も強く、次に(31
1)面の強度が強いことがわかる。
FIG. 1 shows an example in which the coating on the flat side surface of the tool of Sample No. 11 is used as a measurement surface, and 2θ = 10 by a 2θ-θ scanning method using an X-ray diffractometer RU-200BH manufactured by Rigaku Corporation. It is a typical X-ray diffraction pattern of the product of the present invention measured in the range of 145 °. X-ray source is CuKα 1
Using a line (λ = 0.15405 nm), the background was removed by software built into the apparatus. X in FIG.
Value of each peak of the titanium aluminum nitride film of the present invention obtained from the X-ray diffraction pattern, X-ray diffraction intensity and 2
Table 2 shows the lattice constants determined from the θ values. FIG.
According to Table 2 and Table 2, the titanium aluminum nitride film of the present invention has X
It can be seen that the X-ray diffraction pattern is in good agreement with the X-ray diffraction pattern of the cubic structure. From Table 2, the lattice constant of titanium aluminum nitride is 0.39 to 0.42 nm,
The X-ray diffraction intensity is the strongest on the (111) plane, followed by (31).
1) It can be seen that the strength of the surface is strong.

【0015】[0015]

【表2】 [Table 2]

【0016】膜の残留応力は理学電気(株)製のX線回
折装置(RU−200BH)と応力測定用ソフト(Ma
nual No.MJ13026A01)を用いてΨ一
定法(θ−2θ連動スキャン)により測定した。作製し
た膜の組成は堀場製作所製のエネルギー分散形X線分析
装置(EDX)EMAX−7000を用い測定した。測
定は膜表面の組成を分析しており、EDXの測定深さが
約2μmであるのに対して窒化チタンアルミニウム膜の
膜厚が8μmと厚いため、窒化チタンアルミニウム膜の
みの組成が分析されていると考えられる。分析した本発
明品の窒化チタンアルミニウム膜のAl含有量およびC
l含有量並びに残留応力の符号の測定結果を表1に併記
する。残留応力の符号は、引張りを(+)、圧縮を
(−)で表す。表1から、本発明例の窒化チタンアルミ
ニウム膜は、引張り残留応力を有することがわかる。
The residual stress of the film is measured by using an X-ray diffractometer (RU-200BH) manufactured by Rigaku Denki Co., Ltd. and software for stress measurement (Ma).
natural No. (MJ13026A01) by the Ψ constant method (θ-2θ linked scan). The composition of the prepared film was measured using an energy dispersive X-ray analyzer (EDX) EMAX-7000 manufactured by Horiba, Ltd. In the measurement, the composition of the film surface was analyzed. Since the thickness of the titanium aluminum nitride film was as thick as 8 μm while the measurement depth of EDX was about 2 μm, the composition of only the titanium aluminum nitride film was analyzed. It is thought that there is. Al content and C of titanium aluminum nitride film of the present invention analyzed
Table 1 also shows the measurement results of the l content and the sign of the residual stress. The sign of the residual stress is represented by (+) for tension and (-) for compression. Table 1 shows that the titanium aluminum nitride film of the present invention has a tensile residual stress.

【0017】窒化チタンアルミニウム膜における引張り
残留応力の有無による性能への影響を明らかにするため
に、本発明例と同様の切削工具用超硬合金基板上にPV
D法の一種であるアークイオンプレンティング法にてT
iN、続いて8μm厚さの窒化チタンアルミニウム膜を
成膜して、比較例33とした。作製した比較例33は、
膜残留応力の符号が(−)で圧縮残留応力を有し格子定
数が0.41566nmの立方晶構造を有していた。
In order to clarify the effect on the performance due to the presence or absence of the tensile residual stress in the titanium aluminum nitride film, a PVD was formed on a cemented carbide substrate for a cutting tool similar to that of the present invention.
The arc ion plating method, one of the D methods,
iN, and then a titanium aluminum nitride film having a thickness of 8 μm were formed to obtain Comparative Example 33. Comparative Example 33 produced was
The sign of the film residual stress was (-), the film had a compressive residual stress, and had a cubic structure with a lattice constant of 0.41566 nm.

【0018】窒化チタンアルミニウム膜の結晶構造が立
方晶でないことによる性能への影響を明らかにするため
に、本発明例と同様の切削工具用超硬合金基板上に本発
明例と同一の条件でTiN膜を形成した。続いて、成膜
温度930〜980℃と本発明例に比べてより高温でT
iClガスを0.3vol%、AlClガスを3v
ol%、NHガスを3vol%、Nガスを20vo
l%、残Hキャリヤーガスで構成された原料ガスを毎
分5500mlだけCVD炉内に流し、成膜圧力17.
3KPaで、8μm厚さの窒化チタンアルミニウム膜を
成膜することにより、比較例34を作製した。作製した
比較例34の窒化チタンアルミニウム膜は残留応力の符
号が(+)で引っ張り残留応力を有している。図2に比
較例34のX線回折パターンを示す。図2によるとTi
N、AlNのピークがそれぞれ単独に現れており、立方
晶の(Ti、Al)Nのピークは観察されず、TiN、
AlN混合膜であることがわかる。TiNとAlNの2
相に分かれる理由は明確ではないが、本比較例33は本
発明例に比べて、より高温で成膜したため、六方晶構造
のAlNが成膜されやすくなり、TiNとAlNと2相
に分離して成膜され易くなったものと考えられる。
In order to clarify the influence on performance due to the non-cubic crystal structure of the titanium aluminum nitride film, a cemented carbide substrate for a cutting tool similar to that of the present invention was prepared under the same conditions as those of the present invention. A TiN film was formed. Subsequently, at a film formation temperature of 930 to 980 ° C., T
0.3 vol% of iCl 4 gas, 3 v of AlCl 3 gas
ol%, 3 vol% of NH 3 gas, and 20 vol of N 2 gas
1%, a source gas composed of the remaining H 2 carrier gas was flowed into the CVD furnace at a rate of 5500 ml / min.
Comparative Example 34 was produced by forming a titanium aluminum nitride film having a thickness of 8 μm at 3 KPa. The manufactured titanium aluminum nitride film of Comparative Example 34 has a residual stress of (+) and a tensile residual stress. FIG. 2 shows an X-ray diffraction pattern of Comparative Example 34. According to FIG.
N and AlN peaks appear independently, and no cubic (Ti, Al) N peak is observed.
It can be seen that the film is an AlN mixed film. 2 of TiN and AlN
Although the reason for the phase separation is not clear, in Comparative Example 33, since the film was formed at a higher temperature than in the present invention, AlN having a hexagonal structure was more likely to be formed, and TiN and AlN were separated into two phases. It is considered that the film was easily formed.

【0019】窒化チタンアルミニウム膜の塩素量が2%
を越える場合の性能への影響を明らかにするために、本
発明例と同様の切削工具用超硬合金基板上にプラズマC
VD法にてTiN膜を形成した。続いて、成膜温度60
0℃でTiClガスを0.3vol%、AlCl
スを3vol%、NHガスを3vol%、Nガスを
20vol%、残Hキャリヤーガスで構成された原料
ガスを毎分2000mlだけプラズマCVD炉内に流
し、成膜圧力66Paで、8μm厚さの窒化チタンアル
ミニウム膜を成膜することにより比較例35を作製し
た。比較例35に成膜した窒化チタンアルミニウムは
(Ti、Al)N単相であり、立方晶構造をしており、
EDXにより分析した結果、塩素量が2.5質量%であ
った。
The chlorine content of the titanium aluminum nitride film is 2%
In order to clarify the effect on the performance when the pressure exceeds the limit, the plasma C
A TiN film was formed by the VD method. Subsequently, the film formation temperature 60
At 0 ° C., a source gas composed of 0.3 vol% of TiCl 4 gas, 3 vol% of AlCl 3 gas, 3 vol% of NH 3 gas, 20 vol% of N 2 gas, and the remaining H 2 carrier gas is 2000 ml / min. Comparative Example 35 was produced by flowing the mixture in a CVD furnace and forming a titanium aluminum nitride film having a thickness of 8 μm at a film forming pressure of 66 Pa. The titanium aluminum nitride formed in Comparative Example 35 was a (Ti, Al) N single phase, had a cubic structure,
As a result of analysis by EDX, the chlorine content was 2.5% by mass.

【0020】以上で作製した本発明例及び比較例を用い
て以下の条件で連続切削を行い、膜の密着性と寿命を評
価した。 被削材 S53C(HS35) 切削速度 220m/min 送り 0.3mm/rev 切り込み 2.0mm 切削方式 乾式切削 膜の密着性は、切削開始30秒後に膜剥離の有無を観察
することにより評価し、表1に膜剥離として記載した。
また、刃先の平均逃げ面摩耗量とクレーター摩耗量とを
工具顕微鏡を用いて切削時間が1分経過するごとに測定
し、平均逃げ面摩耗幅が0.3mmに達した時間を連続
切削寿命と判断し、これを表1に併記した。
Using the inventive examples and comparative examples produced as described above, continuous cutting was performed under the following conditions, and the adhesion and life of the film were evaluated. Work material S53C (HS35) Cutting speed 220m / min Feed 0.3mm / rev Depth of cut 2.0mm Cutting method Dry cutting The adhesion of the film was evaluated by observing the presence or absence of film peeling 30 seconds after the start of cutting. 1 is described as film peeling.
The average flank wear and crater wear of the cutting edge were measured using a tool microscope each time the cutting time passed for 1 minute. Judgment was made and this is also shown in Table 1.

【0021】表1より、いずれの本発明例においても、
30秒切削後に膜剥離は生じておらず、比較例と比較し
て膜密着性が優れていることがわかった。また、連続切
削テストにおいて、本発明品はいずれも連続切削寿命が
最低でも6分以上と長く、優れていることがわかる。試
料番号2〜28の本発明例の切削試験結果から、窒化チ
タンアルミニウム膜中のアルミニウム含有量が0.3〜
60質量%の時、連続切削寿命が8分以上と長く優れた
工具特性が得られ、10〜50質量%の時は連続切削寿
命が12分以上と更に長くなり更に優れた工具特性が得
られ、20〜45質量%の時で18分以上と最も長くな
っており最も優れた具特性が得られることがわかる。本
発明例の試料番号1〜32を比較することにより、窒化
チタンアルミニウム膜中の塩素量が0.01〜1質量%
の時は、連続切削寿命が更に長くなり、更に性能が優れ
ていることがわかる。試料番号12、14、17と他の
本発明例を比較することにより、窒化チタンアルミニウ
ム膜のX線回折強度は(111)面及び(311)面が
最大強度の時、(200)面及び(220)面の時よ
り、連続切削寿命が長くなっていることがわかる。試料
番号1、29、30、31、32と他の本発明例の比較
により本発明品はアルミニウムの含有量が0.3〜60
質量%の時に良好な連続切削寿命が得られることがわか
る。
From Table 1, it can be seen that in each of the examples of the present invention,
No film peeling occurred after cutting for 30 seconds, indicating that the film adhesion was superior to that of the comparative example. In the continuous cutting test, all of the products of the present invention have excellent continuous cutting life of at least 6 minutes or more, which is excellent. From the cutting test results of the inventive examples of sample numbers 2 to 28, the aluminum content in the titanium aluminum nitride film was 0.3 to
At 60% by mass, continuous cutting life is as long as 8 minutes or more, and excellent tool characteristics are obtained. At 10 to 50% by mass, continuous cutting life is as long as 12 minutes or more, and further excellent tool characteristics are obtained. At 20 to 45% by mass, the length is 18 minutes or longer, which indicates that the most excellent tool characteristics can be obtained. By comparing Sample Nos. 1 to 32 of the present invention, the amount of chlorine in the titanium aluminum nitride film was 0.01 to 1% by mass.
In the case of, it can be seen that the continuous cutting life becomes longer and the performance is more excellent. By comparing Sample Nos. 12, 14, and 17 with the other examples of the present invention, the X-ray diffraction intensity of the titanium aluminum nitride film is (200) and (200) when the (111) plane and the (311) plane have the maximum intensity. It can be seen that the continuous cutting life is longer than in the case of the (220) plane. By comparing sample numbers 1, 29, 30, 31, and 32 with other examples of the present invention, the product of the present invention has an aluminum content of 0.3 to 60.
It can be seen that a good continuous cutting life can be obtained when the amount is mass%.

【0022】比較例33では切削時間が30秒以内で膜
が剥離し、膜の性能が本発明品より劣ることがわかっ
た。比較例34及び35は5分以内で連続切削寿命に達
し、膜の性能が本発明品より劣ることがわかった。
In Comparative Example 33, it was found that the film peeled off within a cutting time of 30 seconds or less, and the performance of the film was inferior to that of the product of the present invention. In Comparative Examples 34 and 35, the continuous cutting life was reached within 5 minutes, and it was found that the performance of the film was inferior to that of the product of the present invention.

【0023】[0023]

【発明の効果】上述のように、本発明によれば、窒化チ
タンアルミニウム膜が引張残留応力と立方晶構造とを有
することにより、結晶性が高く、窒化チタンアルミニウ
ム膜自体の密着性が良く、性能に優れた有用な窒化チタ
ンアルミニウム膜被覆工具を実現することができる。し
かも本発明に係る窒化チタンアルミニウム膜被覆工具
は、プラズマを用いず、構造の簡単な熱CVD法により
製造可能であるため、大型の装置を用いても少ない管理
項目で安定した品質の製品が安価に製造でき、しかも膜
の付き回り性にも問題がないため、適用できる工具形状
の幅も著しく広い、などの数々の優れた効果を発揮する
ものである。
As described above, according to the present invention, since the titanium aluminum nitride film has a tensile residual stress and a cubic structure, the crystallinity is high, and the adhesion of the titanium aluminum nitride film itself is good. A useful titanium aluminum nitride film-coated tool having excellent performance can be realized. Moreover, since the titanium-aluminum nitride film-coated tool according to the present invention can be manufactured by a thermal CVD method having a simple structure without using plasma, a stable quality product can be manufactured with a small number of control items even when using a large-sized apparatus. In addition, since there is no problem in the turning property of the film, various widths of applicable tool shapes are remarkably wide, and many other excellent effects are exhibited.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明に係る窒化チタンアルミニウム
被覆工具のX線回折パターン図の一例を示す。
FIG. 1 shows an example of an X-ray diffraction pattern diagram of a titanium aluminum nitride coated tool according to the present invention.

【図2】図2は、比較例34の窒化チタンアルミニウム
被覆工具のX線回折パターン図を示す。
FIG. 2 shows an X-ray diffraction pattern of the titanium aluminum nitride coated tool of Comparative Example 34.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3C046 FF03 FF10 FF13 FF16 FF23 FF24 4K030 AA02 AA13 AA17 BA02 BA18 BA38 BB01 BB12 CA03 FA10 LA21 LA22  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 3C046 FF03 FF10 FF13 FF16 FF23 FF24 4K030 AA02 AA13 AA17 BA02 BA18 BA38 BB01 BB12 CA03 FA10 LA21 LA22

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 工具基体に一層又は多層からなる被覆層
を設け、該被覆層の少なくとも一層は少なくともチタン
とアルミニウムと窒素を含む窒化チタンアルミニウム膜
である窒化チタンアルミニウム膜被覆工具において、 該窒化チタンアルミニウム膜の結晶構造が立方晶であ
り、引張り残留応力を有し、かつ含有塩素量が0.01
〜2質量%であることを特徴とする窒化チタンアルミニ
ウム膜被覆工具。
1. A tool coated with a titanium aluminum nitride film, comprising a tool substrate provided with a coating layer comprising one or more layers, wherein at least one of the coating layers is a titanium aluminum nitride film containing at least titanium, aluminum and nitrogen. The crystal structure of the aluminum film is cubic, has a tensile residual stress, and has a chlorine content of 0.01.
工具 2% by mass.
【請求項2】 請求項1に記載の窒化チタンアルミニウ
ム膜被覆工具において、該窒化チタンアルミニウム膜中
のアルミニウム含有量が0.3〜60.0質量%である
ことを特徴とする窒化チタンアルミニウム膜被覆工具。
2. The titanium aluminum nitride film-coated tool according to claim 1, wherein the aluminum content of the titanium aluminum nitride film is 0.3 to 60.0% by mass. Coated tools.
【請求項3】 請求項1、2のいずれかに記載の窒化チ
タンアルミニウム膜被覆工具において、該窒化チタンア
ルミニウム膜のX線回折強度は(111)面または(3
11)面において最大となることを特徴とする窒化チタ
ンアルミニウム膜被覆工具。
3. The tool according to claim 1, wherein the titanium aluminum nitride film has an X-ray diffraction intensity of (111) plane or (3).
11) A tool coated with a titanium aluminum nitride film, which has a maximum surface.
【請求項4】 請求項1乃至3のいずれかに記載の窒化
チタンアルミニウム膜被覆工具を製造する方法におい
て、該窒化チタンアルミニウム膜は、原料ガスとして少
なくともチタンのハロゲン化ガス、アルミニウムのハロ
ゲン化ガスおよびNHガスを用い、700〜900℃
で熱CVD法により成膜することを特徴とする窒化チタ
ンアルミニウム膜被覆工具の製造方法。
4. The method for manufacturing a tool coated with a titanium aluminum nitride film according to claim 1, wherein said titanium aluminum nitride film is formed of a halogenated gas of at least titanium and a halogenated gas of aluminum as a raw material gas. 700 to 900 ° C. using NH 3 gas
A method for producing a titanium aluminum nitride film-coated tool, characterized by forming a film by a thermal CVD method.
JP2000166575A 2000-06-02 2000-06-02 Titanium nitride-aluminum film coated tool and manufacturing method therefor Pending JP2001341008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000166575A JP2001341008A (en) 2000-06-02 2000-06-02 Titanium nitride-aluminum film coated tool and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000166575A JP2001341008A (en) 2000-06-02 2000-06-02 Titanium nitride-aluminum film coated tool and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2001341008A true JP2001341008A (en) 2001-12-11

Family

ID=18669871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000166575A Pending JP2001341008A (en) 2000-06-02 2000-06-02 Titanium nitride-aluminum film coated tool and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2001341008A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005186262A (en) * 2003-12-01 2005-07-14 Mitsubishi Materials Corp Cutting tool made of surface coated cubic boron nitride group sintered material with hard coating layer exhibiting excellent wear resistance
JP2005219199A (en) * 2004-01-05 2005-08-18 Mitsubishi Materials Kobe Tools Corp Surface coated cemented carbide cutting tool having hard coated layer displaying excellent wear resistance
WO2005099945A1 (en) * 2004-04-13 2005-10-27 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool
WO2006030663A1 (en) * 2004-09-17 2006-03-23 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool having coating film on base
EP1902155A1 (en) 2005-07-04 2008-03-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Hard-coated body and method for production thereof
JP2010076030A (en) * 2008-09-25 2010-04-08 Sumitomo Electric Hardmetal Corp Surface coat cutting tool
JP2011504808A (en) 2007-11-16 2011-02-17 ベーレリト ゲーエムベーハー ウント コー. カーゲー. Friction stir welding tool
JP2011513594A (en) * 2008-03-12 2011-04-28 ケンナメタル インコーポレイテッド Objects covered with hard materials
JP2011516722A (en) * 2008-03-12 2011-05-26 ケンナメタル インコーポレイテッド Objects covered with hard materials
JP2014024130A (en) * 2012-07-25 2014-02-06 Mitsubishi Materials Corp Surface coated cutting tool coated with hard coating layer providing excellent chipping resistance in high-speed intermittent cutting
WO2014173755A1 (en) * 2013-04-26 2014-10-30 Walter Ag Tool having cvd coating
US20150064452A1 (en) * 2012-03-14 2015-03-05 Boehlerit Gmbh & Co.Kg. Coated body and method for coating a body
US20150158094A1 (en) * 2012-03-09 2015-06-11 Mitsubishi Materials Corporation Surface-coated cutting tool having therein hard coating layer capable of exhibiting excellent chipping resistance during high-speed intermittent cutting work
JP2015163423A (en) * 2014-01-31 2015-09-10 三菱マテリアル株式会社 Surface coated cutting tool whose hard coating layer exerts excellent chipping resistance in high-speed intermittent cutting work
JP2017508632A (en) * 2014-03-11 2017-03-30 バルター アクチェンゲゼルシャフト TiAlCN layer with layered structure
CN103567735B (en) * 2012-07-25 2017-05-24 三菱综合材料株式会社 Surface coating cutting device
WO2017090540A1 (en) 2015-11-25 2017-06-01 三菱日立ツール株式会社 Titanium aluminum nitride hard film, hard film coated tool, method for producing titanium aluminum nitride hard film, and method for producing hard film coated tool
US20180029144A1 (en) * 2016-01-13 2018-02-01 Sumitomo Electric Hardmetal Corp. Surface coated cutting tool and method for manufacturing the same
US20180216224A1 (en) * 2015-07-27 2018-08-02 Walter Ag TOOL WITH TiAIN COATING
JP2018164960A (en) * 2017-03-28 2018-10-25 三菱マテリアル株式会社 Coated cemented carbide tool with superior chipping resistance
JP2019115957A (en) * 2017-12-27 2019-07-18 三菱マテリアル株式会社 Surface coated cutting tool having hard coating layer exhibiting excellent wear resistance
WO2020138304A1 (en) 2018-12-27 2020-07-02 三菱マテリアル株式会社 Surface-coated cutting tool
US10968512B2 (en) 2017-06-22 2021-04-06 Kennametal Inc. CVD composite refractory coatings and applications thereof
WO2024033909A1 (en) 2022-08-10 2024-02-15 Iscar Ltd. CUTTING TOOL WITH A TiAlN COATING

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005186262A (en) * 2003-12-01 2005-07-14 Mitsubishi Materials Corp Cutting tool made of surface coated cubic boron nitride group sintered material with hard coating layer exhibiting excellent wear resistance
JP4591815B2 (en) * 2003-12-01 2010-12-01 三菱マテリアル株式会社 Cutting tool made of surface-coated cubic boron nitride-based sintered material with excellent wear resistance due to hard coating layer
JP4609631B2 (en) * 2004-01-05 2011-01-12 三菱マテリアル株式会社 Surface coated cemented carbide cutting tool with excellent wear resistance due to hard coating layer
JP2005219199A (en) * 2004-01-05 2005-08-18 Mitsubishi Materials Kobe Tools Corp Surface coated cemented carbide cutting tool having hard coated layer displaying excellent wear resistance
WO2005099945A1 (en) * 2004-04-13 2005-10-27 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool
US7785700B2 (en) 2004-04-13 2010-08-31 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool
WO2006030663A1 (en) * 2004-09-17 2006-03-23 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool having coating film on base
JP2006082207A (en) * 2004-09-17 2006-03-30 Sumitomo Electric Hardmetal Corp Surface coated cutting tool
EP1700654A4 (en) * 2004-09-17 2016-08-03 Sumitomo Elec Hardmetal Corp Surface-coated cutting tool having coating film on base
US7498089B2 (en) 2004-09-17 2009-03-03 Sumitomo Electric Hardmetal Corp. Coated cutting tool having coating film on base
EP1902155B1 (en) * 2005-07-04 2016-02-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Hard-coated body and method for production thereof
EP1902155A1 (en) 2005-07-04 2008-03-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Hard-coated body and method for production thereof
JP2011504808A (en) 2007-11-16 2011-02-17 ベーレリト ゲーエムベーハー ウント コー. カーゲー. Friction stir welding tool
JP2011513594A (en) * 2008-03-12 2011-04-28 ケンナメタル インコーポレイテッド Objects covered with hard materials
JP2011516722A (en) * 2008-03-12 2011-05-26 ケンナメタル インコーポレイテッド Objects covered with hard materials
EP3031948B1 (en) 2008-03-12 2017-03-15 Kennametal Inc. Body coated with hard material
JP2010076030A (en) * 2008-09-25 2010-04-08 Sumitomo Electric Hardmetal Corp Surface coat cutting tool
US9452478B2 (en) * 2012-03-09 2016-09-27 Mitsubishi Materials Corporation Surface-coated cutting tool having therein hard coating layer capable of exhibiting excellent chipping resistance during high-speed intermittent cutting work
US20150158094A1 (en) * 2012-03-09 2015-06-11 Mitsubishi Materials Corporation Surface-coated cutting tool having therein hard coating layer capable of exhibiting excellent chipping resistance during high-speed intermittent cutting work
US20150064452A1 (en) * 2012-03-14 2015-03-05 Boehlerit Gmbh & Co.Kg. Coated body and method for coating a body
US9636750B2 (en) * 2012-03-14 2017-05-02 Boehlerit Gmbh & Co.Kg. Coated body and method for coating a body
JP2014024130A (en) * 2012-07-25 2014-02-06 Mitsubishi Materials Corp Surface coated cutting tool coated with hard coating layer providing excellent chipping resistance in high-speed intermittent cutting
CN103567735B (en) * 2012-07-25 2017-05-24 三菱综合材料株式会社 Surface coating cutting device
CN105247099A (en) * 2013-04-26 2016-01-13 瓦尔特公开股份有限公司 Tool having CVD coating
WO2014173755A1 (en) * 2013-04-26 2014-10-30 Walter Ag Tool having cvd coating
JP2016522323A (en) * 2013-04-26 2016-07-28 バルター アクチェンゲゼルシャフト Tool with CVD coating
US9976213B2 (en) 2013-04-26 2018-05-22 Walter Ag Tool having CVD coating
JP2015163423A (en) * 2014-01-31 2015-09-10 三菱マテリアル株式会社 Surface coated cutting tool whose hard coating layer exerts excellent chipping resistance in high-speed intermittent cutting work
US10214810B2 (en) 2014-03-11 2019-02-26 Walter Ag TiAlCN layers with lamellar structure
JP2017508632A (en) * 2014-03-11 2017-03-30 バルター アクチェンゲゼルシャフト TiAlCN layer with layered structure
EP3117021B1 (en) 2014-03-11 2018-06-06 Walter AG Tialcn layers with lamellar structure
US10662524B2 (en) * 2015-07-27 2020-05-26 Walter Ag Tool with TiAIN coating
US20180216224A1 (en) * 2015-07-27 2018-08-02 Walter Ag TOOL WITH TiAIN COATING
WO2017090540A1 (en) 2015-11-25 2017-06-01 三菱日立ツール株式会社 Titanium aluminum nitride hard film, hard film coated tool, method for producing titanium aluminum nitride hard film, and method for producing hard film coated tool
US10767258B2 (en) 2015-11-25 2020-09-08 Mitsubishi Hitachi Tool Engineering, Ltd. Hard titanium aluminum nitride coating, hard-coated tool, and their production methods
US10603726B2 (en) * 2016-01-13 2020-03-31 Sumitomo Electric Hardmetal Corp. Surface coated cutting tool and method for manufacturing the same
US20180029144A1 (en) * 2016-01-13 2018-02-01 Sumitomo Electric Hardmetal Corp. Surface coated cutting tool and method for manufacturing the same
JP2018164960A (en) * 2017-03-28 2018-10-25 三菱マテリアル株式会社 Coated cemented carbide tool with superior chipping resistance
US10968512B2 (en) 2017-06-22 2021-04-06 Kennametal Inc. CVD composite refractory coatings and applications thereof
JP2019115957A (en) * 2017-12-27 2019-07-18 三菱マテリアル株式会社 Surface coated cutting tool having hard coating layer exhibiting excellent wear resistance
JP7015978B2 (en) 2017-12-27 2022-02-04 三菱マテリアル株式会社 Surface-coated cutting tools with excellent wear resistance with a hard coating layer
WO2020138304A1 (en) 2018-12-27 2020-07-02 三菱マテリアル株式会社 Surface-coated cutting tool
WO2024033909A1 (en) 2022-08-10 2024-02-15 Iscar Ltd. CUTTING TOOL WITH A TiAlN COATING

Similar Documents

Publication Publication Date Title
JP2001341008A (en) Titanium nitride-aluminum film coated tool and manufacturing method therefor
US5915162A (en) Coated cutting tool and a process for the production of the same
KR102033186B1 (en) Tool with chromium-containing functional layer
JP2002543992A (en) PVD coated cutting tool and method for manufacturing the same
JP2003025114A (en) Aluminium oxide coated cutting tool
JPH06158325A (en) Cutting tool made of surface-coated cermet having enhanced wear resistance of hard coating layer
JPH11256336A (en) Titanium carbonitride-coated tool
JP3768136B2 (en) Coated tool
JPH068008A (en) Cutting tool made of surface coating tungsten carbide group supper hard alloy excellent in chipping resistance property
JP3291775B2 (en) Surface coated cutting tool
JPH0765178B2 (en) Method for producing coated molding
JP4761335B2 (en) Method for producing TiZr carbonitride coated tool
EP4041931A1 (en) A coated cutting tool
JP3910881B2 (en) Oxide coating tool
JPH06190605A (en) Surface coated cutting tool
JP3236899B2 (en) Manufacturing method of surface coated tungsten carbide based cemented carbide cutting tool with excellent wear and fracture resistance
JP2001009604A (en) Cutting tool made of surface coated tungsten carbide base cemented carbide in which hard coated layer has excellent abrasive resistance in high speed cutting
JP2002370105A (en) Aluminum oxide coated-tool
JP2001322008A (en) Surface coated cemented carbide cutting tool with hard coating layer displaying excellent chipping resistance
JP4114741B2 (en) Titanium chromium compound coating tool
JP4022042B2 (en) Coated tool and manufacturing method thereof
JPH08187607A (en) Cutting tool of surface coated wc based cemented carbide
WO2011007848A1 (en) Hard film-coated tool and manufacturing method for the same
JPH0433865B2 (en)
CN113151804B (en) Titanium carbonitride coating and application thereof