JP2005219199A - Surface coated cemented carbide cutting tool having hard coated layer displaying excellent wear resistance - Google Patents

Surface coated cemented carbide cutting tool having hard coated layer displaying excellent wear resistance Download PDF

Info

Publication number
JP2005219199A
JP2005219199A JP2004154126A JP2004154126A JP2005219199A JP 2005219199 A JP2005219199 A JP 2005219199A JP 2004154126 A JP2004154126 A JP 2004154126A JP 2004154126 A JP2004154126 A JP 2004154126A JP 2005219199 A JP2005219199 A JP 2005219199A
Authority
JP
Japan
Prior art keywords
inclination angle
layer
range
distribution graph
cemented carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004154126A
Other languages
Japanese (ja)
Other versions
JP4609631B2 (en
Inventor
Akihiro Kondou
暁裕 近藤
Yusuke Tanaka
裕介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Mitsubishi Materials Kobe Tools Corp
Original Assignee
Mitsubishi Materials Corp
Mitsubishi Materials Kobe Tools Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Mitsubishi Materials Kobe Tools Corp filed Critical Mitsubishi Materials Corp
Priority to JP2004154126A priority Critical patent/JP4609631B2/en
Publication of JP2005219199A publication Critical patent/JP2005219199A/en
Application granted granted Critical
Publication of JP4609631B2 publication Critical patent/JP4609631B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface coated cemented carbide cutting tool having a hard coated layer displaying excellent wear resistance. <P>SOLUTION: The hard coated layer is formed by vapor deposition on the surface of a substrate made of WC-based cemented carbide or TiCN-based cermet. The layer is made of a (Al, Ti)N layer satisfies a composition formula, (Al<SB>1-x</SB>Ti<SB>x</SB>)N (X shows 0.30 to 0.55 in atomic ratio), showing an inclined angle frequency distribution graph in which a maximum peak exists in inclined angle divisions within the range of 15 to 27° and a total of frequencies existing in the range of 15 to 27° occupies the rate of 45 to 65% of the whole of the frequencies in an inclined angle frequency distribution graph constituted by measuring inclined angles formed by normal lines of ä100} surfaces to be crystal faces of crystal grain, by dividing the measured inclined angles within the range of 0 to 45° for every 0.25° pitch of the measured inclined angles, and by totalizing frequencies existing in each division. The layer also has an average layer thickness of 1 to 15μm. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、特に鋼や鋳鉄などの切削加工に際して、硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具(以下、被覆超硬工具という)に関するものである。   The present invention relates to a surface-coated cemented carbide cutting tool (hereinafter referred to as a coated cemented carbide tool) that exhibits excellent wear resistance with a hard coating layer, especially when cutting steel or cast iron.

一般に、被覆超硬工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに切刃が断続切削加工形態をとる面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。   In general, coated carbide tools are used for throwaway inserts that are detachably attached to the tip of a cutting tool for drilling and cutting of various materials such as steel and cast iron, and for flat cutting. There are drills, miniature drills, solid type end mills used for chamfering, grooving, shoulder processing, etc. in which the cutting blade takes an intermittent cutting form, and the solid type by attaching the throwaway tip detachably A slow-away end mill tool that performs a cutting process in the same manner as an end mill is known.

また、被覆超硬工具として、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して超硬基体という)の表面に、組成式:(Al1-X TiX )N(ただし、原子比で、Xは0.30〜0.55を示す)を満足するAlとTiの複合窒化物[以下、(Al,Ti)Nで示す]層からなる硬質被覆層を1〜15μmの平均層厚で物理蒸着してなる被覆超硬工具が提案され、各種の鋼や鋳鉄などの連続切削や断続切削加工に用いられている。 Further, as a coated carbide tool, a substrate composed of tungsten carbide (hereinafter referred to as WC) -based cemented carbide alloy or titanium carbonitride (hereinafter referred to as TiCN) -based cermet (hereinafter collectively referred to as a cemented carbide substrate). A composite nitride of Al and Ti satisfying the composition formula: (Al 1-X Ti X ) N (wherein X represents 0.30 to 0.55 by atomic ratio) [hereinafter, Coated carbide tools formed by physical vapor deposition of a hard coating layer composed of (Al, Ti) N] layers with an average layer thickness of 1 to 15 μm have been proposed. Continuous cutting and intermittent cutting of various steels and cast iron It is used for.

さらに、上記の被覆超硬工具が、例えば図5に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に上記の超硬基体を装着し、
装置内加熱温度:300〜500℃、
超硬基体に印加する直流バイアス電圧:−600〜−1000V、
カソード電極:金属チタン(Ti)、
上記カソード電極とアノード電極間のアーク放電電流:60〜100A
処理時間:1〜10分、
の条件で、超硬基体の表面をTiボンバード洗浄処理した状態で、ヒータで装置内を、例えば500℃の温度に加熱した状態で、アノード電極と所定組成を有するAl−Ti合金がセットされたカソード電極(蒸発源)との間に、例えば電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば2Paの反応雰囲気とし、一方上記超硬基体には、例えば−100Vのバイアス電圧を印加した条件で、前記超硬基体の表面に、上記(Al,Ti)N層からなる硬質被覆層を蒸着することにより製造されることも知られている。
特許第2644710号
Furthermore, the above-mentioned coated carbide tool is equipped with the above-mentioned carbide substrate in an arc ion plating apparatus which is one type of physical vapor deposition apparatus schematically shown in FIG.
In-apparatus heating temperature: 300-500 ° C
DC bias voltage applied to the carbide substrate: -600 to -1000 V,
Cathode electrode: metal titanium (Ti),
Arc discharge current between the cathode electrode and the anode electrode: 60 to 100 A
Processing time: 1-10 minutes,
Under the above conditions, the surface of the carbide substrate was cleaned with Ti bombardment, and the interior of the apparatus was heated with a heater, for example, at a temperature of 500 ° C., and an Al—Ti alloy having a predetermined composition was set. Arc discharge is generated between the cathode electrode (evaporation source), for example, at a current of 90 A, and simultaneously, nitrogen gas is introduced into the apparatus as a reaction gas to form a reaction atmosphere of 2 Pa, for example. Is also known to be produced by evaporating a hard coating layer made of the (Al, Ti) N layer on the surface of the cemented carbide substrate under the condition that a bias voltage of -100 V is applied, for example. .
Japanese Patent No. 2644710

近年の切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、被覆超硬工具にはより一段の長寿命化が求められる傾向にあるが、上記の従来被覆超硬工具においては、硬質被覆層である(Al,Ti)N層の摩耗進行が相対的に速く、この結果比較的短時間で使用寿命に至るのが現状である。   In recent years, there has been a strong demand for labor saving, energy saving, and cost reduction for cutting, and along with this, coated carbide tools tend to require a much longer life. In tools, the wear progress of the (Al, Ti) N layer, which is a hard coating layer, is relatively fast, and as a result, the service life is reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、上記の従来被覆超硬工具の硬質被覆層に着目し、これの一段の耐摩耗性向上をはかるべく研究を行った結果、
(a)図4に示されるアークイオンプレーティング装置を用い、上記の従来の超硬基体表面に対するTiボンバード洗浄処理に代って、
装置内加熱温度:300〜500℃、
超硬基体に印加する直流バイアス電圧:−600〜−1000V、
カソード電極:金属タングステン(W)、
上記カソード電極とアノード電極間のアーク放電電流:60〜100A、
処理時間:1〜10分、
の条件で、超硬基体表面をWボンバード処理する基体表面改質処理を施した状態で、通常の条件で、硬質被覆層として上記の組成式:(Al1-X TiX )N(ただし、原子比で、Xは0.30〜0.55を示す)を満足する(Al,Ti)N層を形成すると、この結果形成された(Al,Ti)N層は長期に亘ってすぐれた耐摩耗性を発揮するようになること。
Therefore, the present inventors, from the above viewpoint, paying attention to the hard coating layer of the above conventional coated carbide tool, as a result of conducting research to improve this one-stage wear resistance,
(A) Using the arc ion plating apparatus shown in FIG. 4, instead of the above-described conventional Ti bombard cleaning treatment for the carbide substrate surface,
In-apparatus heating temperature: 300-500 ° C
DC bias voltage applied to the carbide substrate: -600 to -1000 V,
Cathode electrode: metallic tungsten (W),
Arc discharge current between the cathode electrode and the anode electrode: 60 to 100 A,
Processing time: 1-10 minutes,
Under the conditions described above, the above-described composition formula: (Al 1-X Ti X ) N When an (Al, Ti) N layer satisfying (atomic ratio, X represents 0.30 to 0.55) is formed, the resulting (Al, Ti) N layer has a long-term excellent resistance. To be able to show wear.

(b)上記(a)の(Ti,Al)N層と上記の従来(Ti,Al)N層について、電界放出型走査電子顕微鏡を用い、図1に概略説明図で示される通り、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{100}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフを作成した場合、前記従来(Ti,Al)N層は、図3に例示される通り、{100}面の測定傾斜角の分布が0〜45度の範囲内で不偏的な傾斜角度数分布グラフを示すのに対して、前記(a)の(Ti,Al)N層の傾斜角度数分布グラフは、図2に例示される通り、傾斜角区分の特定位置にシャープな最高ピークが現れ、このシャープな最高ピークは超硬基体表面をWでボンバード処理する表面改質処理に際して、カソード電極である金属Wとアノード電極間のアーク放電電流を変化させることによりグラフ横軸の傾斜角区分に現れる位置が変ること。 (B) Surface polishing of the (Ti, Al) N layer of (a) and the conventional (Ti, Al) N layer described above using a field emission scanning electron microscope, as schematically shown in FIG. A crystal grain having a cubic crystal lattice existing within the measurement range of the plane is irradiated with an electron beam, and the method of the {100} plane which is the crystal plane of the crystal grain with respect to the normal line of the surface polished surface Measure the tilt angle formed by the line, and divide the measured tilt angles within the range of 0 to 45 degrees out of the measured tilt angles by pitch of 0.25 degrees, and count the frequencies existing in each section When the inclination angle number distribution graph is created, the conventional (Ti, Al) N layer has a measured inclination angle distribution on the {100} plane within the range of 0 to 45 degrees as illustrated in FIG. Shows an unbiased inclination angle number distribution graph, while the inclination of the (Ti, Al) N layer in (a) above is shown. In the angle distribution graph, as illustrated in FIG. 2, a sharp maximum peak appears at a specific position of the inclination angle section, and this sharp maximum peak is obtained during surface modification treatment in which the carbide substrate surface is bombarded with W. By changing the arc discharge current between the metal W as the cathode electrode and the anode electrode, the position appearing in the tilt angle section of the horizontal axis of the graph is changed.

(c)多くの試験結果によれば、上記カソード電極とアノード電極間のアーク放電電流を上記の通り60〜100Aの範囲内で変化させると、上記シャープな最高ピークが傾斜角区分の15〜27度の範囲内に現れると共に、前記15〜27度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45〜65%の割合を占める傾斜角度数分布グラフを示すようになり、このような傾斜角度数分布グラフを示す(Ti,Al)N層を硬質被覆層として形成してなる被覆超硬工具はすぐれた耐摩耗性を長期に亘って発揮するようになること。
以上(a)〜(c)に示される研究結果を得たのである。
(C) According to many test results, when the arc discharge current between the cathode electrode and the anode electrode is changed within the range of 60 to 100 A as described above, the sharp maximum peak is 15 to 27 of the inclination angle section. As shown in the slope angle distribution graph, which appears in the range of degrees and the total of the frequencies existing in the range of 15 to 27 degrees occupies a ratio of 45 to 65% of the whole degrees in the slope angle distribution graph. Therefore, a coated carbide tool formed by forming a (Ti, Al) N layer as a hard coating layer showing such an inclination angle number distribution graph will exhibit excellent wear resistance over a long period of time.
The research results shown in (a) to (c) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、WC基超硬合金またはTiCN基サーメットで構成された超硬基体の表面に、
組成式:(Al1-X TiX )N(ただし、原子比で、Xは0.30〜0.55を示す)を満足し、
かつ、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{100}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、15〜27度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記15〜27度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45〜65%の割合を占める傾斜角度数分布グラフを示し、かつ1〜15μmの平均層厚を有する(Al,Ti)N層、
で構成された硬質被覆層を形成してなる、硬質被覆層がすぐれた耐摩耗性を発揮する被覆超硬工具に特徴を有するものである。
The present invention has been made based on the above research results, and the surface of a cemented carbide substrate made of a WC-based cemented carbide or TiCN-based cermet is used.
Composition formula: (Al 1-X Ti X ) N (wherein, X is 0.30 to 0.55 in atomic ratio) is satisfied,
And, using a field emission scanning electron microscope, irradiating an electron beam to each crystal grain having a cubic crystal lattice existing in the measurement range of the surface polished surface, the normal to the surface polished surface, The inclination angle formed by the normal line of the {100} plane, which is the crystal plane of the crystal grain, is measured, and the measurement inclination angle within the range of 0 to 45 degrees out of the measurement inclination angles is set for every 0.25 degree pitch. In the inclination angle distribution graph obtained by summing up the frequencies existing in each section, the highest peak is present in the inclination angle section in the range of 15 to 27 degrees, and within the range of 15 to 27 degrees. (Al, Ti) N layer having an average layer thickness of 1 to 15 μm, showing the inclination angle distribution graph in which the total number of frequencies present in the inclination angle distribution graph occupies a ratio of 45 to 65% of the entire frequency in the inclination angle distribution graph ,
The hard coating layer formed by forming a hard coating layer is characterized by a coated carbide tool exhibiting excellent wear resistance.

なお、この発明の被覆超硬工具の硬質被覆層を構成する(Al,Ti)N層において、Ti成分は高温強度を向上させ、一方Al成分は高温硬さおよび耐熱性(高温特性)を向上させる目的で含有するものであり、したがってTi成分の含有割合を示すX値がAl成分との合量に占める割合(原子比)で0.30未満になると、相対的にAlの割合が多くなり過ぎて、層自体の高温強度の低下は避けられず、この結果チッピングなどが発生し易くなり、一方Tiの割合を示すX値が同0.55を越えると、相対的にAlの割合が少なくなり過ぎて、所望のすぐれた高温特性を確保することができなくなることから、X値を0.30〜0.55と定めたものであり、また、硬質被覆層の平均層厚が1μm未満では、所望の耐摩耗性を確保することができず、一方その平均層厚が15μmを越えると、チッピングが発生し易くなることから、その平均層厚を1〜15μmと定めたのである。   In the (Al, Ti) N layer constituting the hard coating layer of the coated carbide tool of the present invention, the Ti component improves the high temperature strength, while the Al component improves the high temperature hardness and heat resistance (high temperature characteristics). Therefore, when the X value indicating the content ratio of the Ti component is less than 0.30 in terms of the total amount with the Al component (atomic ratio), the proportion of Al is relatively increased. Thus, a decrease in the high-temperature strength of the layer itself is unavoidable, and as a result, chipping or the like is likely to occur. On the other hand, when the X value indicating the Ti ratio exceeds 0.55, the Al ratio is relatively small. Since the desired excellent high-temperature characteristics cannot be secured, the X value is determined to be 0.30 to 0.55, and when the average thickness of the hard coating layer is less than 1 μm Ensure the desired wear resistance Can not, on the other hand when the average layer thickness exceeds 15 [mu] m, since the chipping is likely to occur, it's the average layer thickness was defined as 1 to 15 m.

また、上記の通り、(Ti,Al)N層の傾斜角度数分布グラフにおける測定傾斜角の最高ピーク位置は、カソード電極とアノード電極間のアーク放電電流を変化させることによって変化するが、多くの試験の結果、前記アーク放電電流を60〜100Aとした場合に、最高ピークが15〜27度の範囲内の傾斜角区分に現れると共に、前記15〜27度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45〜65%の割合を占める傾斜角度数分布グラフが得られるようになる、という結論に達したものであり、したがって、前記アーク放電電流が60A未満でも、100Aを越えても、測定傾斜角の最高ピーク位置は15〜27度の範囲から外れてしまい、このような場合には所望のすぐれた耐摩耗性を発揮することができないものである。   In addition, as described above, the highest peak position of the measured inclination angle in the inclination angle number distribution graph of the (Ti, Al) N layer changes by changing the arc discharge current between the cathode electrode and the anode electrode. As a result of the test, when the arc discharge current is 60 to 100 A, the maximum peak appears in the inclination angle section within the range of 15 to 27 degrees, and the total of the frequencies existing within the range of 15 to 27 degrees is The conclusion is reached that a slope angle distribution graph occupying a proportion of 45 to 65% of the entire frequency in the slope angle distribution graph can be obtained. Therefore, even when the arc discharge current is less than 60 A, Even if it exceeds 100 A, the maximum peak position of the measured tilt angle is out of the range of 15 to 27 degrees. In such a case, the desired excellent wear resistance is exhibited. It shall not be.

この発明の被覆超硬工具は、特に鋼や鋳鉄などの切削加工に際して、硬質被覆層が一段とすぐれた耐摩耗性を発揮し、使用寿命の延命化に寄与するものである。   In the coated carbide tool of the present invention, particularly when cutting steel or cast iron, the hard coating layer exhibits an excellent wear resistance and contributes to the extension of the service life.

つぎに、この発明の被覆超硬工具を実施例により具体的に説明する。   Next, the coated carbide tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、VC粉末、TaC粉末、NbC粉末、Cr3 2 粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の超硬基体A1〜A10を形成した。 As raw material powders, WC powder, TiC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, and Co powder, all having an average particle diameter of 1 to 3 μm, were prepared. And then wet-mixed with a ball mill for 72 hours, dried, and press-molded into a green compact at a pressure of 100 MPa. The green compact was vacuumed at 6 Pa at a temperature of 1400 ° C. for 1 hour. Sintered under the holding conditions, and after sintering, the cutting edge portion was subjected to a honing process of R: 0.03, and the carbide bases A1 to A10 made of WC-based cemented carbide having ISO / CNMG120408 chip shape Formed.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(重量比でTiC/TiN=50/50)粉末、Mo2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったTiCN基サーメット製の超硬基体B1〜B6を形成した。 In addition, as raw material powders, all are TiCN (weight ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and then pressed into a compact at a pressure of 100 MPa. The green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, the cutting edge portion was subjected to a honing process of R: 0.03 to obtain ISO standard / CNMG120408. The carbide substrates B1 to B6 made of TiCN base cermet having the following chip shape were formed.

ついで、上記の超硬基体A1〜A10およびB1〜B6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図4に示されるアークイオンプレーティング装置に装着し、カソード電極(蒸発源)として、種々の成分組成をもったAl−Ti合金および超硬基体表面改質処理用金属Wを装着し、まず、装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記超硬基体に−800Vの直流バイアス電圧を印加し、かつカソード電極の前記金属Wとアノード電極との間に60〜100Aの範囲内の所定の電流を流してアーク放電を発生させて、前記超硬基体表面をWボンバード処理する超硬基体表面改質処理を5分間行い、ついで装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気とすると共に、前記超硬基体に−100Vの直流バイアス電圧を印加し、前記カソード電極であるAl−Ti合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって前記超硬基体の表面に、表3に示される目標組成および目標層厚の(Al,Ti)N層を蒸着することにより、本発明被覆超硬工具としての本発明表面被覆超硬合金製スローアウエイチップ(以下、本発明被覆超硬チップと云う)1〜16をそれぞれ製造した。   Next, each of the above-mentioned carbide substrates A1 to A10 and B1 to B6 was ultrasonically cleaned in acetone and dried, and mounted on the arc ion plating apparatus shown in FIG. ), An Al—Ti alloy having various component compositions and a metal W for carbide substrate surface modification treatment are mounted. First, the apparatus is evacuated and kept at a vacuum of 0.5 Pa or less with a heater. After heating the inside of the apparatus to 500 ° C., a DC bias voltage of −800 V is applied to the cemented carbide substrate, and a predetermined current in the range of 60 to 100 A is applied between the metal W of the cathode electrode and the anode electrode. The surface of the cemented carbide substrate is subjected to a W bombarding treatment for 5 minutes by generating an arc discharge for 5 minutes, and then nitrogen gas is introduced into the apparatus as a reaction gas to react for 2 Pa. A DC bias voltage of −100 V is applied to the cemented carbide substrate and a current of 100 A is passed between the cathode electrode Al—Ti alloy and the anode electrode to generate an arc discharge. By depositing an (Al, Ti) N layer having the target composition and target layer thickness shown in Table 3 on the surface of the cemented carbide substrate, the throwaway of the surface coated cemented carbide of the present invention as the coated carbide tool of the present invention. Chips (hereinafter referred to as the present coated carbide chips) 1 to 16 were produced.

また、比較の目的で、図5のアークイオンプレーティング装置を用い、上記の超硬基体表面を、上記のWボンバード処理による超硬表面改質処理に代って、
装置内加熱温度:500℃、
超硬基体に印加する直流バイアス電圧:−800V、
カソード電極:金属Ti、
アーク放電電流:60〜100Aの範囲内の所定の電流、
処理時間:5分、
の条件で、超硬基体の表面をTiボンバード洗浄処理する以外は同一の条件で(Al,Ti)N層を蒸着することにより、表4に示される通りの従来被覆超硬工具としての従来表面被覆超硬合金製スローアウエイチップ(以下、従来被覆超硬チップと云う)1〜16をそれぞれ製造した。
Further, for the purpose of comparison, the arc ion plating apparatus of FIG. 5 is used, and the above-mentioned carbide substrate surface is replaced with the above-described carbide surface modification treatment by W bombardment treatment.
In-apparatus heating temperature: 500 ° C
DC bias voltage applied to the carbide substrate: -800V,
Cathode electrode: Ti metal,
Arc discharge current: a predetermined current in the range of 60-100A,
Processing time: 5 minutes
The conventional surface as a conventional coated carbide tool as shown in Table 4 by depositing an (Al, Ti) N layer under the same conditions except that the surface of the carbide substrate was subjected to a Ti bombard cleaning process under the conditions of Slow away tips made of coated cemented carbide (hereinafter referred to as conventional coated cemented carbide tips) 1 to 16 were produced.

つぎに、上記本発明被覆超硬チップ1〜16および従来被覆超硬チップ1〜16について、これを工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・SNCM439の丸棒、
切削速度:200m/min.、
切り込み:1.5mm、
送り:0.3mm/rev.、
切削時間:10分、
の条件での合金鋼の乾式連続切削加工試験、
被削材:JIS・S45Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:180m/min.、
切り込み:1.2mm、
送り:0.25mm/rev.、
切削時間:10分、
の条件での炭素鋼の乾式断続切削加工試験、さらに、
被削材:JIS・FC300の丸棒、
切削速度:220m/min.、
切り込み:1.2mm、
送り:0.25mm/rev.、
切削時間:10分、
の条件での鋳鉄の乾式連続切削加工試験を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表5に示した。
Next, with the present invention coated carbide tips 1-16 and conventional coated carbide tips 1-16, in a state where this is screwed to the tip of the tool steel tool with a fixing jig,
Work material: JIS / SNCM439 round bar,
Cutting speed: 200 m / min. ,
Incision: 1.5mm,
Feed: 0.3 mm / rev. ,
Cutting time: 10 minutes,
Dry continuous cutting test of alloy steel under the conditions of
Work material: JIS · S45C lengthwise equal 4 round grooved round bars,
Cutting speed: 180 m / min. ,
Cutting depth: 1.2mm,
Feed: 0.25 mm / rev. ,
Cutting time: 10 minutes,
Dry interrupted machining test of carbon steel under the conditions of
Work material: JIS / FC300 round bar,
Cutting speed: 220 m / min. ,
Cutting depth: 1.2mm,
Feed: 0.25 mm / rev. ,
Cutting time: 10 minutes,
The dry continuous cutting test of cast iron was performed under the conditions described above, and the flank wear width of the cutting edge was measured in any cutting test. The measurement results are shown in Table 5.

Figure 2005219199
Figure 2005219199

Figure 2005219199
Figure 2005219199

Figure 2005219199
Figure 2005219199

Figure 2005219199
Figure 2005219199

Figure 2005219199
Figure 2005219199

原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr32粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C[質量比で、50/50]粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表6に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mm、13mm、および26mmの3種の超硬基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表6に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角:30度の4枚刃スクエアの形状をもった超硬基体(エンドミル)C−1〜C−8をそれぞれ製造した。
また、別途、上記超硬基体(エンドミル)C−1〜C−8とそれぞれ同じ組成をもち、かついずれも平面:12mm×12mm、厚さ:6mmの寸法をもった電界放出型走査電子顕微鏡による傾斜角度数分布グラフ作成用試験片を用意した。
As raw material powders, medium coarse WC powder having an average particle diameter of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, ZrC of 1.2 μm Powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C [50/50 by mass ratio] powder, and 1.8 μm Co Prepare powders, mix each of these raw material powders with the composition shown in Table 6, add wax, ball mill mix in acetone for 24 hours, dry under reduced pressure, and then press various pressures of a predetermined shape at a pressure of 100 MPa. The powder compact is press-molded, and these green compacts are heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a heating rate of 7 ° C./min in a vacuum atmosphere of 6 Pa, and this temperature is maintained for 1 hour. After holding, sintering under furnace cooling conditions, the diameter is 8m , 13 mm, and 26 mm round bar sintered bodies for forming a cemented carbide substrate were formed, and the above three types of round bar sintered bodies were cut into the combinations shown in Table 6 by grinding. Carbide substrate (end mill) C- having a shape of a four-blade square with a blade portion diameter × length of 6 mm × 13 mm, 10 mm × 22 mm, and 20 mm × 45 mm, respectively, and a twist angle of 30 degrees. 1 to C-8 were produced.
Separately, by a field emission scanning electron microscope having the same composition as the above-mentioned carbide substrates (end mills) C-1 to C-8, and each having dimensions of plane: 12 mm × 12 mm, thickness: 6 mm. A test piece for preparing an inclination angle number distribution graph was prepared.

ついで、これらの超硬基体(エンドミル)C−1〜C−8および試験片を、アセトン中で超音波洗浄し、乾燥した状態で、同じく図4に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、超硬基体表面改質処理を行い、かつ表7に示される目標組成および目標層厚の(Al,Ti)N層を蒸着することにより、本発明被覆超硬工具としての本発明表面被覆超硬合金製エンドミル(以下、本発明被覆超硬エンドミルと云う)1〜8をそれぞれ製造した。   Then, these carbide substrates (end mills) C-1 to C-8 and test pieces were ultrasonically cleaned in acetone and dried, and then loaded into the arc ion plating apparatus shown in FIG. The coating of the present invention was carried out by subjecting the carbide substrate surface modification treatment under the same conditions as in Example 1 above and depositing an (Al, Ti) N layer having the target composition and target layer thickness shown in Table 7. The surface-coated cemented carbide end mills (hereinafter referred to as the present invention coated carbide end mills) 1 to 8 as cemented carbide tools were produced, respectively.

また、比較の目的で、上記実施例1と同一の条件で、上記の超硬基体の表面を、上記の超硬基体表面改質処理に代って、Tiボンバード洗浄する以外は同一の条件で(Al,Ti)N層を蒸着することにより、同じく表7に示される通りの(従来被覆超硬工具としての従来表面被覆超硬合金製エンドミル(以下、従来被覆超硬エンドミルと云う)1〜8をそれぞれ製造した。   Further, for the purpose of comparison, the surface of the above-mentioned carbide substrate is subjected to the same conditions as in Example 1 except that Ti bombard cleaning is performed instead of the above-described carbide substrate surface modification treatment. By vapor-depositing an (Al, Ti) N layer, as shown in Table 7 (a conventional surface-coated cemented carbide end mill (hereinafter referred to as a conventional coated carbide end mill) 1 to 1 as a conventional coated carbide tool) 8 were produced respectively.

つぎに、上記本発明被覆超硬エンドミル1〜8および従来被覆超硬エンドミル1〜8のうち、本発明被覆超硬エンドミル1〜3および従来被覆超硬エンドミル1〜3については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SKD61の板材、
切削速度:45m/min.、
溝深さ(切り込み):0.25mm、
テーブル送り:180mm/分、
の条件での工具鋼の乾式溝切削加工試験、本発明被覆超硬エンドミル4〜6および従来被覆超硬エンドミル4〜6については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・S55Cの板材、
切削速度:100m/min.、
溝深さ(切り込み):2.5mm、
テーブル送り:600mm/分、
の条件での炭素鋼の乾式溝切削加工試験、本発明被覆超硬エンドミル7,8および従来被覆超硬エンドミル7,8については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SCM440の板材、
切削速度:110m/min.、
溝深さ(切り込み):0.4mm、
テーブル送り:300mm/分、
の条件での合金鋼の乾式溝切削加工試験をそれぞれ行い、いずれの溝切削加工試験でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。この測定結果を表7にそれぞれ示した。
Next, of the present invention coated carbide end mills 1-8 and conventional coated carbide end mills 1-8, the present invention coated carbide end mills 1-3 and conventional coated carbide end mills 1-3 are as follows:
Work material: Plane dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SKD61 plate material,
Cutting speed: 45 m / min. ,
Groove depth (cut): 0.25 mm,
Table feed: 180mm / min,
With respect to the dry grooving test of tool steel under the conditions of the present invention, the coated carbide end mills 4 to 6 and the conventional coated carbide end mills 4 to 6 of the present invention,
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / S55C plate material,
Cutting speed: 100 m / min. ,
Groove depth (cut): 2.5 mm,
Table feed: 600 mm / min,
For the dry grooving test of carbon steel under the conditions of the present invention, the coated carbide end mills 7 and 8 of the present invention and the conventional coated carbide end mills 7 and 8,
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / SCM440 plate material,
Cutting speed: 110 m / min. ,
Groove depth (cut): 0.4 mm,
Table feed: 300mm / min,
Each of the alloy steels was subjected to a dry grooving test under the conditions described above, and in each grooving test, cutting was performed until the flank wear width of the outer peripheral edge of the cutting edge reached 0.1 mm, which is a guide for the service life. The groove length was measured. The measurement results are shown in Table 7, respectively.

Figure 2005219199
Figure 2005219199

Figure 2005219199
Figure 2005219199

上記の実施例2で製造した直径が8mm(超硬基体C−1〜C−3形成用)、13mm(超硬基体C−4〜C−6形成用)、および26mm(超硬基体C−7、C−8形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ4mm×13mm(超硬基体D−1〜D−3)、8mm×22mm(超硬基体D−4〜D−6)、および16mm×45mm(超硬基体D−7、D−8)の寸法、並びにいずれもねじれ角:30度の2枚刃形状をもった超硬基体(ドリル)D−1〜D−8をそれぞれ製造した。
また、同じく上記超硬基体(ドリル)D−1〜D−8とそれぞれ同じ組成を有し、かついずれも平面:12mm×12mm、厚さ:6mmの寸法をもった電界放出型走査電子顕微鏡による傾斜角度数分布グラフ作成用試験片も用意した。
The diameters produced in Example 2 above were 8 mm (for forming carbide substrates C-1 to C-3), 13 mm (for forming carbide substrates C-4 to C-6), and 26 mm (for carbide substrates C-). 7, for C-8 formation), from these three types of round bar sintered bodies, the diameter x length of the groove forming portion is 4 mm x 13 mm (by grinding), respectively. Carbide substrates D-1 to D-3), 8 mm × 22 mm (Carbide substrates D-4 to D-6), and 16 mm × 45 mm (Carbide substrates D-7 and D-8), and all Carbide substrates (drills) D-1 to D-8 having a two-blade shape with a twist angle of 30 degrees were produced.
Similarly, by using a field emission scanning electron microscope having the same composition as the above-mentioned carbide substrates (drills) D-1 to D-8 and having dimensions of plane: 12 mm × 12 mm and thickness: 6 mm. A specimen for preparing an inclination angle number distribution graph was also prepared.

ついで、これらの超硬基体(ドリル)D−1〜D−8の切刃に、ホーニングを施し、上記の試験片と共に、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、超硬基体表面改質処理を行い、かつ表8に示される目標組成および目標層厚の(Al,Ti)N層を蒸着することにより、本発明被覆超硬工具としての本発明表面被覆超硬合金製ドリル(以下、本発明被覆超硬ドリルと云う)1〜8をそれぞれ製造した。   Next, the cutting edges of these carbide substrates (drills) D-1 to D-8 were honed, and ultrasonically cleaned in acetone together with the above test pieces and dried, as shown in FIG. And the carbide substrate surface modification treatment is performed under the same conditions as in Example 1, and the target composition and target layer thickness (Al, Ti) N shown in Table 8 are used. By vapor-depositing the layers, drills made of the surface-coated cemented carbide of the present invention (hereinafter referred to as “coated carbide drill of the present invention”) 1 to 8 as the coated carbide tools of the present invention were produced.

また、比較の目的で、上記実施例1と同一の条件で、上記の超硬基体の表面を、上記の超硬基体表面改質処理に代って、Tiボンバード洗浄する以外は同一の条件で(Al,Ti)N層を蒸着することにより、表8に示される通りの従来被覆超硬工具としての従来表面被覆超硬合金製ドリル(以下、従来被覆超硬ドリルと云う)1〜8をそれぞれ製造した。   Further, for the purpose of comparison, the surface of the above-mentioned carbide substrate is subjected to the same conditions as in Example 1 except that Ti bombard cleaning is performed instead of the above-described carbide substrate surface modification treatment. By depositing an (Al, Ti) N layer, conventional surface-coated cemented carbide drills (hereinafter referred to as conventional coated carbide drills) 1 to 8 as conventional coated carbide tools as shown in Table 8 are used. Each was manufactured.

つぎに、上記本発明被覆超硬ドリル1〜8および従来被覆超硬ドリル1〜8のうち、本発明被覆超硬ドリル1〜3および従来被覆超硬ドリル1〜3については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SKD61の板材、
切削速度:30m/min.、
送り:0.1mm/rev、
穴深さ:8mm
の条件での工具鋼の湿式穴あけ切削加工試験、本発明被覆超硬ドリル4〜6および従来被覆超硬ドリル4〜6については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・FC200の板材、
切削速度:60m/min.、
送り:0.25mm/rev、
穴深さ:16mm
の条件での鋳鉄の湿式穴あけ切削加工試験、本発明被覆超硬ドリル7,8および従来被覆超硬ドリル7,8については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SCM435の板材、
切削速度:40m/min.、
送り:0.2mm/rev、
穴深さ:32mm
の条件での合金鋼の湿式穴あけ切削加工試験、をそれぞれ行い、いずれの湿式穴あけ切削加工試験(水溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表8に示した。
Next, of the present invention coated carbide drills 1-8 and conventional coated carbide drills 1-8, the present invention coated carbide drills 1-3 and conventional coated carbide drills 1-3,
Work material: Plane dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SKD61 plate material,
Cutting speed: 30 m / min. ,
Feed: 0.1 mm / rev,
Hole depth: 8mm
For the wet drilling cutting test of the tool steel under the conditions of the present invention, the coated carbide drills 4-6 of the present invention and the conventional coated carbide drills 4-6,
Work material: Plane dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / FC200 plate material,
Cutting speed: 60 m / min. ,
Feed: 0.25mm / rev,
Hole depth: 16mm
For cast iron wet drilling test under the conditions of the present invention, the present invention coated carbide drills 7 and 8 and the conventional coated carbide drills 7 and 8,
Work material: Plane dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SCM435 plate material,
Cutting speed: 40 m / min. ,
Feed: 0.2mm / rev,
Hole depth: 32mm
Wet drilling test of alloy steel under the conditions of each, and drilling until the flank wear width of the cutting edge surface reaches 0.3mm in any wet drilling test (using water-soluble cutting oil) The number of processes was measured. The measurement results are shown in Table 8.

Figure 2005219199
Figure 2005219199

この結果得られた本発明被覆超硬工具としての本発明被覆超硬チップ1〜16、本発明被覆超硬エンドミル1〜8、および本発明被覆超硬ドリル1〜8、並びに従来被覆超硬工具としての従来被覆超硬チップ1〜16、従来被覆超硬エンドミル1〜8、および従来被覆超硬ドリル1〜8の(Al,Ti)N層の組成をオージェ分光分析装置を用いて測定したところ、それぞれ目標組成と実質的に同じ組成を示した。
また、これらの本発明被覆超硬工具および従来被覆超硬工具の(Al,Ti)N層の厚さを、走査型電子顕微鏡を用いて断面測定したところ、いずれも目標値と実質的に同じ平均層厚(5点測定の平均値)を示した。
As a result, the coated carbide tips 1 to 16 of the present invention, the coated carbide end mills 1 to 8 of the present invention, the coated carbide drills 1 to 8 of the present invention, and the conventionally coated carbide tools of the present invention. The composition of the (Al, Ti) N layer of conventional coated carbide tips 1 to 16, conventional coated carbide end mills 1 to 8, and conventional coated carbide drills 1 to 8 was measured using an Auger spectroscopic analyzer. Each showed substantially the same composition as the target composition.
Moreover, when the thickness of the (Al, Ti) N layer of these coated carbide tools of the present invention and the conventional coated carbide tools was measured with a scanning electron microscope, both were substantially the same as the target values. The average layer thickness (average value of 5-point measurement) was shown.

さらに、上記の本発明被覆超硬工具と従来被覆超硬工具の(Al,Ti)N層について、電界放出型走査電子顕微鏡を用いて、傾斜角度数分布グラフをそれぞれ作成した。
すなわち、上記傾斜角度数分布グラフは、上記の(Ti,Al)N層の表面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に照射し、電子後方散乱回折像装置を用いて、30×50μmの領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{100}面の法線がなす傾斜角を測定し、この測定結果に基づいて、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより作成した。
Further, an inclination angle number distribution graph was created for each of the (Al, Ti) N layers of the present invention coated carbide tool and the conventional coated carbide tool using a field emission scanning electron microscope.
That is, the inclination angle number distribution graph is set in a lens barrel of a field emission scanning electron microscope with the surface of the (Ti, Al) N layer as a polished surface, and 70 ° An electron beam having an acceleration voltage of 15 kV at an incident angle is irradiated at an irradiation current of 1 nA to each crystal grain having a cubic crystal lattice existing within the measurement range of the surface polished surface, and an electron backscatter diffraction image apparatus is used. , Measuring the inclination angle formed by the normal of the {100} plane, which is the crystal plane of the crystal grain, with respect to the normal of the polished surface at an interval of 0.1 μm / step in a 30 × 50 μm region Based on the measurement results, the measurement inclination angles within the range of 0 to 45 degrees out of the measurement inclination angles are divided for each pitch of 0.25 degrees, and the frequencies existing in each division are tabulated. Created by.

この結果得られた各種の(Al,Ti)N層の傾斜角度数分布グラフにおいて、本発明被覆超硬工具の(Al,Ti)N層は、表3、表7、および表8にそれぞれ示される通り、いずれも{100}面の測定傾斜角の分布が15〜27度の範囲内の傾斜角区分に最高ピークが現れる傾斜角度数分布グラフを示すのに対して、従来被覆超硬工具の(Ti,Al)N層は、表4、表7、および表8にそれぞれ示される通り、いずれも{100}面の測定傾斜角の分布が0〜45度の範囲内で不偏的で、最高ピークが存在しない傾斜角度数分布グラフを示すものであった。
また表3、表4、表7、および表8には、上記の本発明被覆超硬工具および従来被覆超硬工具の(Ti,Al)N層の傾斜角度数分布グラフにおいて、15〜27度の範囲内の傾斜角区分に存在する傾斜角度数のグラフ全体の傾斜角度数に占める割合を示した。
なお、図2は、本発明被覆超硬チップ1の(Al,Ti)N層の傾斜角度数分布グラフ、図3は、従来被覆超硬チップ1の(Al,Ti)N層の傾斜角度数分布グラフをそれぞれ示すものである。
In the distribution graph of the inclination angle numbers of the various (Al, Ti) N layers obtained as a result, the (Al, Ti) N layer of the coated carbide tool of the present invention is shown in Table 3, Table 7, and Table 8, respectively. As shown in the graph, the distribution of the measured inclination angle of the {100} plane shows the inclination angle number distribution graph in which the highest peak appears in the inclination angle section within the range of 15 to 27 degrees, whereas the conventional coated carbide tool As shown in Table 4, Table 7, and Table 8, the (Ti, Al) N layer is all unbiased in the range of the measured inclination angle of {100} plane within the range of 0 to 45 degrees. An inclination angle number distribution graph in which no peak exists is shown.
Tables 3, 4, 7, and 8 show 15 to 27 degrees in the gradient angle distribution graph of the (Ti, Al) N layer of the above-described coated carbide tool of the present invention and the conventional coated carbide tool. The ratio of the number of tilt angles existing in the tilt angle section within the range of the total angle of the graph is shown.
2 is an inclination angle number distribution graph of the (Al, Ti) N layer of the coated carbide tip 1 of the present invention, and FIG. 3 is an inclination angle number of the (Al, Ti) N layer of the conventional coated carbide tip 1. Each distribution graph is shown.

表3〜8に示される結果から、本発明被覆超硬工具は、いずれも硬質被覆層を構成する(Al,Ti)N層の{100}面が傾斜角度数分布グラフで15〜27度の範囲内の傾斜角区分で最高ピークを示し、すぐれた耐摩耗性を示すのに対して、硬質被覆が、{100}面の測定傾斜角の分布が0〜45度の範囲内で不偏的で、最高ピークが存在しない傾斜角度数分布グラフを示す(Ti,Al)N層で構成された従来被覆超硬工具においては、相対的に摩耗進行が速く、比較的短時間で使用寿命に至ることが明らかである。   From the results shown in Tables 3 to 8, the coated carbide tool of the present invention has a {100} plane of the (Al, Ti) N layer constituting the hard coating layer of 15 to 27 degrees in an inclination angle number distribution graph. In contrast to the highest peak in the range of tilt angle and excellent wear resistance, the hard coating is unbiased in the range of the measured tilt angle of the {100} plane in the range of 0 to 45 degrees. In the conventional coated carbide tool composed of (Ti, Al) N layer, which shows a gradient angle distribution graph without the highest peak, the wear progress is relatively fast and the service life is reached in a relatively short time. Is clear.

上述のように、この発明の被覆超硬工具は、各種鋼や鋳鉄などの連続切削や断続切削ですぐれた耐摩耗性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated carbide tool of the present invention exhibits excellent wear resistance in continuous cutting and intermittent cutting of various steels and cast irons, and exhibits excellent cutting performance over a long period of time. It can fully satisfy the labor-saving and energy-saving of cutting, and also the cost reduction.

硬質被覆層を構成する各種(Al,Ti)N層における結晶粒の結晶面である{100}面の法線が表面研磨面の法線に対する傾斜角の測定範囲を示す概略説明図である。It is a schematic explanatory drawing which shows the measuring range of the inclination angle with respect to the normal line of the surface polished surface, with the normal line of the {100} plane which is the crystal plane of the crystal grains in various (Al, Ti) N layers constituting the hard coating layer. 本発明被覆超硬チップ1の硬質被覆層を構成する(Al,Ti)N層の{100}面の傾斜角度数分布グラフである。It is an inclination angle number distribution graph of the {100} plane of the (Al, Ti) N layer constituting the hard coating layer of the coated carbide chip 1 of the present invention. 従来被覆超硬チップ1の硬質被覆層を構成する(Al,Ti)N層の{100}面の傾斜角度数分布グラフである。It is a gradient angle number distribution graph of the {100} plane of the (Al, Ti) N layer constituting the hard coating layer of the conventional coated carbide chip 1. 本発明被覆超硬工具の硬質被覆層を構成する(Al,Ti)N層の形成に用いたアークイオンプレーティング装置の概略説明図である。It is a schematic explanatory drawing of the arc ion plating apparatus used for formation of the (Al, Ti) N layer which comprises the hard coating layer of this invention coated carbide tool. 従来被覆超硬工具の硬質被覆層を構成する(Al,Ti)N層の形成に用いたアークイオンプレーティング装置の概略説明図である。It is a schematic explanatory drawing of the arc ion plating apparatus used for formation of the (Al, Ti) N layer which comprises the hard coating layer of the conventional coated carbide tool.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された基体の表面に、
組成式:(Al1-X TiX )N(ただし、原子比で、Xは0.30〜0.55を示す)を満足し、
かつ、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{100}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、15〜27度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記15〜27度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45〜65%の割合を占める傾斜角度数分布グラフを示し、かつ1〜15μmの平均層厚を有するAlとTiの複合窒化物層、
で構成された硬質被覆層を形成してなる、硬質被覆層がすぐれた耐摩耗性を発揮する被覆超硬超硬合金製切削工具。
On the surface of the substrate composed of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
Composition formula: (Al 1-X Ti X ) N (wherein, X is 0.30 to 0.55 in atomic ratio) is satisfied,
And, using a field emission scanning electron microscope, irradiating an electron beam to each crystal grain having a cubic crystal lattice existing in the measurement range of the surface polished surface, the normal to the surface polished surface, The inclination angle formed by the normal line of the {100} plane, which is the crystal plane of the crystal grain, is measured, and the measurement inclination angle within the range of 0 to 45 degrees out of the measurement inclination angles is set for every 0.25 degree pitch. In the inclination angle distribution graph obtained by summing up the frequencies existing in each section, the highest peak is present in the inclination angle section in the range of 15 to 27 degrees, and within the range of 15 to 27 degrees. 2 shows an inclination angle distribution graph in which the sum of the frequencies existing in the inclination angle distribution graph accounts for 45 to 65% of the entire frequency in the inclination angle distribution graph, and has an average layer thickness of 1 to 15 μm. layer,
A coated cemented carbide cemented carbide cutting tool that exhibits a high wear resistance with a hard coating layer.
JP2004154126A 2004-01-05 2004-05-25 Surface coated cemented carbide cutting tool with excellent wear resistance due to hard coating layer Expired - Fee Related JP4609631B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004154126A JP4609631B2 (en) 2004-01-05 2004-05-25 Surface coated cemented carbide cutting tool with excellent wear resistance due to hard coating layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004000302 2004-01-05
JP2004154126A JP4609631B2 (en) 2004-01-05 2004-05-25 Surface coated cemented carbide cutting tool with excellent wear resistance due to hard coating layer

Publications (2)

Publication Number Publication Date
JP2005219199A true JP2005219199A (en) 2005-08-18
JP4609631B2 JP4609631B2 (en) 2011-01-12

Family

ID=34995237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004154126A Expired - Fee Related JP4609631B2 (en) 2004-01-05 2004-05-25 Surface coated cemented carbide cutting tool with excellent wear resistance due to hard coating layer

Country Status (1)

Country Link
JP (1) JP4609631B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007203447A (en) * 2006-02-06 2007-08-16 Mitsubishi Materials Corp Surface-coated cermet cutting tool with hard coating layer having excellent chipping resistance in high-speed intermittent cutting work
US8557405B2 (en) 2009-08-04 2013-10-15 Tungaloy Corporation Coated member

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04276062A (en) * 1991-03-05 1992-10-01 Kobe Steel Ltd Arc deposition device
JP2644710B2 (en) * 1988-03-24 1997-08-25 神鋼コベルコツール株式会社 Abrasion resistant coating
JP2001293601A (en) * 2000-04-11 2001-10-23 Sumitomo Electric Ind Ltd Cutting tool, and manufacturing method and device for the same
JP2001341008A (en) * 2000-06-02 2001-12-11 Hitachi Tool Engineering Ltd Titanium nitride-aluminum film coated tool and manufacturing method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2644710B2 (en) * 1988-03-24 1997-08-25 神鋼コベルコツール株式会社 Abrasion resistant coating
JPH04276062A (en) * 1991-03-05 1992-10-01 Kobe Steel Ltd Arc deposition device
JP2001293601A (en) * 2000-04-11 2001-10-23 Sumitomo Electric Ind Ltd Cutting tool, and manufacturing method and device for the same
JP2001341008A (en) * 2000-06-02 2001-12-11 Hitachi Tool Engineering Ltd Titanium nitride-aluminum film coated tool and manufacturing method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007203447A (en) * 2006-02-06 2007-08-16 Mitsubishi Materials Corp Surface-coated cermet cutting tool with hard coating layer having excellent chipping resistance in high-speed intermittent cutting work
US8557405B2 (en) 2009-08-04 2013-10-15 Tungaloy Corporation Coated member

Also Published As

Publication number Publication date
JP4609631B2 (en) 2011-01-12

Similar Documents

Publication Publication Date Title
JP4747268B2 (en) Surface coated cemented carbide cutting tool with high temperature strength with excellent hard coating layer
JP3969230B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under heavy cutting conditions
JP2009101491A (en) Surface-coated cutting tool having hard coating layer exerting excellent lubricity and wear resistance in high-speed cutting
JP5344129B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP3928481B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP4367032B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP4618411B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance due to lubrication coating layer
JP3931326B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP3928480B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP4725773B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in intermittent heavy cutting
JP4375527B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance under high-speed heavy cutting conditions.
JP2006334740A (en) Surface coated cemented carbide cutting tool with hard coated layer exhibiting excellent abrasive resistance in high speed cutting of highly reactive cut material
JP2003136302A (en) Surface coated cemented carbide cutting tool having hard coating layer exerting excellent wear resistance in high-speed cutting
JP4645820B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP4590940B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance due to hard coating layer
JP3985227B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP2009090396A (en) Surface-coated cutting tool having hard coated layer exhibiting excellent chipping resistance in heavy cutting
JP4609631B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance due to hard coating layer
JP4678582B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP4366987B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance under high-speed heavy cutting conditions.
JP4697389B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP3928487B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP2009061514A (en) Surface-coated cutting tool with hard coating layer exercising superior chipping resistance
JP4591815B2 (en) Cutting tool made of surface-coated cubic boron nitride-based sintered material with excellent wear resistance due to hard coating layer
JP4320706B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance under high-speed heavy cutting conditions.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070524

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100928

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4609631

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees