JP2007203447A - Surface-coated cermet cutting tool with hard coating layer having excellent chipping resistance in high-speed intermittent cutting work - Google Patents

Surface-coated cermet cutting tool with hard coating layer having excellent chipping resistance in high-speed intermittent cutting work Download PDF

Info

Publication number
JP2007203447A
JP2007203447A JP2006029018A JP2006029018A JP2007203447A JP 2007203447 A JP2007203447 A JP 2007203447A JP 2006029018 A JP2006029018 A JP 2006029018A JP 2006029018 A JP2006029018 A JP 2006029018A JP 2007203447 A JP2007203447 A JP 2007203447A
Authority
JP
Japan
Prior art keywords
layer
hard coating
coating layer
cutting
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006029018A
Other languages
Japanese (ja)
Other versions
JP4748450B2 (en
Inventor
Hidemitsu Takaoka
秀充 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Mitsubishi Materials Kobe Tools Corp
Original Assignee
Mitsubishi Materials Corp
Mitsubishi Materials Kobe Tools Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Mitsubishi Materials Kobe Tools Corp filed Critical Mitsubishi Materials Corp
Priority to JP2006029018A priority Critical patent/JP4748450B2/en
Publication of JP2007203447A publication Critical patent/JP2007203447A/en
Application granted granted Critical
Publication of JP4748450B2 publication Critical patent/JP4748450B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface-coated cermet cutting tool with a hard coating layer having an excellent chipping resistance in a high-speed intermittent cutting work. <P>SOLUTION: The surface-coated cermet cutting tool is formed on the surface of a tool substrate the hard coating layer comprising a composite nitride layer of Ti and Al which has an average layer thickness of 1-6 μm and satisfies empirical formula (Ti<SB>1-X</SB>Al<SB>X</SB>)N (wherein X is not less than 0.4 and not more than 0.6 in the atomic ratio). The composite nitride layer of Ti and Al is composed of a titanium nitride aluminum layer, which shows a specific atom sharing lattice point distribution graph obtained by using a field-emission scanning electron microscope, irradiating individual crystal particles present in a measuring range of a surface-polishing plane with electron beams, measuring a tilt angle formed by the normal lines of face (001) and face (011) as a crystal plane of the crystal particles with respect to the normal line of the surface-polishing plane, and calculating the atom sharing lattice point distribution graph from the measured tilt angle. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、特に、切刃に対して大きな機械的衝撃がかかる高速断続切削加工で、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   In particular, the present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent chipping resistance in a high-speed intermittent cutting process in which a large mechanical impact is applied to the cutting edge. .

従来、炭化タングステン(以下、WCで示す)基超硬合金、炭窒化チタン(以下、TiCNで示す)基サーメット、または立方晶窒化ほう素(以下、cBNで示す)基超高圧焼結材料で構成された基体(以下、これらを総称して工具基体という)の表面に、
組成式:(Ti1−XAl)N(ただし、原子比で、Xは0.4〜0.6を示す)、
を満足するTiとAlの複合窒化物[以下、(Ti,Al)Nで示す]層からなる硬質被覆層を蒸着形成してなる被覆工具が知られており、かつ前記被覆工具の硬質被覆層である(Ti,Al)N層が、構成成分であるAlによって高温硬さと耐熱性、同Tiによって高温強度を具備するようになることから、これを各種の一般鋼や普通鋳鉄などの連続切削や断続切削加工に用いた場合にすぐれた切削性能を発揮することも知られている。
特許第2644710号明細書 特開平9−291353号公報
Conventionally composed of tungsten carbide (hereinafter referred to as WC) based cemented carbide, titanium carbonitride (hereinafter referred to as TiCN) based cermet, or cubic boron nitride (hereinafter referred to as cBN) based ultra high pressure sintered material On the surface of the substrate (hereinafter collectively referred to as a tool substrate),
Composition formula: (Ti 1-X Al X ) N (however, in atomic ratio, X represents 0.4 to 0.6),
There is known a coated tool formed by vapor-depositing a hard coating layer composed of a composite nitride of Ti and Al [hereinafter referred to as (Ti, Al) N] satisfying the above-mentioned conditions, and the hard coating layer of the coated tool The (Ti, Al) N layer has high-temperature hardness and heat resistance due to Al as a constituent component, and high-temperature strength due to the Ti, so this is continuously cut from various general steels and ordinary cast iron, etc. It is also known to exhibit excellent cutting performance when used for intermittent cutting.
Japanese Patent No. 2644710 Japanese Patent Laid-Open No. 9-291353

近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は一段と高速化の傾向にあるが、上記の従来被覆工具においては、これを鋼や鋳鉄などの通常の条件での切削加工に用いた場合には問題はないが、特にこれを切削条件の厳しい高速断続切削加工に用いた場合は、硬質被覆層を構成する(Ti,Al)N層は、高温強度が不十分なため機械的衝撃に対して満足に対応することができず、この結果、硬質被覆層にはチッピング(微小欠け)が発生しやすくなり、比較的短時間で使用寿命に至るのが現状である。   In recent years, the performance of cutting machines has been remarkable. On the other hand, there is a strong demand for labor saving, energy saving, and cost reduction for cutting work, and along with this, cutting work tends to be further accelerated. For coated tools, there is no problem when this is used for cutting under normal conditions such as steel or cast iron, but especially when this is used for high-speed intermittent cutting with severe cutting conditions, a hard coating layer is used. The (Ti, Al) N layer constituting the material cannot sufficiently respond to mechanical impact due to insufficient high-temperature strength. As a result, chipping (minute chipping) occurs in the hard coating layer. The current situation is that it becomes easier and reaches the service life in a relatively short time.

そこで、本発明者等は、上述のような観点から、上記被覆工具の耐チッピング性の向上を図るべく、これの硬質被覆層である(Ti,Al)N層、すなわち図2(a)に模式図で示される通り、格子点にTi、Al、および窒素からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造(なお、図2(b)は(011)面で切断した状態を示す)を有する(Ti,Al)N層に着目し、研究を行った結果、
(a)従来被覆工具の硬質被覆層を構成する(Ti,Al)N層は、例えば、通常の物理蒸着装置の1種であるアークイオンプレーティング装置にて、工具基体を装入し、ヒータで装置内を例えば500℃に加熱した状態で、所定組成のTi−Al合金からなるカソード電極(蒸発源)とアノード電極との間に例えば100Aの電流を印加してアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば2Paの反応雰囲気とし、一方工具基体には例えば−50Vのバイアス電圧を印加するという条件下(以下、通常成膜条件という)で、成膜されるが、これを、図1(a)、(b)に示すように、例えば、炉体の上下面外周および4側面外周の計6箇所に電磁コイル1〜6を設置し、電磁コイルにDC電力を供給し、それぞれの電磁コイルに400G程度の磁場を発生させると、炉内には特殊な磁場の状態が形成され、そして、このような特殊な磁場中で、前記通常成膜条件による(Ti,Al)N層の蒸着成膜を行うと、この結果の(Ti,Al)N層(以下、改質(Ti,Al)N層という)は、通常成膜条件で形成された(Ti,Al)N層に比べ、一段と高温強度が向上し、すぐれた耐機械的衝撃性を具備するようになることから、特に激しい機械的衝撃を伴う高速断続切削加工でも、前記硬質被覆層はすぐれた耐チッピング性を発揮し、長期にわたってすぐれた耐摩耗性を示すようになること。
In view of the above, the present inventors, in order to improve the chipping resistance of the above-mentioned coated tool, (Ti, Al) N layer which is a hard coating layer thereof, that is, FIG. 2 (a). As shown in the schematic diagram, a crystal structure of NaCl face-centered cubic crystal in which constituent atoms composed of Ti, Al, and nitrogen are present at lattice points (FIG. 2 (b) is a state cut along the (011) plane. As a result of conducting research by focusing on the (Ti, Al) N layer having
(A) The (Ti, Al) N layer constituting the hard coating layer of the conventional coated tool is, for example, an arc ion plating apparatus which is a kind of a normal physical vapor deposition apparatus, in which a tool base is inserted, and a heater In the state where the inside of the apparatus is heated to 500 ° C., for example, a current of 100 A is applied between the cathode electrode (evaporation source) made of a Ti—Al alloy having a predetermined composition and the anode electrode to generate arc discharge, and at the same time Nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 2 Pa, for example, while a bias voltage of, for example, −50 V is applied to the tool base (hereinafter referred to as normal film formation conditions). However, as shown in FIGS. 1 (a) and 1 (b), for example, electromagnetic coils 1 to 6 are installed in a total of 6 locations on the outer periphery of the upper and lower surfaces of the furnace body and on the outer periphery of the four side surfaces. DC power supply When a magnetic field of about 400 G is generated in each electromagnetic coil, a special magnetic field state is formed in the furnace, and (Ti, Al) N according to the normal film formation conditions in such a special magnetic field. When the layers are formed by vapor deposition, the resulting (Ti, Al) N layer (hereinafter referred to as a modified (Ti, Al) N layer) is a (Ti, Al) N layer formed under normal film formation conditions. Compared to the above, the high temperature strength is further improved, and it has excellent mechanical impact resistance, so the hard coating layer has excellent chipping resistance even in high-speed intermittent cutting with severe mechanical impact. Demonstrate and show excellent wear resistance over a long period of time.

(b)上記の従来被覆工具の硬質被覆層を構成する(Ti,Al)N層(以下、従来(Ti,Al)N層という)と上記(a)の改質(Ti,Al)N層について、
電界放出型走査電子顕微鏡を用い、図3(a),(b)に概略説明図で例示される通り、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角(図3(a)には前記結晶面のうち(001)面の傾斜角が0度、(011)面の傾斜角が45度の場合、同(b)には(001)面の傾斜角が45度、(011)面の傾斜角が0度の場合を示しているが、これらの角度を含めて前記結晶粒個々のすべての傾斜角)を測定し、この場合前記結晶粒は、上記の通り格子点にTi、Al、窒素からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(NはNaCl型面心立方晶の結晶構造上2以上の偶数となる)存在する構成原子共有格子点形態をΣN+1で表し、個々のΣN+1がΣN+1全体(ただし、頻度の関係でNの上限値を28とする)に占める分布割合を示す構成原子共有格子点分布グラフを作成した場合、いずれのTiAlN層もΣ3に最高ピークが存在するが、前記従来(Ti,Al)N層は、図5に例示される通り、Σ3の分布割合が30%以下の相対的に低い構成原子共有格子点分布グラフを示すのに対して、前記改質(Ti,Al)N層は、図4に例示される通り、Σ3の分布割合が50%〜80%のきわめて高い構成原子共有格子点分布グラフを示し、この高いΣ3の分布割合は、蒸着成膜時の炉内磁場分布によって変化すること。
(B) The (Ti, Al) N layer (hereinafter referred to as the conventional (Ti, Al) N layer) constituting the hard coating layer of the conventional coated tool and the modified (Ti, Al) N layer of (a). about,
Using a field emission scanning electron microscope, as illustrated in the schematic explanatory diagrams in FIGS. 3A and 3B, each crystal grain existing within the measurement range of the surface polished surface is irradiated with an electron beam, The inclination angle formed by the normal lines of the (001) plane and the (011) plane, which are crystal planes of the crystal grains, with respect to the normal line of the surface polished surface (FIG. 3A shows (001) of the crystal planes). When the tilt angle of the surface is 0 degree and the tilt angle of the (011) plane is 45 degrees, the tilt angle of the (001) plane is 45 degrees and the tilt angle of the (011) plane is 0 degree. However, in this case, the crystal grains have constituent atoms composed of Ti, Al, and nitrogen at lattice points as described above, respectively. Based on the resulting measured tilt angle, which has an NaCl-type face-centered cubic crystal structure present The distribution of lattice points (constituent atom shared lattice points) in which each of the constituent atoms shares one constituent atom between the crystal grains is calculated at the interface between the constituent atomic shared lattice points. The constituent atomic shared lattice point form in which N lattice points that do not share atoms (N is an even number of 2 or more in the crystal structure of the NaCl type face-centered cubic crystal) is represented by ΣN + 1, and each ΣN + 1 is an entire ΣN + 1 (however, When the constituent atomic shared lattice point distribution graph showing the distribution ratio of the upper limit value of N in terms of frequency is 28), the highest peak exists in Σ3 in any TiAlN layer, but the conventional (Ti , Al) N layer, as illustrated in FIG. 5, shows a relatively low constituent atom shared lattice point distribution graph in which the distribution ratio of Σ3 is 30% or less, whereas the modified (Ti, Al) The N layer is illustrated in FIG. Ri, distribution ratio of Σ3 showed extremely high atom sharing lattice point distribution graph of the 50% to 80%, the distribution ratio of the high Σ3 is to vary with the furnace in the magnetic field distribution at the time of film formation by vapor deposition.

(c)上記の改質(Ti,Al)N層は、(Ti,Al)N層自体が具備する高温硬さと高温強度に加えて、上記従来(Ti,Al)N層に比して一段と高い高温強度を有するので、これを硬質被覆層として蒸着形成してなる被覆工具は、特に高速での断続切削加工に用いた場合にも、前記従来(Ti,Al)N層を蒸着形成してなる被覆工具に比して、硬質被覆層が一段とすぐれた耐チッピング性を発揮するようになること。
以上(a)〜(c)に示される研究結果を得たのである。
(C) In addition to the high temperature hardness and high temperature strength that the (Ti, Al) N layer itself has, the modified (Ti, Al) N layer is further improved compared to the conventional (Ti, Al) N layer. Since it has high high-temperature strength, a coated tool formed by vapor deposition as a hard coating layer is formed by depositing the conventional (Ti, Al) N layer, especially when used for intermittent cutting at high speed. Compared to the coated tool, the hard coating layer will exhibit better chipping resistance.
The research results shown in (a) to (c) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、WC基超硬合金、TiCN基サーメット、またはcBN基超高圧焼結材料で構成された工具基体の表面に、
1〜6μmの平均層厚を有するTiとAlの複合窒化物からなる硬質被覆層を蒸着形成してなる表面被覆切削工具において、
前記硬質被覆層の組成式を(Ti1−XAl)Nと表したときに、
0.4≦X≦0.6(ただし、Xは原子比を示す)を満足し、かつ、
電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にTi、Al、窒素からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(NはNaCl型面心立方晶の結晶構造上2以上の偶数となる)存在する構成原子共有格子点形態をΣN+1で表した場合、個々のΣN+1がΣN+1全体(ただし、頻度の関係でNの上限値を28とする)に占める分布割合を示す構成原子共有格子点分布グラフにおいて、Σ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める分布割合が50%〜80%である構成原子共有格子点分布グラフを示す窒化チタンアルミニウム層、
で構成したことを特徴とする高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する被覆工具(表面被覆切削工具)に特徴を有するものである。
The present invention has been made based on the above research results, and is provided on the surface of a tool base made of a WC-based cemented carbide, a TiCN-based cermet, or a cBN-based ultrahigh pressure sintered material.
In a surface-coated cutting tool formed by vapor-depositing a hard coating layer made of a composite nitride of Ti and Al having an average layer thickness of 1 to 6 μm,
When the composition formula of the hard coating layer is expressed as (Ti 1-X Al X ) N,
0.4 ≦ X ≦ 0.6 (where X represents an atomic ratio), and
Using a field emission scanning electron microscope, each crystal grain existing within the measurement range of the surface polished surface is irradiated with an electron beam, and the crystal plane of the crystal grain is normal to the surface polished surface ( The tilt angle formed by the normal lines of the (001) plane and the (011) plane is measured. In this case, the crystal grains are NaCl-type face-centered cubic crystals each having a constituent atom composed of Ti, Al, and nitrogen at lattice points. Based on the measured tilt angle obtained as a result of this, at the interface between adjacent crystal grains, each of the constituent atoms shares one constituent atom between the crystal grains (configuration The distribution of atomic shared lattice points) is calculated, and there are N lattice points that do not share constituent atoms between the constituent atomic shared lattice points (N is an even number of 2 or more in the crystal structure of NaCl-type face-centered cubic crystal). The constitutive atomic shared lattice point form is expressed as ΣN + 1 In the constituent atom shared lattice point distribution graph showing the distribution ratio of each ΣN + 1 in the entire ΣN + 1 (however, the upper limit value of N is 28 in relation to the frequency), the highest peak exists in Σ3, and the Σ3 A titanium aluminum nitride layer showing a constituent atom shared lattice point distribution graph in which the distribution ratio of ΣN + 1 in the whole is 50% to 80%,
It is characterized by a coated tool (surface-coated cutting tool) that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting characterized by comprising the above.

つぎに、この発明の被覆工具の硬質被覆層である窒化チタンアルミニウム層[改質(Ti,Al)N層]について、上記の通りに数値限定した理由を以下に説明する。
(a)組成式(Ti1−XAl)N
組成式(Ti1−XAl)Nで表される成分組成の硬質被覆層におけるTi成分は高温強度の維持、Al成分は高温硬さと耐熱性の向上に寄与することから、硬質被覆層は、所定の高温強度、高温硬さおよび耐熱性を具備する層であるが、Alの含有割合Xが60原子%を超えると、硬質被覆層の高温硬さと耐熱性は向上するものの、Ti含有割合の相対的な減少によって、高温強度が低下しチッピングを発生しやすくなり、一方、Alの含有割合Xが40原子%未満になると、高温硬さと耐熱性が低下し、その結果、耐摩耗性の低下がみられるようになることから、Alの含有割合Xの値を0.40〜0.60と定めた。
Next, the reason why the titanium aluminum nitride layer [modified (Ti, Al) N layer], which is a hard coating layer of the coated tool of the present invention, is numerically limited as described above will be described below.
(A) Composition formula (Ti 1-X Al X ) N
In the hard coating layer having a composition represented by the composition formula (Ti 1-X Al X ) N, the Ti component contributes to maintaining high-temperature strength, and the Al component contributes to improving high-temperature hardness and heat resistance. A layer having a predetermined high-temperature strength, high-temperature hardness, and heat resistance, but when the Al content ratio X exceeds 60 atomic%, the high-temperature hardness and heat resistance of the hard coating layer are improved, but the Ti content ratio As a result of the relative decrease in strength, the high temperature strength decreases and chipping is likely to occur. On the other hand, when the Al content ratio X is less than 40 atomic%, the high temperature hardness and heat resistance decrease, resulting in wear resistance. Since the decrease is observed, the value of the Al content ratio X is set to 0.40 to 0.60.

(b)Σ3の分布割合
上記の改質(Ti,Al)N層の構成原子共有格子点分布グラフにおけるΣ3の分布割合は、上記の通り蒸着成膜時の炉内磁場分布を変化させることによって50%〜80%とすることができるが、この場合Σ3の分布割合が50%未満では、高速断続切削加工で、硬質被覆層にチッピングが発生しない、すぐれた高温強度向上効果を確保することができず、したがってΣ3の分布割合は高ければ高いほど望ましいが、Σ3の分布割合を80%を越えて高くすることは層形成上困難であることから、Σ3の分布割合を50%〜80%と定めた。このように前記改質(Ti,Al)N層は、上記の通り(Ti,Al)N自体のもつ高温硬さと高温強度と耐熱性に加えて、さらに一段とすぐれた高温強度を有するようになる。
(B) Distribution ratio of Σ3 The distribution ratio of Σ3 in the constituent atomic shared lattice point distribution graph of the modified (Ti, Al) N layer is changed by changing the magnetic field distribution in the furnace during vapor deposition as described above. In this case, if the distribution ratio of Σ3 is less than 50%, it is possible to ensure excellent high-temperature strength improvement effect that high-speed intermittent cutting does not cause chipping in the hard coating layer. Therefore, the higher the distribution ratio of Σ3, the better. However, since it is difficult to increase the distribution ratio of Σ3 beyond 80% in terms of layer formation, the distribution ratio of Σ3 is 50% to 80%. Determined. As described above, the modified (Ti, Al) N layer has a further excellent high-temperature strength in addition to the high-temperature hardness, high-temperature strength and heat resistance of (Ti, Al) N itself as described above. .

(c)平均層厚
硬質被覆層の平均層厚が1μm未満では、自身のもつ耐熱性、高温硬さおよび高温強度を硬質被覆層に長期に亘って付与できず、工具寿命短命の原因となり、一方その平均層厚が6μmを越えると、チッピングが発生し易くなることから、その平均層厚を1〜6μmと定めた。
(C) Average layer thickness When the average layer thickness of the hard coating layer is less than 1 μm, the heat resistance, high temperature hardness and high temperature strength of the hard coating layer cannot be imparted to the hard coating layer over a long period of time, resulting in a short tool life. On the other hand, if the average layer thickness exceeds 6 μm, chipping is likely to occur. Therefore, the average layer thickness was set to 1 to 6 μm.

なお、工具基体と改質(Ti,Al)N層との十分な密着性を確保するために、基体と改質(Ti,Al)N層との間に窒化チタン(TiN)層を介在させることができるが、該TiN層は、その層厚が0.01μm未満では密着性改善の効果が少なく、一方、0.5μmを超えた層厚としても密着性の更なる向上が期待できるわけではないことから、工具基体と改質(Ti,Al)N層との間に介在させるTiN層の層厚は、0.01〜0.5μmとすることが望ましい。   In order to secure sufficient adhesion between the tool base and the modified (Ti, Al) N layer, a titanium nitride (TiN) layer is interposed between the base and the modified (Ti, Al) N layer. However, if the TiN layer has a layer thickness of less than 0.01 μm, the effect of improving the adhesion is small. On the other hand, even if the layer thickness exceeds 0.5 μm, further improvement in the adhesion cannot be expected. Therefore, the thickness of the TiN layer interposed between the tool base and the modified (Ti, Al) N layer is preferably 0.01 to 0.5 μm.

この発明の被覆工具は、切刃に対してきわめて大きな機械的衝撃がかかる鋼や鋳鉄などの高速断続切削加工でも、硬質被覆層である改質(Ti,Al)N層が一段とすぐれた高温強度を有し、すぐれた耐チッピング性を発揮することから、硬質被覆層にチッピングの発生なく、すぐれた耐摩耗性を示すものである。   The coated tool according to the present invention has a high-temperature strength with a modified (Ti, Al) N layer, which is a hard coating layer, even in high-speed intermittent cutting such as steel and cast iron, which has a great mechanical impact on the cutting edge. Since it exhibits excellent chipping resistance, it exhibits excellent wear resistance without occurrence of chipping in the hard coating layer.

つぎに、この発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG120408に規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体A〜Fをそれぞれ製造した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders were blended into the composition shown in Table 1, added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and pressed into a green compact with a predetermined shape at a pressure of 98 MPa. The green compact was vacuum sintered at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour in a vacuum of 5 Pa. After sintering, the cutting edge portion was R: 0.07 mm honing By performing the processing, tool bases A to F made of a WC-base cemented carbide having a throwaway tip shape specified in ISO · CNMG120408 were manufactured.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG120412のチップ形状をもったTiCN基サーメット製の工具基体G〜Lを形成した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after the sintering, the cutting edge portion was subjected to a honing process of R: 0.07 mm. Tool bases G to L made of TiCN-based cermet having a standard / CNMG12041 chip shape were formed.

さらに、原料粉末として、いずれも0.5〜4μmの範囲内の平均粒径を有する立方晶窒化硼素(cBN)粉末、窒化チタン(TiN)粉末、Al粉末、酸化アルミニウム(Al)粉末を用意し、これら原料粉末を表3に示される配合組成に配合し、ボールミルで80時間湿式混合し、乾燥した後、120MPaの圧力で直径:50mm×厚さ:1.5mmの寸法をもった圧粉体にプレス成形し、ついでこの圧粉体を、圧力:1Paの真空雰囲気中、900〜1300℃の範囲内の所定温度に60分間保持の条件で焼結して切刃片用予備焼結体とし、この予備焼結体を、別途用意した、Co:8質量%、WC:残りの組成、並びに直径:50mm×厚さ:2mmの寸法をもったWC基超硬合金製支持片と重ね合わせた状態で、通常の超高圧焼結装置に装入し、通常の条件である圧力:5GPa、温度:1200〜1400℃の範囲内の所定温度に保持時間:0.8時間の条件で超高圧焼結し、焼結後上下面をダイヤモンド砥石を用いて研磨し、ワイヤー放電加工装置にて一辺3mmの正三角形状に分割し、さらにCo:5質量%、TaC:5質量%、WC:残りの組成およびCIS規格SNGA120412の形状(厚さ:4.76mm×一辺長さ:12.7mmの正三角形)をもったWC基超硬合金製チップ本体のろう付け部(コーナー部)に、質量%で、Cu:26%、Ti:5%、Ni:2.5%、Ag:残りからなる組成を有するAg合金のろう材を用いてろう付けし、所定寸法に外周加工した後、切刃部に幅:0.13mm、角度:25°のホーニング加工を施し、さらに仕上げ研摩を施すことによりISO規格SNGA120412のチップ形状をもった工具基体M〜Rをそれぞれ製造した。 Furthermore, as raw material powders, cubic boron nitride (cBN) powder, titanium nitride (TiN) powder, Al powder, aluminum oxide (Al 2 O 3 ) powder each having an average particle diameter in the range of 0.5 to 4 μm. These raw material powders were blended in the composition shown in Table 3, wet-mixed with a ball mill for 80 hours, dried, and then had a diameter of 50 mm × thickness: 1.5 mm at a pressure of 120 MPa. The green compact is press-molded, and then the green compact is sintered in a vacuum atmosphere at a pressure of 1 Pa at a predetermined temperature within the range of 900 to 1300 ° C. for 60 minutes and pre-baked for cutting edge pieces. A WC-based cemented carbide support piece having a size of Co: 8% by mass, WC: remaining composition, and diameter: 50 mm × thickness: 2 mm was prepared as a sintered body. Super After charging into a high-pressure sintering apparatus, sintering under ultrahigh pressure at a predetermined temperature in the range of pressure: 5 GPa, temperature: 1200 to 1400 ° C., holding time: 0.8 hours, after sintering The upper and lower surfaces are polished with a diamond grindstone and divided into a regular triangle shape with a side of 3 mm by a wire electric discharge machine. Further, Co: 5 mass%, TaC: 5 mass%, WC: remaining composition and The brazing part (corner part) of the WC-based cemented carbide chip body having the shape (thickness: 4.76 mm × one side length: 12.7 mm) is mass%, Cu: 26%, Ti: 5%, Ni: 2.5%, Ag: Brazing using a brazing material of an Ag alloy having the remaining composition, and after peripheral processing to a predetermined dimension, the width of the cutting edge is 0.13 mm, Angle: 25 ° honing process, The tool substrate M~R having a tip shape of ISO standard SNGA120412 by performing finish polishing was produced, respectively.

つぎに、これらの工具基体A〜F、G〜LおよびM〜Rのそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、カソード電極(蒸発源)として、表5〜7に示される目標組成に対応した成分組成をもった改質(Ti,Al)N層形成用のTi−Al合金を配置し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、Arガスを導入して、0.7Paの雰囲気とすると共に、前記テーブル上で自転しながら回転する工具基体に−200Vの直流バイアス電圧を印加し、もって工具基体表面をアルゴンイオンによってボンバード洗浄し、
(c)装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−50Vの直流バイアス電圧を印加し、かつ前記カソード電極(改質(Ti,Al)N層形成用のTi−Al合金)とアノード電極との間に100Aの電流を流してアーク放電を発生させ、同時に、図1に示されるように装置(炉体)の上下面外周および4側面外周の計6箇所に設置した各電磁コイル1〜6に給電して表4に示す磁場を生じさせ、装置内に直流磁場を形成し、前記工具基体の表面に、表5〜7に示される目標組成および目標層厚の改質(Ti,Al)N層を蒸着形成することにより、本発明被覆工具1〜18をそれぞれ製造した。
Next, each of these tool bases A to F, G to L, and M to R is ultrasonically cleaned in acetone and dried, on the rotary table in the arc ion plating apparatus shown in FIG. Attached along the outer periphery at a position spaced apart from the central axis in the radial direction along the outer periphery, and modified as a cathode electrode (evaporation source) having a component composition corresponding to the target composition shown in Tables 5 to 7 (Ti , Al) Ti-Al alloy for N layer formation is arranged,
(B) First, while the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, the inside of the apparatus is heated to 500 ° C. with a heater, and then Ar gas is introduced to create an atmosphere of 0.7 Pa. A DC bias voltage of −200 V is applied to the tool base that rotates while rotating on the table, and the tool base surface is bombarded with argon ions.
(C) Nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 2 Pa, a DC bias voltage of −50 V is applied to the tool base that rotates while rotating on the rotary table, and the cathode electrode An arc discharge is generated by passing a current of 100 A between the (modified Ti, Al) N layer-forming Ti-Al alloy) and the anode electrode, and at the same time, as shown in FIG. ) A magnetic field shown in Table 4 is generated by feeding power to each of the electromagnetic coils 1 to 6 installed at a total of six locations on the outer periphery of the upper and lower surfaces and the outer periphery of the four side surfaces, and a DC magnetic field is formed in the apparatus. The coated tools 1 to 18 of the present invention were produced by vapor-depositing the modified (Ti, Al) N layer having the target composition and target layer thickness shown in Tables 5 to 7, respectively.

また、比較の目的で、蒸着形成時に、装置内に直流磁場の形成を行わない以外は、本発明被覆工具1〜18の製造の場合と全く同じ条件で従来(Ti,Al)N層を蒸着形成することにより、従来被覆工具1〜18をそれぞれ製造した。   For comparison purposes, a conventional (Ti, Al) N layer is deposited under exactly the same conditions as in the production of the coated tools 1 to 18 of the present invention, except that no direct-current magnetic field is formed in the apparatus during deposition. Conventionally, the conventional coated tools 1-18 were each manufactured.

ついで、上記の本発明被覆工具と従来被覆工具の硬質被覆層を構成する改質(Ti,Al)N層および従来(Ti,Al)N層について、電界放出型走査電子顕微鏡を用いて、構成原子共有格子点分布グラフをそれぞれ作成した。
すなわち、上記構成原子共有格子点分布グラフは、上記の改質(Ti,Al)N層および従来(Ti,Al)N層の表面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記表面研磨面の測定範囲内に存在する結晶粒個々に照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(NはNaCl型面心立方晶の結晶構造上2以上の偶数となる)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体(ただし、頻度の関係でNの上限値を28とする)に占める分布割合を求めることにより作成した。
Next, the modified (Ti, Al) N layer and the conventional (Ti, Al) N layer constituting the hard coating layer of the present invention coated tool and the conventional coated tool are configured using a field emission scanning electron microscope. An atomic shared lattice distribution graph was created.
That is, the constituent atomic share lattice distribution graph is a mirror image of a field emission scanning electron microscope in a state where the surfaces of the modified (Ti, Al) N layer and the conventional (Ti, Al) N layer are polished surfaces. An electron beam with an acceleration voltage of 15 kV at an incident angle of 70 degrees is applied to the polished surface with an irradiation current of 1 nA to each crystal grain existing within the measurement range of the surface polished surface. Using a backscatter diffraction image apparatus, a (001) plane and a (011) plane that are crystal planes of the crystal grains with respect to the normal line of the surface-polished surface in a 30 × 50 μm region at an interval of 0.1 μm / step. The inclination angle formed by the normal of the surface is measured, and based on the measurement inclination angle obtained as a result, each of the constituent atoms is one constituent atom between the crystal grains at the interface between adjacent crystal grains. Of lattice points (constituent atom shared lattice points) that share Constituent atom shared lattice points in which N pieces of lattice points that do not share constituent atoms between the constituent atom shared lattice points are calculated (N is an even number of 2 or more in the crystal structure of the NaCl type face centered cubic crystal) When the form is expressed by ΣN + 1, it was created by obtaining the distribution ratio of each ΣN + 1 to the entire ΣN + 1 (however, the upper limit value of N is 28 in relation to the frequency).

この結果得られた各種の改質(Ti,Al)N層および従来(Ti,Al)N層の構成原子共有格子点分布グラフにおいて、ΣN+1全体(Nは2〜28の範囲内のすべての偶数)に占めるΣ3の分布割合をそれぞれ表5〜7にそれぞれ示した。   In the constituent atomic shared lattice distribution graphs of the various modified (Ti, Al) N layers and conventional (Ti, Al) N layers obtained as a result, the entire ΣN + 1 (N is an even number in the range of 2 to 28). Tables 5 to 7 show the distribution ratios of [Sigma] 3 in ().

上記の各種の構成原子共有格子点分布グラフにおいて、表5〜7にそれぞれ示される通り、本発明被覆工具の改質(Ti,Al)N層は、いずれもΣ3の占める分布割合が50%〜80%である構成原子共有格子点分布グラフを示すのに対して、従来被覆工具の従来(Ti,Al)N層は、いずれもΣ3の分布割合が30%以下の構成原子共有格子点分布グラフを示すものであった。
なお、図4は、本発明被覆工具1の改質(Ti,Al)N層の構成原子共有格子点分布グラフ、図5は、従来被覆工具1の従来(Ti,Al)N層の構成原子共有格子点分布グラフをそれぞれ示すものである。
In each of the above-mentioned various atomic atom sharing point distribution graphs, as shown in Tables 5 to 7, the modified (Ti, Al) N layer of the coated tool of the present invention has a distribution ratio occupied by Σ3 of 50% to While the constituent atomic shared lattice point distribution graph is 80%, the conventional (Ti, Al) N layer of the conventional coated tool has a constituent atomic shared lattice point distribution graph in which the distribution ratio of Σ3 is 30% or less. Was shown.
FIG. 4 is a graph showing the distribution of constituent atomic shared lattice points of the modified (Ti, Al) N layer of the coated tool 1 of the present invention, and FIG. 5 is a structural atom of the conventional (Ti, Al) N layer of the conventional coated tool 1. Each of the shared grid point distribution graphs is shown.

さらに、上記の本発明被覆工具1〜18および従来被覆工具1〜18について、これの硬質被覆層の構成層を電子線マイクロアナライザー(EPMA)およびオージェ分光分析装置を用いて観察(層の縦断面を観察)したところ、前者および後者とも目標組成と実質的に同じ組成を有するTiとAlの複合酸化物層からなることが確認された。また、これらの被覆工具の硬質被覆層の厚さを、走査型電子顕微鏡を用いて測定(同じく縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。   Further, regarding the above-described coated tools 1 to 18 of the present invention and the conventional coated tools 1 to 18, the constituent layers of the hard coating layer were observed using an electron beam microanalyzer (EPMA) and an Auger spectroscopic analyzer (longitudinal section of the layer). As a result, it was confirmed that both the former and the latter were composed of a composite oxide layer of Ti and Al having substantially the same composition as the target composition. Moreover, when the thickness of the hard coating layer of these coated tools was measured using a scanning electron microscope (same longitudinal section measurement), the average layer thickness (5-point measurement) was substantially the same as the target layer thickness. Average value).

つぎに、上記の各種の被覆工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆工具1〜18および従来被覆工具1〜18について、以下のような切削試験を行った。   Next, with the various coated tools described above, the present coated tools 1 to 18 and the conventional coated tools 1 to 18 are as follows in a state where each of the various coated tools is screwed to the tip of the tool steel tool with a fixing jig. Cutting tests were conducted.

本発明被覆工具1〜6および従来被覆工具1〜6について、
切削条件(A−1);
被削材:JIS・SCM440の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 250 m/min、
切り込み: 1.5 mm、
送り: 0.24 mm/rev、
切削時間: 3 分、
の条件での合金鋼の乾式高速断続切削試験(通常の切削速度は180m/min)、
切削条件(B−1);
被削材:JIS・S50Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度: 280 m/min、
切り込み: 1.6 mm、
送り: 0.20 mm/rev、
切削時間: 3 分、
の条件での炭素鋼の乾式高速断続切削試験(通常の切削速度は200m/min)、
切削条件(C−1);
被削材:JIS・SUS304の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 250 m/min、
切り込み: 2.0 mm、
送り: 0.21 mm/rev、
切削時間: 3 分、
の条件でのステンレス鋼の乾式高速断続切削試験(通常の切削速度は180m/min)を行い、切刃の逃げ面摩耗幅を測定した。この測定結果を表8に示した。
About this invention coated tools 1-6 and conventional coated tools 1-6,
Cutting conditions (A-1);
Work material: JIS · SCM440 lengthwise equidistant 4 vertical grooved round bar,
Cutting speed: 250 m / min,
Cutting depth: 1.5 mm,
Feed: 0.24 mm / rev,
Cutting time: 3 minutes,
Dry high-speed intermittent cutting test of alloy steel under the conditions (normal cutting speed is 180 m / min),
Cutting conditions (B-1);
Work material: JIS / S50C lengthwise equal 4 round bars with vertical grooves,
Cutting speed: 280 m / min,
Cutting depth: 1.6 mm,
Feed: 0.20 mm / rev,
Cutting time: 3 minutes,
Dry high-speed intermittent cutting test of carbon steel under the conditions (normal cutting speed is 200 m / min),
Cutting conditions (C-1);
Work material: JIS / SUS304 lengthwise equidistant four round grooved round bars,
Cutting speed: 250 m / min,
Cutting depth: 2.0 mm,
Feed: 0.21 mm / rev,
Cutting time: 3 minutes,
The dry high-speed intermittent cutting test (normal cutting speed is 180 m / min) of stainless steel under the above conditions was performed, and the flank wear width of the cutting edge was measured. The measurement results are shown in Table 8.

また、本発明被覆工具7〜12および従来被覆工具7〜12について、
切削条件(A−2);
被削材:JIS・SNCM439の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 250 m/min、
切り込み: 2.0 mm、
送り: 0.15 mm/rev、
切削時間: 3 分、
の条件での合金鋼の乾式高速断続切削試験(通常の切削速度は150m/min)、
切削条件(B−2);
被削材:JIS・S45Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度: 280 m/min、
切り込み: 2.5 mm、
送り: 0.12 mm/rev、
切削時間: 3 分、
の条件での炭素鋼の乾式高速断続切削試験(通常の切削速度は180m/min)、
切削条件(C−2);
被削材:JIS・SUS304の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 240 m/min、
切り込み: 1.5 mm、
送り: 0.16 mm/rev、
切削時間: 3 分、
の条件でのステンレス鋼の乾式高速断続切削試験(通常の切削速度は150m/min)を行い、切刃の逃げ面摩耗幅を測定した。この測定結果を表9に示した。
Moreover, about this invention coated tool 7-12 and conventional coated tool 7-12,
Cutting conditions (A-2);
Work material: JIS / SNCM439 round direction bar with four equal intervals in the length direction,
Cutting speed: 250 m / min,
Cutting depth: 2.0 mm,
Feed: 0.15 mm / rev,
Cutting time: 3 minutes,
Dry high-speed intermittent cutting test of alloy steel under the conditions (normal cutting speed is 150 m / min),
Cutting conditions (B-2);
Work material: JIS · S45C lengthwise equal 4 round grooved round bars,
Cutting speed: 280 m / min,
Cutting depth: 2.5 mm,
Feed: 0.12 mm / rev,
Cutting time: 3 minutes,
Dry high-speed intermittent cutting test of carbon steel under the conditions (normal cutting speed is 180 m / min),
Cutting conditions (C-2);
Work material: JIS / SUS304 lengthwise equidistant four round grooved round bars,
Cutting speed: 240 m / min,
Cutting depth: 1.5 mm,
Feed: 0.16 mm / rev,
Cutting time: 3 minutes,
The dry high-speed intermittent cutting test (normal cutting speed is 150 m / min) of stainless steel under the above conditions was performed, and the flank wear width of the cutting edge was measured. The measurement results are shown in Table 9.

また、本発明被覆工具13〜18および従来被覆工具13〜18について、
切削条件(A−3);
被削材:JIS・SCM415(HRC61)の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 180 m/min、
切り込み: 0.15 mm、
送り: 0.12 mm/rev、
切削時間: 6 分、
の条件での浸炭焼入合金鋼の乾式高速断続切削試験(通常の切削速度は120m/min)、
切削条件(B−3);
被削材:JIS・SCr420(HRC60)の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 200 m/min、
切り込み: 0.2 mm、
送り: 0.10 mm/rev、
切削時間: 5 分、
の条件での浸炭焼入クロム鋼の乾式高速断続切削試験(通常の切削速度は110m/min)、
切削条件(C−3);
被削材:JIS・SUJ2(HRC58)の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 220 m/min、
切り込み: 0.12 mm、
送り: 0.08 mm/rev、
切削時間: 3 分、
の条件での焼入軸受鋼の乾式高速断続切削試験(通常の切削速度は130m/min)を行い、切刃の逃げ面摩耗幅を測定した。この測定結果を表10に示した。
Moreover, about this invention coated tool 13-18 and conventional coated tool 13-18,
Cutting conditions (A-3);
Work material: JIS · SCM415 (HRC61) lengthwise equidistant four round grooved round bars,
Cutting speed: 180 m / min,
Cutting depth: 0.15 mm,
Feed: 0.12 mm / rev,
Cutting time: 6 minutes,
Dry high-speed intermittent cutting test (normal cutting speed is 120 m / min) of carburized and hardened alloy steel under the conditions of
Cutting conditions (B-3);
Work material: JIS · SCr420 (HRC60) lengthwise equal 4 round bars with longitudinal grooves,
Cutting speed: 200 m / min,
Cutting depth: 0.2 mm,
Feed: 0.10 mm / rev,
Cutting time: 5 minutes,
Dry high-speed intermittent cutting test (normal cutting speed is 110 m / min) of carburized and hardened chromium steel under the conditions of
Cutting conditions (C-3);
Work material: JIS / SUJ2 (HRC58) in the longitudinal direction, four equally spaced round bars,
Cutting speed: 220 m / min,
Cutting depth: 0.12 mm,
Feed: 0.08 mm / rev,
Cutting time: 3 minutes,
A dry high-speed intermittent cutting test (normal cutting speed is 130 m / min) was performed on the hardened bearing steel under the above conditions, and the flank wear width of the cutting edge was measured. The measurement results are shown in Table 10.

Figure 2007203447
Figure 2007203447

Figure 2007203447
Figure 2007203447

Figure 2007203447
Figure 2007203447

Figure 2007203447
Figure 2007203447

Figure 2007203447
Figure 2007203447

Figure 2007203447
Figure 2007203447

Figure 2007203447
Figure 2007203447


Figure 2007203447
Figure 2007203447

Figure 2007203447
Figure 2007203447


Figure 2007203447
Figure 2007203447

表5〜10に示される結果から、本発明被覆工具1〜18は、いずれも硬質被覆層が、Σ3の分布割合が50%〜80%の構成原子共有格子点分布グラフを示す改質(Ti,Al)N層で構成され、機械的衝撃がきわめて高い鋼や鋳鉄の高速断続切削でも、前記改質(Ti,Al)N層が一段とすぐれた高温強度を有し、すぐれた耐チッピング性を発揮することから、硬質被覆層のチッピング発生が著しく抑制され、すぐれた耐摩耗性を示すのに対して、硬質被覆層が、Σ3の分布割合が30%以下の構成原子共有格子点分布グラフを示す従来(Ti,Al)N層で構成された従来被覆工具1〜18においては、いずれも高速断続切削では硬質被覆層の耐機械的衝撃性が不十分であるために、硬質被覆層にチッピングが発生し、比較的短時間で使用寿命に至ることが明らかである。   From the results shown in Tables 5 to 10, all of the coated tools 1 to 18 of the present invention are modified so that the hard coating layer shows a constituent atom shared lattice point distribution graph in which the distribution ratio of Σ3 is 50% to 80% (Ti , Al) N layer, and high-speed intermittent cutting of steel and cast iron with extremely high mechanical impact, the modified (Ti, Al) N layer has superior high-temperature strength and excellent chipping resistance. As a result, the chipping occurrence of the hard coating layer is remarkably suppressed and excellent wear resistance is shown. On the other hand, the hard coating layer shows a constituent atomic shared lattice point distribution graph with a Σ3 distribution ratio of 30% or less. In the conventional coated tools 1 to 18 configured with the conventional (Ti, Al) N layer shown, since the mechanical impact resistance of the hard coating layer is insufficient in high-speed intermittent cutting, chipping is performed on the hard coating layer. Occurs in a relatively short time It is clear that the service life is reached.

上述のように、この発明の被覆工具は、各種鋼や鋳鉄などの通常の条件での連続切削や断続切削は勿論のこと、特に高い高温強度が要求される高速断続切削でも硬質被覆層がすぐれた耐チッピング性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention has an excellent hard coating layer not only for continuous cutting and interrupted cutting under normal conditions such as various steels and cast iron, but also for high-speed interrupted cutting that particularly requires high-temperature strength. It exhibits excellent chipping resistance and exhibits excellent cutting performance over a long period of time, so that it can sufficiently satisfy cutting equipment performance, labor saving and energy saving, and cost reduction. It is.

本発明の被覆工具の硬質被覆層を形成するのに用いたアークイオンプレーティング装置を示し、(a)は概略正面図、(b)は概略平面図である。The arc ion plating apparatus used for forming the hard coating layer of the coating tool of this invention is shown, (a) is a schematic front view, (b) is a schematic plan view. 硬質被覆層を構成する(Ti,Al)N層が有するNaCl型面心立方晶の結晶構造を示す模式図である。It is a schematic diagram which shows the crystal structure of the NaCl type face centered cubic crystal which the (Ti, Al) N layer which comprises a hard coating layer has. 硬質被覆層を構成する(Ti,Al)N層における結晶粒の(001)面および(011)面の傾斜角の測定態様を示す概略説明図である。It is a schematic explanatory drawing which shows the measurement aspect of the inclination angle of the (001) plane of a crystal grain and the (011) plane in the (Ti, Al) N layer which comprises a hard coating layer. 本発明被覆工具1の硬質被覆層を構成する改質(Ti,Al)N層の構成原子共有格子点分布グラフである。4 is a constituent atomic shared lattice point distribution graph of a modified (Ti, Al) N layer constituting the hard coating layer of the coated tool 1 of the present invention. 従来被覆工具1の硬質被覆層を構成する従来(Ti,Al)N層の構成原子共有格子点分布グラフである。4 is a constituent atomic shared lattice point distribution graph of a conventional (Ti, Al) N layer constituting a hard coating layer of a conventional coated tool 1.

Claims (1)

炭化タングステン基超硬合金、炭窒化チタン基サーメット、または立方晶窒化ほう素基超高圧焼結材料で構成された工具基体の表面に、
1〜6μmの平均層厚を有するTiとAlの複合窒化物からなる硬質被覆層を蒸着形成してなる表面被覆切削工具において、
前記硬質被覆層の組成式を(Ti1−XAl)Nと表したときに、
0.4≦X≦0.6(ただし、Xは原子比を示す)を満足し、かつ、
電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にTi、Al、窒素からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(NはNaCl型面心立方晶の結晶構造上2以上の偶数となる)存在する構成原子共有格子点形態をΣN+1で表した場合、個々のΣN+1がΣN+1全体(ただし、頻度の関係でNの上限値を28とする)に占める分布割合を示す構成原子共有格子点分布グラフにおいて、Σ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める分布割合が50%〜80%である構成原子共有格子点分布グラフを示す窒化チタンアルミニウム層、
で構成したことを特徴とする高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具。
On the surface of the tool base made of tungsten carbide based cemented carbide, titanium carbonitride based cermet, or cubic boron nitride based ultra high pressure sintered material,
In a surface-coated cutting tool formed by vapor-depositing a hard coating layer made of a composite nitride of Ti and Al having an average layer thickness of 1 to 6 μm,
When the composition formula of the hard coating layer is expressed as (Ti 1-X Al X ) N,
0.4 ≦ X ≦ 0.6 (where X represents an atomic ratio), and
Using a field emission scanning electron microscope, each crystal grain existing within the measurement range of the surface polished surface is irradiated with an electron beam, and the crystal plane of the crystal grain is normal to the surface polished surface ( The tilt angle formed by the normal lines of the (001) plane and the (011) plane is measured. In this case, the crystal grains are NaCl-type face-centered cubic crystals each having a constituent atom composed of Ti, Al, and nitrogen at lattice points. Based on the measured tilt angle obtained as a result of this, at the interface between adjacent crystal grains, each of the constituent atoms shares one constituent atom between the crystal grains (configuration The distribution of atomic shared lattice points) is calculated, and there are N lattice points that do not share constituent atoms between the constituent atomic shared lattice points (N is an even number of 2 or more in the crystal structure of NaCl-type face-centered cubic crystal). The constitutive atomic shared lattice point form is expressed as ΣN + 1 In the constituent atom shared lattice point distribution graph showing the distribution ratio of each ΣN + 1 in the entire ΣN + 1 (however, the upper limit value of N is 28 in relation to the frequency), the highest peak exists in Σ3, and the Σ3 A titanium aluminum nitride layer showing a constituent atom shared lattice point distribution graph in which the distribution ratio of ΣN + 1 in the whole is 50% to 80%,
A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting, characterized by comprising
JP2006029018A 2006-02-06 2006-02-06 A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting Expired - Fee Related JP4748450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006029018A JP4748450B2 (en) 2006-02-06 2006-02-06 A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006029018A JP4748450B2 (en) 2006-02-06 2006-02-06 A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting

Publications (2)

Publication Number Publication Date
JP2007203447A true JP2007203447A (en) 2007-08-16
JP4748450B2 JP4748450B2 (en) 2011-08-17

Family

ID=38483345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006029018A Expired - Fee Related JP4748450B2 (en) 2006-02-06 2006-02-06 A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting

Country Status (1)

Country Link
JP (1) JP4748450B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009142972A (en) * 2007-12-18 2009-07-02 Mitsubishi Materials Corp Surface coated cutting tool with hard coating layer having improved chipping resistance during heavy cutting work
JP2010017785A (en) * 2008-07-09 2010-01-28 Mitsubishi Materials Corp Surface coated cutting tool having hard coating layer exerting superior chipping resistance
US8557405B2 (en) 2009-08-04 2013-10-15 Tungaloy Corporation Coated member
JP2013240866A (en) * 2012-05-22 2013-12-05 Mitsubishi Materials Corp Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP2013248675A (en) * 2012-05-30 2013-12-12 Mitsubishi Materials Corp Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting
JP2014024130A (en) * 2012-07-25 2014-02-06 Mitsubishi Materials Corp Surface coated cutting tool coated with hard coating layer providing excellent chipping resistance in high-speed intermittent cutting
JP2015100870A (en) * 2013-11-22 2015-06-04 三菱マテリアル株式会社 Surface-coated cutting tool with hard coating layer exhibiting superior chipping resistance in high speed intermittent cutting
JP6045010B1 (en) * 2016-04-14 2016-12-14 住友電工ハードメタル株式会社 Surface-coated cutting tool and manufacturing method thereof
JP2017189847A (en) * 2016-04-14 2017-10-19 住友電工ハードメタル株式会社 Surface-coated cutting tool and manufacturing method therefor
US20180178294A1 (en) * 2016-04-08 2018-06-28 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool and method of producing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005219199A (en) * 2004-01-05 2005-08-18 Mitsubishi Materials Kobe Tools Corp Surface coated cemented carbide cutting tool having hard coated layer displaying excellent wear resistance
JP2005324306A (en) * 2004-05-17 2005-11-24 Mitsubishi Materials Corp Cutting tool made of surface-coated cemented carbide with lubricating amorphous carbonaceous coat exhibiting excellent wear resistance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005219199A (en) * 2004-01-05 2005-08-18 Mitsubishi Materials Kobe Tools Corp Surface coated cemented carbide cutting tool having hard coated layer displaying excellent wear resistance
JP2005324306A (en) * 2004-05-17 2005-11-24 Mitsubishi Materials Corp Cutting tool made of surface-coated cemented carbide with lubricating amorphous carbonaceous coat exhibiting excellent wear resistance

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009142972A (en) * 2007-12-18 2009-07-02 Mitsubishi Materials Corp Surface coated cutting tool with hard coating layer having improved chipping resistance during heavy cutting work
JP2010017785A (en) * 2008-07-09 2010-01-28 Mitsubishi Materials Corp Surface coated cutting tool having hard coating layer exerting superior chipping resistance
US8557405B2 (en) 2009-08-04 2013-10-15 Tungaloy Corporation Coated member
JP2013240866A (en) * 2012-05-22 2013-12-05 Mitsubishi Materials Corp Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP2013248675A (en) * 2012-05-30 2013-12-12 Mitsubishi Materials Corp Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting
JP2014024130A (en) * 2012-07-25 2014-02-06 Mitsubishi Materials Corp Surface coated cutting tool coated with hard coating layer providing excellent chipping resistance in high-speed intermittent cutting
CN103572250A (en) * 2012-07-25 2014-02-12 三菱综合材料株式会社 Surface coating cutting tool
JP2015100870A (en) * 2013-11-22 2015-06-04 三菱マテリアル株式会社 Surface-coated cutting tool with hard coating layer exhibiting superior chipping resistance in high speed intermittent cutting
US20180178294A1 (en) * 2016-04-08 2018-06-28 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool and method of producing the same
US10166611B2 (en) * 2016-04-08 2019-01-01 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool and method of producing the same
JP6045010B1 (en) * 2016-04-14 2016-12-14 住友電工ハードメタル株式会社 Surface-coated cutting tool and manufacturing method thereof
WO2017179220A1 (en) * 2016-04-14 2017-10-19 住友電工ハードメタル株式会社 Surface-coated cutting tool and manufacturing method therefor
WO2017179221A1 (en) * 2016-04-14 2017-10-19 住友電工ハードメタル株式会社 Surface-coated cutting tool and manufacturing method therefor
JP2017189847A (en) * 2016-04-14 2017-10-19 住友電工ハードメタル株式会社 Surface-coated cutting tool and manufacturing method therefor
JP2017189846A (en) * 2016-04-14 2017-10-19 住友電工ハードメタル株式会社 Surface-coated cutting tool and manufacturing method therefor
US10259048B2 (en) 2016-04-14 2019-04-16 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool and method of producing the same
US10953473B2 (en) 2016-04-14 2021-03-23 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool and method of producing the same

Also Published As

Publication number Publication date
JP4748450B2 (en) 2011-08-17

Similar Documents

Publication Publication Date Title
JP6268530B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6402662B2 (en) Surface-coated cutting tool and manufacturing method thereof
JP4748450B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP5939508B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6090063B2 (en) Surface coated cutting tool
JP5946017B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
WO2013133441A1 (en) Surface-coated cutting tool having therein hard coating layer capable of exhibiting excellent chipping resistance during high-speed intermittent cutting work
US20070275268A1 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high-pressure sintered material
JP5939509B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6548073B2 (en) Surface coated cutting tool exhibiting excellent chipping resistance with hard coating layer
JP6331003B2 (en) Surface coated cutting tool
JP5152690B2 (en) Surface coated cutting tool with excellent chipping resistance with hard coating layer in heavy cutting
JP2009090395A (en) Surface-coated cutting tool having hard coated layer exhibiting excellent chipping resistance in heavy cutting
JP5088469B2 (en) Surface-coated cutting tool exhibiting excellent fracture resistance with hard coating layer in heavy-duty machining and manufacturing method thereof
JP6296295B2 (en) Surface coated cutting tool with excellent wear resistance
JP4725774B2 (en) Cutting tool made of surface-coated cubic boron nitride based sintered material whose hard coating layer exhibits excellent chipping resistance in intermittent heavy cutting of high hardness steel
JP6044401B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP5287123B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP2007152542A (en) Surface coated cutting tool which is made of cubic boron nitride base ultra high pressure sintered material and has hard coated layer showing excellent chipping resistance in heavy cutting of high hardness steel
JP2005246597A (en) Surface coated cubic boron nitride sintered material-made cutting tool having excellent chipping resistance in hard coated layer
JP5239324B2 (en) Surface coated cutting tool with excellent chipping resistance with hard coating layer in heavy cutting
JP2015009322A (en) Surface coated cutting tool
JP2009090396A (en) Surface-coated cutting tool having hard coated layer exhibiting excellent chipping resistance in heavy cutting
JP4883471B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent chipping resistance in hard cutting of hardened steel
JP6213066B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110425

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4748450

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110508

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees