JP2009090396A - Surface-coated cutting tool having hard coated layer exhibiting excellent chipping resistance in heavy cutting - Google Patents

Surface-coated cutting tool having hard coated layer exhibiting excellent chipping resistance in heavy cutting Download PDF

Info

Publication number
JP2009090396A
JP2009090396A JP2007261926A JP2007261926A JP2009090396A JP 2009090396 A JP2009090396 A JP 2009090396A JP 2007261926 A JP2007261926 A JP 2007261926A JP 2007261926 A JP2007261926 A JP 2007261926A JP 2009090396 A JP2009090396 A JP 2009090396A
Authority
JP
Japan
Prior art keywords
cutting
degrees
coated
tool
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007261926A
Other languages
Japanese (ja)
Inventor
Makoto Igarashi
誠 五十嵐
Hidemitsu Takaoka
秀充 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2007261926A priority Critical patent/JP2009090396A/en
Publication of JP2009090396A publication Critical patent/JP2009090396A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface-coated cutting tool having a hard coated layer exhibiting excellent chipping resistance in heavy cutting. <P>SOLUTION: The surface-coated cutting tool comprises a tool body composed of WC-based hard metal, TiCN-based cermet and a cBN-based super high pressure sintered material, and a hard coating layer having an average thickness of 1-10 μm vapor-deposited on the surface of the tool body. The hard coating layer is composed of a composite nitride carbide layer of Ti which has the highest peak in a gradient angle section of 30-40 degrees in a gradient angle distribution graph created by measuring a gradient angle of a normal line on a ä100} plane with respect to a normal line of a surface ground plane of the coating layer, has a total of the degrees showing 60% or higher of the whole, and satisfies a composition formula: TiC<SB>X</SB>N<SB>1-X</SB>, wherein 0.2≤X≤0.5 in atomic ratio. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、特に、切刃に対して大きな機械的負荷がかかる鋼や鋳鉄の重切削加工で、硬質被覆層がすぐれた耐欠損性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   In particular, the present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits a fracture resistance with a hard coating layer excellent in heavy cutting of steel or cast iron that requires a large mechanical load on the cutting edge. Is.

一般に、被覆工具には、各種の鋼や鋳鉄などの被削材の旋削加工にバイトの先端部に着脱自在に取り付けて用いられるインサートや、前記インサートを着脱自在に取り付けて、面削加工や溝加工、さらに肩加工などに用いられるソリッドタイプのエンドミルと同様に切削加工を行うインサート式エンドミルなどが知られている。
また、被覆工具としては、炭化タングステン(以下、WCで示す)基超硬合金、炭窒化チタン(以下、TiCNで示す)基サーメットまたは各種の立方晶窒化ほう素(以下、cBNで示す)基超高圧焼結材料で構成された工具本体の表面に、TiCN層あるいはTi(CaNbOc)N(ただし、原子比で、0.05<a<0.9、0.1<b<1.0、0.01≦c≦0.2、0.8≦z≦1.2を満足する)層からなる硬質被覆層を設け、かつ、前記TiCN層あるいはTi(CaNbOc)N層の(111)面配向性を高めることにより、硬質被覆層の強度、耐欠損性、耐摩耗性を改善した被覆工具が知られており、さらに、この被覆工具が各種の鋼や鋳鉄の切削加工に用いられることも知られている。
特開平8−281502号公報 特開2002−346811号公報
In general, for coated tools, inserts that are detachably attached to the tip of a cutting tool for turning of work materials such as various types of steel and cast iron, and the inserts are detachably attached to be used for chamfering and grooving. An insert type end mill that performs cutting processing in the same manner as a solid type end mill used for processing and shoulder processing is known.
In addition, as a coated tool, tungsten carbide (hereinafter referred to as WC) based cemented carbide, titanium carbonitride (hereinafter referred to as TiCN) based cermet, or various types of cubic boron nitride (hereinafter referred to as cBN) based super A TiCN layer or Ti (CaNbOc) N Z (however, in terms of atomic ratio, 0.05 <a <0.9, 0.1 <b <1.0, 0.01 ≦ c ≦ 0.2, 0.8 satisfies ≦ z ≦ 1.2) a hard coating layer provided consisting of layers, and (111) plane of the TiCN layer or Ti (CaNbOc) N Z layer Coated tools that improve the strength, fracture resistance, and wear resistance of hard coating layers by increasing the orientation are known, and these coated tools can also be used for cutting various types of steel and cast iron. Are known.
JP-A-8-281502 JP 2002-346811 A

近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は一段と高速化の傾向にあるが、上記の従来被覆工具においては、これを鋼や鋳鉄などの通常の条件での切削加工に用いた場合には問題はないが、特にこれを切削条件の厳しい重切削加工に用いた場合は、硬質被覆層を構成する上記従来の(111)面配向性を高めたTiCN層、Ti(CaNbOc)N層は、高温強度が不十分であるために、刃先の境界部分に異常損傷(以下、境界異常損傷という)を生じ、欠損を発生しやすいため、比較的短時間で使用寿命に至るのが現状である。 In recent years, the performance of cutting machines has been remarkable. On the other hand, there is a strong demand for labor saving, energy saving, and cost reduction for cutting work, and along with this, cutting work tends to be further accelerated. For coated tools, there is no problem when this is used for cutting under normal conditions such as steel or cast iron, but when this is used for heavy cutting with severe cutting conditions, a hard coating layer is required. TiCN layer having an increased above conventional (111) plane orientation which constitute, Ti (CaNbOc) N Z layer, since high temperature strength is insufficient, notching at the boundary portion of the cutting edge (hereinafter, referred to as edge notching ) And is prone to defects, the service life is currently reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、上記被覆工具の耐欠損性の向上を図るべく、硬質被覆層を構成するTiCN層の結晶配向性に着目し、鋭意研究を行った結果、
(a)従来被覆工具の硬質被覆層を構成する従来TiCN層は、例えば、図1に示される通常の物理蒸着装置の1種であるアークイオンプレーティング装置に工具基体を装入し、ヒータで装置内を例えば300〜500℃に加熱した状態で、Ti合金からなるカソード電極(蒸発源)とアノード電極との間に例えば60〜100Aのアーク放電電流を発生させ、同時に装置内に反応ガスとして窒素−メタン混合ガスを導入して、例えば1〜6Paの反応雰囲気とし、一方工具基体には例えばバイアス電源から−50〜−100Vの直流バイアス電圧を印加するという条件下で成膜される(以下、通常成膜条件という)が、
その蒸着条件を変更し、例えば、装置内の工具基体をヒータで850℃に加熱して成膜温度を高くし、さらに、工具基体にバイアス電源からバイポーラパルスバイアスを印加してアークイオンプレーティングを行う(以下、改質成膜条件という)と、この条件で蒸着形成されたTiCN層(以下、改質TiCN層という)は、通常成膜条件で形成されたTiCN層に比べ、結晶粒の粒界強度が強化され、その結果、硬質被覆層の高温強度が一段と向上するため、切刃に対して大きな機械的負荷がかかる重切削加工であっても、前記硬質被覆層はすぐれた耐欠損性を発揮し、長期にわたってすぐれた耐摩耗性を示すこと。
In view of the above, the inventors of the present invention have conducted intensive research focusing on the crystal orientation of the TiCN layer constituting the hard coating layer in order to improve the fracture resistance of the coated tool from the above viewpoint. ,
(A) The conventional TiCN layer constituting the hard coating layer of the conventional coated tool is prepared by, for example, inserting a tool base into an arc ion plating apparatus which is one type of a normal physical vapor deposition apparatus shown in FIG. An arc discharge current of, for example, 60 to 100 A is generated between a cathode electrode (evaporation source) made of a Ti alloy and an anode electrode while the inside of the apparatus is heated to, for example, 300 to 500 ° C., and at the same time as a reaction gas in the apparatus Nitrogen-methane mixed gas is introduced to form a reaction atmosphere of 1 to 6 Pa, for example, while a film is formed on the tool base under a condition that a DC bias voltage of -50 to -100 V is applied from a bias power source, for example (hereinafter referred to as the following). Usually referred to as film formation conditions)
The deposition conditions are changed, for example, the tool substrate in the apparatus is heated to 850 ° C. with a heater to increase the film forming temperature, and further, a bipolar pulse bias is applied to the tool substrate from a bias power source to perform arc ion plating. When performed (hereinafter referred to as a modified film forming condition), a TiCN layer deposited under this condition (hereinafter referred to as a modified TiCN layer) has a crystal grain size as compared with a TiCN layer formed under a normal film forming condition. The field strength is strengthened, and as a result, the high temperature strength of the hard coating layer is further improved, so that the hard coating layer has excellent chipping resistance even in heavy cutting where a heavy mechanical load is applied to the cutting edge. Exhibiting excellent wear resistance over a long period of time.

(b)上記の従来被覆工具の硬質被覆層を構成するTiCN層(以下、従来TiCN層という)と上記(a)の改質TiCN層について、
電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{100}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフを作成すると、例えば、図2に示されるように、30〜40度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記30〜40度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の60%以上の割合を占める傾斜角度数分布グラフを示すことから、改質TiCN層は、表面研磨面の法線方向に対して、(112)面が強配向している結晶配向性を示すこと。
(B) About the TiCN layer (hereinafter referred to as the conventional TiCN layer) constituting the hard coating layer of the conventional coated tool and the modified TiCN layer of the above (a),
Using a field emission scanning electron microscope, each crystal grain having a cubic crystal lattice existing within the measurement range of the surface polished surface is irradiated with an electron beam, and the crystal grain is normal to the surface polished surface. The tilt angle formed by the normal of the {100} plane, which is the crystal plane, is measured, and among the measured tilt angles, the measured tilt angles within the range of 0 to 45 degrees are classified for each pitch of 0.25 degrees. At the same time, when an inclination angle distribution graph is created by counting the frequencies existing in each section, for example, as shown in FIG. 2, the highest peak exists in the inclination angle section within the range of 30 to 40 degrees. In addition, since the total number of frequencies existing in the range of 30 to 40 degrees shows an inclination angle number distribution graph that occupies a ratio of 60% or more of the entire degrees in the inclination angle number distribution graph, the modified TiCN layer is With respect to the normal direction of the polished surface (1 2) surface to exhibit crystal orientation that is oriented strongly.

(c)上記の改質TiCN層は、従来TiCN層自体が具備する高温硬さと高温強度に加えて、上記従来TiCN層に比して一段と高い高温強度を有するので、これを硬質被覆層として蒸着形成してなる被覆工具は、切刃に対して特に大きな機械的負荷がかかる重切削加工に用いた場合にも、前記従来TiCN層を蒸着形成してなる被覆工具に比して、硬質被覆層が一段とすぐれた耐欠損性を発揮するようになること。
以上(a)〜(c)に示される研究結果を得たのである。
(C) Since the above-mentioned modified TiCN layer has a higher high-temperature strength than the conventional TiCN layer in addition to the high-temperature hardness and high-temperature strength that the conventional TiCN layer itself has, it is deposited as a hard coating layer. The formed coated tool has a hard coating layer as compared with the conventional coated tool formed by vapor deposition of the TiCN layer even when used for heavy cutting where a particularly large mechanical load is applied to the cutting edge. To exhibit even better fracture resistance.
The research results shown in (a) to (c) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、
「 炭化タングステン基超硬合金、炭窒化チタン基サーメット、または立方晶窒化ほう素基超高圧焼結材料で構成された工具基体の表面に、1〜10μmの平均層厚を有するTiの複合炭窒化物層からなる硬質被覆層を蒸着形成してなる表面被覆切削工具において、
前記Tiの複合炭窒化物層は、
組成式:TiC1−Xで表したときに、
0.2≦X≦0.5(ただし、Xは原子比を示す)を満足し、かつ、
電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{100}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、30〜40度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記30〜40度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の60%以上の割合を占める傾斜角度数分布グラフを示すことを特徴とする表面被覆切削工具(被覆工具)。」
に特徴を有するものである。
This invention was made based on the above research results,
”Ti composite carbonitride having an average layer thickness of 1 to 10 μm on the surface of a tool base made of tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, or cubic boron nitride-based ultrahigh pressure sintered material In a surface-coated cutting tool formed by vapor-depositing a hard coating layer consisting of a physical layer,
The Ti composite carbonitride layer is:
Composition formula: When expressed by TiC X N 1-X ,
0.2 ≦ X ≦ 0.5 (where X represents an atomic ratio), and
Using a field emission scanning electron microscope, each crystal grain having a cubic crystal lattice existing within the measurement range of the surface polished surface is irradiated with an electron beam, and the crystal grain is normal to the surface polished surface. The tilt angle formed by the normal of the {100} plane, which is the crystal plane, is measured, and among the measured tilt angles, the measured tilt angles within the range of 0 to 45 degrees are classified for each pitch of 0.25 degrees. In addition, in the inclination angle number distribution graph obtained by counting the frequencies existing in each section, the highest peak exists in the inclination angle section within the range of 30 to 40 degrees, and exists within the range of 30 to 40 degrees. A surface-coated cutting tool (coated tool), characterized in that the total number of frequencies to be displayed shows a tilt angle number distribution graph that accounts for 60% or more of the total frequency in the tilt angle number distribution graph. "
It has the characteristics.

まず、この発明の改質TiCN層について、詳細に説明する。
(a)組成式:TiC1−Xで表されるTiの複合炭窒化物層(改質TiCN層)
この発明の被覆工具の硬質被覆層を構成する上記改質TiCN層において、TiC成分には層の硬さを向上させ、また、TiN成分には層の強度を向上させる作用があり、これらの各成分を共存含有することにより高い硬さとすぐれた強度を具備するようになるが、層中のC成分の含有割合(X値)がN成分との合量に占める原子比で0.2未満では所望の高硬度を得ることはできず、一方その含有割合(X値)が0.5を越えると、相対的にN成分の含有割合が少なくなり過ぎて、強度向上効果を期待することができなくなることから、X値を原子比で0.2〜0.5と定めた。
First, the modified TiCN layer of the present invention will be described in detail.
(A) Composition formula: Ti composite carbonitride layer (modified TiCN layer) represented by TiC X N 1-X
In the modified TiCN layer constituting the hard coating layer of the coated tool of the present invention, the TiC component has the effect of improving the hardness of the layer, and the TiN component has the action of improving the strength of the layer. By coexisting components, it will have high hardness and excellent strength, but if the content ratio (X value) of the C component in the layer is less than 0.2 in terms of the atomic ratio to the total amount with the N component The desired high hardness cannot be obtained. On the other hand, when the content ratio (X value) exceeds 0.5, the content ratio of the N component is relatively decreased, and an effect of improving the strength can be expected. Since X disappeared, X value was determined as 0.2-0.5 by atomic ratio.

(b)結晶面の配向割合
上記の改質TiCN層について、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{100}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフを作成したところ、図2に示すように、30〜40度の範囲内の傾斜角区分に最高ピークが存在し、しかも、30〜40度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の60%以上の割合を占める傾斜角度数分布グラフを示すことから、改質TiCN層は、表面研磨面の法線方向に対して{112}面が強配向していることがわかり、このような結晶配向性によって、通常成膜条件で形成した従来TiCN層に比して、結晶粒の粒界強度が一段と向上し、その結果、硬質被覆層として改質TiCN層を備えた被覆工具は、重切削加工条件下でも耐欠損性が一段と向上する。
(B) Crystal plane orientation ratio With respect to the above-described modified TiCN layer, a field emission scanning electron microscope was used to irradiate each crystal grain having a cubic crystal lattice existing within the measurement range of the surface polished surface with an electron beam. Then, the inclination angle formed by the normal line of the {100} plane that is the crystal plane of the crystal grain is measured with respect to the normal line of the surface-polished surface, and within the range of 0 to 45 degrees of the measurement inclination angle The measured inclination angle is divided into pitches of 0.25 degrees, and the inclination angle number distribution graph formed by summing up the frequencies existing in each division is created. As shown in FIG. An inclination angle in which the highest peak exists in the inclination angle section within the range of degrees, and the total of the frequencies existing within the range of 30 to 40 degrees occupies a ratio of 60% or more of the entire degrees in the inclination angle frequency distribution graph Since the number distribution graph is shown, the modified TiCN It can be seen that the {112} plane is strongly oriented with respect to the normal direction of the surface-polished surface, and such a crystal orientation allows the layer to be compared with a conventional TiCN layer formed under normal film formation conditions. The grain boundary strength of the crystal grains is further improved. As a result, the fracture resistance of the coated tool provided with the modified TiCN layer as the hard coating layer is improved even under heavy cutting conditions.

(c)平均層厚
改質TiCN層の平均層厚が1μm未満では、自身のもつ耐熱性、高温硬さおよび高温強度を長期に亘って維持することができず、工具寿命短命の原因となり、一方その平均層厚が10μmを越えると、皮膜の剥離やチッピングが発生し易くなることから、その平均層厚を1〜10μmと定めた。
(C) Average layer thickness If the average layer thickness of the modified TiCN layer is less than 1 μm, the heat resistance, high temperature hardness and high temperature strength possessed by itself cannot be maintained over a long period of time, resulting in a short tool life. On the other hand, if the average layer thickness exceeds 10 μm, peeling or chipping of the film tends to occur, so the average layer thickness was set to 1 to 10 μm.

次に、この発明の改質TiCN層の成膜条件について、詳細に説明する。
硬質被覆層として、アークイオンプレーティングで蒸着形成した改質TiCN層を備えた被覆工具を製造するにあたり、
アークイオンプレーティング装置内の回転テーブル上に工具基体を配設し、カソード電極として金属Tiを配置し、
前記装置内の回転テーブル上に配設された工具基体をArガス雰囲気中でArイオンによってボンバード洗浄した後、
装置内に反応ガスとして窒素−メタン混合ガスを導入して1〜6Paの反応雰囲気とすると共に、装置内を加熱し、工具基体温度を750〜900℃に保持した状態で、回転テーブル上の工具基体に、印加電圧+5〜−15(v)×印加時間2000〜20000(ns)の負バイアスおよび印加電圧+32〜+42(v)×印加時間100〜5000(ns)の正バイアスからなるバイポーラパルスバイアスを印加し、かつ前記金属Tiからなるカソード電極とアノード電極との間に60〜200Aの電流を流してアーク放電を発生させて、工具基体表面に、組成式:TiC1−Xで表したときに、0.2≦X≦0.5(ただし、Xは原子比を示す)を満足する改質TiCN層を蒸着形成する。
上記蒸着条件のうち、工具基体温度については、その温度が750℃未満では、{112}面への配向率が極めて小さくなり、目的とする皮膜が得られず、粒界強度が不足することから、工具基体温度は750℃以上とする必要がある。工具基体温度についての上限は特にないが、アークイオンプレーティング装置の仕様の点から、実際上は、工具基体温度を750〜900℃にすることが望ましい。ただ、これは、工具基体温度を900℃以上に高めてはならないということを意味するものではない。
また、バイポーラパルスバイアスについては、印加電圧+5〜−15(v)×印加時間2000〜20000(ns)の負バイアスおよび印加電圧+32〜+42(v)×印加時間100〜5000(ns)の正バイアスからなるバイポーラパルスバイアスを印加することが必要であり、負バイアス、正バイアスの印加電圧及び印加時間が上記数値範囲から外れた場合には、目的としている{112}面の強配向性の皮膜とならないため、成膜時の工具基体へのバイアス付加条件を上記の通りに定めた。
Next, the film forming conditions for the modified TiCN layer of the present invention will be described in detail.
In producing a coated tool having a modified TiCN layer deposited by arc ion plating as a hard coating layer,
A tool base is disposed on a rotary table in the arc ion plating apparatus, and metal Ti is disposed as a cathode electrode.
After bombarding the tool base disposed on the rotary table in the apparatus with Ar ions in an Ar gas atmosphere,
Introducing nitrogen-methane mixed gas as a reaction gas into the apparatus to make a reaction atmosphere of 1 to 6 Pa, heating the inside of the apparatus, and maintaining the tool base temperature at 750 to 900 ° C., the tool on the rotary table Bipolar pulse bias comprising a negative bias of applied voltage +5 to −15 (v) × application time 2000 to 20000 (ns) and a positive bias of applied voltage +32 to +42 (v) × application time 100 to 5000 (ns) on a substrate And a current of 60 to 200 A is passed between the cathode electrode and the anode electrode made of the metal Ti to generate arc discharge, and the surface of the tool base is represented by the composition formula: TiC X N 1-X . Then, a modified TiCN layer satisfying 0.2 ≦ X ≦ 0.5 (where X represents an atomic ratio) is formed by vapor deposition.
Among the above deposition conditions, the tool base temperature is less than 750 ° C., because the orientation rate to the {112} plane is extremely small, the intended film cannot be obtained, and the grain boundary strength is insufficient. The tool substrate temperature needs to be 750 ° C. or higher. Although there is no particular upper limit on the tool base temperature, in practice, the tool base temperature is preferably 750 to 900 ° C. from the viewpoint of the specifications of the arc ion plating apparatus. However, this does not mean that the tool substrate temperature should not be raised above 900 ° C.
As for the bipolar pulse bias, a negative bias of applied voltage +5 to −15 (v) × application time 2000 to 20000 (ns) and a positive bias of applied voltage +32 to +42 (v) × application time 100 to 5000 (ns) If the application voltage and application time of the negative bias and the positive bias are out of the above numerical range, the target {112} plane strongly oriented film and Therefore, the conditions for applying a bias to the tool substrate during film formation were determined as described above.

この発明の被覆工具およびその製造方法によれば、切刃に対してきわめて大きな機械的負荷がかかる鋼や鋳鉄などの重切削加工でも、硬質被覆層である改質TiCN層が一段とすぐれた高温強度を有し、すぐれた耐欠損性を発揮する被覆工具を提供することができ、そして、この被覆工具は、硬質被覆層に欠損が発生することはなく、長期に亘ってすぐれた耐摩耗性を発揮するものである。   According to the coated tool and the manufacturing method of the present invention, the modified TiCN layer, which is a hard coating layer, has a superior high-temperature strength even in heavy cutting processing such as steel and cast iron that requires a very large mechanical load on the cutting edge. Thus, it is possible to provide a coated tool that exhibits excellent fracture resistance, and this coated tool exhibits no wear on the hard coating layer and has excellent wear resistance over a long period of time. It is something that demonstrates.

つぎに、この発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG120408に規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体A〜Fをそれぞれ製造した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders were blended into the composition shown in Table 1, added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and pressed into a green compact with a predetermined shape at a pressure of 98 MPa. The green compact was vacuum sintered at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour in a vacuum of 5 Pa. After sintering, the cutting edge portion was R: 0.07 mm honing By performing the processing, tool bases A to F made of a WC-base cemented carbide having a throwaway tip shape specified in ISO · CNMG120408 were manufactured.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG120412のチップ形状をもったTiCN基サーメット製の工具基体G〜Lを形成した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after the sintering, the cutting edge portion was subjected to a honing process of R: 0.07 mm. Tool bases G to L made of TiCN-based cermet having a standard / CNMG12041 chip shape were formed.

さらに、原料粉末として、いずれも0.5〜4μmの範囲内の平均粒径を有する立方晶窒化硼素(cBN)粉末、窒化チタン(TiN)粉末、Al粉末、酸化アルミニウム(Al)粉末を用意し、これら原料粉末を表3に示される配合組成に配合し、ボールミルで80時間湿式混合し、乾燥した後、120MPaの圧力で直径:50mm×厚さ:1.5mmの寸法をもった圧粉体にプレス成形し、ついでこの圧粉体を、圧力:1Paの真空雰囲気中、900〜1300℃の範囲内の所定温度に60分間保持の条件で焼結して切刃片用予備焼結体とし、この予備焼結体を、別途用意した、Co:8質量%、WC:残りの組成、並びに直径:50mm×厚さ:2mmの寸法をもったWC基超硬合金製支持片と重ね合わせた状態で、通常の超高圧焼結装置に装入し、通常の条件である圧力:5GPa、温度:1200〜1400℃の範囲内の所定温度に保持時間:0.8時間の条件で超高圧焼結し、焼結後上下面をダイヤモンド砥石を用いて研磨し、ワイヤー放電加工装置にて一辺3mmの正三角形状に分割し、さらにCo:5質量%、TaC:5質量%、WC:残りの組成およびCIS規格SNGA120412の形状(厚さ:4.76mm×一辺長さ:12.7mmの正三角形)をもったWC基超硬合金製チップ本体のろう付け部(コーナー部)に、質量%で、Cu:26%、Ti:5%、Ni:2.5%、Ag:残りからなる組成を有するAg合金のろう材を用いてろう付けし、所定寸法に外周加工した後、切刃部に幅:0.13mm、角度:25°のホーニング加工を施し、さらに仕上げ研摩を施すことによりISO規格SNGA120412のチップ形状をもったcBN基超高圧焼結材料製の工具基体M〜Rをそれぞれ製造した。 Furthermore, as raw material powders, cubic boron nitride (cBN) powder, titanium nitride (TiN) powder, Al powder, aluminum oxide (Al 2 O 3 ) powder each having an average particle diameter in the range of 0.5 to 4 μm. These raw material powders were blended in the composition shown in Table 3, wet-mixed with a ball mill for 80 hours, dried, and then had a diameter of 50 mm × thickness: 1.5 mm at a pressure of 120 MPa. The green compact is press-molded, and then the green compact is sintered in a vacuum atmosphere at a pressure of 1 Pa at a predetermined temperature within the range of 900 to 1300 ° C. for 60 minutes and pre-baked for cutting edge pieces. A WC-based cemented carbide support piece having a size of Co: 8% by mass, WC: remaining composition, and diameter: 50 mm × thickness: 2 mm was prepared as a sintered body. Super After charging into a high-pressure sintering apparatus, sintering under ultrahigh pressure at a predetermined temperature in the range of pressure: 5 GPa, temperature: 1200 to 1400 ° C., holding time: 0.8 hours, after sintering The upper and lower surfaces are polished with a diamond grindstone and divided into 3 mm regular triangles with a wire electric discharge machine, and Co: 5% by mass, TaC: 5% by mass, WC: remaining composition and CIS standard SNGA120412 In the brazed portion (corner portion) of the WC-based cemented carbide chip body having a shape (thickness: 4.76 mm × one side length: 12.7 mm), the mass percentage is Cu: 26%, Ti: 5%, Ni: 2.5%, Ag: Brazing using a brazing material of an Ag alloy having the remaining composition, and after processing the outer periphery to a predetermined dimension, the width of the cutting edge is 0.13 mm, Angle: 25 ° honing process, The cBN-based ultrahigh pressure sintered material made of tool substrate M~R having a tip shape of ISO standard SNGA120412 by performing finish polishing was produced, respectively.

(a)これらの工具基体A〜F、G〜LおよびM〜Rのそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、カソード電極(蒸発源)として、表5〜7に示される目標組成に対応した成分組成をもった改質TiCN層形成用の金属Tiを配置し、
(b)まず、装置内を排気して1×10−2Pa以下の真空に保持しながら、ヒーターで装置内を400℃に加熱した後、Arガスを導入して、2.0Paの雰囲気とすると共に、前記テーブル上で自転しながら回転する工具基体に−200Vの直流バイアス電圧を印加し、もって工具基体表面をアルゴンイオンによってボンバード洗浄し、
(c)装置内に反応ガスとして窒素−メタン混合ガスを導入して2Paの反応雰囲気とすると共に、装置内を加熱し、工具基体温度を表4に示される温度に保持し、前記回転テーブル上で自転しながら回転する工具基体に、バイアス電源から、同じく表4に示される条件のバイポーラパルスバイアスを印加し、かつ前記カソード電極(金属Ti)とアノード電極との間に100Aの電流を流してアーク放電を発生させ、前記工具基体の表面に、表5〜7に示される目標組成および目標層厚の改質TiCN層を蒸着形成することにより、本発明被覆工具1〜18をそれぞれ製造した。
(A) Each of these tool bases A to F, G to L, and M to R is ultrasonically cleaned in acetone and dried, on a rotary table in the arc ion plating apparatus shown in FIG. A modified TiCN layer having a component composition corresponding to the target composition shown in Tables 5 to 7 as a cathode electrode (evaporation source) is mounted along the outer periphery at a predetermined distance in the radial direction from the central axis of Place the metal Ti for forming,
(B) First, the inside of the apparatus is evacuated and kept at a vacuum of 1 × 10 −2 Pa or less, and the inside of the apparatus is heated to 400 ° C. with a heater, and then Ar gas is introduced to adjust the atmosphere to 2.0 Pa. And applying a -200 V DC bias voltage to the rotating tool base while rotating on the table, and bombarding the surface of the tool base with argon ions,
(C) A nitrogen-methane mixed gas is introduced into the apparatus as a reaction gas to make a reaction atmosphere of 2 Pa, the inside of the apparatus is heated, and the tool base temperature is maintained at the temperature shown in Table 4, A bipolar pulse bias having the same conditions as shown in Table 4 is applied from a bias power source to a rotating tool base while rotating at 100 and a current of 100 A is passed between the cathode electrode (metal Ti) and the anode electrode. The present invention coated tools 1 to 18 were respectively produced by generating arc discharge and vapor-depositing the modified TiCN layers having the target compositions and target thicknesses shown in Tables 5 to 7 on the surface of the tool base.

また、比較の目的で、蒸着形成時の条件を、表4に示される工具基体温度、同じく表4に示される印加バイアス条件とした以外は、本発明被覆工具1〜18の製造の場合と全く同じ条件で従来TiCN層を蒸着形成することにより、従来被覆工具1〜18をそれぞれ製造した。   Further, for the purpose of comparison, the conditions at the time of vapor deposition were set to the tool substrate temperature shown in Table 4 and the applied bias conditions shown in Table 4 as well, and the case of manufacturing the coated tools 1 to 18 of the present invention was completely different. Conventional coated tools 1-18 were produced by depositing a conventional TiCN layer under the same conditions.

ついで、上記の本発明被覆工具と従来被覆工具の硬質被覆層を構成する改質TiCN層および従来TiCN層について、電界放出型走査電子顕微鏡を用いて、傾斜角度数分布グラフをそれぞれ作成した。
まず、上記傾斜角度数分布グラフは、上記の改質TiCN層および従来TiCN層の表面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に照射し、電子後方散乱回折像装置を用いて、30×50μmの領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{100}面の法線がなす傾斜角を測定し、この測定結果に基づいて、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより作成した。
Next, an inclination angle number distribution graph was created for each of the modified TiCN layer and the conventional TiCN layer constituting the hard coating layer of the present invention-coated tool and the conventional coated tool using a field emission scanning electron microscope.
First, the inclination angle number distribution graph is set in a lens barrel of a field emission scanning electron microscope in a state where the surfaces of the modified TiCN layer and the conventional TiCN layer are polished surfaces, and 70 degrees on the polished surface. An electron beam with an acceleration voltage of 15 kV at an incident angle of 1 nm is irradiated to each crystal grain having a cubic crystal lattice existing within the measurement range of the surface polished surface with an irradiation current of 1 nA, and an electron backscatter diffraction image apparatus is used. Then, the inclination angle formed by the normal of the {100} plane, which is the crystal plane of the crystal grain, is measured with respect to the normal of the surface-polished surface in a 30 × 50 μm region at an interval of 0.1 μm / step. Based on this measurement result, among the measured tilt angles, the measured tilt angles within the range of 0 to 45 degrees are divided for each pitch of 0.25 degrees, and the frequencies existing in each section are tabulated. Created by.

この結果得られた各種の改質TiCN層および従来TiCN層の傾斜角度数分布グラフにおいて、30〜40度の測定傾斜角区分内に存在する度数を表5〜7にそれぞれ示した。   In the gradient angle distribution graphs of various modified TiCN layers and conventional TiCN layers obtained as a result, the frequencies existing in the measured gradient angle section of 30 to 40 degrees are shown in Tables 5 to 7, respectively.

上記の各種の傾斜角度数分布グラフにおいて、表5〜7にそれぞれ示される通り、本発明被覆工具の改質TiCN層は、{112}面の配向割合が非常に高い(傾斜角度数分布グラフにおける度数全体の60%以上の割合)のに対して、従来被覆工具の従来TiCN層は、{112}面の配向割合が低いものであった。
なお、図2は、本発明被覆工具1の改質TiCN層の傾斜角度数分布グラフ、図3は、従来被覆工具1の従来TiCN層の傾斜角度数分布グラフをそれぞれ示す。
In the above-mentioned various inclination angle number distribution graphs, as shown in Tables 5 to 7, the modified TiCN layer of the coated tool of the present invention has a very high orientation ratio of {112} plane (in the inclination angle number distribution graphs). On the other hand, the conventional TiCN layer of the conventional coated tool has a low orientation ratio of {112} planes.
2 shows an inclination angle number distribution graph of the modified TiCN layer of the present coated tool 1, and FIG. 3 shows an inclination angle number distribution graph of the conventional TiCN layer of the conventional coated tool 1, respectively.

さらに、上記の本発明被覆工具1〜18および従来被覆工具1〜18について、これの硬質被覆層の構成層を電子線マイクロアナライザー(EPMA)およびオージェ分光分析装置を用いて観察(層の縦断面を観察)したところ、前者および後者とも目標組成と実質的に同じ組成を有するTiCN層からなることが確認された。また、これらの被覆工具の硬質被覆層の厚さを、走査型電子顕微鏡を用いて測定(同じく縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。   Further, for the above-mentioned coated tools 1-18 of the present invention and the conventional coated tools 1-18, the constituent layers of the hard coating layer were observed using an electron beam microanalyzer (EPMA) and an Auger spectroscopic analyzer (longitudinal section of the layer). As a result, it was confirmed that both the former and the latter were composed of a TiCN layer having substantially the same composition as the target composition. Moreover, when the thickness of the hard coating layer of these coating tools was measured using a scanning electron microscope (same longitudinal section measurement), the average layer thickness (5 point measurement) was substantially the same as the target layer thickness. Average value).

つぎに、上記の各種の被覆工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆工具1〜18および従来被覆工具1〜18について、以下のような切削試験を行った。   Next, with the various coated tools described above, the present coated tools 1 to 18 and the conventional coated tools 1 to 18 in the state where each of the above various coated tools is screwed to the tip of the tool steel tool with a fixing jig, as follows. Cutting tests were conducted.

本発明被覆工具1〜6および従来被覆工具1〜6について、
切削条件(A−1);
被削材:JIS・SNCM439の長さ方向等間隔4本縦溝入丸棒、
切削速度: 180 m/min、
切り込み: 3.2 mm、
送り: 0.35 mm/rev、
切削時間: 3 分、
の条件での合金鋼の乾式断続重切削試験(通常の切込みおよび送りは、それぞれ、1.5mm、0.2mm/rev )、
切削条件(B−1);
被削材:JIS・S45Cの長さ方向等間隔4本縦溝入丸棒、
切削速度: 280 m/min、
切り込み: 3.0 mm、
送り: 0.35 mm/rev、
切削時間: 3 分、
の条件での炭素鋼の乾式断続重切削試験(通常の切込みおよび送りは、それぞれ、1.5mm、0.2mm/rev)、
切削条件(C−1);
被削材:JIS・SUS304の丸棒、
切削速度: 200 m/min、
切り込み: 3.2 mm、
送り: 0.32 mm/rev、
切削時間: 3 分、
の条件でのステンレス鋼の乾式連続重切削試験(通常の切込みおよび送りは、それぞれ、1.2mm、0.15mm/rev)、
を行い、切刃の逃げ面摩耗幅を測定した。この測定結果を表8に示した。
About this invention coated tools 1-6 and conventional coated tools 1-6,
Cutting conditions (A-1);
Work material: JIS / SNCM439 round direction rods with four equal grooves in the length direction,
Cutting speed: 180 m / min,
Infeed: 3.2 mm,
Feed: 0.35 mm / rev,
Cutting time: 3 minutes,
A dry interrupted heavy cutting test of alloy steel under the conditions of (normal cutting and feeding are 1.5 mm and 0.2 mm / rev, respectively),
Cutting conditions (B-1);
Work material: JIS-S45C lengthwise equal 4 round grooved round bars,
Cutting speed: 280 m / min,
Cutting depth: 3.0 mm,
Feed: 0.35 mm / rev,
Cutting time: 3 minutes,
Carbon steel dry interrupted heavy cutting test under normal conditions (normal cutting and feeding are 1.5 mm and 0.2 mm / rev, respectively),
Cutting conditions (C-1);
Work material: JIS / SUS304 round bar,
Cutting speed: 200 m / min,
Infeed: 3.2 mm,
Feed: 0.32 mm / rev,
Cutting time: 3 minutes,
Stainless steel dry continuous heavy cutting test under the following conditions (normal cutting and feeding are 1.2 mm and 0.15 mm / rev, respectively),
The flank wear width of the cutting blade was measured. The measurement results are shown in Table 8.

また、本発明被覆工具7〜12および従来被覆工具7〜12について、
切削条件(A−2);
被削材:JIS・SNCM439の長さ方向等間隔4本縦溝入丸棒、
切削速度: 240 m/min、
切り込み: 1.2 mm、
送り: 0.20 mm/rev、
切削時間: 5 分、
の条件での合金鋼の乾式断続重切削試験(通常の切削速度および送りは、それぞれ、150m/min、0.10mm/rev )、
切削条件(B−2);
被削材:JIS・SCM440の丸棒、
切削速度: 200 m/min、
切り込み: 2.0 mm、
送り: 0.14 mm/rev、
切削時間: 5 分、
の条件での合金鋼の乾式高速高切込み連続切削試験(通常の切削速度および切り込みは、それぞれ、150m/min、1.5mm)、
切削条件(C−2);
被削材:JIS・S50Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度: 180 m/min、
切り込み: 1.3 mm、
送り: 0.30 mm/rev、
切削時間: 5 分、
の条件での炭素鋼の乾式高送り断続切削試験(通常の送りは0.15mm/rev)、
を行い、切刃の逃げ面摩耗幅を測定した。この測定結果を表9に示した。
Moreover, about this invention coated tool 7-12 and conventional coated tool 7-12,
Cutting conditions (A-2);
Work material: JIS / SNCM439 round direction rods with four equal grooves in the length direction,
Cutting speed: 240 m / min,
Cutting depth: 1.2 mm,
Feed: 0.20 mm / rev,
Cutting time: 5 minutes,
Dry interrupted heavy cutting test of alloy steel under the conditions of (normal cutting speed and feed are 150 m / min and 0.10 mm / rev, respectively),
Cutting conditions (B-2);
Work material: JIS / SCM440 round bar,
Cutting speed: 200 m / min,
Cutting depth: 2.0 mm,
Feed: 0.14 mm / rev,
Cutting time: 5 minutes,
Dry high-speed high-cut continuous cutting test of alloy steel under the following conditions (normal cutting speed and cutting are 150 m / min and 1.5 mm, respectively)
Cutting conditions (C-2);
Work material: JIS / S50C lengthwise equal 4 round grooved round bars,
Cutting speed: 180 m / min,
Cutting depth: 1.3 mm,
Feed: 0.30 mm / rev,
Cutting time: 5 minutes,
Carbon steel dry high feed intermittent cutting test under the conditions of (normal feed is 0.15mm / rev),
The flank wear width of the cutting blade was measured. The measurement results are shown in Table 9.

また、本発明被覆工具13〜18および従来被覆工具13〜18について、
切削条件(A−3);
被削材:JIS・SCr420(HRC60)の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 240 m/min、
切り込み: 0.18 mm、
送り: 0.24 mm/rev、
切削時間: 5 分、
の条件でのクロム鋼の乾式高速高送り断続切削試験(通常の切削速度および送りは、それぞれ、120m/min、0.15mm/rev )、
切削条件(B−3);
被削材:JIS・SUJ2の焼入れ材(HRC60)の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 150 m/min、
切り込み: 0.35 mm、
送り: 0.16 mm/rev、
切削時間: 8 分、
の条件での軸受鋼の焼入れ材の乾式高速高切込み断続切削試験(通常の切削速度および切り込みは、それぞれ、120m/min、0.2mm)、
切削条件(C−3);
被削材:JIS・SKD61(HRC61)の丸棒、
切削速度: 210 m/min、
切り込み: 0.25 mm、
送り: 0.25 mm/rev、
切削時間: 4 分、
の条件でのダイス鋼の焼入れ材の乾式連続重切削試験(通常の切り込みおよび送りは、それぞれ、0.15mm、0.15mm/rev)、
を行い、切刃の逃げ面摩耗幅を測定した。この測定結果を表10に示した。
Moreover, about this invention coated tool 13-18 and conventional coated tool 13-18,
Cutting conditions (A-3);
Work material: JIS · SCr420 (HRC60) lengthwise equal 4 round bars with longitudinal grooves,
Cutting speed: 240 m / min,
Cutting depth: 0.18 mm,
Feed: 0.24 mm / rev,
Cutting time: 5 minutes,
Chrome steel dry high-speed high-feed intermittent cutting test under the following conditions (normal cutting speed and feed are 120 m / min and 0.15 mm / rev, respectively),
Cutting conditions (B-3);
Work material: JIS / SUJ2 quenching material (HRC60), 4 longitudinally spaced round bars with equal intervals in the length direction,
Cutting speed: 150 m / min,
Cutting depth: 0.35 mm,
Feed: 0.16 mm / rev,
Cutting time: 8 minutes,
Dry high-speed high-cut intermittent cutting test of the quenching material of the bearing steel under the conditions (normal cutting speed and cutting are 120 m / min and 0.2 mm, respectively),
Cutting conditions (C-3);
Work material: JIS SKD61 (HRC61) round bar,
Cutting speed: 210 m / min,
Cutting depth: 0.25 mm,
Feed: 0.25 mm / rev,
Cutting time: 4 minutes,
Dry continuous heavy cutting test of die steel hardened material under the following conditions (normal cutting and feeding are 0.15 mm and 0.15 mm / rev, respectively)
The flank wear width of the cutting blade was measured. The measurement results are shown in Table 10.

Figure 2009090396
Figure 2009090396

Figure 2009090396
Figure 2009090396

Figure 2009090396
Figure 2009090396

Figure 2009090396
Figure 2009090396

Figure 2009090396
Figure 2009090396

Figure 2009090396
Figure 2009090396

Figure 2009090396
Figure 2009090396


Figure 2009090396
Figure 2009090396

Figure 2009090396
Figure 2009090396


Figure 2009090396
Figure 2009090396

表5〜10に示される結果から、本発明被覆工具1〜18は、{112}面の配向割合が非常に高い(傾斜角度数分布グラフにおける度数全体の60%以上の割合)改質TiCN層で硬質被覆層が構成され、機械的負荷がきわめて大きい鋼や鋳鉄の重切削加工でも、前記改質TiCN層が一段とすぐれた高温強度を有することから、すぐれた耐欠損性を示すと同時にすぐれた耐摩耗性を発揮するのに対して、{112}面の配向割合が低い従来TiCN層で硬質被覆層が構成された従来被覆工具1〜18においては、いずれも硬質被覆層の高温強度が不十分であるために、重切削加工では硬質被覆層に欠損が発生し、比較的短時間で使用寿命に至ることが明らかである。   From the results shown in Tables 5 to 10, the coated tools 1 to 18 of the present invention have a very high {112} plane orientation ratio (a ratio of 60% or more of the entire frequency in the tilt angle number distribution graph). Even in heavy cutting of steel and cast iron, which has a hard coating layer and has an extremely high mechanical load, the modified TiCN layer has excellent high-temperature strength, so it has excellent fracture resistance and at the same time. In the conventional coated tools 1 to 18 in which the hard coating layer is composed of the conventional TiCN layer having a low {112} plane orientation ratio while exhibiting wear resistance, the high temperature strength of the hard coating layer is not good. Since it is sufficient, it is clear that in the heavy cutting process, defects occur in the hard coating layer and the service life is reached in a relatively short time.

上述のように、この発明の被覆工具は、各種鋼や鋳鉄などの通常の条件での連続切削や断続切削は勿論のこと、特に高い高温強度が要求される重切削加工でも硬質被覆層がすぐれた耐欠損性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention has an excellent hard coating layer not only for continuous cutting and interrupted cutting under normal conditions such as various steels and cast iron, but also for heavy cutting that requires high high-temperature strength. It exhibits excellent chipping resistance and exhibits excellent cutting performance over a long period of time, so that it can sufficiently satisfy high performance cutting equipment, labor saving and energy saving of cutting processing, and cost reduction. It is.

硬質被覆層を形成するのに用いたアークイオンプレーティング装置の概略説明図である。It is a schematic explanatory drawing of the arc ion plating apparatus used in forming a hard coating layer. 本発明被覆工具1の硬質被覆層を構成する改質TiCN層の傾斜角度数分布グラフである。It is an inclination angle number distribution graph of the modified TiCN layer which comprises the hard coating layer of this invention coated tool 1. 従来被覆工具1の硬質被覆層を構成する従来TiCN層の傾斜角度数分布グラフである。It is an inclination angle number distribution graph of the conventional TiCN layer which comprises the hard coating layer of the conventional coating tool 1. FIG.

Claims (1)

炭化タングステン基超硬合金、炭窒化チタン基サーメット、または立方晶窒化ほう素基超高圧焼結材料で構成された工具基体の表面に、1〜10μmの平均層厚を有するTiの複合炭窒化物層からなる硬質被覆層を蒸着形成してなる表面被覆切削工具において、
前記Tiの複合炭窒化物層は、
組成式:TiC1−Xで表したときに、
0.2≦X≦0.5(ただし、Xは原子比を示す)を満足し、かつ、
電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{100}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、30〜40度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記30〜40度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の60%以上の割合を占める傾斜角度数分布グラフを示すことを特徴とする表面被覆切削工具。
Ti composite carbonitride having an average layer thickness of 1 to 10 μm on the surface of a tool base made of tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, or cubic boron nitride-based ultrahigh pressure sintered material In a surface-coated cutting tool formed by vapor-depositing a hard coating layer consisting of layers,
The Ti composite carbonitride layer is:
Composition formula: When expressed by TiC X N 1-X ,
0.2 ≦ X ≦ 0.5 (where X represents an atomic ratio), and
Using a field emission scanning electron microscope, each crystal grain having a cubic crystal lattice existing within the measurement range of the surface polished surface is irradiated with an electron beam, and the crystal grain is normal to the surface polished surface. The tilt angle formed by the normal of the {100} plane, which is the crystal plane, is measured, and among the measured tilt angles, the measured tilt angles within the range of 0 to 45 degrees are classified for each pitch of 0.25 degrees. In addition, in the inclination angle number distribution graph obtained by counting the frequencies existing in each section, the highest peak exists in the inclination angle section within the range of 30 to 40 degrees, and exists within the range of 30 to 40 degrees. The surface covering cutting tool characterized by showing the inclination angle number distribution graph for which the sum total of frequency to occupy accounts for 60% or more of the whole frequency in an inclination angle number distribution graph.
JP2007261926A 2007-10-05 2007-10-05 Surface-coated cutting tool having hard coated layer exhibiting excellent chipping resistance in heavy cutting Pending JP2009090396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007261926A JP2009090396A (en) 2007-10-05 2007-10-05 Surface-coated cutting tool having hard coated layer exhibiting excellent chipping resistance in heavy cutting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007261926A JP2009090396A (en) 2007-10-05 2007-10-05 Surface-coated cutting tool having hard coated layer exhibiting excellent chipping resistance in heavy cutting

Publications (1)

Publication Number Publication Date
JP2009090396A true JP2009090396A (en) 2009-04-30

Family

ID=40662903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007261926A Pending JP2009090396A (en) 2007-10-05 2007-10-05 Surface-coated cutting tool having hard coated layer exhibiting excellent chipping resistance in heavy cutting

Country Status (1)

Country Link
JP (1) JP2009090396A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010113658A1 (en) 2009-04-02 2010-10-07 オリンパスメディカルシステムズ株式会社 Lens drive control device, lens drive device and endoscope system
JP2010284760A (en) * 2009-06-12 2010-12-24 Mitsubishi Materials Corp Surface-coated cutting tool with hard coating layer exerting excellent chipping resistance in high-speed intermittent heavy cutting
US11404767B2 (en) 2017-08-30 2022-08-02 Yokowo Co., Ltd. Antenna apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62278265A (en) * 1986-05-24 1987-12-03 Hitachi Tool Eng Ltd Surface-coated ticn cermet
JP2006334721A (en) * 2005-06-02 2006-12-14 Mitsubishi Materials Corp SURFACE COATED CERMET CUTTING TOOL WITH THICKENED alpha TYPE ALUMINUM OXIDE LAYER EXHIBITING EXCELLENT CHIPPING RESISTANCE
JP2007126714A (en) * 2005-11-04 2007-05-24 Hitachi Tool Engineering Ltd Multi-layered film coated member, and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62278265A (en) * 1986-05-24 1987-12-03 Hitachi Tool Eng Ltd Surface-coated ticn cermet
JP2006334721A (en) * 2005-06-02 2006-12-14 Mitsubishi Materials Corp SURFACE COATED CERMET CUTTING TOOL WITH THICKENED alpha TYPE ALUMINUM OXIDE LAYER EXHIBITING EXCELLENT CHIPPING RESISTANCE
JP2007126714A (en) * 2005-11-04 2007-05-24 Hitachi Tool Engineering Ltd Multi-layered film coated member, and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010113658A1 (en) 2009-04-02 2010-10-07 オリンパスメディカルシステムズ株式会社 Lens drive control device, lens drive device and endoscope system
JP2010284760A (en) * 2009-06-12 2010-12-24 Mitsubishi Materials Corp Surface-coated cutting tool with hard coating layer exerting excellent chipping resistance in high-speed intermittent heavy cutting
US11404767B2 (en) 2017-08-30 2022-08-02 Yokowo Co., Ltd. Antenna apparatus

Similar Documents

Publication Publication Date Title
JP5036338B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5099586B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5287125B2 (en) A surface-coated cutting tool with a hard coating layer that provides excellent fracture resistance and wear resistance
JP5035956B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP4748450B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP5207109B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5182501B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5207105B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP2009090395A (en) Surface-coated cutting tool having hard coated layer exhibiting excellent chipping resistance in heavy cutting
JP5152690B2 (en) Surface coated cutting tool with excellent chipping resistance with hard coating layer in heavy cutting
JP3928481B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP5088469B2 (en) Surface-coated cutting tool exhibiting excellent fracture resistance with hard coating layer in heavy-duty machining and manufacturing method thereof
JP5287123B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5287126B2 (en) A surface-coated cutting tool with a hard coating layer that provides excellent fracture resistance and wear resistance
JP5287124B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP2009090396A (en) Surface-coated cutting tool having hard coated layer exhibiting excellent chipping resistance in heavy cutting
JP2009214196A (en) Surface-coated cutting tool having hard coating layer exhibiting excellent resistance to defect
JP5309733B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5239324B2 (en) Surface coated cutting tool with excellent chipping resistance with hard coating layer in heavy cutting
JP5239292B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5099587B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5239392B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5287019B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP4609631B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance due to hard coating layer
JP2009113125A (en) Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20100929

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120815

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120816

A521 Written amendment

Effective date: 20121015

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121210