JP5036338B2 - Surface-coated cutting tool with excellent fracture resistance due to hard coating layer - Google Patents

Surface-coated cutting tool with excellent fracture resistance due to hard coating layer Download PDF

Info

Publication number
JP5036338B2
JP5036338B2 JP2007027395A JP2007027395A JP5036338B2 JP 5036338 B2 JP5036338 B2 JP 5036338B2 JP 2007027395 A JP2007027395 A JP 2007027395A JP 2007027395 A JP2007027395 A JP 2007027395A JP 5036338 B2 JP5036338 B2 JP 5036338B2
Authority
JP
Japan
Prior art keywords
cutting
crystal orientation
crystal
layer
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007027395A
Other languages
Japanese (ja)
Other versions
JP2008188734A (en
Inventor
秀充 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2007027395A priority Critical patent/JP5036338B2/en
Publication of JP2008188734A publication Critical patent/JP2008188734A/en
Application granted granted Critical
Publication of JP5036338B2 publication Critical patent/JP5036338B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、硬質被覆層が2軸配向性を有することによってすぐれた耐欠損性を示し、したがって、鋼や鋳鉄などの重切削加工という厳しい切削条件下で用いられた場合にも、切削工具の長寿命化が可能となる表面被覆切削工具(以下、被覆工具という)に関するものである。   The present invention exhibits excellent fracture resistance due to the biaxial orientation of the hard coating layer, and therefore, even when used under severe cutting conditions such as heavy cutting of steel and cast iron, The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that can extend the service life.

一般に、被覆工具には、各種の鋼や鋳鉄などの被削材の旋削加工にバイトの先端部に着脱自在に取り付けて用いられるインサートや、前記インサートを着脱自在に取り付けて、面削加工や溝加工、さらに肩加工などに用いられるソリッドタイプのエンドミルと同様に切削加工を行うインサート式エンドミルなどが知られている。     In general, for coated tools, inserts that are detachably attached to the tip of a cutting tool for turning of work materials such as various types of steel and cast iron, and the inserts are detachably attached to be used for chamfering and grooving. An insert type end mill that performs cutting processing in the same manner as a solid type end mill used for processing and shoulder processing is known.

また、被覆工具として、炭化タングステン(以下、WCで示す)基超硬合金、炭窒化チタン(以下、TiCNで示す)基サーメットまたは各種の立方晶窒化ほう素(以下、cBNで示す)基超高圧焼結材料で構成された工具本体の表面に、(Al1−X Cr)N(ただし、原子比で、Xは0.30〜0.60)を満足するAlとCrの複合窒化物[以下、(Al,Cr)Nで示す]層からなる硬質被覆層を物理蒸着してなる被覆工具が提案され、各種の鋼や鋳鉄などの連続切削や断続切削加工に用いられている。
特開2004−50381号公報 特許第3669700号明細書 特開2006−524748号公報
Further, as a coated tool, tungsten carbide (hereinafter referred to as WC) based cemented carbide, titanium carbonitride (hereinafter referred to as TiCN) based cermet, or various types of cubic boron nitride (hereinafter referred to as cBN) based ultra high pressure. A composite nitride of Al and Cr satisfying (Al 1-X Cr X ) N (wherein X is 0.30-0.60) on the surface of the tool body made of the sintered material [ Hereinafter, a coated tool formed by physically vapor-depositing a hard coating layer composed of (Al, Cr) N] has been proposed and used for continuous cutting and intermittent cutting of various steels and cast irons.
JP 2004-50381A Japanese Patent No. 3669700 JP 2006-524748 A

近年の切削加工装置のFA化はめざましく、加えて切削加工に対する省力化、省エネ化、低コスト化さらに効率化の要求も強く、これに伴い、高送り、高切り込みなどより高効率の重切削加工が要求される傾向にあるが、上記の従来被覆工具においては、各種の鋼や鋳鉄を通常条件下で切削加工した場合に特段の問題は生じないが、切刃に対して大きな負荷がかかる重切削加工に用いた場合には、切刃部に欠損を生じやすく、これが原因で、比較的短時間で使用寿命に至るのが現状である。   In recent years, the FA of cutting devices has been remarkable, and in addition, there are strong demands for labor saving, energy saving, cost reduction and efficiency for cutting, and with this, high-efficiency heavy cutting such as high feed and high cutting However, in the above-mentioned conventional coated tools, there is no particular problem when various steels and cast irons are machined under normal conditions, but the heavy load on the cutting blade is heavy. When used for cutting, the cutting edge is likely to be damaged, and this causes the service life to be reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、上記の従来被覆工具のさらに一段の使用寿命の延命化を図るべく、これの硬質被覆層である(Al,Cr)N層に着目し、研究を行った結果、
(a)上記の従来被覆工具は、例えば図3に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング(AIP)装置に上記の工具基体を装着し、
装置内加熱温度:300〜500℃、
超硬基体に印加する直流バイアス電圧:−60〜−100V、
カソード電極:Al−Cr合金、
上記カソード電極とアノード電極間のアーク放電電流:60〜100A、
装置内窒素ガス圧力:1〜6Pa、
の条件(以下、通常条件という)で、硬質被覆層として上記の組成式:(Al1−X Cr)N(ただし、原子比で、Xは0.30〜0.60)を満足(Al,Cr)N層[以下、従来(Al,Cr)N層という]を形成することにより製造される。
しかし、前記(Al,Cr)N層の形成を、例えば図2に概略説明図で示される物理蒸着装置の1種である圧力勾配型Arプラズマガンを利用したイオンプレーティング装置(以下、RPD装置という)に上記の工具基体を装着し、
工具基体温度: 350〜500 ℃、
蒸発源:Al−Cr合金、
プラズマガン放電電力: 10〜15 kW、
窒素ガス流量: 20〜40 sccm、
工具基体に印加する直流バイアス電圧: −50〜−80 V
の条件で蒸着を行うと、この結果形成された(Al,Cr)N層[以下、改質(Al,Cr)N層という]は、前記従来(Al,Cr)N層に比して、高切り込み、高送りの重切削加工条件において、すぐれた耐欠損性を示すこと。
In view of the above, the present inventors have focused on the (Al, Cr) N layer, which is a hard coating layer, in order to further extend the service life of the conventional coated tool. , As a result of research,
(A) The above-mentioned conventional coated tool is, for example, mounted on the tool base on an arc ion plating (AIP) apparatus which is one type of physical vapor deposition apparatus schematically shown in FIG.
In-apparatus heating temperature: 300-500 ° C
DC bias voltage applied to the carbide substrate: −60 to −100 V,
Cathode electrode: Al-Cr alloy
Arc discharge current between the cathode electrode and the anode electrode: 60 to 100 A,
Nitrogen gas pressure in the apparatus: 1 to 6 Pa,
(Al 1 -X Cr X ) N (wherein X is 0.30 to 0.60 in atomic ratio) as a hard coating layer under the conditions (hereinafter referred to as normal conditions) (Al , Cr) N layer [hereinafter referred to as a conventional (Al, Cr) N layer].
However, the formation of the (Al, Cr) N layer is performed by, for example, an ion plating apparatus (hereinafter referred to as an RPD apparatus) using a pressure gradient type Ar plasma gun, which is one type of physical vapor deposition apparatus schematically shown in FIG. And attach the above tool base to
Tool substrate temperature: 350 to 500 ° C.
Evaporation source: Al-Cr alloy
Plasma gun discharge power: 10-15 kW,
Nitrogen gas flow rate: 20-40 sccm,
DC bias voltage applied to tool base: -50 to -80 V
(Al, Cr) N layer [hereinafter referred to as a modified (Al, Cr) N layer] formed as a result of the deposition under the conditions of Excellent fracture resistance under heavy cutting conditions with high depth of cut and high feed.

(b)上記(a)の改質(Al,Cr)N層と上記従来(Al,Cr)N層について、電子線後方散乱回折装置(以下、EBSDという)を用いて個々の結晶粒の結晶方位を解析したところ、図1に概略説明図で示される通り、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶方位<100>がなす傾斜角を測定し、前記測定傾斜角のうち、前記法線方向となす角度が0〜54度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計し、また、同様に、表面研磨面の法線と直交する任意の方向に対する前記(a)の改質(Al,Cr)N層の結晶粒の結晶方位<100>がなす傾斜角を測定し、前記測定傾斜角のうち、前記法線方向となす角度が0〜54度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計したとき、前記従来(Al,Cr)N層は、表面研磨面の法線に対する結晶粒の結晶方位<100>がなす傾斜角の分布は、法線方向に対して0〜15度の範囲内の傾斜角区分にピークを有することがあったとしても、表面研磨面の法線と直交する任意の方向に対する結晶方位<100>の測定傾斜角の分布は0〜54度の範囲内で不偏的であり特段のピークを示さない(図5)のに対して、前記(a)の改質(Al,Cr)N層の結晶方位<100>の測定傾斜角の分布は、図4に例示される通り、法線方向に対して0〜15度の範囲内の傾斜角区分に結晶方位<100>が存在する結晶粒の面積割合が結晶粒全面積の50%以上である結晶配向を示し、さらに、表面研磨面の法線と直交する任意の方向に対する結晶方位<100>の測定傾斜角の分布は、ある特定傾斜角区分に最高ピークが存在し、その最高ピークを中心とした15度の範囲内(最高ピーク傾斜角±7.5度の範囲内)の傾斜角区分に結晶方位<100>が存在する結晶粒の面積割合が結晶粒全面積の50%以上である結晶配向を示す(図4)こと。
さらに、前記表面研磨面の法線方向に対して0〜15度の範囲内に、結晶方位<100>が存在する結晶粒の面積割合、また、法線と直交する方向については最高ピークを中心とした15度の範囲内(最高ピーク傾斜角±7.5度の範囲内)に、結晶方位<100>が存在する結晶粒の面積割合、さらに、法線と直交する方向について最高ピークの現れる傾斜角区分は、基体の温度とバイアス電圧と窒素ガス流量によって変化すること。
(B) With respect to the modified (Al, Cr) N layer of (a) and the conventional (Al, Cr) N layer, crystals of individual crystal grains using an electron beam backscattering diffractometer (hereinafter referred to as EBSD) When the orientation was analyzed, as shown in the schematic explanatory diagram of FIG. 1, each crystal grain having a cubic crystal lattice existing within the measurement range of the surface polishing surface was irradiated with an electron beam, and the method of the surface polishing surface was determined. Measuring the tilt angle formed by the crystal orientation <100> of the crystal grains with respect to the line, and measuring the tilt angle between the measured tilt angle and the normal direction within a range of 0 to 54 degrees. By dividing the pitch into 0.25 degree pitches and counting the frequencies existing in each section, similarly, the modification (a) with respect to an arbitrary direction orthogonal to the normal line of the surface polishing surface (Al, The tilt angle formed by the crystal orientation <100> of the crystal grains of the Cr) N layer is measured, and the measured tilt Among the angles, when the measured inclination angle that is in the range of 0 to 54 degrees with respect to the normal direction is divided into pitches of 0.25 degrees and the frequencies existing in each section are tabulated, In the (Al, Cr) N layer, the distribution of the inclination angle formed by the crystal orientation <100> of the crystal grains with respect to the normal line of the surface polished surface is divided into inclination angle sections within a range of 0 to 15 degrees with respect to the normal direction. Even if it has a peak, the distribution of the measured tilt angle of the crystal orientation <100> with respect to an arbitrary direction orthogonal to the normal of the surface polished surface is unbiased within a range of 0 to 54 degrees, and is a special peak. 4 (FIG. 5), the distribution of the measured tilt angle of the crystal orientation <100> of the modified (Al, Cr) N layer of (a) is normal, as illustrated in FIG. Crystal grain surface having a crystal orientation <100> in a tilt angle section within a range of 0 to 15 degrees with respect to the direction The distribution of the measured tilt angle of the crystal orientation <100> with respect to an arbitrary direction perpendicular to the normal line of the surface polished surface indicates a crystal orientation in which the ratio is 50% or more of the total area of the crystal grains. The area of crystal grains where the highest peak is present and the crystal orientation <100> exists in the tilt angle section within the range of 15 degrees centered on the highest peak (within the range of the maximum peak tilt angle ± 7.5 degrees) The crystal orientation in which the ratio is 50% or more of the total area of the crystal grains (FIG. 4).
Furthermore, the area ratio of the crystal grains in which the crystal orientation <100> exists within the range of 0 to 15 degrees with respect to the normal direction of the surface polished surface, and the highest peak in the direction orthogonal to the normal Within the 15 degree range (within the maximum peak tilt angle ± 7.5 degree range), the area ratio of crystal grains where the crystal orientation <100> exists, and the highest peak appears in the direction perpendicular to the normal line The tilt angle section must be changed according to the substrate temperature, bias voltage, and nitrogen gas flow rate.

(c)多くの試験結果によれば、上記の通り工具基体に改質(Al,Cr)N層をRPD装置によって物理蒸着する条件を、例えば、
基体の温度: 350〜500 ℃
バイアス電圧: −50〜−80 V
窒素ガス流量: 20〜40 sccm
のように調整すると、表面研磨面の法線に対して0〜15度の範囲内に結晶方位<100>が存在する結晶粒の面積割合が結晶粒全面積の50%以上を占め、また、法線と直交する方向の特定傾斜角区分に存在する最高ピークを中心とした15度の範囲内に結晶方位<100>が存在する結晶粒の面積割合が結晶粒全面積の50%以上を占めるという2軸配向性を示すようになり、このような2軸配向性を示す改質(Al,Cr)N層を硬質被覆層として形成してなる被覆工具は、重切削加工において長期に亘ってすぐれた耐欠損性、耐摩耗性を発揮するようになること。
以上(a)〜(c)に示される研究結果を得たのである。
(C) According to many test results, the conditions for physical vapor deposition of the modified (Al, Cr) N layer on the tool base as described above by the RPD apparatus are as follows:
Substrate temperature: 350-500 ° C
Bias voltage: -50 to -80 V
Nitrogen gas flow rate: 20-40 sccm
When adjusted as described above, the area ratio of the crystal grains in which the crystal orientation <100> exists in the range of 0 to 15 degrees with respect to the normal of the surface polished surface occupies 50% or more of the total area of the crystal grains, The area ratio of the crystal grains in which the crystal orientation <100> exists within the range of 15 degrees centering on the highest peak existing in the specific inclination angle section perpendicular to the normal occupies 50% or more of the total area of the crystal grains. The coated tool formed by forming a modified (Al, Cr) N layer exhibiting such biaxial orientation as a hard coating layer has been used for a long time in heavy cutting. Exhibit excellent chipping resistance and wear resistance.
The research results shown in (a) to (c) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、
「超硬合金、サーメットあるいは立方晶窒化ほう素基超高圧焼結体からなる切削工具基体の表面に、圧力勾配型Arプラズマガンを利用したイオンプレーティングにより、
組成式:(Al1−X Cr)N(ただし、原子比で、Xは0.30〜0.60)
を満足し、平均層厚1〜10μmのAlとCrの複合窒化物層を蒸着形成した表面被覆切削工具において、
上記AlとCrの複合窒化物層について、電子線後方散乱回折(EBSD)装置を用いて個々の結晶粒の結晶方位を解析した場合、
(a)表面研磨面の法線方向に対する前記結晶粒の結晶方位<100>がなす傾斜角を測定し、前記測定傾斜角のうち、法線方向に対して0〜54度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計したとき、0〜15度の範囲内の傾斜角区分に結晶方位<100>が存在する結晶粒の面積割合が結晶粒全面積の50%以上である結晶配向を示し、
(b)前記表面研磨面の法線と直交する任意の方向に対する前記結晶粒の結晶方位<100>がなす傾斜角を測定し、前記測定傾斜角のうち、法線方向に対して0〜54度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計したとき、特定傾斜角区分に最高ピークが存在し、その最高ピークを中心とした15度の範囲内の傾斜角区分に結晶方位<100>が存在する結晶粒の面積割合が結晶粒全面積の50%以上である結晶配向を示し、
上記(a)、(b)の2軸結晶配向性を示すAlとCrの複合窒化物層からなる硬質被覆層を蒸着形成したことを特徴とする重切削加工で硬質被覆層がすぐれた耐欠損性を発揮する被覆工具(表面被覆切削工具)」
に特徴を有するものである。
This invention was made based on the above research results,
By ion plating using a pressure gradient type Ar plasma gun on the surface of a cutting tool substrate made of cemented carbide, cermet or cubic boron nitride based ultra high pressure sintered body ,
Composition formula: (Al 1-X Cr X ) N (where X is 0.30 to 0.60 in atomic ratio)
In a surface-coated cutting tool in which a composite nitride layer of Al and Cr having an average layer thickness of 1 to 10 μm is formed by vapor deposition,
When the crystal orientation of each crystal grain is analyzed using an electron beam backscatter diffraction (EBSD) device for the above-mentioned composite nitride layer of Al and Cr,
(A) The inclination angle formed by the crystal orientation <100> of the crystal grain with respect to the normal direction of the surface-polished surface is measured, and the measurement inclination angle is in the range of 0 to 54 degrees with respect to the normal direction. When the measured tilt angles are divided into pitches of 0.25 degrees and the frequencies existing in each section are tabulated, the crystal grains with crystal orientation <100> exist in the tilt angle sections within the range of 0 to 15 degrees. The crystal orientation in which the area ratio is 50% or more of the total area of the crystal grains,
(B) The inclination angle formed by the crystal orientation <100> of the crystal grains with respect to an arbitrary direction orthogonal to the normal line of the surface-polished surface is measured, and among the measurement inclination angles, 0 to 54 with respect to the normal direction. When the measured inclination angle within the degree range is divided into 0.25 degree pitches and the frequencies existing in each division are tabulated, the highest peak exists in the specific inclination angle division, and the highest peak is the center. A crystal orientation in which the area ratio of the crystal grains in which the crystal orientation <100> exists in the tilt angle section within the range of 15 degrees is 50% or more of the total area of the crystal grains,
Defect resistance with excellent hard coating layer by heavy cutting, characterized in that a hard coating layer composed of a composite nitride layer of Al and Cr showing the biaxial crystal orientation of (a) and (b) above is deposited. Coated tool (surface coated cutting tool)
It has the characteristics.

この発明の被覆工具の硬質被覆層を構成する改質(Al,Cr)N層において、Cr成分は高温強度を向上させ、一方Al成分は高温硬さおよび耐熱性(高温特性)を向上させる目的で含有するものであり、したがってCr成分の含有割合を示すX値がAl成分との合量に占める割合(原子比)で0.30未満になると、相対的にAlの割合が多くなり過ぎて、層自体の高温強度の低下は避けられず、この結果チッピングなどが発生し易くなり、一方Crの割合を示すX値が同0.60を越えると、相対的にAlの割合が少なくなり過ぎて、所望のすぐれた高温特性を確保することができず、摩耗促進の原因となることから、X値を0.30〜0.60と定めたものであり、また、硬質被覆層の平均層厚が1μm未満では、所望の耐摩耗性を確保するのに不十分であり、一方その平均層厚が10μmを越えると、皮膜の剥離やチッピングが発生し易くなることから、その平均層厚を1〜10μmと定めた。   In the modified (Al, Cr) N layer constituting the hard coating layer of the coated tool of the present invention, the Cr component improves the high temperature strength, while the Al component improves the high temperature hardness and heat resistance (high temperature characteristics). Therefore, when the X value indicating the content ratio of the Cr component is less than 0.30 in the ratio (atomic ratio) to the total amount with the Al component, the ratio of Al is relatively increased. The decrease in the high-temperature strength of the layer itself is inevitable, and as a result, chipping and the like are likely to occur. On the other hand, if the X value indicating the Cr ratio exceeds 0.60, the Al ratio is relatively decreased. Therefore, the desired excellent high temperature characteristics cannot be ensured, and this causes acceleration of wear. Therefore, the X value is set to 0.30 to 0.60, and the average layer of the hard coating layer If the thickness is less than 1 μm, the desired wear resistance is achieved. It is insufficient to guarantee, whereas when the average layer thickness exceeds 10 [mu] m, since the peeling or chipping of the film is likely to occur, determined the average layer thickness and 1 to 10 [mu] m.

また、上記の通り、改質(Al,Cr)N層の表面研磨面の法線に対して0〜15度の範囲内に結晶方位<100>が存在する結晶粒の面積割合、法線と直交する任意の方向の特定傾斜角区分に存在する最高ピークを中心とした15度の範囲内に結晶方位<100>が存在する結晶粒の面積割合は、また、最高ピークの現れる傾斜角区分は、例えば、基体の温度、バイアス電圧および窒素ガス流量によって変化するが、多くの試験結果によれば、圧力勾配型Arプラズマガンを利用したイオンプレーティングによる蒸着条件を
基体の温度: 350〜500 ℃
バイアス電圧: −50〜−80 V
窒素ガス流量: 20〜40 sccm
とすることによって、改質(Al,Cr)N層の表面研磨面の法線に対して0〜15度の範囲内に結晶方位<100>が存在する結晶粒の面積割合が結晶粒全面積の50%以上を占め、また、法線と直交する任意の方向の特定傾斜角区分に存在する最高ピークを中心とした15度の範囲内に結晶方位<100>が存在する結晶粒の面積割合が結晶粒全面積の50%以上を占めるという2軸配向性を示す改質(Al,Cr)N層を得られる、という結論に達したものであり、したがって、法線に対して0〜15度の範囲内に結晶方位<100>が存在する結晶粒の面積割合が50%未満、あるいは、法線と直交する任意の方向の特定傾斜角区分に存在する最高ピークを中心とした15度の範囲内に結晶方位<100>が存在する結晶粒の面積割合が結晶粒全面積の50%未満となった場合には、(Al,Cr)N層に前記2軸配向性を付与することはできず、その結果、被覆工具にすぐれた耐欠損性を期待することはできないものとなる。

In addition, as described above, the area ratio of crystal grains in which the crystal orientation <100> exists within the range of 0 to 15 degrees with respect to the normal line of the surface polished surface of the modified (Al, Cr) N layer, the normal line, and The area ratio of crystal grains having a crystal orientation <100> within a range of 15 degrees centering on the highest peak existing in a specific inclination angle section in an arbitrary direction orthogonal to each other, and the inclination angle section where the highest peak appears is For example, although it varies depending on the temperature of the substrate, the bias voltage, and the nitrogen gas flow rate, according to many test results, the deposition conditions by ion plating using a pressure gradient type Ar plasma gun
Substrate temperature: 350-500 ° C
Bias voltage: -50 to -80 V
Nitrogen gas flow rate: 20-40 sccm
As a result, the area ratio of the crystal grains in which the crystal orientation <100> exists within the range of 0 to 15 degrees with respect to the normal line of the surface polished surface of the modified (Al, Cr) N layer is the total crystal grain area Of crystal grains in which the crystal orientation <100> exists within a range of 15 degrees centering on the highest peak existing in a specific inclination angle section in an arbitrary direction orthogonal to the normal line Has reached the conclusion that a modified (Al, Cr) N layer exhibiting biaxial orientation that occupies 50% or more of the total area of crystal grains can be obtained. The area ratio of crystal grains having a crystal orientation <100> in the range of degrees is less than 50%, or 15 degrees centered on the highest peak existing in a specific inclination angle section in an arbitrary direction orthogonal to the normal line Area ratio of crystal grains having crystal orientation <100> in the range Is less than 50% of the total area of crystal grains, the (Al, Cr) N layer cannot be imparted with the biaxial orientation, and as a result, the coated tool is expected to have excellent fracture resistance. It can't be done.

この発明の被覆工具は、これの硬質被覆層を構成する改質(Al,Cr)N層が2軸配向性を示し、鋼や鋳鉄などの重切削加工に際して、すぐれた耐欠損性を発揮し、使用寿命の延命化に寄与するものである。   In the coated tool of the present invention, the modified (Al, Cr) N layer constituting the hard coating layer exhibits biaxial orientation, and exhibits excellent fracture resistance when heavy cutting such as steel and cast iron. This contributes to extending the service life.

つぎに、この発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、VC粉末、TaC粉末、NbC粉末、Cr3 2 粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のインサート形状をもったWC基超硬合金製の工具基体A1〜A10を形成した。 As raw material powders, WC powder, TiC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, and Co powder, all having an average particle diameter of 1 to 3 μm, were prepared. And then wet-mixed with a ball mill for 72 hours, dried, and press-molded into a green compact at a pressure of 100 MPa. The green compact was vacuumed at 6 Pa at a temperature of 1400 ° C. for 1 hour. Sintering is performed under holding conditions, and after sintering, tool bases A1 to A10 made of WC-base cemented carbide having an ISO standard / CNMG120408 insert shape are subjected to R: 0.03 honing processing on the cutting edge portion. Formed.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比で、TiC/TiN=50/50)粉末、Mo2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったTiCN基サーメット製の工具基体B1〜B6を形成した。 Further, as raw material powders, TiCN (mass ratio, TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC, all having an average particle diameter of 0.5 to 2 μm. Prepare powder, Co powder, and Ni powder, mix these raw material powders into the composition shown in Table 2, wet mix for 24 hours with a ball mill, dry, and press-mold into green compact at 100 MPa pressure The green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour. After sintering, the cutting edge portion was subjected to a honing process of R: 0.03 to meet ISO standards / Tool bases B1 to B6 made of TiCN base cermet having a chip shape of CNMG120408 were formed.

ついで、上記の工具基体A1〜A10およびB1〜B6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図2に示される蒸着装置に装着し、蒸発源として、種々の成分組成をもったAl−Cr合金を装着し、まず、装置内を排気して1×10−2Pa以下の真空に保持しながら、工具基体を400℃に加熱した後、Arガスを導入して2.0Paとしたのち、工具基体に−1000Vのバイアス電圧を印加することによって、前記工具基体を20分間Arボンバード処理し、ついで、装置内を一旦1×10−3Pa程度の真空にした後、圧力勾配型Arプラズマガンの放電電力を12kW、工具基体に−60Vのバイアス電圧を印加し、窒素ガスを30sccm流しながら、炉内の圧力を0.08Paに保ち、蒸発源にプラズマビームを入射しAl−Cr合金の蒸気を発生させるとともにプラズマビームでイオン化して、工具基体表面に、表3に示される目標組成および目標層厚の2軸配向性を有する改質(Al,Cr)N層を硬質被覆層として蒸着形成することにより、本発明被覆工具としての本発明表面被覆インサート(以下、本発明被覆インサートと云う)1〜16をそれぞれ製造した。 Next, each of the above tool bases A1 to A10 and B1 to B6 is ultrasonically cleaned in acetone and dried, and mounted on the vapor deposition apparatus shown in FIG. 2, and various component compositions are used as evaporation sources. First, the tool base was heated to 400 ° C. while evacuating the apparatus and maintaining a vacuum of 1 × 10 −2 Pa or less, and Ar gas was introduced. After setting the pressure to 0 Pa, by applying a bias voltage of −1000 V to the tool base, the tool base was treated with Ar bombardment for 20 minutes, and then the inside of the apparatus was once evacuated to about 1 × 10 −3 Pa, The discharge power of the gradient Ar plasma gun is 12 kW, a bias voltage of −60 V is applied to the tool base, the nitrogen gas is supplied at 30 sccm, the pressure in the furnace is kept at 0.08 Pa, and the evaporation source is positive. The beam is incident to generate an Al—Cr alloy vapor and ionized with a plasma beam, and the tool substrate surface is modified (Al, Cr) with the target composition and target layer thickness shown in Table 3 having a biaxial orientation. ) The surface coating inserts of the present invention (hereinafter referred to as the present invention coated inserts) 1 to 16 as the coated tools of the present invention were produced by vapor-depositing the N layer as a hard coating layer, respectively.

比較の目的で、上記の工具基体A1〜A10およびB1〜B6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図3に示されるアークイオンプレーティング装置に装着し、カソード電極(蒸発源)として、種々の成分組成をもったAl−Cr合金および工具基体表面ボンバード洗浄用金属Tiを装着し、まず、装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記工具基体に−800Vの直流バイアス電圧を印加し、かつカソード電極の前記金属Tiとアノード電極との間に100Aの電流を流してアーク放電を発生させて、前記工具基体表面を5分間Tiボンバード処理し、ついで装置内に反応ガスとして窒素ガスを導入して、1〜6Paの範囲内の所定の窒素ガス雰囲気とすると共に、前記工具基体に印加する直流バイアス電圧を−60〜−100Vの範囲内の所定の電圧とし、前記カソード電極であるAl−Cr合金とアノード電極との間に80Aの電流を流してアーク放電を発生させ、もって前記工具基体の表面に、表4に示される目標組成および目標層厚の従来(Al,Cr)N層を硬質被覆層として蒸着形成することにより、従来被覆工具としての従来被覆インサート1〜16をそれぞれ製造した。   For the purpose of comparison, each of the tool bases A1 to A10 and B1 to B6 is ultrasonically cleaned in acetone and dried, and is attached to the arc ion plating apparatus shown in FIG. As the evaporation source, an Al—Cr alloy having various component compositions and metal Ti for cleaning the tool base surface bombard are mounted. First, the apparatus is evacuated and kept at a vacuum of 0.5 Pa or less with a heater. After heating the inside of the apparatus to 500 ° C., a DC bias voltage of −800 V was applied to the tool base, and an arc discharge was generated by flowing a current of 100 A between the metal Ti of the cathode electrode and the anode electrode. The surface of the tool base is treated with Ti bombardment for 5 minutes, and then nitrogen gas is introduced into the apparatus as a reaction gas, so that a predetermined nitrogen gas atmosphere within a range of 1 to 6 Pa is obtained. In addition, the DC bias voltage applied to the tool base is set to a predetermined voltage in the range of −60 to −100 V, and an arc of 80 A is passed between the cathode electrode Al—Cr alloy and the anode electrode. Conventionally as a conventional coated tool by generating an electric discharge and vapor-depositing a conventional (Al, Cr) N layer having the target composition and target layer thickness shown in Table 4 on the surface of the tool base as a hard coating layer. Coated inserts 1-16 were produced respectively.

まず、上記本発明被覆インサート1〜10および従来被覆インサート1〜10について、これを工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・SCM440の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 180 m/min.、
切り込み: 3.5 mm、
送り: 0.26 mm/rev.、
切削時間: 4 分、
の条件(切削条件A1という)での合金鋼の乾式断続重切削加工試験(通常の切り込み及び送りは、それぞれ、1.55mm、0.22mm/rev.)、
被削材:JIS・S55Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度: 275 m/min.、
切り込み: 3.2 mm、
送り: 0.28 mm/rev.、
切削時間: 3 分、
の条件(切削条件A2という)での炭素鋼の乾式断続重切削加工試験(通常の切り込み及び送りは、それぞれ、1.5mm、0.2mm/rev.)、
被削材:JIS・SCr420の丸棒、
切削速度: 200 m/min.、
切り込み: 3.0 mm、
送り: 0.35 mm/rev.、
切削時間: 15 分、
の条件(切削条件A3という)でのクロム鋼の乾式連続重切削加工試験(通常の切り込み及び送りは、それぞれ、2.0mm、0.2mm/rev.)、
を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表5に示した。
First, for the present invention coated inserts 1 to 10 and the conventional coated inserts 1 to 10, in a state where this is screwed to the tip of the tool steel tool with a fixing jig,
Work material: JIS · SCM440 lengthwise equidistant 4 vertical grooved round bar,
Cutting speed: 180 m / min. ,
Cutting depth: 3.5 mm,
Feed: 0.26 mm / rev. ,
Cutting time: 4 minutes,
A dry interrupted heavy cutting test of alloy steel under the following conditions (referred to as cutting conditions A1) (normal cutting and feeding are 1.55 mm and 0.22 mm / rev., Respectively),
Work material: JIS / S55C lengthwise equidistant round bars with 4 vertical grooves,
Cutting speed: 275 m / min. ,
Infeed: 3.2 mm,
Feed: 0.28 mm / rev. ,
Cutting time: 3 minutes,
(Continuous cutting and feed are 1.5 mm and 0.2 mm / rev., Respectively)
Work material: JIS / SCr420 round bar,
Cutting speed: 200 m / min. ,
Cutting depth: 3.0 mm,
Feed: 0.35 mm / rev. ,
Cutting time: 15 minutes,
Dry continuous heavy cutting test of chrome steel under the conditions (referred to as cutting conditions A3) (normal cutting and feeding are 2.0 mm and 0.2 mm / rev., Respectively),
In each cutting test, the flank wear width of the cutting edge was measured. The measurement results are shown in Table 5.

次に、上記本発明被覆インサート11〜16および従来被覆インサート11〜16について、これを工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・SCM440の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 180 m/min.、
切り込み: 2.0 mm、
送り: 0.2 mm/rev.、
切削時間: 2 分、
の条件(切削条件a1という)での合金鋼の乾式断続重切削加工試験(通常の切り込み及び送りは、それぞれ、1.5mm、0.15mm/rev.)、
被削材:JIS・S55Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度: 220 m/min.、
切り込み: 2.0 mm、
送り: 0.2 mm/rev.、
切削時間: 2 分、
の条件(切削条件a2という)での炭素鋼の乾式断続重切削加工試験(通常の切り込み及び送りは、それぞれ、1.5mm、0.15mm/rev.)、
被削材:JIS・SUS304の丸棒、
切削速度: 180 m/min.、
切り込み: 2.5 mm、
送り: 0.25 mm/rev.、
切削時間: 15 分、
の条件(切削条件a3という)でのクロム鋼の乾式連続重切削加工試験(通常の切り込み及び送りは、それぞれ、2.0mm、0.15mm/rev.)、
を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を同じく表5に示した。
Next, for the above-described coated inserts 11 to 16 and the conventional coated inserts 11 to 16, in a state where this is screwed to the tip of the tool steel tool with a fixing jig,
Work material: JIS · SCM440 lengthwise equidistant 4 vertical grooved round bar,
Cutting speed: 180 m / min. ,
Cutting depth: 2.0 mm,
Feed: 0.2 mm / rev. ,
Cutting time: 2 minutes,
A dry interrupted heavy cutting test of alloy steel under the conditions (referred to as cutting conditions a1) (normal cutting and feeding are 1.5 mm and 0.15 mm / rev., Respectively),
Work material: JIS / S55C lengthwise equidistant round bars with 4 vertical grooves,
Cutting speed: 220 m / min. ,
Cutting depth: 2.0 mm,
Feed: 0.2 mm / rev. ,
Cutting time: 2 minutes,
Of carbon steel under the following conditions (referred to as cutting conditions a2) (normal cutting and feeding are 1.5 mm and 0.15 mm / rev., Respectively),
Work material: JIS / SUS304 round bar,
Cutting speed: 180 m / min. ,
Cutting depth: 2.5 mm,
Feed: 0.25 mm / rev. ,
Cutting time: 15 minutes,
Dry continuous heavy cutting test of chrome steel under the conditions (referred to as cutting condition a3) (normal cutting and feeding are 2.0 mm and 0.15 mm / rev., Respectively),
In each cutting test, the flank wear width of the cutting edge was measured. The measurement results are also shown in Table 5.

Figure 0005036338
Figure 0005036338

Figure 0005036338
Figure 0005036338

Figure 0005036338
Figure 0005036338

Figure 0005036338
Figure 0005036338

Figure 0005036338
Figure 0005036338

また、原料粉末として、いずれも0.5〜4μmの範囲内の平均粒径を有する立方晶窒化硼素(cBN)粉末、窒化チタン(TiN)粉末、Al粉末、酸化アルミニウム(Al)粉末を用意し、これら原料粉末を表6に示される配合組成に配合し、ボールミルで80時間湿式混合し、乾燥した後、120MPaの圧力で直径:50mm×厚さ:1.5mmの寸法をもった圧粉体にプレス成形し、ついでこの圧粉体を、圧力:1Paの真空雰囲気中、900〜1300℃の範囲内の所定温度に60分間保持の条件で焼結して切刃片用予備焼結体とし、この予備焼結体を、別途用意した、Co:8質量%、WC:残りの組成、並びに直径:50mm×厚さ:2mmの寸法をもったWC基超硬合金製支持片と重ね合わせた状態で、通常の超高圧焼結装置に装入し、通常の条件である圧力:5GPa、温度:1200〜1400℃の範囲内の所定温度に保持時間:0.8時間の条件で超高圧焼結し、焼結後上下面をダイヤモンド砥石を用いて研磨し、ワイヤー放電加工装置にて一辺3mmの正三角形状に分割し、さらにCo:5質量%、TaC:5質量%、WC:残りの組成およびCIS規格SNGA120412の形状(厚さ:4.76mm×一辺長さ:12.7mmの正方形)をもったWC基超硬合金製インサート本体のろう付け部(コーナー部)に、質量%で、Cu:26%、Ti:5%、Ni:2.5%、Ag:残りからなる組成を有するAg合金のろう材を用いてろう付けし、所定寸法に外周加工した後、切刃部に幅:0.13mm、角度:25°のホーニング加工を施し、さらに仕上げ研摩を施すことによりISO規格SNGA120412のインサート形状をもった工具基体C1〜C10をそれぞれ製造した。 Further, as raw material powders, cubic boron nitride (cBN) powder, titanium nitride (TiN) powder, Al powder, aluminum oxide (Al 2 O 3 ) powder each having an average particle diameter in the range of 0.5 to 4 μm. These raw material powders were blended in the blending composition shown in Table 6, wet-mixed with a ball mill for 80 hours, dried, and then had a size of diameter: 50 mm × thickness: 1.5 mm at a pressure of 120 MPa. The green compact is press-molded, and then the green compact is sintered in a vacuum atmosphere at a pressure of 1 Pa at a predetermined temperature within the range of 900 to 1300 ° C. for 60 minutes and pre-baked for cutting edge pieces. A WC-based cemented carbide support piece having a size of Co: 8% by mass, WC: remaining composition, and diameter: 50 mm × thickness: 2 mm was prepared as a sintered body. Normal super-high in a superposed state After charging into the pressure sintering machine, sintering at ultra high pressure at a predetermined temperature within the range of pressure: 5 GPa, temperature: 1200-1400 ° C., holding time: 0.8 hours, after sintering The upper and lower surfaces are polished with a diamond grindstone and divided into 3 mm regular triangles with a wire electric discharge machine, and Co: 5% by mass, TaC: 5% by mass, WC: remaining composition and CIS standard SNGA120412 The brazing part (corner part) of the WC-based cemented carbide insert body having a shape (thickness: 4.76 mm × one side length: 12.7 mm square) is mass%, Cu: 26%, Ti : 5%, Ni: 2.5%, Ag: Brazing using a brazing material of an Ag alloy having the remaining composition, and after processing the outer periphery to a predetermined dimension, the width of the cutting edge is 0.13 mm, angle : 25 ° honing is applied. The tool substrate C1~C10 having the insert shape of ISO standard SNGA120412 by performing finish polishing was produced, respectively.

ついで、上記の工具基体C1〜C10をアセトン中で超音波洗浄し、乾燥した状態で、図2に示される蒸着装置に装着し、蒸発源として、種々の成分組成をもったAl−Cr合金を装着し、まず、装置内を排気して1×10−2Pa以下の真空に保持しながら、工具基体を400℃に加熱した後、Arガスを導入して2.0Paとしたのち、工具基体に−200Vのバイアス電圧を印加することによって、前記工具基体を20分間Arボンバード処理し、ついで、装置内を一旦1×10−3Pa程度の真空にした後、圧力勾配型Arプラズマガンの放電電力を12kWとし、蒸発源にプラズマビームを入射しAl−Cr合金の蒸気を発生させるとともにプラズマビームでイオン化して、工具基体表面に、表7に示される目標組成および目標層厚の2軸配向性を有する改質(Al,Cr)N層を硬質被覆層として蒸着形成することにより、本発明被覆工具としての本発明表面被覆cBN基インサート(以下、本発明被覆インサートと云う)21〜30をそれぞれ製造した。 Next, the tool bases C1 to C10 are ultrasonically cleaned in acetone and dried, and then mounted on the vapor deposition apparatus shown in FIG. 2, and an Al—Cr alloy having various component compositions is used as an evaporation source. First, the tool base is heated to 400 ° C. while evacuating the apparatus and kept at a vacuum of 1 × 10 −2 Pa or less, and then Ar gas is introduced to 2.0 Pa. The tool substrate is subjected to Ar bombardment treatment for 20 minutes by applying a bias voltage of −200 V to the inside, and then the inside of the apparatus is once evacuated to about 1 × 10 −3 Pa, and then the discharge of the pressure gradient type Ar plasma gun is performed. The power is set to 12 kW, the plasma beam is incident on the evaporation source to generate an Al—Cr alloy vapor, and the ionization is performed by the plasma beam. The surface-coated cBN-based insert of the present invention as the coated tool of the present invention (hereinafter referred to as the coated insert of the present invention) is formed by vapor-depositing a modified (Al, Cr) N layer having a biaxial orientation of thickness as a hard coated layer. ) 21-30 were produced respectively.

また、比較の目的で、上記の工具基体C1〜C10のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図3に示される通常のアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として、それぞれ表3に示される目標組成に対応した成分組成をもったAl−Cr合金を装着し、まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、Arガスを導入して、0.7Paの雰囲気とすると共に、前記テーブル上で自転しながら回転する工具基体に−200Vの直流バイアス電圧を印加し、もって工具基体表面をアルゴンイオンによってボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記工具基体に印加するバイアス電圧を−30Vに下げて、前記Al−Cr合金のカソード電極とアノード電極との間にアーク放電を発生させ、もって前記工具基体A〜Jのそれぞれの表面に、表3に示される目標組成および目標層厚の(Al,Cr)N層からなる硬質被覆層を蒸着形成することにより、従来被覆工具としての従来表面被覆cBN基焼結インサート(以下、従来被覆インサートという)21〜30をそれぞれ製造した。   For comparison purposes, each of the tool bases C1 to C10 was ultrasonically cleaned in acetone and dried, and then charged into the ordinary arc ion plating apparatus shown in FIG. As the (evaporation source), an Al—Cr alloy having a component composition corresponding to the target composition shown in Table 3 was mounted. First, the apparatus was evacuated and kept at a vacuum of 0.1 Pa or less while being heated. After heating the inside of the apparatus to 500 ° C., Ar gas is introduced to make an atmosphere of 0.7 Pa, and a DC bias voltage of −200 V is applied to the tool base that rotates while rotating on the table. The surface of the tool base is bombarded with argon ions, and then nitrogen gas is introduced into the apparatus as a reaction gas to form a reaction atmosphere of 3 Pa and applied to the tool base. The bias voltage is lowered to -30 V to generate an arc discharge between the cathode electrode and the anode electrode of the Al-Cr alloy, and the target composition shown in Table 3 is formed on each surface of the tool bases A to J. And a conventional surface-coated cBN-based sintered insert (hereinafter referred to as a conventional coated insert) 21 to 30 as a conventional coated tool by vapor-depositing and forming a hard coating layer composed of an (Al, Cr) N layer having a target layer thickness. Manufactured.

つぎに、上記の各種の被覆インサートを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆インサート21〜30および従来被覆インサート21〜30のうち、本発明被覆インサート21〜25および従来被覆インサート21〜25については、以下に示す切削条件B1〜B3で切削加工試験を行い、また、本発明被覆インサート26〜30および従来被覆インサート26〜30については、同じく以下に示す切削条件C1〜C3で切削加工試験を実施した。
[切削条件B1]
被削材:JIS・SCM415の焼入れ材(HRC60)の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 200 m/min.、
切り込み: 0.28 mm、
送り: 0.25 mm/rev.、
切削時間: 5 分、
の条件での合金鋼の焼入れ材の乾式断続重切削加工試験(通常の切り込み及び送りは、それぞれ、0.15mm、0.15mm/rev.)、
[切削条件B2]
被削材:JIS・SUJ2の焼入れ材(HRC60)の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 140 m/min.、
切り込み: 0.2 mm、
送り: 0.2 mm/rev.、
切削時間: 4 分、
の条件での軸受鋼の焼入れ材の乾式断続重切削加工試験(通常の切り込み及び送りは、それぞれ、0.1mm、0.1mm/rev.)、
[切削条件B3]
被削材:JIS・SKD61の焼入れ材(HRC61)の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 180 m/min.、
切り込み: 0.2 mm、
送り: 0.2 mm/rev.、
切削時間: 4 分、
の条件でのダイス鋼の焼入れ材の乾式断続重切削加工試験(通常の切り込み及び送りは、それぞれ、0.12mm、0.12mm/rev.)、
[切削条件C1]
被削材:JIS・SCr420H(HRC60)の丸棒、
切削速度: 230 m/min.、
切り込み: 0.28 mm、
送り: 0.28 mm/rev.、
切削時間: 10 分、
の条件でのクロム鋼の焼入れ材の乾式連続重切削加工試験(通常の切り込み及び送りは、それぞれ、0.2mm、0.16mm/rev.)、
[切削条件C2]
被削材:JIS・SUJ2の焼入れ材(HRC60)の丸棒、
切削速度: 180 m/min.、
切り込み: 0.28 mm、
送り: 0.25 mm/rev.、
切削時間: 8 分、
の条件での軸受鋼の焼入れ材の乾式連続重切削加工試験(通常の切り込み及び送りは、それぞれ、0.18mm、0.14mm/rev.)、
[切削条件C3]
被削材:JIS・SKD61(HRC61)の丸棒、
切削速度: 200 m/min.、
切り込み: 0.28 mm、
送り: 0.30 mm/rev.、
切削時間: 8 分、
の条件でのダイス鋼の焼入れ材の乾式連続重切削加工試験(通常の切り込み及び送りは、それぞれ、0.15mm、0.16mm/rev.)、
を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅(mm)を測定した。この測定結果を表9に示した。
Next, of the various coated inserts described above, the present coated inserts 21 to 30 and the conventional coated inserts 21 to 30 of the present invention with the fixing tool fixed to the tip of the tool steel tool. For the inventive coated inserts 21 to 25 and the conventional coated inserts 21 to 25, a cutting test is performed under the following cutting conditions B1 to B3, and for the present coated inserts 26 to 30 and the conventional coated inserts 26 to 30, Similarly, a cutting test was performed under the following cutting conditions C1 to C3.
[Cutting conditions B1]
Work material: JIS / SCM415 quenching material (HRC60), 4 longitudinally spaced round bars with equal intervals in the length direction,
Cutting speed: 200 m / min. ,
Cutting depth: 0.28 mm,
Feed: 0.25 mm / rev. ,
Cutting time: 5 minutes,
Dry interrupted heavy cutting test of hardened material of alloy steel under the conditions (normal cutting and feeding are 0.15 mm and 0.15 mm / rev., Respectively),
[Cutting conditions B2]
Work material: JIS / SUJ2 quenching material (HRC60), 4 longitudinally spaced round bars with equal intervals in the length direction,
Cutting speed: 140 m / min. ,
Cutting depth: 0.2 mm,
Feed: 0.2 mm / rev. ,
Cutting time: 4 minutes,
Dry interrupted heavy cutting test of the hardened material of the bearing steel under the conditions (normal cutting and feeding are 0.1 mm and 0.1 mm / rev., Respectively),
[Cutting conditions B3]
Work material: JIS · SKD61 quenching material (HRC61) in the longitudinal direction, four equally spaced round bars,
Cutting speed: 180 m / min. ,
Cutting depth: 0.2 mm,
Feed: 0.2 mm / rev. ,
Cutting time: 4 minutes,
Dry interrupted heavy cutting test of die steel hardened material under normal conditions (normal cutting and feeding are 0.12 mm and 0.12 mm / rev., Respectively),
[Cutting conditions C1]
Work material: JIS / SCr420H (HRC60) round bar,
Cutting speed: 230 m / min. ,
Cutting depth: 0.28 mm,
Feed: 0.28 mm / rev. ,
Cutting time: 10 minutes,
Dry continuous heavy cutting test of chrome steel quenching material under the conditions of (normal cutting and feeding are 0.2 mm, 0.16 mm / rev., Respectively),
[Cutting conditions C2]
Work material: JIS / SUJ2 hardened material (HRC60) round bar,
Cutting speed: 180 m / min. ,
Cutting depth: 0.28 mm,
Feed: 0.25 mm / rev. ,
Cutting time: 8 minutes,
Dry continuous heavy cutting test of hardened material of bearing steel under the conditions of (normal cutting and feeding are 0.18 mm and 0.14 mm / rev., Respectively),
[Cutting conditions C3]
Work material: JIS SKD61 (HRC61) round bar,
Cutting speed: 200 m / min. ,
Cutting depth: 0.28 mm,
Feed: 0.30 mm / rev. ,
Cutting time: 8 minutes,
Dry continuous heavy cutting test of die steel hardened material under the conditions of (normal cutting and feeding are 0.15 mm and 0.16 mm / rev., Respectively),
In each cutting test, the flank wear width (mm) of the cutting edge was measured. The measurement results are shown in Table 9.

Figure 0005036338
Figure 0005036338

Figure 0005036338
Figure 0005036338

Figure 0005036338
Figure 0005036338

Figure 0005036338
Figure 0005036338

表5、9に示される結果から、本発明被覆インサート1〜16、21〜30は、いずれも硬質被覆層がすぐれた耐欠損性を備えているので、重切削加工に用いられた場合であっても硬質被覆層に欠損の発生はなく、長期に亘って、すぐれた耐摩耗性を発揮するのに対して、硬質被覆層が従来(Al,Cr)N層からなる従来被覆インサート1〜16、21〜30は、硬質被覆層に欠損が発生し、短時間で使用寿命に至ることが明らかである。   From the results shown in Tables 5 and 9, the coated inserts 1 to 16 and 21 to 30 of the present invention are all used for heavy cutting because the hard coating layer has excellent fracture resistance. However, no defects occur in the hard coating layer, and excellent wear resistance is exhibited over a long period of time, whereas the conventional coating inserts 1 to 16 in which the hard coating layer is a conventional (Al, Cr) N layer. In Nos. 21 to 30, it is clear that defects occur in the hard coating layer and the service life is reached in a short time.

原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr32粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C[質量比で、50/50]粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表10に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mm、13mm、および26mmの3種の超硬基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表6に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角:30度の4枚刃スクエアの形状をもったエンドミル用超硬基体D1〜D8をそれぞれ製造した。 As raw material powders, medium coarse WC powder having an average particle diameter of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, ZrC of 1.2 μm Powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C [50/50 by mass ratio] powder, and 1.8 μm Co Prepare powders, mix each of these raw material powders with the composition shown in Table 10, add wax, ball mill mix in acetone for 24 hours, dry under reduced pressure, and then press various pressures of a predetermined shape at a pressure of 100 MPa. The powder compact is press-molded, and these green compacts are heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a heating rate of 7 ° C./min in a vacuum atmosphere of 6 Pa, and this temperature is maintained for 1 hour. After holding, sintering under the condition of furnace cooling, the diameter is 8 m, 13 mm, and 26 mm round bar sintered bodies for forming a carbide substrate were formed, and further, from the above three kinds of round bar sintered bodies, by grinding, in combinations shown in Table 6, Carbide substrate for end mill D1 having a shape of a four-blade square with a diameter x length of the cutting edge portion of 6 mm x 13 mm, 10 mm x 22 mm, and 20 mm x 45 mm, respectively, and a twist angle of 30 degrees. D8 was produced respectively.

ついで、これらのエンドミル用超硬基体D1〜D8および試験片を、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示される蒸着装置に装入し、上記実施例1の本発明被覆インサート1〜16における改質(Al,Cr)N層の形成条件と同じ条件で、表11に示される目標組成および目標層厚の改質(Al,Cr)N層を硬質被覆層として蒸着形成することにより、本発明被覆工具としての本発明表面被覆超硬合金製エンドミル(以下、本発明被覆エンドミルと云う)1〜8をそれぞれ製造した。   Then, these end mill carbide substrates D1 to D8 and the test pieces were ultrasonically cleaned in acetone and dried, and charged into the vapor deposition apparatus shown in FIG. The modified (Al, Cr) N layer having the target composition and target layer thickness shown in Table 11 is vapor-deposited as a hard coating layer under the same conditions as those for forming the modified (Al, Cr) N layer in the coated inserts 1-16. By forming, the surface coated cemented carbide end mills (hereinafter referred to as the present invention coated end mills) 1 to 8 as the present coated tools were produced, respectively.

また、比較の目的で、上記実施例1の従来被覆インサート1〜16における従来(Al,Cr)N層の形成条件と同じ条件で、従来(Al,Cr)N層を硬質被覆層として蒸着形成することにより、同じく表11に示される通りの従来被覆工具としての従来表面被覆超硬合金製エンドミル(以下、従来被覆エンドミルと云う)1〜8をそれぞれ製造した。   For comparison purposes, the conventional (Al, Cr) N layer is deposited as a hard coating layer under the same conditions as the conventional (Al, Cr) N layer formation conditions in the conventional coating inserts 1 to 16 of Example 1 above. Thus, conventional surface-coated cemented carbide end mills (hereinafter referred to as conventional coated end mills) 1 to 8 as conventional coated tools as shown in Table 11 were produced.

つぎに、上記本発明被覆エンドミル1〜8および従来被覆エンドミル1〜8のうち、
本発明被覆エンドミル1〜3および従来被覆エンドミル1〜3については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SKD61の板材、
切削速度: 113 m/min.、
溝深さ(切り込み): 2.8 mm、
テーブル送り: 1350 mm/min、
の条件での工具鋼の乾式高速高送り溝切削加工試験(通常の切削速度、送りは、それぞれ、50m/min、150mm/min)、
本発明被覆エンドミル4〜6および従来被覆エンドミル4〜6については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SUS304の板材、
切削速度: 89 m/min.、
溝深さ(切り込み): 5 mm、
テーブル送り: 950 mm/min、
の条件でのステンレス鋼の乾式高速高送り溝切削加工試験(通常の切削速度、送りは、それぞれ、50m/min、300mm/min)、
本発明被覆エンドミル7,8および従来被覆エンドミル7,8については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SNCM439の板材、
切削速度: 176 m/min.、
溝深さ(切り込み): 10 mm、
テーブル送り: 950 mm/min、
の条件での合金鋼(生材)の乾式高速高送り溝切削加工試験(通常の切削速度、送りは、それぞれ、100m/min、300mm/min)、
をそれぞれ行い、いずれの溝切削加工試験でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。この測定結果を表11にそれぞれ示した。
Next, of the present invention coated end mills 1-8 and the conventional coated end mills 1-8,
About this invention coated end mills 1-3 and conventional coated end mills 1-3,
Work material: Plane dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SKD61 plate material,
Cutting speed: 113 m / min. ,
Groove depth (cut): 2.8 mm,
Table feed: 1350 mm / min,
Tool steel dry high-speed high-feed groove cutting test under normal conditions (normal cutting speed and feed are 50 m / min and 150 mm / min, respectively)
About this invention coated end mills 4-6 and conventional coated end mills 4-6,
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / SUS304 plate,
Cutting speed: 89 m / min. ,
Groove depth (cut): 5 mm,
Table feed: 950 mm / min,
Stainless steel dry high-speed high-feed groove cutting test (normal cutting speed and feed are 50 m / min and 300 mm / min, respectively),
For the coated end mills 7 and 8 of the present invention and the conventional coated end mills 7 and 8,
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / SNCM439 plate material,
Cutting speed: 176 m / min. ,
Groove depth (cut): 10 mm,
Table feed: 950 mm / min,
Dry high-speed high-feed grooving cutting test of alloy steel (raw material) under the conditions (normal cutting speed and feed are 100 m / min and 300 mm / min, respectively)
In each groove cutting test, the cutting groove length was measured until the flank wear width of the outer peripheral edge of the cutting edge reached 0.1 mm, which is a guide for the service life. The measurement results are shown in Table 11, respectively.

Figure 0005036338
Figure 0005036338

Figure 0005036338
Figure 0005036338

上記の実施例3で製造した直径が8mm(エンドミル用超硬基体D1〜D3)、13mm(エンドミル用超硬基体D4〜D6)、および26mm(エンドミル用超硬基体D7、D8)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ4mm×13mm(ドリル用超硬基体E1〜E3)、8mm×22mm(ドリル用超硬基体E4〜E6)、および16mm×45mm(ドリル用超硬基体E7、E8)の寸法、並びにいずれもねじれ角:30度の2枚刃形状をもったドリル用超硬基体E1〜E8をそれぞれ製造した。   The diameters produced in Example 3 were 8 mm (carbide substrates D1 to D3 for end mills), 13 mm (carbide substrates D4 to D6 for end mills), and 26 mm (carbide substrates D7 and D8 for end mills). By using a round bar sintered body, the diameter x length of the groove forming part is 4 mm x 13 mm (carbide substrates E1 to E3 for drills) and 8 mm x by grinding. Carbide substrate for drills having a size of 22 mm (drilled carbide substrates E4 to E6) and 16 mm × 45 mm (carbide substrates for drills E7 and E8), and a two-blade shape with a twist angle of 30 degrees. E1 to E8 were produced.

ついで、これらのドリル用超硬基体E1〜E8の切刃に、ホーニングを施し、上記の試験片と共に、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示される蒸着装置に装入し、上記実施例1の本発明被覆インサート1〜16における改質(Al,Cr)N層の形成条件と同じ条件で、かつ表12に示される目標組成および目標層厚の改質(Al,Cr)N層を硬質被覆層として蒸着形成することにより、本発明被覆工具としての本発明表面被覆超硬合金製ドリル(以下、本発明被覆ドリルと云う)1〜8をそれぞれ製造した。   Next, honing is applied to the cutting edges of these carbide substrates E1 to E8 for drilling, and ultrasonic cleaning is performed in acetone together with the above-mentioned test pieces, and the dried blades are mounted in the vapor deposition apparatus shown in FIG. The target composition and target layer thickness modification (Al) shown in Table 12 under the same conditions as those for forming the modified (Al, Cr) N layer in the inventive coated inserts 1 to 16 of Example 1 above. , Cr) N layers were vapor-deposited as hard coating layers to produce the surface-coated cemented carbide drills (hereinafter referred to as the present invention-coated drills) 1 to 8 as the present coated tools.

また、比較の目的で、上記実施例1の従来被覆インサート1〜16における従来(Al,Cr)N層の形成条件と同じ条件で、従来(Al,Cr)N層を硬質被覆層として蒸着形成することにより、表12に示される通りの従来被覆工具としての従来表面被覆超硬合金製ドリル(以下、従来被覆ドリルと云う)1〜8をそれぞれ製造した。   For comparison purposes, the conventional (Al, Cr) N layer is deposited as a hard coating layer under the same conditions as the conventional (Al, Cr) N layer formation conditions in the conventional coating inserts 1 to 16 of Example 1 above. Thus, conventional surface-coated cemented carbide drills (hereinafter referred to as conventional coated drills) 1 to 8 as conventional coated tools as shown in Table 12 were produced.

つぎに、上記本発明被覆ドリル1〜8および従来被覆ドリル1〜8のうち、本発明被覆ドリル1〜3および従来被覆ドリル1〜3については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SKD61の板材、
切削速度: 80 m/min.、
送り: 0.26 mm/rev、
穴深さ: 10 mm
の条件での工具鋼の湿式高速高送り穴あけ切削加工試験(通常の切削速度および送りは、それぞれ、40m/min、0.12mm/rev.)、
本発明被覆ドリル4〜6および従来被覆ドリル4〜6については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・FCD400の板材、
切削速度: 120 m/min.、
送り: 0.35 mm/rev、
穴深さ: 20 mm
の条件でのダクタイル鋳鉄の湿式高速高送り穴あけ切削加工試験(通常の切削速度および送りは、それぞれ、70m/min、0.25mm/rev.)、
本発明被覆ドリル7,8および従来被覆ドリル7,8については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・S50Cの板材、
切削速度: 162 m/min.、
送り: 0.58 mm/rev、
穴深さ: 0.50 mm
の条件での炭素鋼の湿式高速高送り穴あけ切削加工試験(通常の切削速度および送りは、それぞれ、65m/min、0.30mm/rev.)、
をそれぞれ行い、いずれの湿式穴あけ切削加工試験(水溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表12に示した。
Next, of the present invention coated drills 1 to 8 and the conventional coated drills 1 to 8, the present invention coated drills 1 to 3 and the conventional coated drills 1 to 3 are:
Work material: Plane dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SKD61 plate material,
Cutting speed: 80 m / min. ,
Feed: 0.26 mm / rev,
Hole depth: 10 mm
Wet high-speed high-feed drilling test of tool steel under the following conditions (normal cutting speed and feed are 40 m / min and 0.12 mm / rev., Respectively),
About this invention coated drill 4-6 and conventional coated drills 4-6,
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / FCD400 plate material,
Cutting speed: 120 m / min. ,
Feed: 0.35 mm / rev,
Hole depth: 20 mm
Wet high-speed high-feed drilling test of ductile cast iron under the conditions (normal cutting speed and feed are 70 m / min and 0.25 mm / rev., Respectively),
About this invention covering drills 7 and 8 and conventional covering drills 7 and 8,
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / S50C plate material,
Cutting speed: 162 m / min. ,
Feed: 0.58 mm / rev,
Hole depth: 0.50 mm
Wet high-speed high-feed drilling test of carbon steel under the conditions (normal cutting speed and feed are 65 m / min and 0.30 mm / rev., Respectively),
In each wet drilling cutting test (using water-soluble cutting oil), the number of drilling processes until the flank wear width of the tip cutting edge surface reached 0.3 mm was measured. The measurement results are shown in Table 12.

Figure 0005036338
Figure 0005036338

この結果得られた本発明被覆工具としての本発明被覆インサート1〜16、21〜30、本発明被覆エンドミル1〜8、および本発明被覆ドリル1〜8の改質(Al,Cr)N層、並びに従来被覆工具としての従来被覆インサート1〜16、21〜30、従来被覆エンドミル1〜8、および従来被覆ドリル1〜8の従来(Al,Cr)N層の組成をオージェ分光分析装置を用いて測定したところ、それぞれ目標組成と実質的に同じ組成を示した。
また、これらの本発明被覆工具および従来被覆工具の改質(Al,Cr)N層および従来(Al,Cr)N層の厚さを、走査型電子顕微鏡を用いて断面測定したところ、いずれも目標値と実質的に同じ平均層厚(5点測定の平均値)を示した。
As a result, the present invention coated inserts 1-16, 21-30, the present coated end mills 1-8, and the modified (Al, Cr) N layers of the present coated drills 1-8 as the present coated tools, In addition, the composition of the conventional (Al, Cr) N layers of the conventional coated inserts 1 to 16, 21 to 30, the conventional coated end mills 1 to 8 and the conventional coated drills 1 to 8 as a conventional coated tool using an Auger spectroscopic analyzer. When measured, each showed substantially the same composition as the target composition.
Further, when the thicknesses of the modified (Al, Cr) N layer and the conventional (Al, Cr) N layer of the present invention coated tool and the conventional coated tool were measured using a scanning electron microscope, both were measured. The average layer thickness (average value of 5-point measurement) substantially the same as the target value was shown.

さらに、上記の本発明被覆工具の改質(Al,Cr)N層と従来被覆工具の従来(Al,Cr)N層について、上記の両(Al,Cr)N層の表面を研磨面とした状態で、電子線後方散乱回折装置(EBSD)を用いて個々の結晶粒の結晶方位を解析した(すなわち、30×50μmの領域を、0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{100}面の法線がなす傾斜角を測定し、この測定結果に基づいて、前記測定傾斜角のうち、0〜54度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより、傾斜角度数分布グラフを作成し、また、同様に、表面研磨面の法線と直交する任意の方向に対する前記(a)の改質(Al,Cr)N層の結晶粒の結晶方位<100>がなす傾斜角を測定し、前記測定傾斜角のうち、前記法線方向となす角度が0〜54度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計したところ、前記従来(Al,Cr)N層は、表面研磨面の法線に対する結晶粒の結晶方位<100>がなす傾斜角の分布は、法線方向に対して0〜15度の範囲内の傾斜角区分にピークを有することがあったとしても、表面研磨面の法線と直交する任意の方向に対する結晶方位<100>の測定傾斜角の分布は0〜54度の範囲内で不偏的であり特段のピークを示さない(図5)のに対して、前記(a)の改質(Al,Cr)N層の結晶方位<100>の測定傾斜角の分布は、図4に例示される通り、法線方向に対して0〜15度の範囲内の傾斜角区分に結晶方位<100>が存在する結晶粒の面積割合が結晶粒全面積の50%以上である結晶配向を示し、さらに、表面研磨面の法線と直交する任意の方向に対する結晶方位<100>の測定傾斜角の分布は、ある特定傾斜角区分に最高ピークが存在し、その最高ピークを中心とした15度の範囲内(最高ピーク傾斜角±7.5度の範囲内)の傾斜角区分に結晶方位<100>が存在する結晶粒の面積割合が結晶粒全面積の50%以上である結晶配向を示し(図4)、改質(Al,Cr)N層は上記のとおり2軸結晶配向性を有するものであった。   Further, with respect to the modified (Al, Cr) N layer of the above-described coated tool of the present invention and the conventional (Al, Cr) N layer of the conventional coated tool, the surfaces of both the (Al, Cr) N layers are used as polished surfaces. In the state, the crystal orientation of each crystal grain was analyzed using an electron beam backscatter diffractometer (EBSD) (i.e., the method of the surface polished surface in a 30 × 50 μm region at an interval of 0.1 μm / step). The inclination angle formed by the normal line of the {100} plane, which is the crystal plane of the crystal grain, is measured with respect to the line. Based on the measurement result, the inclination angle is within the range of 0 to 54 degrees. A certain inclination angle is divided into 0.25 degree pitches, and a frequency distribution graph is created by counting the frequencies existing in each division. Similarly, the normal of the surface polished surface (A) modification (Al, Cr) in any direction orthogonal to The tilt angle formed by the crystal orientation <100> of the crystal grains of the layer is measured, and the measured tilt angle within the range of 0 to 54 degrees among the measured tilt angles and the normal direction is 0.25 degrees. The conventional (Al, Cr) N layer has an inclination angle formed by the crystal orientation <100> of the crystal grains with respect to the normal of the surface polished surface. Even if the distribution may have a peak at an inclination angle within a range of 0 to 15 degrees with respect to the normal direction, the crystal orientation <100> with respect to an arbitrary direction orthogonal to the normal of the surface polishing surface. The distribution of the measured tilt angle is unbiased within the range of 0 to 54 degrees and does not show any particular peak (FIG. 5), whereas the crystal orientation of the modified (Al, Cr) N layer of (a) above. The distribution of the measured inclination angle of <100> is 0 to 1 with respect to the normal direction as illustrated in FIG. The crystal grain orientation in which the crystal orientation <100> exists in the tilt angle section within a range of 5 degrees indicates a crystal orientation in which the crystal grain area is 50% or more of the total crystal grain area, and is orthogonal to the normal line of the surface polished surface. The distribution of the measured tilt angle of the crystal orientation <100> with respect to an arbitrary direction has a maximum peak in a specific tilt angle section, and is within a range of 15 degrees centered on the highest peak (maximum peak tilt angle ± 7.5 The crystal grain orientation in which the crystal orientation <100> exists in the tilt angle section (within the range of degrees) indicates a crystal orientation in which the crystal grain area ratio is 50% or more of the total crystal grain area (FIG. 4), and modification (Al, Cr) The N layer had biaxial crystal orientation as described above.

図4に、本発明被覆工具3の改質(Al,Cr)N層の表面研磨面の法線方向に対する結晶方位<100>の測定傾斜角分布と、表面研磨面の法線と直交する方向に対する結晶方位<100>の測定傾斜角分布を示す。
また、図5には、従来被覆工具2の従来(Al,Cr)N層の表面研磨面の法線方向に対する結晶方位<100>の測定傾斜角分布と、表面研磨面の法線と直交する任意の方向に対する結晶方位<100>の測定傾斜角分布を示す。
上記図4と図5との比較からも明らかなように、改質(Al,Cr)N層では2軸結晶配向性を示すのに対して、従来(Al,Cr)N層では、表面研磨面の法線と直交する任意の方向に対する結晶方位<100>の測定において、特段ピークを示す測定傾斜角がないことから2軸配向していない結晶組織を有していることが明らかである。
FIG. 4 shows the measured inclination angle distribution of the crystal orientation <100> with respect to the normal direction of the surface polished surface of the modified (Al, Cr) N layer of the coated tool 3 of the present invention, and the direction orthogonal to the normal of the surface polished surface. 2 shows a measured tilt angle distribution of crystal orientation <100> with respect to.
Further, in FIG. 5, the measured tilt angle distribution of the crystal orientation <100> with respect to the normal direction of the surface polished surface of the conventional (Al, Cr) N layer of the conventional coated tool 2 is orthogonal to the normal of the surface polished surface. The measured tilt angle distribution of crystal orientation <100> with respect to an arbitrary direction is shown.
As is clear from the comparison between FIG. 4 and FIG. 5, the modified (Al, Cr) N layer exhibits biaxial crystal orientation, whereas the conventional (Al, Cr) N layer exhibits surface polishing. In the measurement of the crystal orientation <100> with respect to an arbitrary direction orthogonal to the normal of the surface, it is clear that there is a crystal structure that is not biaxially oriented because there is no measurement inclination angle showing a special peak.

表3、4、7、8、11、12に示される結果から、本発明被覆工具は、いずれも硬質被覆層を構成する改質(Al,Cr)N層が2軸結晶配向性を示し、これによりすぐれた耐欠損性を具備するようになることから、上記各種の重切削加工試験で、すぐれた耐摩耗性を示すのに対して、従来被覆工具においては、硬質被覆層が2軸結晶配向性を有さず、その結果として耐欠損性の向上が見られないことから、高切り込み、高送りなど大きな機械的負荷がかかる重切削加工では、比較的短時間で欠損を発生し使用寿命に至ることが明らかである。   From the results shown in Tables 3, 4, 7, 8, 11, and 12, all of the coated tools of the present invention have a biaxial crystal orientation in the modified (Al, Cr) N layer constituting the hard coating layer. As a result, it has excellent fracture resistance, so in the various heavy cutting tests described above, it exhibits excellent wear resistance, whereas in conventional coated tools, the hard coating layer has a biaxial crystal. Since there is no orientation and no improvement in fracture resistance is observed as a result, in heavy cutting operations with large mechanical loads such as high cutting and high feed, fractures occur in a relatively short time and the service life is increased. It is clear that

上述のように、この発明の被覆工具は、各種鋼や鋳鉄などの連続切削や断続切削ですぐれ工具特性を示すのは勿論のことであり、さらに、高切り込み、高送りなど切刃に大きな機械的負荷がかかる重切削加工条件であっても、改質(Al,Cr)N層からなる硬質被覆層がすぐれた耐欠損性を備えるため、長期に亘ってすぐれた切削性能を発揮し、切削加工装置のFA化、並びに切削加工の省力化および省エネ化、さらに低コスト化の要求に十分満足に対応できるものである。   As described above, the coated tool of the present invention exhibits excellent tool characteristics in continuous cutting and intermittent cutting of various steels and cast irons, and also has a large machine for cutting edges such as high cutting and high feeding. Even under heavy cutting conditions with heavy loads, the hard coating layer made of the modified (Al, Cr) N layer has excellent fracture resistance, so it exhibits excellent cutting performance over a long period of time. It is possible to satisfactorily meet the demands for FA of processing equipment, labor saving and energy saving of cutting, and cost reduction.

硬質被覆層を構成する各種(Al,Cr)N層における結晶粒の結晶面である{100}面の法線が表面研磨面の法線に対する傾斜角の測定範囲を示す概略説明図である。It is a schematic explanatory drawing which shows the measurement range of the inclination angle with respect to the normal line of the surface polishing surface, with the normal line of the {100} plane being the crystal plane of the crystal grains in various (Al, Cr) N layers constituting the hard coating layer. 本発明被覆工具の硬質被覆層を構成する2軸結晶配向性を有する改質(Al,Cr)N層の蒸着形成に用いたプラズマを利用したイオンプレーティング装置の概略説明図である。It is a schematic explanatory drawing of the ion plating apparatus using the plasma used for vapor deposition formation of the modification | reformation (Al, Cr) N layer which has a biaxial crystal orientation which comprises the hard coating layer of this invention coating tool. 従来被覆工具の硬質被覆層を構成する従来(Al,Cr)N層の蒸着形成に用いたアークイオンプレーティング(AIP)装置の概略説明図である。It is a schematic explanatory drawing of the arc ion plating (AIP) apparatus used for vapor deposition formation of the conventional (Al, Cr) N layer which comprises the hard coating layer of the conventional coating tool. 本発明被覆インサート3の硬質被覆層を構成する改質(Al,Cr)N層をEBSDで測定し、表面研磨面の法線方向に対する結晶粒の結晶方位<100>がなす測定傾斜角と、表面研磨面の法線方向と直交する任意の方向に対して0〜54度の範囲内にある結晶粒の結晶方位<100>がなす測定傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計した傾斜角度数分布グラフである。The modified (Al, Cr) N layer constituting the hard coating layer of the coated insert 3 of the present invention is measured by EBSD, and the measured inclination angle formed by the crystal orientation <100> of the crystal grain with respect to the normal direction of the surface polished surface; The measurement inclination angle formed by the crystal orientation <100> of the crystal grains in the range of 0 to 54 degrees with respect to an arbitrary direction orthogonal to the normal direction of the surface polished surface is divided for each pitch of 0.25 degrees. It is the inclination angle number distribution graph which totaled the frequency which exists in each division. 従来被覆インサート2の硬質被覆層を構成する従来(Al,Cr)N層をEBSDで測定し、表面研磨面の法線方向に対する結晶粒の結晶方位<100>がなす測定傾斜角と、表面研磨面の法線方向と直交する任意の方向に対して0〜54度の範囲内にある結晶粒の結晶方位<100>がなす測定傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計した傾斜角度数分布グラフである。The conventional (Al, Cr) N layer constituting the hard coating layer of the conventional coated insert 2 is measured by EBSD, and the measured inclination angle formed by the crystal orientation <100> of the crystal grain with respect to the normal direction of the surface polished surface, and the surface polishing The measured inclination angle formed by the crystal orientation <100> of the crystal grains in the range of 0 to 54 degrees with respect to an arbitrary direction orthogonal to the normal direction of the surface is divided for each pitch of 0.25 degrees. It is the inclination angle number distribution graph which totaled the frequency which exists in the inside.

Claims (1)

超硬合金、サーメットあるいは立方晶窒化ほう素基超高圧焼結体からなる切削工具基体の表面に、圧力勾配型Arプラズマガンを利用したイオンプレーティングにより、
組成式:(Al1−X Cr)N(ただし、原子比で、Xは0.30〜0.60)
を満足し、平均層厚1〜10μmのAlとCrの複合窒化物層を蒸着形成した表面被覆切削工具において、
上記AlとCrの複合窒化物層について、電子線後方散乱回折装置を用いて個々の結晶粒の結晶方位を解析した場合、
(a)表面研磨面の法線方向に対する前記結晶粒の結晶方位<100>がなす傾斜角を測定し、前記測定傾斜角のうち、法線方向に対して0〜54度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計したとき、0〜15度の範囲内の傾斜角区分に結晶方位<100>が存在する結晶粒の面積割合が結晶粒全面積の50%以上である結晶配向を示し、
(b)前記表面研磨面の法線と直交する任意の方向に対する前記結晶粒の結晶方位<100>がなす傾斜角を測定し、前記測定傾斜角のうち、法線方向に対して0〜54度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計したとき、特定傾斜角区分に最高ピークが存在し、その最高ピークを中心とした15度の範囲内の傾斜角区分に結晶方位<100>が存在する結晶粒の面積割合が結晶粒全面積の50%以上である結晶配向を示し、
上記(a)、(b)の2軸結晶配向性を示すAlとCrの複合窒化物層からなる硬質被覆層を蒸着形成したことを特徴とする重切削加工で硬質被覆層がすぐれた耐欠損性を発揮する表面被覆切削工具。
By ion plating using a pressure gradient type Ar plasma gun on the surface of a cutting tool substrate made of cemented carbide, cermet or cubic boron nitride based ultra high pressure sintered body ,
Composition formula: (Al 1-X Cr X ) N (where X is 0.30 to 0.60 in atomic ratio)
In a surface-coated cutting tool in which a composite nitride layer of Al and Cr having an average layer thickness of 1 to 10 μm is formed by vapor deposition,
For the Al and Cr composite nitride layer, when analyzing the crystal orientation of individual crystal grains using an electron beam backscatter diffractometer,
(A) The inclination angle formed by the crystal orientation <100> of the crystal grain with respect to the normal direction of the surface-polished surface is measured, and the measurement inclination angle is in the range of 0 to 54 degrees with respect to the normal direction. When the measured tilt angles are divided into pitches of 0.25 degrees and the frequencies existing in each section are tabulated, the crystal grains with crystal orientation <100> exist in the tilt angle sections within the range of 0 to 15 degrees. The crystal orientation in which the area ratio is 50% or more of the total area of the crystal grains,
(B) The inclination angle formed by the crystal orientation <100> of the crystal grains with respect to an arbitrary direction orthogonal to the normal line of the surface-polished surface is measured, and among the measurement inclination angles, 0 to 54 with respect to the normal direction. When the measured inclination angle within the degree range is divided into 0.25 degree pitches and the frequencies existing in each division are tabulated, the highest peak exists in the specific inclination angle division, and the highest peak is the center. A crystal orientation in which the area ratio of the crystal grains in which the crystal orientation <100> exists in the tilt angle section within the range of 15 degrees is 50% or more of the total area of the crystal grains,
Defect resistance with excellent hard coating layer by heavy cutting, characterized in that a hard coating layer composed of a composite nitride layer of Al and Cr showing the biaxial crystal orientation of (a) and (b) above is deposited. Surface-coated cutting tool that demonstrates its properties.
JP2007027395A 2007-02-06 2007-02-06 Surface-coated cutting tool with excellent fracture resistance due to hard coating layer Expired - Fee Related JP5036338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007027395A JP5036338B2 (en) 2007-02-06 2007-02-06 Surface-coated cutting tool with excellent fracture resistance due to hard coating layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007027395A JP5036338B2 (en) 2007-02-06 2007-02-06 Surface-coated cutting tool with excellent fracture resistance due to hard coating layer

Publications (2)

Publication Number Publication Date
JP2008188734A JP2008188734A (en) 2008-08-21
JP5036338B2 true JP5036338B2 (en) 2012-09-26

Family

ID=39749327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007027395A Expired - Fee Related JP5036338B2 (en) 2007-02-06 2007-02-06 Surface-coated cutting tool with excellent fracture resistance due to hard coating layer

Country Status (1)

Country Link
JP (1) JP5036338B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5207110B2 (en) * 2007-08-31 2013-06-12 三菱マテリアル株式会社 Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5287123B2 (en) * 2008-10-15 2013-09-11 三菱マテリアル株式会社 Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5287126B2 (en) * 2008-10-15 2013-09-11 三菱マテリアル株式会社 A surface-coated cutting tool with a hard coating layer that provides excellent fracture resistance and wear resistance
JP5240666B2 (en) * 2009-03-06 2013-07-17 三菱マテリアル株式会社 Surface-coated cutting tool with excellent chip evacuation
JP5585935B2 (en) * 2010-03-23 2014-09-10 三菱マテリアル株式会社 Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5560513B2 (en) * 2010-03-23 2014-07-30 三菱マテリアル株式会社 Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP2011224767A (en) * 2010-03-29 2011-11-10 Mitsubishi Materials Corp Surface-coated cutting tool having hard coating layer showing excellent chipping resistance
JP6402662B2 (en) * 2014-03-26 2018-10-10 三菱マテリアル株式会社 Surface-coated cutting tool and manufacturing method thereof
JP6677932B2 (en) 2015-08-29 2020-04-08 三菱マテリアル株式会社 Surface coated cutting tool that demonstrates excellent chipping and wear resistance in heavy interrupted cutting
JP6928218B2 (en) 2015-12-25 2021-09-01 三菱マテリアル株式会社 Surface-coated cubic boron nitride sintered body tool
JP6850980B2 (en) 2016-03-07 2021-03-31 三菱マテリアル株式会社 Surface-coated cubic boron nitride sintered body tool

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004337989A (en) * 2003-05-13 2004-12-02 Hitachi Tool Engineering Ltd Coated high-speed steel tool
JP4747268B2 (en) * 2005-05-25 2011-08-17 三菱マテリアル株式会社 Surface coated cemented carbide cutting tool with high temperature strength with excellent hard coating layer

Also Published As

Publication number Publication date
JP2008188734A (en) 2008-08-21

Similar Documents

Publication Publication Date Title
JP5036338B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5099586B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5035956B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5287125B2 (en) A surface-coated cutting tool with a hard coating layer that provides excellent fracture resistance and wear resistance
JP5207109B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP2010094744A (en) Surface-coated cutting tool with hard coating layer exhibiting excellent wear resistance
JP5182501B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5207105B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP2009090395A (en) Surface-coated cutting tool having hard coated layer exhibiting excellent chipping resistance in heavy cutting
JP5287124B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5287123B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5287126B2 (en) A surface-coated cutting tool with a hard coating layer that provides excellent fracture resistance and wear resistance
JP5560513B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP2009214196A (en) Surface-coated cutting tool having hard coating layer exhibiting excellent resistance to defect
JP5309733B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP2009220239A (en) Surface coated cutting tool having hard coating layer exerting superior chipping resistance
JP5239292B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5099587B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5239392B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5239296B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP2009090396A (en) Surface-coated cutting tool having hard coated layer exhibiting excellent chipping resistance in heavy cutting
JP5240498B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5287019B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5239324B2 (en) Surface coated cutting tool with excellent chipping resistance with hard coating layer in heavy cutting
JP5168552B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120703

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5036338

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees