JP6331003B2 - Surface coated cutting tool - Google Patents

Surface coated cutting tool Download PDF

Info

Publication number
JP6331003B2
JP6331003B2 JP2014059160A JP2014059160A JP6331003B2 JP 6331003 B2 JP6331003 B2 JP 6331003B2 JP 2014059160 A JP2014059160 A JP 2014059160A JP 2014059160 A JP2014059160 A JP 2014059160A JP 6331003 B2 JP6331003 B2 JP 6331003B2
Authority
JP
Japan
Prior art keywords
cutting
tool
layer
hard coating
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014059160A
Other languages
Japanese (ja)
Other versions
JP2015110256A (en
Inventor
英利 淺沼
英利 淺沼
大介 風見
大介 風見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2014059160A priority Critical patent/JP6331003B2/en
Publication of JP2015110256A publication Critical patent/JP2015110256A/en
Application granted granted Critical
Publication of JP6331003B2 publication Critical patent/JP6331003B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Description

本発明は、表面被覆切削工具(以下、被覆工具という)に関し、さらに詳しくは、例えば、耐熱合金、ステンレス鋼、チタン合金等の高熱発生を伴うとともに切刃への溶着性が著しい被削材を高速切削した場合に、硬質被覆層がすぐれた高温安定性、耐熱性、耐摩耗性、耐溶着性を発揮する被覆工具に関するものである。   The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool), and more specifically, for example, a work material that is accompanied by high heat generation such as a heat-resistant alloy, stainless steel, titanium alloy, etc. and has a remarkable weldability to a cutting blade. The present invention relates to a coated tool that exhibits high-temperature stability, heat resistance, wear resistance, and welding resistance with excellent hard coating layers when high-speed cutting is performed.

一般に、被覆工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるインサート、被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、またインサートを着脱自在に取り付けてソリッドタイプのエンドミルと同様に切削加工を行うインサート式エンドミル工具などが知られている。   In general, coated tools are used for turning and planing of work materials such as various types of steel and cast iron, inserts that can be used detachably attached to the tip of a cutting tool, drilling processing of work materials, etc. There are drills, miniature drills, solid type end mills used for chamfering, grooving, shoulder processing, etc. of the work material, etc. Also, inserts are detachably attached and cutting is performed in the same way as solid type end mills Insert type end mill tools are known.

近年、金属材料の切削加工においては高能率化の要求が高く、切削速度を高速化させることが求められている。このため、切削工具の工具基体表面を被覆する硬質被覆層に対して耐摩耗性や耐欠損性を向上させることが要求されている。   In recent years, there is a high demand for higher efficiency in cutting metal materials, and it is required to increase the cutting speed. For this reason, it is required to improve the wear resistance and fracture resistance of the hard coating layer covering the tool base surface of the cutting tool.

特許文献1には、アルミニウム酸化物を基とする硬質被覆層であって、Al1−X(O1−Y(0≦X≦0.5、0<Y≦0.4、Z>0)で表される組成を有し、この組成におけるMは、Ti,Zr,V,Nb,Mo,W,Y,Mg,Si,Bから選択される少なくとも1種の元素であるAlM(ON)系硬質被覆層が、耐摩耗性と耐熱性にすぐれており、工具基体の温度が1000℃以下で、具体的には400〜600℃で形成できると開示されている。 Patent Document 1, a hard coating layer containing aluminum oxide as the base, Al 1-X M X ( O 1-Y N Y) Z (0 ≦ X ≦ 0.5,0 <Y ≦ 0. 4, Z> 0), and M in this composition is at least one element selected from Ti, Zr, V, Nb, Mo, W, Y, Mg, Si, and B It is disclosed that a certain AlM (ON) hard coating layer is excellent in wear resistance and heat resistance, and can be formed at a tool substrate temperature of 1000 ° C. or lower, specifically 400 to 600 ° C.

また、特許文献2は、被覆工具の工具基体上に硬質被覆層を形成するものであって、この硬質被覆層が、第1超多層膜と第2超多層膜とを各々1以上交互に積層させてなる複合超多層膜を含み、前記第1超多層膜が、A1層とB層とを各々1層以上交互に積層することにより構成され、前記第2超多層膜が、A2層とC層とを各々1層以上交互に積層することにより構成され、前記A1層とA2層が、各々TiN、TiCN、TiAlNまたはTiAlCNのいずれかにより構成され、前記B層が、TiSiNまたはTiSiCNにより構成され、前記C層が、AlCrNまたはAlCrCNにより構成されることにより、耐摩耗性と耐熱性を維持しつつ、脆性の問題を低減した積層系硬質被覆層を有する被覆工具を提供することを開示している。   Patent Document 2 forms a hard coating layer on a tool base of a coated tool, and the hard coating layer is formed by alternately laminating at least one first super multi-layer film and two second super multi-layer films. The first super multi-layer film is formed by alternately laminating one or more layers of A1 layers and B layers, and the second super multi-layer film is composed of A2 layers and C layers. Each of the A1 and A2 layers is composed of any one of TiN, TiCN, TiAlN, or TiAlCN, and the B layer is composed of TiSiN or TiSiCN. The C layer is composed of AlCrN or AlCrCN to provide a coated tool having a laminated hard coating layer that reduces brittleness problems while maintaining wear resistance and heat resistance. That.

さらに、特許文献3は、炭化タングステン基超硬合金基体または炭窒化チタン系サーメット基体の表面に、(a)0.05〜0.5μmの平均層厚を有し、組成式:(Ti1−XAl)N(ただし、原子比で、Xは0.05〜0.25を示す)を満足し、X線回折装置による測定で、(111)面に最高ピークが現われ、最高ピークの半価幅が2θで0.8度以下であるX線回折パターンを示すTi基複合窒化物層からなる結晶配向履歴層を介して、(b)2〜10μmの平均層厚を有し、組成式:(Ti1−YAl)N(ただし、原子比で、Yは0.4〜0.7を示す)を満足し、X線回折装置による測定で、(111)面に最高ピークが現われ、最高ピークの半価幅が2θで0.8度以下であるX線回折パターンを示すTiとAlの複合窒化物層からなる硬質被覆層を物理蒸着することにより、高速切削加工ですぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具を提供することを開示している。 Further, Patent Document 3 has (a) an average layer thickness of 0.05 to 0.5 μm on the surface of a tungsten carbide base cemented carbide substrate or a titanium carbonitride cermet substrate, and a composition formula: (Ti 1− X Al X ) N (wherein X is 0.05 to 0.25 in atomic ratio), the highest peak appears on the (111) plane as measured by an X-ray diffractometer, and half of the highest peak (B) having an average layer thickness of 2 to 10 μm through a crystal orientation history layer composed of a Ti-based composite nitride layer showing an X-ray diffraction pattern with a valence width of 2θ of 0.8 degrees or less, and a composition formula : (Ti 1-Y Al Y ) N (wherein Y is 0.4 to 0.7 in atomic ratio), and the highest peak appears on the (111) plane as measured by an X-ray diffractometer. Ti and Al showing an X-ray diffraction pattern in which the half width of the highest peak is 2θ and 0.8 degrees or less It is disclosed that a surface-coated cemented carbide cutting tool exhibiting excellent wear resistance in high-speed cutting is provided by physically vapor-depositing a hard coating layer composed of a composite nitride layer.

別の従来被覆工具として、例えば、図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に工具基体を装入し、ヒーターで工具基体を、所定の温度に加熱した状態で、アノード電極と所定組成を有するAl−Ti合金がセットされたカソード電極(蒸発源)との間に、所定の条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して窒素雰囲気とし、一方、前記工具基体には、例えば、所定のバイアス電圧を印加した条件で、工具基体の表面に蒸発した粒子を蒸着させることにより(Al,Ti)N層からなる硬質被覆層が形成されることも知られている(例えば、特許文献4参照)。   As another conventional coated tool, for example, a tool base is loaded into an arc ion plating apparatus which is one of physical vapor deposition apparatuses schematically shown in FIG. 2, and the tool base is heated to a predetermined temperature with a heater. In this state, an arc discharge is generated under a predetermined condition between the anode electrode and a cathode electrode (evaporation source) on which an Al—Ti alloy having a predetermined composition is set, and at the same time, nitrogen gas is supplied as a reaction gas in the apparatus. Introduced into a nitrogen atmosphere, on the other hand, the tool base is hardened with an (Al, Ti) N layer by evaporating evaporated particles on the surface of the tool base, for example, under the condition that a predetermined bias voltage is applied. It is also known that a coating layer is formed (see, for example, Patent Document 4).

特開2010−236092号公報JP 2010-236092 A 国際公開2008/146727号International Publication No. 2008/146727 特開2003−117705号公報JP 2003-117705 A 特許第2644710号公報Japanese Patent No. 2644710

ところが、近年の切削加工装置の自動化はめざましく、一方で切削加工に対する省力化および省エネ化、さらには低コスト化の要求は強く、これに伴い、切削工具には被削材の材種にできるだけ影響を受けない汎用性、すなわち、できるだけ多くの材種の切削加工が可能な切削工具が求められる傾向にあるが、(Al,Ti)N層からなる被覆層を用いた従来被覆工具においては、これを、鋼や鋳鉄などの被削材の通常切削速度での切削加工に用いた場合には問題ないが、耐熱合金、ステンレス鋼、チタン合金等を、高い発熱を伴うとともに、切刃部への衝撃性および溶着性が著しい高速切削条件で切削した場合には、(Al,Ti)N層は高硬度な皮膜であるが、その硬度や高い残留応力のため、皮膜自体が崩壊したり、剥離したりする問題があり、この結果、切刃部における欠損(微少欠け)の発生が急激に増加し、これが原因で比較的短時間で使用寿命に至るのが現状である。   However, the automation of cutting machines in recent years has been remarkable. On the other hand, there is a strong demand for labor saving, energy saving, and cost reduction for cutting, and as a result, cutting tools have as much influence on the type of work material as possible. However, in conventional coated tools using a coating layer composed of (Al, Ti) N layers, there is a tendency to be versatile, that is, cutting tools capable of cutting as many grades as possible. Is used for cutting at normal cutting speeds of work materials such as steel and cast iron, but heat-resistant alloys, stainless steel, titanium alloys, etc. are accompanied by high heat generation and are applied to the cutting edge. When cutting under high-speed cutting conditions with remarkable impact and weldability, the (Al, Ti) N layer is a hard film, but the film itself collapses or peels off due to its hardness and high residual stress. Questions There are, as a result, occurs rapidly increased in defects in the cutting edge (small chipping), which is at present, leading to a relatively short time service life due.

例えば、特許文献1によれば、耐摩耗性と耐熱性をある程度向上させることは可能であるが、このようなAlM(ON)系硬質被覆層の問題として脆性を示すことから切削時の衝撃等により被膜自体が破壊したり剥離したりするという問題があった。
また、特許文献2による積層系硬質被覆層によっても、過酷な切削条件下においては積層構造を構成する個々の被膜自体の破壊や剥離を十分に防止することができず、結果として十分な硬質被覆層全体としての耐摩耗性を得ることができない場合があった。
そこで、本発明が解決しようとする技術的課題、すなわち、本発明の目的は、耐熱合金、ステンレス鋼、チタン合金等を、高熱発生を伴う高速切削条件で切削した場合においてもすぐれた耐熱性、耐摩耗性および耐溶着性を発揮し、長期に亘ってすぐれた切削性能を示す被覆工具を提供することである。
For example, according to Patent Document 1, although it is possible to improve the wear resistance and heat resistance to some extent, since the problem of such an AlM (ON) hard coating layer shows brittleness, impact during cutting, etc. This causes a problem that the coating itself is broken or peeled off.
Further, even with the hard coating layer of Patent Document 2, even under severe cutting conditions, the individual coatings constituting the laminated structure cannot be sufficiently prevented from being broken or peeled, resulting in a sufficient hard coating. In some cases, the wear resistance of the entire layer could not be obtained.
Therefore, the technical problem to be solved by the present invention, that is, the object of the present invention is to provide excellent heat resistance even when heat-resistant alloy, stainless steel, titanium alloy, etc. are cut under high-speed cutting conditions with high heat generation, An object of the present invention is to provide a coated tool that exhibits wear resistance and welding resistance and exhibits excellent cutting performance over a long period of time.

そこで、本発明者らは、前述のような観点から、特に耐熱合金、ステンレス鋼、チタン合金等を高温発熱が伴い、かつ切刃への溶着性が著しい被削材を高速切削条件で切削加工した場合に、硬質被覆層がすぐれた耐熱性、耐摩耗性および耐溶着性を併せ持つ被覆工具を開発すべく、鋭意研究を行った。   In view of the above, the inventors of the present invention cut high-temperature alloys, stainless steels, titanium alloys, etc., with high-temperature heat generation, and work materials with remarkable weldability to cutting edges under high-speed cutting conditions. In this case, intensive research was conducted to develop a coated tool having a hard coating layer with excellent heat resistance, wear resistance and welding resistance.

その結果、次のような新規な知見を得た。
(1)(Al,Ti)N層のAl含有割合を多くすることで、切削時に、Alが形成される際にAlの供給量が多くなり緻密なAlが形成されるため、切削中に熱の発生しやすい難削材などに対して、すぐれた耐熱性、耐摩耗性、耐溶着性を示す。
(2)(Al,Ti)N層は、Ti酸化物自身が非常に安定な物質であり、これがAl酸化物中に導入されることにより、Ti酸化物の高温安定性を向上させるという効果を奏する。さらにこれをさらに発展させて、AlとTiの合量に対するAlの含有割合aを制御してAlリッチなAlとTiの複合窒化物とすることで、各々の窒化物と比べ耐摩耗性が向上する。
(3)立方晶結晶構造のみからなる(Al,Ti)N層は、高硬度であり工具基体上に形成することで耐摩耗性を向上させることができるが、硬さゆえに欠損やチッピングが起こりやすい。
(4)立方晶の(111)面の最高ピークの半価幅が2θで0.6≦2θ≦1.1とすることで、結晶組織が粒状組織となり切削時に発生したクラックが粒界を伝搬しにくくなるため、前述したような立方晶結晶構造のみから構成される(Al,Ti)N層の欠点であった欠損やチッピングを抑制することができる。
(5)立方晶結晶構造における最密面は(111)面であるため、硬質被覆層が(111)面に配向した場合に高密度化し、より高硬度となる。そこで、配向性指数Tc(111)により(111)面への配向と硬度について評価したところTc(111)の値が、1.0〜2.0の時、特に切削性能にすぐれていることを見出した。
本発明の半価幅は、Cu−Kα線によるθ-2θ法で測定したX線回折線において、その(111)面の相対強度が、バックグラウンドからピーク高さの2分の1になる部位の回折線の幅とした。
As a result, the following new findings were obtained.
(1) By increasing the Al content ratio of the (Al, Ti) N layer, when Al 2 O 3 is formed during cutting, the amount of Al supplied is increased, and dense Al 2 O 3 is formed. Therefore, it exhibits excellent heat resistance, wear resistance, and welding resistance to difficult-to-cut materials that easily generate heat during cutting.
(2) The (Al, Ti) N layer is a material in which the Ti oxide itself is very stable, and when introduced into the Al oxide, the high temperature stability of the Ti oxide is improved. Play. By further developing this, the Al content ratio a relative to the total amount of Al and Ti is controlled to form an Al-rich composite nitride of Al and Ti, thereby improving wear resistance compared to each nitride. To do.
(3) The (Al, Ti) N layer consisting only of the cubic crystal structure has high hardness and can improve the wear resistance by being formed on the tool substrate, but the hardness causes defects and chipping. Cheap.
(4) When the half-width of the highest peak of the cubic (111) plane is 2θ and 0.6 ≦ 2θ ≦ 1.1, the crystal structure becomes a granular structure and cracks generated during cutting propagate through the grain boundary. Therefore, it is possible to suppress defects and chipping, which are defects of the (Al, Ti) N layer composed only of the cubic crystal structure as described above.
(5) Since the closest packed surface in the cubic crystal structure is the (111) plane, when the hard coating layer is oriented in the (111) plane, the density is increased and the hardness is increased. Therefore, when the orientation index and hardness on the (111) plane were evaluated by the orientation index Tc (111), when the value of Tc (111) is 1.0 to 2.0, it is particularly excellent in cutting performance. I found it.
The half width of the present invention is a site where the relative intensity of the (111) plane is half of the peak height from the background in the X-ray diffraction line measured by the θ-2θ method using Cu-Kα ray. The width of the diffraction line.

本発明は、このような知見に基づき、硬質被覆層を構成する(Al,Ti)N層の組成、結晶構造、配向性指数Tc(111)と切削性能との関係を詳しく解析した結果得られたものであって、具体的には、以下のような構成からなる。   The present invention is obtained as a result of detailed analysis of the relationship between the composition, crystal structure, orientation index Tc (111) and cutting performance of the (Al, Ti) N layer constituting the hard coating layer based on such knowledge. Specifically, it has the following configuration.

本発明は、前記研究結果に基づいてなされたものであって、
「(1) 炭化タングステン基超硬合金で構成された工具基体の表面に硬質被覆層を形成してなる表面被覆切削工具において、
(a)前記硬質被覆層が、前記工具基体表面に形成された0.5〜5.0μmの平均層厚を有し、かつ、組成式:(AlTi1−X)N(XはAlとTiの合量に占めるAlの含有割合を示し、原子比で、0.75≦X≦0.90である)を満足する立方晶結晶構造を有するAlとTiの複合窒化物層からなり
(b)前記立方晶構造を有するAlとTiの複合窒化物層の(111)面の回折強度の最高ピークの半価幅が2θで0.6≦2θ≦1.1、配向性指数Tc(111)が、1.0≦Tc(111)≦2.0である
ことを特徴とする表面被覆切削工具。」
を特徴とする。
The present invention has been made based on the research results,
“(1) In a surface-coated cutting tool in which a hard coating layer is formed on the surface of a tool base composed of a tungsten carbide-based cemented carbide,
(A) The hard coating layer has an average layer thickness of 0.5 to 5.0 μm formed on the surface of the tool base, and a composition formula: (Al X Ti 1-X ) N (X is Al and occupying the total amount of Ti indicates the content of Al, atomic ratio, made of a composite nitride layer of Al and Ti having a cubic crystal structure which satisfies a 0.75 ≦ X ≦ 0.90),
(B) The half-width of the highest peak of diffraction intensity of the (111) plane of the Al and Ti composite nitride layer having the cubic structure is 2θ, 0.6 ≦ 2θ ≦ 1.1, and the orientation index Tc ( 111) is 1.0 <= Tc (111) <= 2.0. The surface coating cutting tool characterized by the above-mentioned. "
It is characterized by.

次に、本発明の被覆工具の硬質被覆層について、より詳細に説明する。   Next, the hard coating layer of the coated tool of the present invention will be described in more detail.

(a)硬質被覆層の組成:
硬質被覆層を構成する(AlTi1−X)N層は、層全体に亘って均質な耐摩耗性と耐熱性および靭性を示すが、その構成成分であるTi成分によって、すぐれた高温強度を備えるようになり、また、Al成分によって、高温硬さと耐熱性を補完する。そのため、高温切削条件下でも低摩擦係数が維持され、すぐれた耐熱性を発揮するようになるが、AlとTiの合量に占めるAlの含有割合を示すX値(原子比、以下同じ)が0.65未満になると、高温強度を確保することができないために刃先の境界部分において異常損傷を生じ欠損を発生しやすくなるため長寿命を期待することはできず、一方、Alとの合量に占めるAlの含有割合を示すX値が0.90を越えると、相対的にTiの含有割合が減少し、高速切削加工で必要とされる高温強度を確保することができないばかりか、耐摩耗性も低下し、チッピング発生を防止することが困難になる。本発明では、実施例に基づいて、X値を0.75〜0.90と定めた。
(A) Composition of hard coating layer:
The (Al X Ti 1-X ) N layer constituting the hard coating layer exhibits uniform wear resistance, heat resistance and toughness throughout the entire layer, but has excellent high-temperature strength due to its constituent Ti component. In addition, the Al component supplements high-temperature hardness and heat resistance. For this reason, a low friction coefficient is maintained even under high temperature cutting conditions, and excellent heat resistance is exhibited. However, an X value (atomic ratio, the same applies hereinafter) indicating the Al content in the total amount of Al and Ti. If it is less than 0.65, high temperature strength cannot be ensured, and abnormal damage is caused at the boundary portion of the cutting edge and defects are likely to occur, so a long life cannot be expected. On the other hand, the total amount of Al When the X value indicating the Al content ratio exceeds 0.90, the Ti content ratio is relatively decreased, and not only the high-temperature strength required for high-speed cutting can be secured, but also wear resistance. It also becomes difficult to prevent the occurrence of chipping . In the present invention, the X value is determined to be 0.75 to 0.90 based on the example .

(b)硬質被覆層の平均層厚:
硬質被覆層の平均層厚が0.5μm未満になると、硬質被覆層を所定組成のものとして明確に形成することが困難であるばかりか、硬質被覆層の有する前述したすぐれた特性を発揮することができない。一方、硬質被覆層の平均層厚が5.0μmを超えると、粒子の粗大化による膜強度の低下により、耐欠損性、耐チッピング性が低下する。したがって、硬質被覆層の平均層厚を0.5〜5.0μmと定めた。
(B) Average layer thickness of the hard coating layer:
When the average thickness of the hard coating layer is less than 0.5 μm, it is difficult to clearly form the hard coating layer as having a predetermined composition, and the above-mentioned excellent characteristics of the hard coating layer are exhibited. I can't. On the other hand, when the average layer thickness of the hard coating layer exceeds 5.0 μm, the chipping resistance and chipping resistance are reduced due to the decrease in film strength due to the coarsening of particles. Therefore, the average thickness of the hard coating layer is set to 0.5 to 5.0 μm.

(d)AlとTiの複合窒化物の結晶構造および結晶配向性:
立方晶結晶構造のみからなる(Al,Ti)N層の複合窒化物は、高硬度であり工具基体上に形成することで耐摩耗性を向上させることができるが、硬さゆえに欠損やチッピングが起こりやすい。
ところが、X線回折パターンの(111)面における回折強度のピークの半価幅2θが0.6度以上1.1以下であるとき、結晶組織が微細粒状組織となり切削時に発生したクラックが伝搬しにくくなる。すなわち、X線回折パターンの(111)面における回折強度のピークの半価幅2θが0.6未満であると結晶組織が柱状結晶を形成し、切削時に発生したクラックが粒界を伝搬して硬質被覆層が破壊しやすくなるため好ましくない。一方、半価幅2θが1.1を超えると結晶構造が非晶質に近くなり、硬質被覆層の硬度が低下するため好ましくない。
そのため、X線回折パターンの(111)面における回折強度のピークの半価幅2θを0.6〜1.1と定めた。
(e)立方晶結晶構造を有するAlとTiの複合窒化物の配向性指数TC(111)値:
配向性指数TC(hkl)とは、以下の式(I)で定義されるものである。
式(I)
式(I)中、I(hkl)は測定された(hkl)面のピーク強度(回折強度)を示し、I(hkl)はJCPDSファイル(Joint Committee on Powder Diffraction Standards(粉末X線回折標準)ファイル;37−1140(Ti3AlN)、38−1420(TiN))による(hkl)面を構成するAlNとTiNの粉末回折強度の平均値であり、(hkl)は(111)、(200)、(220)、(311)、(331)、(420)、(422)、(511)の8面を示す。
組織係数TC(hkl)のうちの配向性指数TC(111)の値が1.0〜2.0である時に高密度化し、高度化する。その結果、硬質被覆層の耐摩耗性を向上させることができ、耐熱合金、ステンレス鋼、チタン合金などの、高温発生が伴い、かつ、切刃への溶着が激しい被削材の高速切削において、良好な耐摩耗性を示す。
(D) Crystal structure and crystal orientation of composite nitride of Al and Ti:
The (Al, Ti) N layer composite nitride consisting only of the cubic crystal structure has high hardness and can improve the wear resistance by being formed on the tool substrate. It is easy to happen.
However, when the half-value width 2θ of the diffraction intensity peak on the (111) plane of the X-ray diffraction pattern is 0.6 degrees or more and 1.1 or less, the crystal structure becomes a fine grain structure and cracks generated during cutting propagate. It becomes difficult. That is, when the half width 2θ of the diffraction intensity peak at the (111) plane of the X-ray diffraction pattern is less than 0.6, the crystal structure forms columnar crystals, and cracks generated during cutting propagate through the grain boundaries. This is not preferable because the hard coating layer easily breaks. On the other hand, if the half width 2θ exceeds 1.1, the crystal structure becomes nearly amorphous and the hardness of the hard coating layer is lowered, which is not preferable.
Therefore, the half-value width 2θ of the diffraction intensity peak on the (111) plane of the X-ray diffraction pattern is set to 0.6 to 1.1.
(E) Orientation index TC (111) value of composite nitride of Al and Ti having a cubic crystal structure:
The orientation index TC (hkl) is defined by the following formula (I).
Formula (I)
In formula (I), I (hkl) represents the peak intensity (diffraction intensity) of the measured (hkl) plane, and I 0 (hkl) represents a JCPDS file (Joint Committee on Powder Diffraction Standards (powder X-ray diffraction standard)). File; 37-1140 (Ti3AlN), 38-1420 (TiN)) is the average value of the powder diffraction intensities of AlN and TiN constituting the (hkl) plane, and (hkl) is (111), (200), ( 220, (311), (331), (420), (422), and (511).
When the value of the orientation index TC (111) in the texture coefficient TC (hkl) is 1.0 to 2.0, the density is increased and the level is increased. As a result, it is possible to improve the wear resistance of the hard coating layer, in high-speed cutting of work materials such as heat-resistant alloys, stainless steel, titanium alloys, etc., accompanied by high temperature generation and severe welding to the cutting edge, Good wear resistance.

なお、本発明の硬質被覆層を構成する(Al,Ti)N層は、例えば、次のような方法で形成することができる。
(a)ボンバード処理工程:
図1に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に工具基体を装入し、ヒーターで装置内を、例えば、500℃の温度に加熱した状態で、Crターゲットに100Aのアーク電流を流し、この状態で工具基体に−1000Vのバイアス電圧を印加して工具基体表面をCrボンバード洗浄する。従来被覆超硬工具の製造方法においては、上記超硬基体表面をAr ガスボンバード、Tiボンバード洗浄処理していたが、カソード電極として金属Crを用い、これとアノード電極との間のアーク放電で発生したCrイオンで上記超硬基体表面をCrボンバード洗浄処理すると、前記超硬基体表面に対する硬質被覆層である( A l ,Ti) N 層の密着性が、前記Arガスボンバード、T i ボンバード洗浄処理した場合に比して一段と向上するようになる。
(b)成膜工程:
アノード電極とカソード電極(蒸発源)としてのAl−Ti合金との間に、例えば、電流:100Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば、3.0Paの反応雰囲気とすると共に、工具基体に印加するバイアス電圧を、例えば、−70Vに下げて所定時間蒸着することにより、工具基体表面に、所定の目標組成および目標層厚を有し所定の配向性指数TC(111)を有する(Al,Ti)N層が形成される。
In addition, the (Al, Ti) N layer which comprises the hard coating layer of this invention can be formed by the following methods, for example.
(A) Bombard process:
A tool base is loaded into an arc ion plating apparatus which is one of physical vapor deposition apparatuses shown in the schematic explanatory diagram of FIG. 1, and the inside of the apparatus is heated to, for example, a temperature of 500 ° C. with a heater. In this state, a bias voltage of -1000 V is applied to the tool base to clean the surface of the tool base with Cr bombardment. In the conventional method for manufacturing a coated carbide tool, the surface of the above-mentioned carbide substrate was cleaned with Ar 2 gas bombardment and Ti bombardment, but metal Cr was used as the cathode electrode and generated by arc discharge between this and the anode electrode. When the surface of the cemented carbide substrate is subjected to a Cr bombardment cleaning process with the Cr ions, the adhesion of the (Al, Ti) N layer as a hard coating layer to the surface of the cemented carbide substrate is determined by the Ar gas bombardment and the Ti bombardment cleaning process. Compared with the case, it will improve further.
(B) Film formation process:
Between the anode electrode and the Al—Ti alloy as the cathode electrode (evaporation source), for example, an arc discharge is generated under the condition of current: 100 A, and simultaneously nitrogen gas is introduced into the apparatus as a reaction gas. The reaction atmosphere is set to 3.0 Pa, and the bias voltage applied to the tool base is reduced to, for example, -70 V and vapor deposition is performed for a predetermined time, whereby the tool base surface has a predetermined target composition and target layer thickness. An (Al, Ti) N layer having an orientation index TC (111) is formed.

本発明の被覆工具によれば、工具基体表面に形成された硬質被覆層が、0.5〜5.0μmの平均層厚を有し、かつ、組成式:(AlTi1−X)N(XはAlとTiの合量に占めるAlの含有割合を示し、原子比で、0.75≦X≦0.90である)を満足する立方晶結晶構造を有するAlとTiの複合窒化物層であり該複合窒化物層の(111)面の回折強度の最高ピークの半価幅が2θで0.6≦2θ≦1.1、配向性指数Tc(111)が、1.0≦Tc(111)≦2.0であることによって、AlとTiの複合窒化物層が奏するすぐれた耐摩耗性および耐熱性と、すぐれた高温硬さと耐熱性および靭性との相乗効果によって、硬質被覆層は、すぐれた高温硬さ、耐熱性、高温強度、耐摩耗性、潤滑性、耐衝撃性、耐欠損性、耐チッピング性を有することから、その結果、特に、耐熱合金、ステンレス鋼、チタン合金等の大きな発熱を伴い、かつ、高負荷のかかる高速切削加工であっても、長期に亘ってすぐれた耐摩耗性、耐熱性を発揮するものである。 According to the coated tool of the present invention, the hard coating layer formed on the surface of the tool substrate has an average layer thickness of 0.5 to 5.0 μm, and the composition formula: (Al X Ti 1-X ) N Al / Ti composite nitride having a cubic crystal structure satisfying (X represents the Al content in the total amount of Al and Ti, and the atomic ratio is 0.75 ≦ X ≦ 0.90) The half-width of the highest peak of diffraction intensity on the (111) plane of the composite nitride layer is 2θ, 0.6 ≦ 2θ ≦ 1.1, and the orientation index Tc (111) is 1.0 ≦ Tc. By being (111) ≦ 2.0, the hard coating layer is obtained by the synergistic effect of the excellent wear resistance and heat resistance exhibited by the composite nitride layer of Al and Ti and the excellent high temperature hardness, heat resistance and toughness. Excellent high temperature hardness, heat resistance, high temperature strength, wear resistance, lubricity, impact resistance, fracture resistance, As a result, it has excellent chipping resistance, especially with high heat resistance such as heat-resistant alloys, stainless steel, titanium alloys, etc. It exhibits heat resistance.

本発明被覆工具および比較被覆工具を構成する硬質被覆層を形成するのに用いたアークイオンプレーティング装置を示し、(a)は概略平面図、(b)は概略正面図である。The arc ion plating apparatus used for forming the hard coating layer which comprises this invention coated tool and a comparative coated tool is shown, (a) is a schematic plan view, (b) is a schematic front view. 従来技術を説明する従来のアークイオンプレーティング装置の概略説明図である。It is a schematic explanatory drawing of the conventional arc ion plating apparatus explaining a prior art.

つぎに、本発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、VC粉末、Cr粉末、、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、ISO規格・CNMG120408のインサート形状をもったWC基超硬合金製の工具基体A−1〜A−3を形成した。 As raw material powders, WC powder, VC powder, Cr 3 C 2 powder, and Co powder each having an average particle diameter of 1 to 3 μm are prepared, and these raw material powders are blended in the blending composition shown in Table 1. , 72 hours wet mixing with a ball mill, drying, press molding into a green compact at a pressure of 100 MPa, and sintering the green compact in a 6 Pa vacuum at a temperature of 1400 ° C. for 1 hour, After sintering, tool bases A-1 to A-3 made of a WC-based cemented carbide having an ISO standard / CNMG120408 insert shape were formed.

(a)ついで、前記工具基体A−1〜A−3のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部に沿って装着し、前記回転テーブルを挟んで対向する所定組成を有するCr、Al−Ti合金からなる2つのカソード電極(蒸発源)を配置し、
(b)まず、装置内を排気して0.1 Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、回転テーブル上で自転しながら回転する工具基体に−1000Vの直流バイアス電圧を印加し、かつCr(カソード電極)とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面をCrボンバード洗浄し、
(c)次に装置内雰囲気を0.5〜9.0Paの窒素雰囲気に保持して、回転テーブル上で自転しながら回転する工具基体に−20〜−150Vの直流バイアス電圧を印加し、カソード電極(蒸発源)であるAl−Ti合金電極とアノード電極との間に100Aの電流を流してアーク放電を発生させて、表2に示される目標組成、目標層厚で所定の配向性指数TC(111)を有する(Al,Ti)N層を蒸着形成し、本発明被覆工具としての表面被覆インサート(以下、本発明被覆インサートと云う)1〜をそれぞれ製造した。
(A) Next, each of the tool bases A-1 to A-3 is ultrasonically cleaned in acetone and dried, and the center axis on the rotary table in the arc ion plating apparatus shown in FIG. The two cathode electrodes (evaporation source) made of Cr, Al-Ti alloy, which are mounted along the outer peripheral portion at a predetermined distance in the radial direction from the outer periphery and have a predetermined composition facing each other across the rotary table,
(B) First, the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, and the inside of the apparatus is heated to 500 ° C. with a heater, and then rotated to a tool base that rotates while rotating on a rotary table. A DC bias voltage is applied and a current of 100 A is passed between Cr (cathode electrode) and the anode electrode to generate an arc discharge, thereby cleaning the tool base surface with Cr bombardment,
(C) Next, the atmosphere in the apparatus is maintained in a nitrogen atmosphere of 0.5 to 9.0 Pa, and a DC bias voltage of -20 to -150 V is applied to the rotating tool base while rotating on the rotary table, and the cathode A current of 100 A is passed between an Al-Ti alloy electrode, which is an electrode (evaporation source), and an anode electrode to generate an arc discharge, and a predetermined orientation index TC with a target composition and target layer thickness shown in Table 2 (Al, Ti) N layers having (111) were formed by vapor deposition, and surface coated inserts (hereinafter referred to as the present invention coated inserts) 1 to 5 as the present coated tools were produced.

また、比較の目的で、
(a)前記工具基体A−1〜A−3のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部に沿って装着し、前記回転テーブルを挟んで対向する所定組成を有するAl−Ti合金、Cr(カソード電極)を配置し、
(b)まず、装置内を排気して0.1 Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、回転テーブル上で自転しながら回転する工具基体に−1000Vの直流バイアス電圧を印加し、かつAl−Ti合金、もしくはCr(カソード電極)とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面をボンバード洗浄し、
(c)次に装置内雰囲気を0.5〜9.0Paの窒素雰囲気に保持して、回転テーブル上で自転しながら回転する工具基体に−20〜−150Vの直流バイアス電圧を印加し、カソード電極(蒸発源)であるAl−Ti合金電極とアノード電極との間に120Aの電流を流してアーク放電を発生させて、表3に示される目標組成、目標層厚の(Al,Ti)N層を蒸着形成し、比較被覆工具としての表面被覆インサート(以下、比較被覆インサートと云う)1〜5をそれぞれ製造した。各層の形成条件(バイアス電圧、酸素分圧、窒素分圧)を同じく表3に示す。
For comparison purposes,
(A) Each of the tool bases A-1 to A-3 is ultrasonically cleaned in acetone and dried, and is radiused from the central axis on the turntable in the arc ion plating apparatus shown in FIG. Attached along the outer periphery at a position separated by a predetermined distance in the direction, Al-Ti alloy having a predetermined composition and Cr (cathode electrode) facing each other across the rotary table,
(B) First, the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, and the inside of the apparatus is heated to 500 ° C. with a heater, and then rotated to a tool base that rotates while rotating on a rotary table. A DC bias voltage is applied, and an electric current of 100 A is passed between the Al—Ti alloy or Cr (cathode electrode) and the anode electrode to generate an arc discharge, thereby bombarding the tool base surface.
(C) Next, the atmosphere in the apparatus is maintained in a nitrogen atmosphere of 0.5 to 9.0 Pa, and a DC bias voltage of -20 to -150 V is applied to the rotating tool base while rotating on the rotary table, and the cathode An arc discharge is generated by flowing a current of 120 A between the Al—Ti alloy electrode, which is an electrode (evaporation source), and the anode electrode, and the target composition and target layer thickness (Al, Ti) N shown in Table 3 are generated. Layers were vapor-deposited to produce surface-coated inserts (hereinafter referred to as comparative coated inserts) 1 to 5 as comparative coated tools. The formation conditions (bias voltage, oxygen partial pressure, nitrogen partial pressure) of each layer are also shown in Table 3.

本発明被覆インサート1〜および比較被覆インサート1〜5について、以下の切削条件で切削試験を行った。
被削材:質量%で、Ni−19%Cr−18.5%Fe−5.2%Cd−5%Ta−3%Mo−0.9%Ti−0.5%Al−0.3%Si−0.2%Mn−0.05%Cu−0.04%Cの組成を有するNi基合金の丸棒、
切削速度: 60 m/min.、
切り込み: 2.0 mm、
送り: 0.25 mm/rev.、
切削時間: 5 分、
の条件(切削条件A)でのNi基合金の湿式連続高速高送り切削加工試験(通常の切削速度および送りは、それぞれ、35m/min.、0.15mm/rev.)、
被削材:JIS・SUS304(HB180)の丸棒、
切削速度: 150m/min.、
切り込み: 2.0mm、
送り: 0.3mm/rev.、
切削時間: 10分、
の条件(切削条件B)でのステンレス鋼の湿式連続高速切削加工試験(通常の切削速度および送りは、それぞれ、120m/min.、0.3mm/rev.)、
被削材:質量%で、Ti−6%Al−4%Vの組成を有するTi基合金の丸棒、
切削速度: 70m/min.、
切り込み: 2.0mm、
送り: 0.25mm/rev.、
切削時間: 10分、
の条件(切削条件C)でのTi基合金の湿式連続高速高送り切削加工試験(通常の切削速度、送りは、それぞれ、40m/min.、0.15 mm/rev.)、
を行い、いずれの高速切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表4に示した。
The present invention coated inserts 1-5 and Comparative coated inserts 1-5 were cutting test under the following cutting conditions.
Work Material: Ni-19% Cr-18.5% Fe-5.2% Cd-5% Ta-3% Mo-0.9% Ti-0.5% Al-0.3% by mass% Ni-based alloy round bar having a composition of Si-0.2% Mn-0.05% Cu-0.04% C;
Cutting speed: 60 m / min. ,
Cutting depth: 2.0 mm,
Feed: 0.25 mm / rev. ,
Cutting time: 5 minutes,
Wet continuous high-speed high-feed cutting test of Ni-based alloy under the following conditions (cutting condition A) (normal cutting speed and feed are 35 m / min. And 0.15 mm / rev., Respectively),
Work material: JIS / SUS304 (HB180) round bar,
Cutting speed: 150 m / min. ,
Cutting depth: 2.0mm,
Feed: 0.3 mm / rev. ,
Cutting time: 10 minutes,
Wet continuous high-speed cutting test of stainless steel under the following conditions (cutting condition B) (normal cutting speed and feed are 120 m / min. And 0.3 mm / rev., Respectively),
Work material: Round bar of Ti base alloy having a composition of Ti-6% Al-4% V in mass%,
Cutting speed: 70 m / min. ,
Cutting depth: 2.0mm,
Feed: 0.25 mm / rev. ,
Cutting time: 10 minutes,
Wet continuous high speed and high feed cutting test of Ti-based alloy under the conditions (cutting conditions C) of (normal cutting speed, feed rehabilitation, respectively, 40m / min., 0.15 mm / rev.),
The flank wear width of the cutting edge was measured in any high-speed cutting test. The measurement results are shown in Table 4.


実施例1と同様、いずれも1〜3μmの平均粒径を有するWC粉末、VC粉末、Cr粉末、およびCo粉末からなる原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、直径が13mmの工具基体形成用丸棒焼結体を形成し、さらに前記の丸棒焼結体から、研削加工にて、切刃部の直径×長さが10mm×22mmの寸法、並びにねじれ角30度の4枚刃スクエア形状をもったWC基超硬合金製の工具基体(エンドミル)A−1〜A−3をそれぞれ製造した。 As in Example 1, all of the raw material powders consisting of WC powder, VC powder, Cr 3 C 2 powder, and Co powder having an average particle diameter of 1 to 3 μm were blended in the blending composition shown in Table 1, and ball mill The mixture is wet-mixed for 72 hours and dried, and then pressed into a green compact at a pressure of 100 MPa. The green compact is sintered in a 6 Pa vacuum at a temperature of 1400 ° C. for 1 hour, and the diameter is A 13 mm round sintered body for forming a tool base is formed, and from the above round bar sintered body, the diameter x length of the cutting edge portion is 10 mm x 22 mm and the helix angle is 30 degrees by grinding. WC-base cemented carbide tool bases (end mills) A-1 to A-3 having a four-blade square shape were manufactured.

ついで、これらの工具基体(エンドミル)A−1〜A−3の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、実施例1と同一の条件で、表5に示される目標組成、目標層厚で所定の配向性指数TC(111)を有する(Al,Ti)N層からなる硬質被覆層を蒸着形成することにより、本発明被覆工具としての本発明表面被覆超硬製エンドミル(以下、本発明被覆エンドミルと云う)1〜をそれぞれ製造した。 Next, the surfaces of these tool bases (end mills) A-1 to A-3 were ultrasonically cleaned in acetone and dried, and then loaded into the arc ion plating apparatus shown in FIG. 1 by depositing a hard coating layer made of an (Al, Ti) N layer having a predetermined orientation index TC (111) with the target composition and target layer thickness shown in Table 5 under the same conditions as in Table 1. The surface-coated carbide end mills (hereinafter referred to as the present invention-coated end mills) 1 to 6 as the invention-coated tools were produced, respectively.

また、比較の目的で、前記工具基体(エンドミル)A−1〜A−3の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、実施例1と同様工程で、表6に示される形成条件(バイアス電圧、窒素分圧)を用いて、表6に示される目標組成、目標層厚の硬質被覆層を蒸着形成することにより、比較被覆工具としての表面被覆超硬製エンドミル(以下、比較被覆エンドミルと云う)1〜5をそれぞれ製造した。
つぎに、本発明被覆エンドミル1〜および比較被覆エンドミル1〜5について、
被削材−平面寸法:100mm×250mm、厚さ:50mmの、質量%で、Ni−19%Cr−14%Co−4.5%Mo−2.5%Ti−2%Fe−1.2%Al−0.7%Mn−0.4%Siの組成を有するNi基合金の板材、
切削速度: 60 m/min.、
溝深さ(切り込み): 2 mm、
テーブル送り: 140 mm/分、
の条件でのNi基合金の湿式高速溝切削加工試験(通常の切削速度および溝深さは、それぞれ、50m/min.および1.0mm)、
を行い、切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。この測定結果を表5、6にそれぞれ示した。
For comparison purposes, the surfaces of the tool bases (end mills) A-1 to A-3 are ultrasonically cleaned in acetone and dried, and then loaded into the arc ion plating apparatus shown in FIG. Then, in the same process as in Example 1, using the formation conditions (bias voltage, nitrogen partial pressure) shown in Table 6, the hard coating layer having the target composition and target thickness shown in Table 6 is formed by vapor deposition. Surface coated carbide end mills (hereinafter referred to as comparative coated end mills) 1 to 5 as comparative coated tools were manufactured, respectively.
Next, for the coated end mills 1 to 6 and the comparative coated end mills 1 to 5 of the present invention,
Work Material-Plane Dimensions: 100mm x 250mm, Thickness: 50mm, Mass%, Ni-19% Cr-14% Co-4.5% Mo-2.5% Ti-2% Fe-1.2 Ni-base alloy plate material having a composition of% Al-0.7% Mn-0.4% Si,
Cutting speed: 60 m / min. ,
Groove depth (cut): 2 mm,
Table feed: 140 mm / min,
Wet high-speed grooving test of Ni-based alloy under the conditions (normal cutting speed and groove depth are 50 m / min. And 1.0 mm, respectively),
The cutting groove length was measured until the flank wear width of the outer peripheral edge of the cutting edge reached 0.1 mm, which is a guide for the service life. The measurement results are shown in Tables 5 and 6, respectively.

実施例2で製造した直径が13mmの丸棒焼結体を用い、この丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ8mm×22mmの寸法、並びにねじれ角30度の2枚刃形状をもったWC基超硬合金製の工具基体(ドリル)A−1〜A−3をそれぞれ製造した。   The round bar sintered body with a diameter of 13 mm manufactured in Example 2 was used, and from this round bar sintered body, the dimensions of the groove forming part diameter × length were 8 mm × 22 mm and the twist angle by grinding. WC-base cemented carbide tool bases (drills) A-1 to A-3 having a 30-degree two-blade shape were produced, respectively.

ついで、これらの工具基体(ドリル)A−1〜A−3の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、実施例1と同一の条件で、表7に示される目標組成、目標層厚の(Al,Ti)N層からなり、所定の配向性指数(111)を有する硬質被覆層を蒸着形成することにより、本発明被覆工具としての本発明表面被覆超硬製ドリル(以下、本発明被覆ドリルと云う)1〜をそれぞれ製造した。 Next, the cutting blades of these tool bases (drills) A-1 to A-3 are subjected to honing, ultrasonically cleaned in acetone, and dried to the arc ion plating apparatus shown in FIG. The hard coating layer having a predetermined orientation index (111) consisting of the (Al, Ti) N layer having the target composition and target layer thickness shown in Table 7 was deposited under the same conditions as in Example 1. By forming, the surface-coated carbide drills (hereinafter referred to as the present invention-coated drills) 1 to 5 as the present invention-coated tools were produced, respectively.

また、比較の目的で、前記工具基体(ドリル)A−〜3の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、実施例1と同様工程で、表8に示される形成条件(バイアス電圧、窒素分圧)を用いて、表8に示される目標組成、目標層厚の(Al,Ti)N層からなる硬質被覆層を蒸着形成することにより、比較被覆工具としての表面被覆超硬製ドリル(以下、比較被覆ドリルと云う)1〜5をそれぞれ製造した。   For the purpose of comparison, the surface of the tool base (drill) A- to 3 is subjected to honing, ultrasonically cleaned in acetone, and dried to the arc ion plating apparatus shown in FIG. In the same process as in Example 1, using the formation conditions (bias voltage, nitrogen partial pressure) shown in Table 8, the (Al, Ti) N layer having the target composition and target layer thickness shown in Table 8 Surface-coated carbide drills (hereinafter referred to as comparative coated drills) 1 to 5 as comparative coated tools were manufactured by vapor deposition of hard coating layers made of

つぎに、本発明被覆ドリル1〜および比較被覆ドリル1〜5について、
被削材−平面寸法:100mm×250mm、厚さ:50mmの、質量%で、Ni−19%Cr−18.5%Fe−5.2%Cd−5%Ta−3%Mo−0.9%Ti−0.5%Al−0.3%Si−0.2%Mn−0.05%Cu−0.04%Cの組成を有するNi基合金の板材、
切削速度: 40 m/min.、
送り: 0.25 mm/rev、
穴深さ: 30 mm、
の条件でのNi基合金の湿式高速穴あけ切削加工試験(通常の切削速度および送りは、それぞれ、20m/min.および0.12mm/rev)、
を行い(水溶性切削油使用)、先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表7、8にそれぞれ示した。
Next, the present invention cover the drill 1-5 and Comparative coating Drill 1-5,
Work Material—Plane Size: 100 mm × 250 mm, Thickness: 50 mm, Mass%, Ni-19% Cr-18.5% Fe-5.2% Cd-5% Ta-3% Mo-0.9 Ni-based alloy plate having a composition of% Ti-0.5% Al-0.3% Si-0.2% Mn-0.05% Cu-0.04% C,
Cutting speed: 40 m / min. ,
Feed: 0.25 mm / rev,
Hole depth: 30 mm,
Wet high-speed drilling machining test of Ni-based alloy under the conditions (normal cutting speed and feed are 20 m / min. And 0.12 mm / rev, respectively),
(Using water-soluble cutting oil), and the number of drilling operations was measured until the flank wear width of the cutting edge surface reached 0.3 mm. The measurement results are shown in Tables 7 and 8, respectively.

この結果得られた本発明被覆工具としての本発明被覆インサート1〜、本発明被覆エンドミル1〜、および、本発明被覆ドリル1〜の硬質被覆層を構成する(Al,Ti)N層の組成、比較被覆工具としての比較被覆インサート1〜5、比較被覆エンドミル1〜5、および、比較被覆ドリル1〜5の硬質被覆層を構成する(Al,Ti)N層の組成を透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。
(Al, Ti) N layer constituting the hard coating layer of the present invention coated inserts 1 to 5 , the present invention coated end mills 1 to 6 , and the present invention coated drills 1 to 5 as the present coated tool obtained as a result. Composition, comparative coating inserts 1 to 5 as comparative coating tools, comparative coating end mills 1 to 5 and the composition of the (Al, Ti) N layer constituting the hard coating layer of comparative coating drills 1 to 5 When measured by an energy dispersive X-ray analysis method using a microscope, each showed substantially the same composition as the target composition.

また、前記硬質被覆層の平均層厚を走査型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に等しい平均層厚(5ヶ所の平均値)を示した。   Further, when the average layer thickness of the hard coating layer was subjected to cross-sectional measurement using a scanning electron microscope, all showed an average layer thickness (average value of five locations) substantially equal to the target layer thickness.

表2〜8に示される結果から、本発明被覆工具は、Crボンバード処理と工具基体の上に所定の組成、目標層厚で所定の結晶構造および配向性を有する(Al,Ti)N層によって、工具基体表面に強固に密着接合した状態で、耐欠損性、高温硬さ、高温強度が向上し、すぐれた耐熱性および耐摩耗性を有することによって、耐衝撃性、耐チッピング性、耐クラック進展性を向上させる結果、耐熱合金、ステンレス鋼、チタン合金等の高速切削加工でも、すぐれた耐欠損性が確保され、チッピングの発生なく、長期に亘ってすぐれた耐摩耗性を発揮する。
これに対して、硬質被覆層を構成する層のいずれかが本発明で規定した組成、結晶構造、配向性を逸脱する比較被覆工具においては、いずれも耐熱合金、ステンレス鋼、チタン合金の高速切削加工では、耐摩耗性が十分でなく、かつ皮膜の靭性が低下するために、切刃部にチッピングが発生するようになり、比較的短時間で使用寿命に至ることが明らかである。
From the results shown in Tables 2-8, the coated tool of the present invention is formed by (Al, Ti) N layer having a predetermined composition, target crystal thickness and orientation on the Cr bombardment and the tool substrate. With improved tightness, fracture resistance, high temperature hardness, high temperature strength, and excellent heat resistance and wear resistance in a tightly bonded state to the tool base surface, impact resistance, chipping resistance, crack resistance As a result of improving the progress, excellent fracture resistance is ensured even in high-speed cutting of heat-resistant alloys, stainless steel, titanium alloys, etc., and no chipping occurs, and excellent wear resistance is exhibited over a long period of time.
On the other hand, in the comparative coated tool in which any of the layers constituting the hard coating layer deviates from the composition, crystal structure, and orientation defined in the present invention, all are high-speed cutting of heat-resistant alloy, stainless steel, and titanium alloy. In the processing, since the wear resistance is not sufficient and the toughness of the film is lowered, it is apparent that chipping occurs in the cutting edge portion and the service life is reached in a relatively short time.

前述のように、本発明の被覆工具は、一般的な被削材の切削加工は勿論のこと、特に、耐熱合金、ステンレス鋼、チタン合金等の高速切削加工でもすぐれた耐摩耗性と耐欠損性を発揮し、長期に亘ってすぐれた切削性能を示すものであるから、切削加工装置の自動化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention is excellent in wear resistance and fracture resistance not only in cutting of general work materials, but also in high-speed cutting of heat-resistant alloys, stainless steel, titanium alloys, etc. Since it exhibits excellent cutting performance and exhibits excellent cutting performance over a long period of time, it can satisfactorily respond to automation of the cutting apparatus, labor saving and energy saving of cutting, and cost reduction.

Claims (1)

炭化タングステン基超硬合金で構成された工具基体の表面に硬質被覆層を形成してなる表面被覆切削工具において、
(a)前記硬質被覆層が、前記工具基体表面に形成された0.5〜5.0μmの平均層厚を有し、かつ、組成式:(AlTi1−X)N(XはAlとTiの合量に占めるAlの含有割合を示し、原子比で、0.75≦X≦0.90である)を満足する立方晶結晶構造を有するAlとTiの複合窒化物層からなり
(b)前記立方晶構造を有するAlとTiの複合窒化物層の立方晶の(111)面の回折強度の最高ピークの半価幅が2θで0.6≦2θ≦1.1、かつ配向性指数Tc(111)が、1.0≦Tc(111)≦2.0である
ことを特徴とする表面被覆切削工具。
In a surface-coated cutting tool formed by forming a hard coating layer on the surface of a tool base composed of a tungsten carbide-based cemented carbide,
(A) the hard coating layer, pre-SL has an average layer thickness of 0.5~5.0μm formed in the tool substrate surface, and the composition formula: (Al X Ti 1-X ) N (X is It indicates the content ratio of Al to total the total amount of Al and Ti, atomic ratio, made of a composite nitride layer of Al and Ti having a cubic crystal structure which satisfies a 0.75 ≦ X ≦ 0.90) ,
(B) The half-value width of the highest peak of the diffraction intensity of the cubic (111) plane of the composite nitride layer of Al and Ti having the cubic structure is 2θ, 0.6 ≦ 2θ ≦ 1.1, and orientation The surface-coated cutting tool, wherein the property index Tc (111) is 1.0 ≦ Tc (111) ≦ 2.0.
JP2014059160A 2013-11-07 2014-03-20 Surface coated cutting tool Active JP6331003B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014059160A JP6331003B2 (en) 2013-11-07 2014-03-20 Surface coated cutting tool

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013230785 2013-11-07
JP2013230785 2013-11-07
JP2014059160A JP6331003B2 (en) 2013-11-07 2014-03-20 Surface coated cutting tool

Publications (2)

Publication Number Publication Date
JP2015110256A JP2015110256A (en) 2015-06-18
JP6331003B2 true JP6331003B2 (en) 2018-05-30

Family

ID=53525574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014059160A Active JP6331003B2 (en) 2013-11-07 2014-03-20 Surface coated cutting tool

Country Status (1)

Country Link
JP (1) JP6331003B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3363568B1 (en) * 2014-06-06 2023-08-30 Sumitomo Electric Hardmetal Corp. Surface-coated tool and method of manufacturing same
CN107427931B (en) * 2015-03-27 2019-03-15 株式会社泰珂洛 Coated cutting tool
JP6638936B2 (en) * 2016-01-13 2020-02-05 住友電工ハードメタル株式会社 Surface coated cutting tool and method of manufacturing the same
JP6850995B2 (en) * 2017-03-28 2021-03-31 三菱マテリアル株式会社 Surface coating cutting tool
WO2024004873A1 (en) * 2022-06-27 2024-01-04 株式会社Moldino Coated cutting tool

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3931325B2 (en) * 2001-10-03 2007-06-13 三菱マテリアル株式会社 Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP4535249B2 (en) * 2004-07-01 2010-09-01 三菱マテリアル株式会社 Method of manufacturing a surface-coated cemented carbide cutting tool that exhibits high wear resistance with a hard coating layer in high-speed cutting
JP2006281363A (en) * 2005-03-31 2006-10-19 Kyocera Corp Surface coated member and surface coated cutting tool
SE531971C2 (en) * 2007-08-24 2009-09-15 Seco Tools Ab Coated cutting tool for general turning in hot-strength super alloys (HRSA)
EP2643498B1 (en) * 2010-11-23 2018-10-10 Seco Tools AB Coated cutting tool insert for metal machining that generates high temperatures
JP5839037B2 (en) * 2011-08-01 2016-01-06 三菱日立ツール株式会社 Surface-modified WC-based cemented carbide member, hard-coated WC-based cemented carbide member, and methods for producing the same

Also Published As

Publication number Publication date
JP2015110256A (en) 2015-06-18

Similar Documents

Publication Publication Date Title
JP6384341B2 (en) Surface coated cutting tool with excellent abnormal damage resistance and wear resistance
WO2015186503A1 (en) Surface-coated tool and method for manufacturing same
JP6011249B2 (en) Surface coated cutting tool
JP4748450B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6331003B2 (en) Surface coated cutting tool
JP5488824B2 (en) Surface-coated cutting tool that exhibits excellent peeling resistance and excellent wear resistance due to high-speed cutting of hard difficult-to-cut materials
WO2016084939A1 (en) Surface-coated cutting tool with excellent chipping resistance and wear resistance
JP6296295B2 (en) Surface coated cutting tool with excellent wear resistance
JP2016185589A (en) Surface-coated cutting tool
JP5979438B2 (en) Surface coated cutting tool
JP5783462B2 (en) Surface coated cutting tool
JP2011167794A (en) Surface coated cutting tool
JP5594569B2 (en) Surface coated cutting tool
JP5553013B2 (en) A surface-coated cutting tool that provides excellent peeling resistance and excellent chipping resistance in high-speed, high-feed cutting of hard difficult-to-cut materials.
JP2012139795A (en) Surface coated cutting tool with hard coating layer exhibiting superior resistance against peeling and chipping in high speed cutting of soft hard-to-cut material
JP5979437B2 (en) Surface coated cutting tool
JP2016165787A (en) Surface-coated cutting tool
JP6233588B2 (en) Surface coated cutting tool
JP2014188637A (en) Surface-coated cutting tool
JP6206289B2 (en) Surface coated cutting tool
JP5686254B2 (en) Surface coated cutting tool
JP5975342B2 (en) Surface coated cutting tool
JP5692636B2 (en) Surface coated cutting tool
JP5440352B2 (en) Surface coated cutting tool
JP2011189471A (en) Surface coated cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180410

R150 Certificate of patent or registration of utility model

Ref document number: 6331003

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150