JP5975342B2 - Surface coated cutting tool - Google Patents

Surface coated cutting tool Download PDF

Info

Publication number
JP5975342B2
JP5975342B2 JP2012240624A JP2012240624A JP5975342B2 JP 5975342 B2 JP5975342 B2 JP 5975342B2 JP 2012240624 A JP2012240624 A JP 2012240624A JP 2012240624 A JP2012240624 A JP 2012240624A JP 5975342 B2 JP5975342 B2 JP 5975342B2
Authority
JP
Japan
Prior art keywords
layer
cutting
young
modulus
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012240624A
Other languages
Japanese (ja)
Other versions
JP2014087915A (en
Inventor
大介 風見
大介 風見
英利 淺沼
英利 淺沼
智行 益野
智行 益野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2012240624A priority Critical patent/JP5975342B2/en
Publication of JP2014087915A publication Critical patent/JP2014087915A/en
Application granted granted Critical
Publication of JP5975342B2 publication Critical patent/JP5975342B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)
  • Drilling Tools (AREA)

Description

本発明は、表面被覆切削工具(以下、被覆工具という)に関し、さらに詳しくは、例えば、軟鋼、一般鋼、高硬度鋼等を、高熱発生を伴うとともに切刃部に対して大きな機械的負荷がかかる高速条件で切削加工した場合に、硬質被覆層がすぐれた耐欠損性と耐摩耗性を発揮する被覆工具に関するものである。   The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool). More specifically, for example, mild steel, general steel, high-hardness steel, and the like are accompanied by high heat generation and a large mechanical load is applied to the cutting edge portion. The present invention relates to a coated tool that exhibits excellent chipping resistance and wear resistance when a hard coating layer is cut under such high-speed conditions.

一般に、被覆工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるインサート、被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、またインサートを着脱自在に取り付けてソリッドタイプのエンドミルと同様に切削加工を行うインサート式エンドミル工具などが知られている。   In general, coated tools are used for turning and planing of work materials such as various types of steel and cast iron, inserts that can be used detachably attached to the tip of a cutting tool, drilling processing of work materials, etc. There are drills, miniature drills, solid type end mills used for chamfering, grooving, shoulder processing, etc. of the work material, etc. Also, inserts are detachably attached and cutting is performed in the same way as solid type end mills Insert type end mill tools are known.

近年、金属材料の切削加工においては高能率化の要求が高く、切削速度を高速化させることが求められている。このため、切削工具の基材表面を被覆する被膜に対して耐摩耗性や耐欠損性を向上させることが要求されている。
したがって、このような要求を満足するべく前記被膜の開発が種々行なわれている。例えば、特許文献1は、そのような被膜としてAlとCrとを含む特定組成の化合物を用いること(所謂AlCr系被膜)を提案している。
In recent years, there is a high demand for higher efficiency in cutting metal materials, and it is required to increase the cutting speed. For this reason, it is required to improve wear resistance and chipping resistance with respect to the coating film covering the substrate surface of the cutting tool.
Therefore, various developments of the coating have been made to satisfy such requirements. For example, Patent Document 1 proposes to use a compound having a specific composition containing Al and Cr as such a coating (so-called AlCr-based coating).

また、特許文献2は、表面被覆切削工具の工具基体上に形成された被膜を備えるものであって、この被膜が、第1超多層膜と第2超多層膜とを各々1以上交互に積層させてなる複合超多層膜を含み、前記第1超多層膜が、A1層とB層とを各々1層以上交互に積層することにより構成され、前記第2超多層膜が、A2層とC層とを各々1層以上交互に積層することにより構成され、前記A1層とA2層が、各々TiN、TiCN、TiAlNまたはTiAlCNのいずれかにより構成され、前記B層が、TiSiNまたはTiSiCNにより構成され、前記C層が、AlCrNまたはAlCrCNにより構成されることにより、耐熱性と耐摩耗性を維持しつつ、脆性の問題を低減した被膜を有する表面被覆切削工具を提供することを開示している。   Further, Patent Document 2 includes a coating formed on a tool base of a surface-coated cutting tool, and this coating is formed by alternately laminating one or more first super multi-layer films and two or more super multi-layer films. The first super multi-layer film is formed by alternately laminating one or more layers of A1 layers and B layers, and the second super multi-layer film is composed of A2 layers and C layers. Each of the A1 and A2 layers is composed of any one of TiN, TiCN, TiAlN, or TiAlCN, and the B layer is composed of TiSiN or TiSiCN. Disclosed is that the C layer is composed of AlCrN or AlCrCN to provide a surface-coated cutting tool having a coating with reduced brittleness problems while maintaining heat resistance and wear resistance. That.

さらに、別の従来被覆工具として、例えば、図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に工具基体を装入し、ヒーターで工具基体を、450℃の温度に加熱した状態で、アノード電極と所定組成を有するAl−Cr合金がセットされたカソード電極(蒸発源)との間に、電流:100Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、窒素雰囲気とし、一方、前記工具基体には、例えば、−200Vのバイアス電圧を印加した条件で、前記工具基体の表面に、蒸着することにより(Al,Cr)N層からなる硬質被覆層が製造されることも知られている(例えば、特許文献3参照)。   Further, as another conventional coated tool, for example, an arc ion plating apparatus, which is one of physical vapor deposition apparatuses shown schematically in FIG. 2, is loaded with a tool base, and the tool base is heated to 450 ° C. with a heater. While being heated to a temperature, an arc discharge is generated between the anode electrode and a cathode electrode (evaporation source) on which an Al—Cr alloy having a predetermined composition is set under the condition of current: 100 A and simultaneously reacts in the apparatus. Nitrogen gas is introduced as a gas to form a nitrogen atmosphere. On the other hand, the tool base is vapor-deposited on the surface of the tool base, for example, under the condition that a bias voltage of −200 V is applied (Al, Cr). It is also known that a hard coating layer composed of an N layer is manufactured (see, for example, Patent Document 3).

特表2006−524748号公報JP-T-2006-524748 特開2000−334606号公報JP 2000-334606 A 特開2000−271699号公報(第8頁[0055]段落)JP 2000-271699 A (page 8, paragraph [0055])

ところが、近年の切削加工装置の自動化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削工具には被削材の材種にできるだけ影響を受けない汎用性、すなわち、できるだけ多くの材種の切削加工が可能な切削工具が求められる傾向にあるが、(Al,Cr)N層からなる被覆層を用いた従来被覆工具においては、これを、鋼や鋳鉄などの被削材の通常切削速度での切削加工に用いた場合には問題ないが、軟鋼、一般鋼、高硬度鋼等を、高い発熱を伴うとともに、切刃部への衝撃性および溶着性が著しい高速切削条件で切削した場合には、(Al,Cr)N層は高硬度な皮膜であるが、その硬度や高い残留応力のため、皮膜自体が崩壊したり、剥離したりする問題があり、この結果、切刃部における欠損(微少欠け)の発生が急激に増加し、これが原因で比較的短時間で使用寿命に至るのが現状である。   However, the automation of cutting machines in recent years has been remarkable. On the other hand, there is a strong demand for labor saving, energy saving, and cost reduction for cutting work. There is a tendency to find a versatile tool that does not receive, that is, a cutting tool capable of cutting as many grades as possible. However, in a conventional coated tool using a coating layer composed of an (Al, Cr) N layer, this is not the case. Although there is no problem when used for cutting materials such as steel and cast iron at the normal cutting speed, mild steel, general steel, high hardness steel, etc. are accompanied by high heat generation and impact on the cutting edge. (Al, Cr) N layer is a high hardness film when it is cut under high-speed cutting conditions that have remarkable properties and weldability. However, due to its hardness and high residual stress, the film itself may collapse or peel off. Or this problem Fruit, occurs rapidly increased in defects in the cutting edge (small chipping), which is at present, leading to a relatively short time service life due.

例えば、特許文献1によれば、耐摩耗性と耐欠損性をある程度向上させることは可能であるが、このようなAlCr系被膜固有の問題として脆性を示すことから切削時の衝撃等により被膜自体が破壊したり剥離したりするという問題があった。
また、特許文献2による提案によっても、過酷な切削条件下においては被膜自体の破壊や剥離を十分に防止することができない場合があった。
そこで、本発明が解決しようとする技術的課題、すなわち、本発明の目的は、軟鋼、一般鋼、高硬度鋼等を、高熱発生を伴う高速切削条件で切削した場合においてもすぐれた耐摩耗性および耐欠損性を発揮する被覆工具を提供することである。
For example, according to Patent Document 1, although it is possible to improve the wear resistance and fracture resistance to some extent, since the problem inherent to such an AlCr-based film shows brittleness, the film itself due to impact during cutting or the like. There was a problem of breaking or peeling.
Further, even according to the proposal in Patent Document 2, there are cases where the coating itself cannot be sufficiently prevented from being broken or peeled off under severe cutting conditions.
Therefore, the technical problem to be solved by the present invention, that is, the object of the present invention is to provide excellent wear resistance even when mild steel, general steel, high hardness steel, etc. are cut under high-speed cutting conditions with high heat generation. And providing a coated tool exhibiting fracture resistance.

そこで、本発明者らは、前述のような観点から、特に軟鋼、一般鋼、高硬度鋼等の切削加工を、高速切削条件で切削加工した場合に、硬質被覆層がすぐれた耐摩耗性および耐欠損性を併せ持つ被覆工具を開発すべく、鋭意研究を行った。
その結果、
(1)(Al,Cr)N層は、高硬度な皮膜であり、硬質被覆層に適した材質ではあるが、従来の成膜方法で形成した場合、ヤング率が高くなり、これが原因で、皮膜の靭性が低下し、欠損の発生が増加する。
(2)本発明者らは、(Al,Cr)N層のヤング率は、膜形成時のバイアス電圧と反応雰囲気圧を調整することにより再現性よく、コントロールすることができることを見出したが、(Al,Cr)N層をすべてヤング率が低い層として形成すると、(Al,Cr)N層の有する高硬度であるという特性を生かすことができず、耐摩耗性が低下してしまう。
(3)そこで、本発明者らは、硬質被覆層を低ヤング率の(Al,Cr)N層からなる下部層と高ヤング率の(Al,Cr)N層からなる上部層とから構成することにより、(Al,Cr)N層の有する欠点をヤング率の異なる上部層と下部層とにより補完し合い、従来被覆層にないすぐれた切削性能を有する硬質被覆層を得ることができるという全く新規な知見を得た。
本発明は、このような知見に基づき、上部層、下部層の組成、結晶構造、層厚、ヤング率などと切削性能との関係を詳しく解析した結果得られたものであって、具体的には、以下のような構成からなる。
工具基体の表面に、硬質被覆層としてAlとCrとの合量に占めるCrの含有割合が25〜50原子%となるようにCr成分を含有させたAlとCrの立方晶の複合窒化物層であってヤング率aが150GPa≦a≦300GPaである低ヤング率層(以下、低ヤング率(Al,Cr)N層と示す)を下部層として0.5〜1.0μmの平均層厚で形成し、この上に、AlとCrとの合量に占めるCrの含有割合が25〜50原子%となるようにCr成分を含有させたAlとCrの立方晶の複合窒化物層であってヤング率bが500GPa≦b≦800GPaである高ヤング率層(以下、高ヤング率(Al,Cr)N層と示す)を上部層として0.5〜9.0μmの平均層厚で形成し、下部層の層厚≦上部層の層厚であって、さらに総層厚が1.0〜10μmである層を形成することにより、下部層の低ヤング率(Al,Cr)N層が、すぐれた密着性、耐欠損性、耐摩耗性を示し、上部層を構成する高ヤング率(Al,Cr)N層が、すぐれた耐摩耗性、耐熱性を示すと共に、低ヤング率(Al,Cr)N層と高ヤング率(Al,Cr)N層との接合により、すぐれた耐衝撃性、耐欠損性、耐クラック進展性が奏され、さらに、上部層と下部層がともに立方晶であることにより、層間の密着力が向上し、これらの相乗効果により、すぐれた耐欠損性と耐摩耗性を発揮されるという新規な知見を得て、かかる知見に基づき、本発明を完成するに至った。
In view of the above, the inventors of the present invention have excellent wear resistance and a hard coating layer, particularly when cutting of mild steel, general steel, high hardness steel and the like under high-speed cutting conditions. In order to develop a coated tool that has both fracture resistance, we conducted intensive research.
as a result,
(1) The (Al, Cr) N layer is a high-hardness film and is a material suitable for the hard coating layer. However, when formed by a conventional film formation method, the Young's modulus increases, and this is the cause. The toughness of the film decreases and the occurrence of defects increases.
(2) The present inventors have found that the Young's modulus of the (Al, Cr) N layer can be controlled with good reproducibility by adjusting the bias voltage and reaction atmosphere pressure during film formation. If the (Al, Cr) N layer is formed as a layer having a low Young's modulus, the high hardness of the (Al, Cr) N layer cannot be utilized, and the wear resistance is reduced.
(3) Therefore, the present inventors configure the hard coating layer from a lower layer made of a (Al, Cr) N layer having a low Young's modulus and an upper layer made of a (Al, Cr) N layer having a high Young's modulus. Therefore, the upper layer and the lower layer having different Young's moduli can complement the defects of the (Al, Cr) N layer, and a hard coating layer having excellent cutting performance that is not found in conventional coating layers can be obtained. New findings were obtained.
Based on such knowledge, the present invention was obtained as a result of detailed analysis of the relationship between the cutting performance and the composition of the upper layer, the lower layer, the crystal structure, the layer thickness, the Young's modulus, and the like. Has the following configuration.
Cubic compound nitride layer of Al and Cr containing Cr component so that the content ratio of Cr in the total amount of Al and Cr as a hard coating layer is 25 to 50 atomic% on the surface of the tool base. A low Young's modulus layer having a Young's modulus a of 150 GPa ≦ a ≦ 300 GPa (hereinafter referred to as a low Young's modulus (Al, Cr) N layer) is used as a lower layer with an average layer thickness of 0.5 to 1.0 μm. A composite nitride layer of Al and Cr that is formed and on which a Cr component is contained so that the Cr content in the total amount of Al and Cr is 25 to 50 atomic%; A high Young's modulus layer having a Young's modulus b of 500 GPa ≦ b ≦ 800 GPa (hereinafter referred to as a high Young's modulus (Al, Cr) N layer) is formed as an upper layer with an average layer thickness of 0.5 to 9.0 μm, Layer thickness of lower layer ≦ layer thickness of upper layer, and the total layer thickness is 1 By forming a layer having a thickness of 0.0 to 10 μm, the lower Young's modulus (Al, Cr) N layer of the lower layer exhibits excellent adhesion, fracture resistance, and abrasion resistance, and the high Young constituting the upper layer The rate (Al, Cr) N layer exhibits excellent wear resistance and heat resistance, and is excellent due to the bonding of the low Young's modulus (Al, Cr) N layer and the high Young's modulus (Al, Cr) N layer. Impact resistance, fracture resistance, and crack growth resistance are achieved. Furthermore, the upper and lower layers are both cubic, which improves the adhesion between the layers. The present inventors have obtained a new knowledge that it can exhibit the properties and wear resistance, and have completed the present invention based on such knowledge.

本発明は、前記研究結果に基づいてなされたものであって、
「(1) 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に硬質被覆層を形成してなる表面被覆切削工具において、
前記硬質被覆層が、
(a)0.5〜1.0μmの平均層厚を有し、かつ、
組成式:(Al1−xCr)N(ここで、xはAlとCrの合量に占めるCrの含有割合を示し、原子比で、0.25≦x≦0.50である)を満足し、ヤング率aが150GPa≦a≦300GPaであるAlとCrとの立方晶複合窒化物層からなる下部層と、
(b)0.5〜9.0μmの平均層厚を有し、かつ、
組成式:(Al1−yCr)N(ここで、yはAlとCrの合量に占めるCrの含有割合を示し、原子比で、0.25≦y≦0.50である)を満足し、ヤング率bが500GPa≦b≦800GPaであるAlとCrとの立方晶複合窒化物層からなる上部層、
前記(a)および(b)の条件を満たす下部層、上部層の積層構造からなることを特徴とする表面被覆切削工具。」
を特徴とする。
The present invention has been made based on the research results,
“(1) In a surface-coated cutting tool in which a hard coating layer is formed on the surface of a tool base composed of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
The hard coating layer is
(A) having an average layer thickness of 0.5 to 1.0 μm, and
Composition formula: (Al 1-x Cr x ) N (where x represents the content ratio of Cr in the total amount of Al and Cr, and the atomic ratio is 0.25 ≦ x ≦ 0.50) A lower layer consisting of a cubic composite nitride layer of Al and Cr satisfying and having a Young's modulus a of 150 GPa ≦ a ≦ 300 GPa;
(B) having an average layer thickness of 0.5 to 9.0 μm, and
Composition formula: (Al 1-y Cr y ) N (where y represents the content ratio of Cr in the total amount of Al and Cr, and the atomic ratio is 0.25 ≦ y ≦ 0.50) An upper layer consisting of a cubic composite nitride layer of Al and Cr satisfying and having a Young's modulus b of 500 GPa ≦ b ≦ 800 GPa,
A surface-coated cutting tool comprising a laminated structure of a lower layer and an upper layer satisfying the conditions (a) and (b). "
It is characterized by.

次に、本発明の被覆工具の硬質被覆層の構成層に関し、前記の通りに数値限定した理由を説明する。   Next, the reason why the numerical values of the constituent layers of the hard coating layer of the coated tool of the present invention are limited as described above will be described.

(a)下部層を構成する(Al,Cr)N層の組成、結晶構造、平均層厚およびヤング率:
下部層を構成する(Al,Cr)N層の構成成分であるAl成分には硬質被覆層における高温硬さを向上させ、同Cr成分には高温強度を向上させる作用があるが、Crの含有割合を示すx値がAlとの合量に占める割合(原子比、以下同じ)で0.25未満になると、相対的にAlの含有割合が増加することによって、結晶構造が立方晶から六方晶へ変化し、皮膜硬さが低下するので、少なくとも所定の皮膜硬さを保持するためには、その結晶構造を立方晶とする必要がある。そのためには、Crの含有割合を示すx値がAlとの合量に占める割合(原子比、以下同じ)で0.25以上とする必要がある。一方、Crの含有割合を示すx値が同0.50を越えると、相対的にAlの含有割合が減少し、高速切削加工で必要とされる高温硬さを確保することができず、チッピングの発生を防止することが困難になることからx値を0.25〜0.50と定めた。
(A) Composition, crystal structure, average layer thickness and Young's modulus of (Al, Cr) N layer constituting the lower layer:
The Al component, which is a component of the (Al, Cr) N layer that constitutes the lower layer, improves the high temperature hardness of the hard coating layer, and the Cr component has the effect of improving the high temperature strength. When the x value indicating the ratio is less than 0.25 in the ratio with respect to the total amount of Al (atomic ratio, the same applies hereinafter), the content ratio of Al is relatively increased, so that the crystal structure is changed from cubic to hexagonal. In order to maintain at least a predetermined film hardness, the crystal structure needs to be cubic. For this purpose, the x value indicating the Cr content ratio needs to be 0.25 or more in terms of the ratio of the total amount with Al (atomic ratio, the same shall apply hereinafter). On the other hand, when the x value indicating the Cr content ratio exceeds 0.50, the Al content ratio is relatively reduced, and the high temperature hardness required for high-speed cutting cannot be ensured. The x value was determined to be 0.25 to 0.50 because it would be difficult to prevent the occurrence of.

また、下部層を構成する(Al,Cr)N層の平均層厚が0.5μm未満では、自身の持つすぐれた耐摩耗性を長期に亘って発揮するには不十分であり、一方、その平均層厚が1.0μmを越えると、前記の高速切削では切刃部にチッピングが発生し易くなることから、その平均層厚を0.5〜1.0μmと定めた。
さらに、下部層を構成する(Al,Cr)N層のヤング率が150〜300GPaである低ヤング率とすることで外部応力が加わった際の皮膜の変形量が増加し、クラック等の発生を阻止するため、耐欠損性を向上させることができる。ここで、前記ヤング率を150〜300GPaに限定した理由は、ヤング率を150GPaよりも下げることは、耐摩耗性の低下が著しいため好ましくなく、一方、300GPaより大きくなると皮膜靭性の低下による耐欠損性が低下してしまうため、皮膜の崩壊や剥離が起こりやすくなる。したがって、下部層の奏する機能をより効果的に発揮させるために、ヤング率を150〜300GPaに限定した。
In addition, if the average layer thickness of the (Al, Cr) N layer constituting the lower layer is less than 0.5 μm, it is insufficient to exhibit its excellent wear resistance over a long period of time, If the average layer thickness exceeds 1.0 μm, chipping is likely to occur at the cutting edge portion in the high-speed cutting, so the average layer thickness was determined to be 0.5 to 1.0 μm.
Furthermore, the amount of deformation of the coating when external stress is applied increases by causing the Young's modulus of the (Al, Cr) N layer constituting the lower layer to be 150 to 300 GPa, thereby causing cracks and the like. In order to prevent, chipping resistance can be improved. Here, the reason why the Young's modulus is limited to 150 to 300 GPa is that lowering the Young's modulus to less than 150 GPa is not preferable because the wear resistance is remarkably lowered. Since the properties are reduced, the coating is likely to collapse or peel off. Therefore, the Young's modulus is limited to 150 to 300 GPa in order to more effectively exert the function performed by the lower layer.

(b)上部層を構成する(Al,Cr)N層の組成、結晶構造、平均層厚およびヤング率:
上部層を構成する(Al,Cr)N層は、すぐれた耐酸化性、耐熱性を有するとともに、その構成成分であるCr成分によって、すぐれた潤滑性を備えるようになり、また、Al成分によって、高温硬さを補完する。そのため、高温切削条件下でも低摩擦係数が維持され、すぐれた耐熱性を発揮するようになるが、Crの含有割合を示すy値がAlとの合量に占める割合(原子比、以下同じ)で0.25未満になると、潤滑性を確保することができないために耐溶着性を期待することはできず、一方、Crの含有割合を示すy値が0.50を越えると、相対的にAlの含有割合が減少し、高速切削加工で必要とされる高温硬さ確保することができないばかりか、耐摩耗性も低下し、チッピング発生を防止することが困難になることから、y値を0.25〜0.50(原子比、以下同じ)と定めた。さらに、上部層を構成する(Al,Cr)N層の結晶構造を下部層と同じ立方晶とすることにより、層間の密着性が向上し、層間剥離による寿命劣化の問題が解消される。
(B) Composition, crystal structure, average layer thickness and Young's modulus of the (Al, Cr) N layer constituting the upper layer:
The (Al, Cr) N layer constituting the upper layer has excellent oxidation resistance and heat resistance, and also has excellent lubricity due to its constituent Cr component, and also by the Al component. Complements the high temperature hardness. Therefore, a low coefficient of friction is maintained even under high temperature cutting conditions, and excellent heat resistance is exhibited. However, the ratio of the y value indicating the Cr content to the total amount with Al (atomic ratio, the same applies hereinafter) If it is less than 0.25, the lubricity cannot be ensured, so that welding resistance cannot be expected. On the other hand, if the y value indicating the Cr content exceeds 0.50, Since the content ratio of Al is reduced and the high-temperature hardness required for high-speed cutting cannot be ensured, the wear resistance is also lowered, and it becomes difficult to prevent chipping. 0.25 to 0.50 (atomic ratio, the same applies hereinafter). Furthermore, by making the crystal structure of the (Al, Cr) N layer constituting the upper layer the same cubic crystal as that of the lower layer, the adhesion between the layers is improved, and the problem of deterioration of life due to delamination is eliminated.

また、上部層を構成する(Al,Cr)N層の平均層厚が0.5μm未満では、自身のもつすぐれた耐酸化性、耐熱性を長期に亘って発揮するには不十分であり、一方、その平均層厚が9.0μmを越えると、高速切削では、使用時の衝撃により膜が自己破壊し、切刃部にチッピングが発生し易くなることから、その平均層厚を0.5〜9.0μmと定めた。 Further, if the average layer thickness of the (Al, Cr) N layer constituting the upper layer is less than 0.5 μm, it is insufficient to exhibit its excellent oxidation resistance and heat resistance over a long period of time. On the other hand, if the average layer thickness exceeds 9.0 μm, the film will self-destruct due to impact during use in high-speed cutting, and chipping is likely to occur at the cutting edge. ˜9.0 μm.

さらに、上部層を構成する(Al,Cr)N層のヤング率が500〜800GPaである高ヤング率とすることで耐摩耗性および耐熱性を向上させることができ、前記下部層の奏する効果と相俟って、すぐれた耐摩耗性および耐欠損性を発揮させることができる。ここで、前記ヤング率を500〜800GPaに限定した理由は、ヤング率が500GPaよりも小さいと、耐摩耗性および耐熱性を向上させるという作用が十分に奏されず、一方、800GPaより大きくなると皮膜の崩壊が発生しやすくため、チッピングが起こりやすくなる。したがって、硬質被覆層の耐摩耗性および耐欠損性を向上させる観点から、上部層のヤング率を500〜800GPaに限定した。   Furthermore, by setting the Young's modulus of the (Al, Cr) N layer constituting the upper layer to a high Young's modulus of 500 to 800 GPa, the wear resistance and heat resistance can be improved, and the effect of the lower layer can be achieved. In combination, excellent wear resistance and fracture resistance can be exhibited. Here, the reason why the Young's modulus is limited to 500 to 800 GPa is that when the Young's modulus is less than 500 GPa, the effect of improving the wear resistance and heat resistance is not sufficiently achieved, while when it is greater than 800 GPa Since chipping is likely to occur, chipping is likely to occur. Therefore, the Young's modulus of the upper layer is limited to 500 to 800 GPa from the viewpoint of improving the wear resistance and fracture resistance of the hard coating layer.

なお、本発明の硬質被覆層を構成する下部層を構成する(Al,Cr)N層および上部層を構成する(Al,Cr)N層は、例えば、図1に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に工具基体を装入し、ヒーターで装置内を、例えば、500℃の温度に加熱した状態で、装置内に所定組成の2種類のAl−Cr合金からなるカソード電極(蒸発源)を配置し、アノード電極とカソード電極(蒸発源)としてのAl−Cr合金との間に、例えば、電流:100Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば、0.8Paの反応雰囲気とし、一方、工具基体には、例えば、−20Vのバイアス電圧を印加した条件で所定時間蒸着することにより、所定の目標層厚、ヤング率の下部層である(Al,Cr)層が形成される。ついで、アノード電極とカソード電極(蒸発源)としてのAl−Cr合金との間に、例えば、電流:100Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば、3.0Paの反応雰囲気とし、工具基体には、例えば、−100Vのバイアス電圧を印加した条件で所定時間蒸着することにより、下部層の上に、所定の目標層厚で所定のヤング率の上部層である(Al,Cr)N層が形成される。このようにして、2層の積層構造からなる、本発明の硬質被覆層を蒸着形成することができる。すなわち、反応雰囲気圧と工具基体に印加するバイアス電圧を調整することで、(Al,Cr)N層のヤング率をコントロールできる。 The (Al, Cr) N layer constituting the lower layer and the (Al, Cr) N layer constituting the upper layer constituting the hard coating layer of the present invention are, for example, physically shown in a schematic explanatory diagram in FIG. A tool base is placed in an arc ion plating apparatus, which is a kind of vapor deposition apparatus, and the inside of the apparatus is heated to a temperature of, for example, 500 ° C. with a heater. A cathode electrode (evaporation source) made of an alloy is arranged, and an arc discharge is generated between the anode electrode and the Al—Cr alloy as the cathode electrode (evaporation source), for example, at a current of 100 A, and at the same time in the apparatus Nitrogen gas is introduced as a reaction gas to form a reaction atmosphere of, for example, 0.8 Pa. On the other hand, the tool base is vapor-deposited for a predetermined time under the condition that, for example, a bias voltage of −20 V is applied. Layer thickness, which is the lower layer of the Young's modulus (Al, Cr) layer is formed. Next, between the anode electrode and the Al—Cr alloy as the cathode electrode (evaporation source), for example, arc discharge is generated under the condition of current: 100 A, and at the same time, nitrogen gas is introduced into the apparatus as a reaction gas, For example, the reaction atmosphere is 3.0 Pa, and the tool substrate is vapor-deposited for a predetermined time, for example, under the condition that a bias voltage of −100 V is applied, thereby forming a predetermined Young's modulus with a predetermined target layer thickness on the lower layer. An (Al, Cr) N layer is formed as an upper layer. In this manner, the hard coating layer of the present invention having a two-layer structure can be formed by vapor deposition. That is, the Young's modulus of the (Al, Cr) N layer can be controlled by adjusting the reaction atmospheric pressure and the bias voltage applied to the tool substrate.

本発明の被覆工具の一態様によれば、硬質被覆層が低ヤング率(Al,Cr)N層からなる下部層と高ヤング率(Al,Cr)N層からなる上部層との積層構造であって、下部層に比べ上部層を構成する(Al,Cr)N層のヤング率を高ヤング率とすることによって、硬質被覆層は、すぐれた高温硬さ、耐熱性、高温強度、耐摩耗性、潤滑性、耐衝撃性を有することから、全体として、すぐれた高温硬さ、耐熱性、高温強度等に加え、すぐれた耐欠損性、耐溶着性を備えたものとなり、その結果、特に、軟鋼、一般鋼、高硬度鋼等の大きな発熱を伴い、かつ、高負荷のかかる高速切削加工であっても、長期に亘ってすぐれた耐摩耗性、耐欠損性を発揮するものである。   According to one aspect of the coated tool of the present invention, the hard coating layer has a laminated structure of a lower layer made of a low Young's modulus (Al, Cr) N layer and an upper layer made of a high Young's modulus (Al, Cr) N layer. In addition, by making the Young's modulus of the (Al, Cr) N layer constituting the upper layer higher than that of the lower layer, the hard coating layer has excellent high temperature hardness, heat resistance, high temperature strength, wear resistance. As a whole, in addition to excellent high-temperature hardness, heat resistance, high-temperature strength, etc., it has excellent fracture resistance and welding resistance. Even in high-speed cutting with mild heat generation, such as mild steel, general steel, and high-hardness steel, and with high loads, it exhibits excellent wear resistance and fracture resistance over a long period of time.

本発明被覆工具および比較被覆工具を構成する硬質被覆層を形成するのに用いたアークイオンプレーティング装置を示し、(a)は概略平面図、(b)は概略正面図である。The arc ion plating apparatus used for forming the hard coating layer which comprises this invention coated tool and a comparative coated tool is shown, (a) is a schematic plan view, (b) is a schematic front view. 従来技術を説明するための従来のアークイオンプレーティング装置の概略説明図である。It is a schematic explanatory drawing of the conventional arc ion plating apparatus for demonstrating a prior art. 本発明被覆工具を構成する硬質被覆層の縦断面膜構成図を示す。The longitudinal cross-sectional film | membrane structural view of the hard coating layer which comprises this invention coated tool is shown.

つぎに、本発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3 μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、ISO規格・CNMG120408のインサート形状をもったWC基超硬合金製の工具基体A−1〜A−10を形成した。 As raw material powders, WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are used. Prepared, these raw material powders were blended in the blending composition shown in Table 1, wet mixed by a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. Sintered in vacuum at a temperature of 1400 ° C. for 1 hour. After sintering, tool bases A-1 to A-10 made of WC-base cemented carbide with ISO standard / CNMG120408 insert shape are formed. did.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比で、TiC/TiN=50/50)粉末、MoC粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、ISO規格・CNMG120408のインサート形状をもったTiCN基サーメット製の工具基体B−1〜B−6を形成した。 In addition, as raw material powders, TiCN (mass ratio, TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC, all having an average particle diameter of 0.5 to 2 μm. Prepare powder, Co powder, and Ni powder, mix these raw material powders into the composition shown in Table 2, wet mix for 24 hours with a ball mill, dry, and press-mold into green compact at 100 MPa pressure Then, this green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, a tool substrate B made of TiCN base cermet having an ISO standard / CNMG120408 insert shape was used. -1 to B-6 were formed.

(a)ついで、前記工具基体A−1〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部に沿って装着し、前記回転テーブルを挟んで対向する2つのカソード電極(蒸発源)を配置し、第1の電極として、下部層形成用の所定組成を有するAl−Cr合金、第2の電極として、上部層形成用の所定組成を有するAl−Cr合金を配置し、
(b)まず、装置内を排気して0.1 Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、回転テーブル上で自転しながら回転する工具基体に−1000Vの直流バイアス電圧を印加し、かつAl−Cr合金(カソード電極)とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面をボンバード洗浄し、
(c)次に、装置内に反応ガスとして窒素ガスを導入して0.5〜1.0Paの反応雰囲気とすると共に、回転テーブル上で自転しながら回転する工具基体に−20〜−30Vの直流バイアス電圧を印加し、かつ、カソード電極の前記Al−Cr合金とアノード電極との間に120Aの電流を流してアーク放電を発生させ、工具基体の表面に、表3に示される目標組成、目標層厚の下部層としての(Al,Cr)N層を蒸着形成した後、カソード電極(蒸発源)とアノード電極との間のアーク放電を停止し、
(d)引き続いて装置内雰囲気を3.0〜9.0Paの窒素雰囲気に保持して、回転テーブル上で自転しながら回転する工具基体に−50〜−150Vの直流バイアス電圧を印加し、カソード電極(蒸発源)であるAl−Cr合金電極とアノード電極との間に120Aの電流を流してアーク放電を発生させて、表3に示される目標組成、目標層厚の上部層としての(Al,Cr)N層を蒸着形成した。
前記(a)〜(d)により工具基体上に硬質被覆層を蒸着形成し、本発明被覆工具としての表面被覆インサート(以下、本発明被覆インサートと云う)1〜16をそれぞれ製造した。
各層のヤング率の制御は、 前述のようにバイアス電圧と窒素分圧を制御することにより行った。すなわち、下部層の形成は、低バイアス電圧、低窒素分圧、上部層の形成は、高バイアス電圧、高窒素分圧とすることで、下部層の(Al,Cr)N層のヤング率を低ヤング率に、上部層の(Al,Cr)N層のヤング率を高ヤング率に制御することができる。各層の形成条件(バイアス電圧、窒素分圧)を同じく表3に示す。
また、ヤング率の測定は、ナノインデンター(MTSシステムズ社の商標)を用いてナノインデンテーション法による測定を行った。さらに本発明被覆インサート1〜16の上部層および下部層について、X線回折装置を用いて、その結晶構造を特定した。それらの結果を同じく表3に示した。
(A) Next, each of the tool bases A-1 to A-10 and B-1 to B-6 is ultrasonically cleaned in acetone and dried, and then the arc ion plating apparatus shown in FIG. A first electrode is provided with two cathode electrodes (evaporation sources) that are mounted along the outer peripheral portion at a predetermined distance in the radial direction from the central axis on the inner rotary table, and that face each other across the rotary table. As an Al-Cr alloy having a predetermined composition for forming the lower layer, and as the second electrode, an Al-Cr alloy having a predetermined composition for forming the upper layer is disposed,
(B) First, the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, and the inside of the apparatus is heated to 500 ° C. with a heater, and then rotated to a tool base that rotates while rotating on a rotary table. A DC bias voltage is applied, and an arc discharge is generated by flowing a current of 100 A between the Al—Cr alloy (cathode electrode) and the anode electrode, and the tool base surface is bombard washed.
(C) Next, nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 0.5 to 1.0 Pa, and a tool base that rotates while rotating on a rotary table is set to −20 to −30 V. A direct current bias voltage was applied and a current of 120 A was passed between the Al—Cr alloy of the cathode electrode and the anode electrode to generate an arc discharge, and the target composition shown in Table 3 was formed on the surface of the tool base. After vapor-depositing the (Al, Cr) N layer as the lower layer of the target layer thickness, the arc discharge between the cathode electrode (evaporation source) and the anode electrode is stopped,
(D) Subsequently, the atmosphere in the apparatus is maintained in a nitrogen atmosphere of 3.0 to 9.0 Pa, and a DC bias voltage of −50 to −150 V is applied to the tool base that rotates while rotating on the rotary table, and the cathode A current of 120 A is passed between an Al—Cr alloy electrode, which is an electrode (evaporation source), and an anode electrode to generate an arc discharge, and (Al) as an upper layer of the target composition and target layer thickness shown in Table 3 , Cr) N layer was deposited.
A hard coating layer was formed on the tool substrate by vapor deposition according to the above (a) to (d), and surface coated inserts (hereinafter referred to as the present coated inserts) 1 to 16 as the coated tools of the present invention were produced.
The Young's modulus of each layer was controlled by controlling the bias voltage and the nitrogen partial pressure as described above. That is, the lower layer is formed with a low bias voltage and a low nitrogen partial pressure, and the upper layer is formed with a high bias voltage and a high nitrogen partial pressure, so that the Young's modulus of the lower (Al, Cr) N layer is reduced. The Young's modulus of the (Al, Cr) N layer of the upper layer can be controlled to a high Young's modulus with a low Young's modulus. The formation conditions (bias voltage, nitrogen partial pressure) of each layer are also shown in Table 3.
The Young's modulus was measured by a nanoindentation method using a nanoindenter (trademark of MTS Systems). Furthermore, about the upper layer and lower layer of this invention covering insert 1-16, the crystal structure was specified using the X-ray-diffraction apparatus. The results are also shown in Table 3.

また、比較の目的で、これら工具基体A−1〜A−10およびB−1〜B−6を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ、図1に示されるアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として所定組成の2種類のAl−Cr合金を装着し、まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記工具基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極のAl−Cr合金とアノード電極との間に150Aの電流を流してアーク放電を発生させ、もって工具基体表面を前記Al−Cr合金でボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して0.5〜9.0Paの反応雰囲気とすると共に、前記工具基体に印加するバイアス電圧を−20〜−500Vに設定し、所定組成の各カソード電極とアノード電極との間にアーク放電を発生させ、工具基体の表面に、表4に示される目標組成、目標層厚の下部層としての(Al,Cr)N層を蒸着形成した後、カソード電極(蒸発源)とアノード電極との間のアーク放電を停止し、引き続いて装置内雰囲気を0.5〜9.0の窒素雰囲気に保持して、回転テーブル上で自転しながら回転する工具基体に−20〜−500Vの直流バイアス電圧を印加し、カソード電極(蒸発源)であるAl−Cr合金電極と、アノード電極との間に120Aの電流を流してアーク放電を発生させて、表4に示される目標組成、目標層厚の上部層としての(Al,Cr)N層を蒸着形成した。もって工具基体A−1〜A−10およびB−1〜B−6のそれぞれの表面に、表4に示される目標組成および目標層厚の(Al,Cr)N層からなる下部層と、(Al,Cr)N層で構成された上部層とからなる従来硬質被覆層を蒸着形成することにより、比較被覆工具としての表面被覆インサート(以下、比較被覆インサートと云う)1〜8をそれぞれ製造した。各層の形成条件(バイアス電圧、窒素分圧)を同じく表4に示す。さらに、比較被覆インサート1〜8の下部層と上部層について、前記と同様の方法によりヤング率および結晶構造を測定した。それらの結果を同じく表4に示した。   For comparison purposes, these tool bases A-1 to A-10 and B-1 to B-6 were ultrasonically cleaned in acetone and dried, respectively, and the arc ion plate shown in FIG. The device is loaded with two kinds of Al-Cr alloys having a predetermined composition as cathode electrodes (evaporation sources). First, the device is evacuated and kept at a vacuum of 0.1 Pa or less with a heater. After heating the inside to 500 ° C., a DC bias voltage of −1000 V is applied to the tool base, and a current of 150 A is passed between the Al—Cr alloy of the cathode electrode and the anode electrode to generate arc discharge. Accordingly, the surface of the tool base is bombarded with the Al—Cr alloy, and then nitrogen gas is introduced into the apparatus as a reaction gas to form a reaction atmosphere of 0.5 to 9.0 Pa and applied to the tool base. The bias voltage is set to -20 to -500 V, arc discharge is generated between each cathode electrode and anode electrode having a predetermined composition, and the target composition and target layer thickness shown in Table 4 are formed on the surface of the tool base. After vapor-depositing the (Al, Cr) N layer as the lower layer, the arc discharge between the cathode electrode (evaporation source) and the anode electrode was stopped, and subsequently the atmosphere in the apparatus was 0.5 to 9.0. A DC bias voltage of −20 to −500 V is applied to a tool base that rotates while rotating on a rotary table while being held in a nitrogen atmosphere, and an Al—Cr alloy electrode that is a cathode electrode (evaporation source), an anode electrode, A current of 120 A was passed between them to generate arc discharge, and an (Al, Cr) N layer as an upper layer having a target composition and a target layer thickness shown in Table 4 was formed by evaporation. Therefore, on each surface of the tool bases A-1 to A-10 and B-1 to B-6, a lower layer composed of an (Al, Cr) N layer having a target composition and a target layer thickness shown in Table 4; Surface coated inserts (hereinafter referred to as comparative coated inserts) 1 to 8 as comparative coated tools were manufactured by vapor-depositing a conventional hard coated layer composed of an upper layer composed of an Al, Cr) N layer, respectively. . The formation conditions (bias voltage, nitrogen partial pressure) of each layer are also shown in Table 4. Further, the Young's modulus and crystal structure of the lower and upper layers of the comparative coated inserts 1 to 8 were measured by the same method as described above. The results are also shown in Table 4.

つぎに、前記各種の被覆インサートを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆インサート1〜16および比較被覆インサート1〜8について、
被削材:JIS・S10C(HB200)の丸棒、
切削速度: 240m/min.、
切り込み: 2.5mm、
送り: 0.35mm/rev.、
切削時間: 8分、
の条件(切削条件A)での炭素鋼の乾式高速高送り切削加工試験(通常の切削速度および送りは、それぞれ、200m/min.、0.3mm/rev.)、
被削材:JIS・SCM415(HB280)の丸棒、
切削速度: 220m/min.、
切り込み: 2.5 mm、
送り: 0.3mm/rev.、
切削時間: 6分、
の条件(切削条件B)での合金鋼の乾式高速高切込切削加工試験(通常の切削速度および切込は、それぞれ、190m/min.、2.0mm.)、
被削材:JIS・SCM420H(HRC61)の丸棒、
切削速度: 70m/min.、
切り込み: 0.3mm、
送り: 0.15mm/rev.、
切削時間: 4分、
の条件(切削条件C)での焼入鋼の乾式高速高切込・高送り切削加工試験(通常の切削速度、切込および送りは、それぞれ、60 m/min.、0.2mm.、0.1mm/rev.)、
を行い、いずれの高速切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表5、表6に示した。
Next, with the various coated inserts, all of the present invention coated inserts 1 to 16 and comparative coated inserts 1 to 8 in a state where all the tool inserts are screwed to the tip of the tool steel tool with a fixing jig.
Work material: JIS S10C (HB200) round bar,
Cutting speed: 240 m / min. ,
Cutting depth: 2.5mm,
Feed: 0.35 mm / rev. ,
Cutting time: 8 minutes,
Of carbon steel under the above conditions (cutting conditions A) (normal cutting speed and feed are 200 m / min. And 0.3 mm / rev., Respectively),
Work material: JIS / SCM415 (HB280) round bar,
Cutting speed: 220 m / min. ,
Cutting depth: 2.5 mm,
Feed: 0.3 mm / rev. ,
Cutting time: 6 minutes,
Dry high-speed high-cut cutting test of alloy steel under the following conditions (cutting condition B) (normal cutting speed and cutting are 190 m / min. And 2.0 mm., Respectively),
Work material: JIS / SCM420H (HRC61) round bar,
Cutting speed: 70 m / min. ,
Cutting depth: 0.3mm,
Feed: 0.15 mm / rev. ,
Cutting time: 4 minutes
(High cutting speed, cutting and feed are 60 m / min., 0.2 mm., 0 respectively) .1 mm / rev.),
The flank wear width of the cutting edge was measured in any high-speed cutting test. The measurement results are shown in Tables 5 and 6.

実施例1と同様、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr粉末、TiN粉末、TaN粉末、およびCo粉末からなる原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、直径が13mmの工具基体形成用丸棒焼結体を形成し、さらに前記の丸棒焼結体から、研削加工にて、切刃部の直径×長さが10mm×22mmの寸法、並びにねじれ角30度の4枚刃スクエア形状をもったWC基超硬合金製の工具基体(エンドミル)A−1〜A−10をそれぞれ製造した。 As in Example 1, all of WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder having an average particle diameter of 1 to 3 μm. The raw material powder consisting of the above is blended in the composition shown in Table 1, wet mixed for 72 hours with a ball mill, dried, and then pressed into a green compact at a pressure of 100 MPa. , Temperature: Sintered at 1400 ° C. for 1 hour to form a round tool sintered body for forming a tool base having a diameter of 13 mm. WC-base cemented carbide tool bases (end mills) A-1 to A-10 having a four-blade square shape with a diameter x length of 10 mm x 22 mm and a twist angle of 30 degrees were manufactured, respectively. .

ついで、これらの工具基体(エンドミル)A−1〜A−10の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、実施例1と同一の条件で、表7に示される目標組成、目標層厚、ヤング率、結晶構造の(Al,Cr)N層からなる下部層と、表7に示される目標組成、目標層厚、ヤング率、結晶構造の(Al,Cr)N層からなる上部層とから構成される硬質被覆層を蒸着形成することにより、本発明被覆工具としての本発明表面被覆超硬製エンドミル(以下、本発明被覆エンドミルと云う)1〜10をそれぞれ製造した。   Then, the surfaces of these tool bases (end mills) A-1 to A-10 were ultrasonically cleaned in acetone and dried, and then charged into the arc ion plating apparatus shown in FIG. 1 under the same conditions, the target composition, target layer thickness, Young's modulus shown in Table 7, the lower layer consisting of (Al, Cr) N layer of crystal structure, and the target composition, target layer thickness shown in Table 7, A hard coating layer composed of an upper layer composed of a Young's modulus and a crystal structure (Al, Cr) N layer is formed by vapor deposition, so that the surface coated carbide end mill of the present invention as the coated tool of the present invention (hereinafter referred to as this Invention-coated end mills) 1 to 10 were produced.

また、比較の目的で、前記工具基体(エンドミル)A−1〜A−5の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、実施例1と同様工程で、表8に示される形成条件(バイアス電圧、窒素分圧)を用いて、表8に示される目標組成、目標層厚、ヤング率、結晶構造の(Al,Cr)N層からなる下部層と、同じく表8に示される目標組成、目標層厚、ヤング率、結晶構造の(Al,Cr)N層からなる上部層とから構成される硬質被覆層を蒸着形成することにより、比較被覆工具としての表面被覆超硬製エンドミル(以下、比較被覆エンドミルと云う)1〜5をそれぞれ製造した。
つぎに、本発明被覆エンドミル1〜10および比較被覆エンドミル1〜5について、
被削材−平面寸法:100 mm×250 mm、厚さ:50 mmのJIS・S10C(HB200)の板材、
切削速度: 250m/min.、
溝深さ(切り込み):5.0mm、
テーブル送り: 1600mm/min.、
の条件(切削条件D)での炭素鋼の乾式高速溝切削加工試験(通常の切削速度およびテーブル送りは、それぞれ、200m/min.、1400mm/min.)、
被削材−平面寸法:100mm×250 mm、厚さ:50mmのJIS・SCM415(HB280)の板材、
切削速度: 180m/min.、
溝深さ(切り込み):3.0mm、
テーブル送り: 1500mm/min.、
の条件(切削条件E)での合金鋼の乾式高速溝切削加工試験(通常の切削速度およびテーブル送りは、それぞれ、150m/min.、1400mm/min.)、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SCM420H(HRC61)の板材、
切削速度: 70m/min.、
溝深さ(切り込み):1.0mm、
テーブル送り: 230mm/min.、
の条件(切削条件F)での焼入鋼の乾式高速溝切削加工試験(通常の切削速度およびテーブル送りは、それぞれ、50m/min.、210mm/min.)、
をそれぞれ行い、いずれの高速溝切削加工試験でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。この測定結果を同じく表7、表8にそれぞれ示した。
For comparison purposes, the surfaces of the tool bases (end mills) A-1 to A-5 are ultrasonically cleaned in acetone and dried, and then loaded into the arc ion plating apparatus shown in FIG. In the same process as in Example 1, using the formation conditions (bias voltage, nitrogen partial pressure) shown in Table 8, the target composition, target layer thickness, Young's modulus, crystal structure (Al, A hard coating layer composed of a lower layer made of a Cr) N layer and an upper layer made of an (Al, Cr) N layer having the target composition, target layer thickness, Young's modulus, and crystal structure shown in Table 8 is also deposited. By forming, surface coated carbide end mills (hereinafter referred to as comparative coated end mills) 1 to 5 as comparative coated tools were manufactured, respectively.
Next, for the present invention coated end mills 1-10 and comparative coated end mills 1-5,
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / S10C (HB200) plate material,
Cutting speed: 250 m / min. ,
Groove depth (cut): 5.0 mm,
Table feed: 1600 mm / min. ,
Carbon steel dry high-speed grooving test under normal conditions (cutting conditions D) (normal cutting speed and table feed are 200 m / min. And 1400 mm / min., Respectively),
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SCM415 (HB280) plate material,
Cutting speed: 180 m / min. ,
Groove depth (cut): 3.0 mm,
Table feed: 1500 mm / min. ,
(High cutting speed and table feed are 150 m / min. And 1400 mm / min., Respectively)
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SCM420H (HRC61) plate material,
Cutting speed: 70 m / min. ,
Groove depth (cut): 1.0 mm,
Table feed: 230 mm / min. ,
(High cutting speed and table feed are 50 m / min and 210 mm / min, respectively)
In each high-speed groove cutting test, the cutting groove length was measured until the flank wear width of the outer peripheral edge of the cutting edge reached 0.1 mm, which is a guide for the service life. The measurement results are also shown in Tables 7 and 8, respectively.

実施例2で製造した直径が13mmの丸棒焼結体を用い、この丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ8mm×22mmの寸法、並びにねじれ角30度の2枚刃形状をもったWC基超硬合金製の工具基体(ドリル)A−1〜A−10をそれぞれ製造した。   The round bar sintered body with a diameter of 13 mm manufactured in Example 2 was used, and from this round bar sintered body, the dimensions of the groove forming part diameter × length were 8 mm × 22 mm and the twist angle by grinding. WC-base cemented carbide tool bases (drills) A-1 to A-10 having a 30-degree two-blade shape were produced, respectively.

ついで、これらの工具基体(ドリル)A−1〜A−10の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、実施例1と同一の条件で、表9に示される目標組成、目標層厚およびヤング率の(Al,Cr)N層からなる下部層と、表9に示される目標組成、目標層厚およびヤング率の(Al,Cr)N層からなる上部層とからなる硬質被覆層を蒸着形成することにより、本発明被覆工具としての本発明表面被覆超硬製ドリル(以下、本発明被覆ドリルと云う)1〜10をそれぞれ製造した。   Next, the cutting edges of these tool bases (drills) A-1 to A-10 are subjected to honing, ultrasonically cleaned in acetone, and dried to the arc ion plating apparatus shown in FIG. Under the same conditions as in Example 1, the lower layer composed of the (Al, Cr) N layer having the target composition, target layer thickness and Young's modulus shown in Table 9, and the target composition and target shown in Table 9 The surface coated carbide drill of the present invention as the coated tool of the present invention (hereinafter, coated by the present invention) is formed by vapor-depositing a hard coating layer comprising an upper layer composed of an (Al, Cr) N layer having a layer thickness and Young's modulus. (Referred to as drills) 1 to 10 were produced.

また、比較の目的で、前記工具基体(ドリル)A−1〜A−5の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、実施例1と同様の工程で、表10に示される形成条件(バイアス電圧、窒素分圧)を用いて、表10に示される目標組成、目標層厚、ヤング率および結晶構造の(Al,Cr)N層からなる下部層と、表10に示される目標組成、目標層厚、ヤング率および結晶構造の(Al,Cr)N層からなる上部層とからなる上部層からなる硬質被覆層を蒸着形成することにより、本比較被覆工具としての表面被覆超硬製ドリル(以下、比較被覆ドリルと云う)1〜5をそれぞれ製造した。   For comparison purposes, the surfaces of the tool bases (drills) A-1 to A-5 are subjected to honing, ultrasonically cleaned in acetone and dried, and the arc ion plate shown in FIG. In the same process as in Example 1, using the formation conditions (bias voltage, nitrogen partial pressure) shown in Table 10, the target composition, target layer thickness, Young's modulus and An upper layer composed of a lower layer composed of an (Al, Cr) N layer having a crystal structure and an upper layer composed of an (Al, Cr) N layer having a target composition, target layer thickness, Young's modulus and crystal structure shown in Table 10 Surface-coated cemented carbide drills (hereinafter referred to as comparative coated drills) 1 to 5 as this comparative coated tool were produced by vapor-depositing a hard coating layer made of

つぎに、本発明被覆ドリル1〜10および比較被覆ドリル1〜5について、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・S10C(HB200)の板材、
切削速度: 130m/min.、
送り: 0.35mm/rev.、
穴深さ: 6mm、
の条件(切削条件G)での炭素鋼の乾式高速穴あけ加工試験(通常の切削速度および送りは、それぞれ、100m/min.、0.3mm/rev.)、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SCM415(HB280)の板材、
切削速度: 100m/min.、
送り: 0.3mm/rev.、
穴深さ: 6mm、
の条件(切削条件H)での合金鋼の乾式高速穴あけ加工試験(通常の切削速度および送りは、それぞれ、80m/min.、0.25mm/rev.)、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SCM420H(HRC61)の板材、
切削速度: 35m/min.、
送り: 0.15mm/rev.、
穴深さ: 6mm、
の条件(切削条件I)での焼入鋼の乾式高速穴あけ加工試験(通常の切削速度および送りは、それぞれ、30m/min.、0.12mm/rev.)、
をそれぞれ行い、いずれの乾式高速穴あけ加工試験でも先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を同じく表9、表10にそれぞれ示した。
Next, for the present invention coated drills 1-10 and comparative coated drills 1-5,
Work material-Plane dimension: 100 mm x 250 mm, thickness: 50 mm JIS S10C (HB200) plate material,
Cutting speed: 130 m / min. ,
Feed: 0.35 mm / rev. ,
Hole depth: 6mm,
Carbon steel dry high speed drilling test under normal conditions (cutting condition G) (normal cutting speed and feed are 100 m / min. And 0.3 mm / rev., Respectively),
Work material-Plane dimension: 100 mm x 250 mm, thickness: 50 mm JIS / SCM415 (HB280) plate material,
Cutting speed: 100 m / min. ,
Feed: 0.3 mm / rev. ,
Hole depth: 6mm,
(High cutting speed and feed are 80 m / min. And 0.25 mm / rev., Respectively)
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SCM420H (HRC61) plate material,
Cutting speed: 35 m / min. ,
Feed: 0.15 mm / rev. ,
Hole depth: 6mm,
(High cutting speed and feed rate are 30 m / min. And 0.12 mm / rev., Respectively)
In each dry high-speed drilling test, the number of drilling processes until the flank wear width of the tip cutting edge surface reached 0.3 mm was measured. The measurement results are also shown in Table 9 and Table 10, respectively.

この結果得られた本発明被覆工具としての本発明被覆インサート1〜16、本発明被覆エンドミル1〜10、および本発明被覆ドリル1〜10の硬質被覆層を構成する下部層である(Al,Cr)N層と上部層である(Al,Cr)N層の組成、並びに、比較被覆工具としての比較被覆インサート1〜8、比較被覆エンドミル1〜5、および比較被覆ドリル1〜5の下部層である(Al,Cr)N層と上部層である(Al,Cr)N層からなる硬質被覆層の組成を、透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。   The resulting coated inserts 1 to 16 as the present invention coated tool, the present coated end mills 1 to 10 and the lower layer constituting the hard coating layer of the present coated drill 1 to 10 (Al, Cr) ) The composition of the N layer and the upper layer (Al, Cr) N layer, and the lower layer of the comparative coated inserts 1-8, comparative coated end mills 1-5, and comparative coated drills 1-5 as comparative coated tools The composition of a hard coating layer composed of an (Al, Cr) N layer and an upper (Al, Cr) N layer was measured by energy dispersive X-ray analysis using a transmission electron microscope. The composition was substantially the same as the composition.

また、前記硬質被覆層を構成する各層の平均層厚を走査型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に等しい平均層厚(5ヶ所の平均値)を示した。   Moreover, when the average layer thickness of each layer which comprises the said hard coating layer was cross-sectional measured using the scanning electron microscope, all showed the average layer thickness (average value of five places) substantially equal to target layer thickness. .

表3〜10に示される結果から、本発明被覆工具は、所定の組成、目標層厚の下部層、上部層からなる硬質被覆層を形成した結果、下部層である低ヤング率の(Al,Cr)N層が工具基体表面に強固に密着接合した状態で、すぐれた耐欠損性、高温硬さ、高温強度を有するとともに、上部層である(Al,Cr)N層のヤング率が高ヤング率であることによって、耐摩耗性が向上し、ヤング率が異なる上部層と下部層との積層による相乗効果によって、耐衝撃性、耐チッピング性、耐クラック進展性を向上させる結果、軟鋼、一般鋼、高硬度鋼等の高速切削加工でも、すぐれた耐欠損性が確保され、チッピングの発生なく、長期に亘ってすぐれた耐摩耗性を発揮する。これに対して、硬質被覆層として、下部層、上部層の積層構造を有するものの、下部層および上部層の(Al,Cr)N層のヤング率が制御されていないか、各層の組成、目標層厚が本発明で規定する範囲を逸脱する比較被覆工具においては、いずれも軟鋼、一般鋼、高硬度鋼等の高速切削加工では、耐摩耗性が十分でなく、かつ皮膜の靭性が低下するために、切刃部にチッピングが発生するようになり、比較的短時間で使用寿命に至ることが明らかである。   From the results shown in Tables 3 to 10, the coated tool of the present invention formed a hard coating layer composed of a lower layer and an upper layer having a predetermined composition and target layer thickness, and as a result, a lower Young's modulus (Al, In a state where the Cr) N layer is tightly bonded to the surface of the tool base, it has excellent fracture resistance, high temperature hardness, high temperature strength, and the Young's modulus of the upper (Al, Cr) N layer is high. Rate improves wear resistance and improves the impact resistance, chipping resistance, and crack progress resistance by the synergistic effect of stacking the upper and lower layers with different Young's modulus. Even in high-speed cutting of steel, high hardness steel, etc., excellent fracture resistance is ensured, and chipping does not occur, and excellent wear resistance is exhibited over a long period of time. On the other hand, although it has a laminated structure of the lower layer and the upper layer as the hard coating layer, the Young's modulus of the (Al, Cr) N layer of the lower layer and the upper layer is not controlled, the composition of each layer, the target In comparative coated tools whose layer thickness deviates from the range specified in the present invention, wear resistance is not sufficient and high film toughness is reduced in high-speed cutting such as mild steel, general steel, and hard steel. For this reason, chipping occurs at the cutting edge, and it is clear that the service life is reached in a relatively short time.

前述のように、本発明の被覆工具は、一般的な被削材の切削加工は勿論のこと、特に、軟鋼、一般鋼、高硬度鋼等の高速切削加工でもすぐれた耐摩耗性と耐欠損性を発揮し、長期に亘ってすぐれた切削性能を示すものであるから、切削加工装置の自動化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention is excellent in wear resistance and fracture resistance not only in cutting of general work materials, but also in high-speed cutting of soft steel, general steel, hard steel, etc. Since it exhibits excellent cutting performance and exhibits excellent cutting performance over a long period of time, it can satisfactorily respond to automation of the cutting apparatus, labor saving and energy saving of cutting, and cost reduction.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に硬質被覆層を形成してなる表面被覆切削工具において、
前記硬質被覆層が、
(a)0.5〜1.0μmの平均層厚を有し、かつ、
組成式:(Al1−xCr)N(ここで、xはAlとCrの合量に占めるCrの含有割合を示し、原子比で、0.25≦x≦0.50である)を満足し、ヤング率aが150GPa≦a≦300GPaであるAlとCrとの立方晶複合窒化物層からなる下部層と、
(b)0.5〜9.0μmの平均層厚を有し、かつ、
組成式:(Al1−yCr)N(ここで、yはAlとCrの合量に占めるCrの含有割合を示し、原子比で、0.25≦y≦0.50である)を満足し、ヤング率bが500GPa≦b≦800GPaであるAlとCrとの立方晶複合窒化物層からなる上部層、
前記(a)および(b)の条件を満たす下部層、上部層の積層構造からなることを特徴とする表面被覆切削工具。
In a surface-coated cutting tool formed by forming a hard coating layer on the surface of a tool base composed of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
The hard coating layer is
(A) having an average layer thickness of 0.5 to 1.0 μm, and
Composition formula: (Al 1-x Cr x ) N (where x represents the content ratio of Cr in the total amount of Al and Cr, and the atomic ratio is 0.25 ≦ x ≦ 0.50) A lower layer consisting of a cubic composite nitride layer of Al and Cr satisfying and having a Young's modulus a of 150 GPa ≦ a ≦ 300 GPa;
(B) having an average layer thickness of 0.5 to 9.0 μm, and
Composition formula: (Al 1-y Cr y ) N (where y represents the content ratio of Cr in the total amount of Al and Cr, and the atomic ratio is 0.25 ≦ y ≦ 0.50) An upper layer consisting of a cubic composite nitride layer of Al and Cr satisfying and having a Young's modulus b of 500 GPa ≦ b ≦ 800 GPa,
A surface-coated cutting tool comprising a laminated structure of a lower layer and an upper layer satisfying the conditions (a) and (b).
JP2012240624A 2012-10-31 2012-10-31 Surface coated cutting tool Active JP5975342B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012240624A JP5975342B2 (en) 2012-10-31 2012-10-31 Surface coated cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012240624A JP5975342B2 (en) 2012-10-31 2012-10-31 Surface coated cutting tool

Publications (2)

Publication Number Publication Date
JP2014087915A JP2014087915A (en) 2014-05-15
JP5975342B2 true JP5975342B2 (en) 2016-08-23

Family

ID=50790284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012240624A Active JP5975342B2 (en) 2012-10-31 2012-10-31 Surface coated cutting tool

Country Status (1)

Country Link
JP (1) JP5975342B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024032363A (en) * 2022-08-29 2024-03-12 株式会社Moldino Coating tool

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4132931B2 (en) * 2002-04-11 2008-08-13 株式会社神戸製鋼所 Hard film coated tool and manufacturing method thereof
JP3911262B2 (en) * 2003-09-04 2007-05-09 日新電機株式会社 Abrasion-resistant film-coated article and method for producing the same
ES2695024T3 (en) * 2005-08-18 2018-12-28 Oerlikon Surface Solutions Ag, Pfäffikon Substrate covered with a layered structure comprising a tetrahedral carbon coating
JP5041222B2 (en) * 2007-07-24 2012-10-03 三菱マテリアル株式会社 Surface coated cutting tool
JP5344129B2 (en) * 2008-10-14 2013-11-20 三菱マテリアル株式会社 Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP2011190487A (en) * 2010-03-12 2011-09-29 Toyama Univ Hard protective film for working tool

Also Published As

Publication number Publication date
JP2014087915A (en) 2014-05-15

Similar Documents

Publication Publication Date Title
JP6011249B2 (en) Surface coated cutting tool
JP5594576B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP5594577B2 (en) Surface coated cutting tool
JP2015110256A (en) Surface-coated cutting tool
JP6015922B2 (en) Surface coated cutting tool
JP5979438B2 (en) Surface coated cutting tool
JP2006001006A (en) Cutting tool made of surface coated cemented carbide with hard coating layer exhibiting excellent wear resistance in high speed cutting of high hardness steel
JP5783462B2 (en) Surface coated cutting tool
JP5979437B2 (en) Surface coated cutting tool
JP5234499B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed, high-feed cutting.
JP5975342B2 (en) Surface coated cutting tool
JP5975214B2 (en) Surface coated cutting tool
JP2011240438A (en) Surface coated cutting tool excellent in heat resistance and fusion resistance
JP5234332B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed, high-feed cutting.
JP5975343B2 (en) Surface coated cutting tool
JP2016175161A (en) Surface-coated cutting tool
JP5975338B2 (en) Surface coated cutting tool
JP6471546B2 (en) Surface coated cutting tool
JP6206289B2 (en) Surface coated cutting tool
JP5975339B2 (en) Surface coated cutting tool
JP6233588B2 (en) Surface coated cutting tool
JP5692636B2 (en) Surface coated cutting tool
JP2008260097A (en) Surface-coated cutting tool
JP2006001005A (en) Cutting tool made of surface coated cemented carbide with hard coating layer exhibiting excellent wear resistance in high speed cutting of high hardness steel
JP2008260098A (en) Surface-coated cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160707

R150 Certificate of patent or registration of utility model

Ref document number: 5975342

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250