JP5234499B2 - A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed, high-feed cutting. - Google Patents

A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed, high-feed cutting. Download PDF

Info

Publication number
JP5234499B2
JP5234499B2 JP2008139299A JP2008139299A JP5234499B2 JP 5234499 B2 JP5234499 B2 JP 5234499B2 JP 2008139299 A JP2008139299 A JP 2008139299A JP 2008139299 A JP2008139299 A JP 2008139299A JP 5234499 B2 JP5234499 B2 JP 5234499B2
Authority
JP
Japan
Prior art keywords
cutting
hard coating
coating layer
layer
feed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008139299A
Other languages
Japanese (ja)
Other versions
JP2009285758A (en
Inventor
信一 鹿田
裕介 田中
和則 佐藤
智行 益野
大介 風見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2008139299A priority Critical patent/JP5234499B2/en
Publication of JP2009285758A publication Critical patent/JP2009285758A/en
Application granted granted Critical
Publication of JP5234499B2 publication Critical patent/JP5234499B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Description

この発明は、特に銅合金、一般鋼、普通鋳鉄などのいわゆるHRC50以下の低中硬度の被削材を、高熱発生を伴うとともに切刃部に対して大きな機械的負荷がかかる高速高送り条件で切削加工した場合に、硬質被覆層がすぐれた潤滑性と耐チッピング性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   The present invention is particularly suitable for high-speed, high-feed conditions under which a so-called HRC50 or lower work material having a low or medium hardness such as copper alloy, general steel, or ordinary cast iron is accompanied by high heat generation and a large mechanical load on the cutting edge. The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent lubricity and chipping resistance when a hard coating layer is cut.

一般に、被覆工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに前記被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。   In general, for coated tools, throwaway inserts that are detachably attached to the tip of the cutting tool for turning and planing of various steel and cast iron materials, drilling of the work material, etc. Drills and miniature drills, and solid type end mills used for chamfering, grooving and shouldering of the work material, etc. A slow-away end mill tool that performs cutting work in the same manner as an end mill is known.

また、被覆工具として、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された工具基体の表面に、
組成式:(Cr1−PAl)Nまたは組成式:(Cr1−P−QAl)N(ここで、Mは、Crを除く周期律表4a,5a,6a族の元素、Si、B、Yのうちから選ばれた1種又は2種以上の添加成分であり、また、P、Qは原子比によるAl成分、M成分の含有割合を示す)
を満足するCrとAlの複合窒化物層あるいはCrとAlとMの複合窒化物層(以下、これらを総称して、(Cr,Al,M)Nで示す)からなる硬質被覆層を物理蒸着してなる被覆工具が知られており、かつ前記被覆工具の硬質被覆層である(Cr,Al,M)N層が、構成成分であるAlによって高温硬さ、同Crによって高温強度、また、CrとAlの共存含有によって耐熱性が向上すること、さらに、M成分として、Crを除く周期律表4a,5a,6a族の元素、Si、B、Yのうちから選ばれた1種又は2種以上を含有させた場合には、硬質被覆層の耐摩耗性、高温耐酸化性等の特性が向上することから、これを各種の一般鋼や普通鋳鉄などの連続切削や断続切削加工に用いた場合にすぐれた切削性能を発揮することも知られている。
In addition, as a coated tool, on the surface of a tool base composed of tungsten carbide (hereinafter referred to as WC) based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) based cermet,
Composition formula: (Cr 1-P Al P ) N or composition formula: (Cr 1-P-Q Al P M Q ) N (where M is an element of groups 4a, 5a, and 6a of the periodic table excluding Cr) , Si, B, or Y selected from one or more added components, and P and Q indicate the content ratio of Al component and M component by atomic ratio)
Physical vapor deposition of a hard coating layer composed of a composite nitride layer of Cr and Al or a composite nitride layer of Cr, Al and M (hereinafter collectively referred to as (Cr, Al, M) N) And the (Cr, Al, M) N layer, which is a hard coating layer of the coated tool, has a high-temperature hardness due to Al as a constituent component, a high-temperature strength due to the Cr, The heat resistance is improved by the coexistence of Cr and Al. Furthermore, as the M component, one or two elements selected from the elements of groups 4a, 5a, and 6a of the periodic table excluding Cr, Si, B, and Y When containing more than seeds, the hard coating layer has improved wear resistance, high temperature oxidation resistance, and other characteristics, so it can be used for continuous cutting and intermittent cutting of various general steels and ordinary cast iron. It is also known to show excellent cutting performance when That.

さらに、上記の被覆工具が、例えば図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に上記の工具基体を装入し、ヒータで装置内を、例えば500℃の温度に加熱した状態で、硬質被覆層の目標組成に対応した所定組成を有するCr−Al合金あるいはCr−Al−M合金(以下、これらを総称して、Cr−Al−M合金で示す)がセットされたカソード電極(蒸発源)とアノード電極との間に、例えば電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば2Paの反応雰囲気とし、一方上記工具基体には、例えば−100Vのバイアス電圧を印加した条件で、前記工具基体の表面に、目標組成の(Cr,Al,M)N層からなる硬質被覆層をそれぞれ蒸着することにより製造されることも知られている。
特開平9−41127号公報 特開平10−25566号公報 特開2004−106183号公報 特開2004−269985号公報 特開2005−330539号公報 特開2006−82209号公報
Further, the above-mentioned coated tool, for example, the above-mentioned tool base is loaded into an arc ion plating apparatus which is a kind of physical vapor deposition apparatus shown schematically in FIG. Cr-Al alloy or Cr-Al-M alloy having a predetermined composition corresponding to the target composition of the hard coating layer (hereinafter collectively referred to as Cr-Al-M alloy) Is generated between the cathode electrode (evaporation source) and the anode electrode, for example, at a current of 90 A, and simultaneously nitrogen gas is introduced into the apparatus as a reaction gas, for example, a reaction atmosphere of 2 Pa, for example. On the other hand, a hard coating layer composed of a (Cr, Al, M) N layer of the target composition is applied to the surface of the tool base under the condition that a bias voltage of, for example, −100 V is applied. It is also known to be produced by vapor deposition.
JP 9-41127 A Japanese Patent Laid-Open No. 10-25566 JP 2004-106183 A JP 2004-269985 A Japanese Patent Laying-Open No. 2005-330539 JP 2006-82209 A

近年の切削加工装置のFA化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削工具には被削材の材種にできるだけ影響を受けない汎用性、すなわち、できるだけ多くの材種の切削加工が可能な切削工具が求められる傾向にあるが、上記の従来被覆工具においては、これを、銅合金、低合金鋼、炭素鋼、ダクタイル鋳鉄、ねずみ鋳鉄などの、いわゆる低中硬度被削材の通常切削速度での切削加工に用いた場合には問題ないが、これらの低中硬度被削材を、高い発熱をともなうとともに、切刃部に局部的に高負荷がかかる高速高送り条件で切削した場合には、切削時の発熱によって被削材および切粉は高温に加熱されて粘性が増大し、これに伴って硬質被覆層表面に対する溶着性が一段と増すようになり、この結果切刃部におけるチッピング(微少欠け)の発生が急激に増加し、これが原因で比較的短時間で使用寿命に至るのが現状である。   In recent years, the use of FA for cutting devices has been remarkable. On the other hand, there is a strong demand for labor saving, energy saving, and cost reduction for cutting processing. As a result, cutting tools are affected as much as possible by the material type of the work material. There is a tendency to demand a cutting tool capable of cutting as many grades as possible, but in the above-mentioned conventional coated tools, this is applied to copper alloy, low alloy steel, carbon steel, and ductile cast iron. There is no problem when using so-called low and medium hardness work materials such as gray cast iron at the normal cutting speed, but these low and medium hardness work materials have high heat generation and the cutting edge part. When cutting under high-speed and high-feed conditions where a high load is applied locally, the work material and chips are heated to a high temperature due to the heat generated during cutting, and the viscosity increases accordingly. Weldability Become increasingly more, as a result chipping in the cutting edge (small chipping) it increases rapidly, which is at present, leading to a relatively short time service life due.

そこで、本発明者等は、上述のような観点から、特に銅合金、低合金鋼、炭素鋼、ダクタイル鋳鉄、ねずみ鋳鉄などのいわゆる低中硬度被削材の切削加工を、高速高送り切削条件で切削加工した場合に、硬質被覆層がすぐれた潤滑性とすぐれた耐チッピング性を発揮する被覆工具を開発すべく、上記の従来被覆工具に着目し、研究を行った結果、
WC基超硬合金またはTiCN基サーメットからなる工具基体の表面に、一層平均層厚0.01〜0.1μmの(Cr,Al,M)N薄層を蒸着形成し、この上に、Crとの合量に占めるYの含有割合が1〜10原子%となるようにY成分を含有させたCrとYの複合窒化物層(以下、(Cr,Y)N層で示す)からなる一層平均層厚0.01〜0.1μmの(Cr,Y)N薄層を蒸着形成し、さらに、上記(Cr,Al,M)N薄層と上記(Cr,Y)N薄層とを交互に形成し、交互積層構造からなる硬質被覆層を構成すると、(Cr,Al,M)N薄層はすぐれた高温硬さ、高温強度、耐熱性を示し、また、これと交互に積層形成される(Cr,Y)N薄層はすぐれた潤滑性を示し、特に、(Cr,Y)N薄層中に含有されるY成分によって、(Cr,Y)N薄層の耐熱性が向上することから、高熱発生を伴う切削加工においても、(Cr,Y)N薄層のすぐれた潤滑性は維持されることを見出した。
In view of the above, the present inventors, in particular, perform cutting of so-called low and medium hardness work materials such as copper alloy, low alloy steel, carbon steel, ductile cast iron, gray cast iron, etc., at high speed and high feed cutting conditions. In order to develop a coated tool that exhibits excellent lubricity and excellent chipping resistance when the hard coating layer is machined with, as a result of conducting research, focusing on the above conventional coated tools,
A thin (Cr, Al, M) N layer having an average layer thickness of 0.01 to 0.1 μm is deposited on the surface of a tool substrate made of a WC-based cemented carbide or TiCN-based cermet, and Cr and One-layer average composed of a composite nitride layer of Cr and Y (hereinafter referred to as (Cr, Y) N layer) containing Y component so that the Y content in the total amount of 1 to 10 atomic% A (Cr, Y) N thin layer having a thickness of 0.01 to 0.1 μm is formed by vapor deposition, and the (Cr, Al, M) N thin layer and the (Cr, Y) N thin layer are alternately formed. When a hard coating layer having an alternating laminated structure is formed, the (Cr, Al, M) N thin layer exhibits excellent high-temperature hardness, high-temperature strength, and heat resistance, and is alternately laminated. The (Cr, Y) N thin layer exhibits excellent lubricity, and in particular, due to the Y component contained in the (Cr, Y) N thin layer. Thus, the heat resistance of the (Cr, Y) N thin layer is improved, and thus it has been found that the excellent lubricity of the (Cr, Y) N thin layer is maintained even in the cutting process with high heat generation.

したがって、工具表面に溶着し易い低中硬度被削材の高速高送り切削加工において、切刃部が高温になったとしても、(Cr,Al,M)N薄層に不足する潤滑性を、これと交互に積層される(Cr,Y)N薄層が補完し、硬質被覆層全体としての被削材との耐溶着性が改善され、その結果、切刃部におけるチッピング(微少欠け)の発生が防止され、長期に亘ってすぐれた耐摩耗性が発揮されることを見出し、本発明に至ったものである。   Therefore, in the high-speed and high-feed cutting of a low-medium hardness work material that is easily welded to the tool surface, even if the cutting edge becomes high temperature, the (Cr, Al, M) N thin layer has insufficient lubricity, The (Cr, Y) N thin layers stacked alternately are complemented, and the welding resistance to the work material as the whole hard coating layer is improved. As a result, chipping (small chipping) at the cutting edge portion is improved. The inventors have found that generation is prevented and excellent wear resistance is exhibited over a long period of time, and the present invention has been achieved.

この発明は、上記の研究結果に基づいてなされたものであって、
「(1) 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a)0.01〜0.1μmの一層平均層厚を有し、かつ、
組成式:(Cr1−αAlα)N(但し、αはAlの含有割合を示し、原子比で、0.45≦α≦0.75である)を満足するCrとAlの複合窒化物層からなる(Cr,Al)N薄層、
(b)0.01〜0.1μmの一層平均層厚を有し、かつ、
組成式:(Cr1−γγ)N(但し、γはYの含有割合を示し、原子比で、0.01≦γ≦0.1である)を満足するCrとYの複合窒化物層からなる(Cr,Y)N薄層、
上記(a)、(b)の交互積層からなり、1〜5μmの合計平均層厚を有する硬質被覆層を形成してなる、低中硬度被削材の高速高送り切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具。
(2) 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a)0.01〜0.1μmの一層平均層厚を有し、かつ、
組成式:(Cr1−α−βAlαβ)N(ここで、Mは、Crを除く周期律表4a,5a,6a族の元素、Si、B、Yのうちから選ばれた1種又は2種以上の添加成分を示し、また、αはAlの含有割合、βはMの含有割合をそれぞれ示し、原子比で、0.45≦α≦0.75、0.01≦β≦0.25、α+β<1.00である)を満足するCrとAlとMの複合窒化物層からなる(Cr,Al,M)N薄層、
(b)0.01〜0.1μmの一層平均層厚を有し、かつ、
組成式:(Cr1−γγ)N(但し、γはYの含有割合を示し、原子比で、0.01≦γ≦0.1である)を満足するCrとYの複合窒化物層からなる(Cr,Y)N薄層、
上記(a)、(b)の交互積層からなり、1〜5μmの合計平均層厚を有する硬質被覆層を形成してなる、低中硬度被削材の高速高送り切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具。」
に特徴を有するものである。
This invention was made based on the above research results,
“(1) On the surface of a tool base made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
(A) having an average layer thickness of 0.01 to 0.1 μm, and
A composite nitride of Cr and Al satisfying the composition formula: (Cr 1-α Al α ) N (where α is the Al content ratio and the atomic ratio is 0.45 ≦ α ≦ 0.75) (Cr, Al) N thin layer consisting of layers,
(B) having an average layer thickness of 0.01 to 0.1 μm, and
Cr and Y composite nitride satisfying the composition formula: (Cr 1-γ Y γ ) N (where γ represents the Y content and the atomic ratio is 0.01 ≦ γ ≦ 0.1) (Cr, Y) N thin layer consisting of layers,
The hard coating layer is formed by high-speed high-feed cutting of a low-medium-hardness work material, which is formed by alternately laminating the above (a) and (b) and forming a hard coating layer having a total average layer thickness of 1 to 5 μm. A surface-coated cutting tool with excellent chipping resistance.
(2) On the surface of the tool base made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
(A) having an average layer thickness of 0.01 to 0.1 μm, and
Composition formula: (Cr 1-α-β Al α M β ) N (where M is one selected from elements of groups 4a, 5a, and 6a of the periodic table excluding Cr, Si, B, and Y) Seeds or two or more kinds of additive components, α is a content ratio of Al, β is a content ratio of M, and atomic ratio is 0.45 ≦ α ≦ 0.75, 0.01 ≦ β ≦ (Cr, Al, M) N thin layer comprising a composite nitride layer of Cr, Al and M satisfying 0.25 , α + β <1.00 )
(B) having an average layer thickness of 0.01 to 0.1 μm, and
Cr and Y composite nitride satisfying the composition formula: (Cr 1-γ Y γ ) N (where γ represents the Y content and the atomic ratio is 0.01 ≦ γ ≦ 0.1) (Cr, Y) N thin layer consisting of layers,
The hard coating layer is formed by high-speed high-feed cutting of a low-medium-hardness work material, which is formed by alternately laminating the above (a) and (b) and forming a hard coating layer having a total average layer thickness of 1 to 5 μm. A surface-coated cutting tool with excellent chipping resistance. "
It has the characteristics.

つぎに、この発明の被覆工具の硬質被覆層について、詳細に説明する。   Next, the hard coating layer of the coated tool of the present invention will be described in detail.

(a)(Cr,Al,M)N薄層の組成および一層平均層厚
(Cr,Al,M)N薄層の構成成分であるAl成分には硬質被覆層における高温硬さを向上させ、同Cr成分には高温強度を向上させ、また、CrとAlの共存含有によって耐熱性を向上させる作用があり、さらに、M成分のうちの、Crを除く周期律表4a,5a,6a族の元素、Si、B、には硬質被覆層の耐摩耗性を向上させる作用があり、また、Yには硬質被覆層の高温耐酸化性を向上させる作用があるが、Alの割合を示すα値がCrとの合量あるいはCrとMの合量に占める割合(原子比、以下同じ)で0.45未満になると、所定の高温硬さを確保することができず、これが耐摩耗性低下の原因となり、一方Alの割合を示すα値が同0.75を越えると、相対的にCrの含有割合が減少し、高速高送り切削加工で必要とされる高温強度を確保することができず、チッピングの発生を防止することが困難になり、さらに、M成分の含有割合を示すβ値がCrとの合量に占める割合(原子比、以下同じ)で0.01未満では、M成分を含有させたことによる耐摩耗性、高温耐酸化性等の特性向上が期待できず、一方同β値が0.25を超えると、高温強度に低下傾向が現れるようになることから、α値を0.45〜0.75、β値を0.01〜0.25、かつ、(α+β)の値を1.00未満と定めた。
また、その一層平均層厚が0.01μm未満では、自身のもつすぐれた耐摩耗性を長期に亘って発揮するには不十分であり、一方その一層平均層厚が0.1μmを越えると、上記の高速高送り切削では、潤滑性の不足が顕在化し、切刃部にチッピングが発生し易くなることから、その一層平均層厚を0.01〜0.1μmと定めた。
(A) Composition of (Cr, Al, M) N thin layer and average layer thickness (Cr, Al, M) Al component which is a constituent of N thin layer improves the high temperature hardness in the hard coating layer, The Cr component has the effect of improving the high-temperature strength and improving the heat resistance by coexistence of Cr and Al. Further, of the M component, the periodic table 4a, 5a, 6a excluding Cr Elements, Si, and B have the effect of improving the wear resistance of the hard coating layer, and Y has the function of improving the high temperature oxidation resistance of the hard coating layer. Is less than 0.45 in terms of the total amount of Cr or the total amount of Cr and M (atomic ratio, the same shall apply hereinafter), the predetermined high-temperature hardness cannot be secured, which reduces the wear resistance. On the other hand, if the α value indicating the proportion of Al exceeds 0.75, relative The Cr content ratio decreases, the high-temperature strength required for high-speed high-feed cutting cannot be ensured, and it becomes difficult to prevent chipping, and the β content ratio indicates the content ratio of the M component. If the value is less than 0.01 in terms of the total amount with Cr (atomic ratio, the same applies hereinafter), improvement in properties such as wear resistance and high-temperature oxidation resistance due to inclusion of the M component cannot be expected. When the β value exceeds 0.25, a decreasing tendency appears in the high-temperature strength. Therefore, the α value is 0.45 to 0.75, the β value is 0.01 to 0.25 , and (α The value of + β) was determined to be less than 1.00 .
Further, if the average layer thickness is less than 0.01 μm, it is insufficient to exhibit its excellent wear resistance over a long period of time, while if the average layer thickness exceeds 0.1 μm, In the high-speed and high-feed cutting described above, insufficient lubricity becomes obvious and chipping is likely to occur at the cutting edge portion. Therefore, the average layer thickness is determined to be 0.01 to 0.1 μm.

(b)(Cr,Y)N薄層の組成および一層平均層厚
上記(Cr,Al,M)N薄層と交互積層構造を構成するCrとYの複合窒化物層((Cr,Y)N層)は、所定の高温硬さ、高温強度、潤滑性を有するとともに、その構成成分であるY成分によって、すぐれた耐熱性を備えるようになり、そのため、(Cr,Al,M)N薄層に不足する潤滑性を補完し、高温切削条件下でも硬質被覆層の低摩擦係数が維持され、すぐれた潤滑性を発揮するようになる。ただ、Yの含有割合を示すγ値がCrとの合量に占める割合(原子比、以下同じ)で0.01未満になると、耐熱性を確保することができないために潤滑効果を期待することはできず、一方、Yの割合を示すγ値が同0.10を越えると、相対的にCrの含有割合が減少し、低中硬度で溶着性が高い被削材の高速高送り切削加工で必要とされる高温強度を確保することができないばかりか、潤滑性も低下し、チッピング発生を防止することが困難になることから、γ値を0.01〜0.10(原子比、以下同じ)と定めた。
また、交互積層を構成する(Cr,Y)N層の一層平均層厚が0.01μm未満では、自身のもつすぐれた耐熱性、潤滑性によって、硬質被覆層の特性を改善するには不十分であり、一方、一層平均層厚が0.1μmを越えると、相対的な(Cr,Al,M)N薄層の割合の減少によって、硬質被覆層全体としての高温硬さ、高温強度が低下し、その結果、銅合金、炭素鋼等の低中硬度で溶着性が高い被削材の高速高送り切削加工では切刃部にチッピングが発生し易くなるとともに摩耗も促進されることから、その一層平均層厚を0.01〜0.1μmと定めた。
(B) Composition and single layer average layer thickness of (Cr, Y) N thin layer Cr and Y composite nitride layer ((Cr, Y) constituting an alternating laminated structure with the above (Cr, Al, M) N thin layer N layer) has a predetermined high-temperature hardness, high-temperature strength, and lubricity, and also has excellent heat resistance due to its constituent Y component. Therefore, (Cr, Al, M) N thin Complementing the lack of lubricity of the layer, the low friction coefficient of the hard coating layer is maintained even under high-temperature cutting conditions, and excellent lubricity is exhibited. However, if the γ value indicating the Y content is less than 0.01 in the total amount with Cr (atomic ratio, the same shall apply hereinafter), heat resistance cannot be ensured and a lubricating effect is expected. On the other hand, when the γ value indicating the Y ratio exceeds 0.10, the Cr content ratio is relatively reduced, and the high-speed, high-feed cutting of the work material having low and medium hardness and high weldability. In addition to not being able to ensure the high temperature strength required in the process, the lubricity also decreases and it becomes difficult to prevent chipping, so that the γ value is 0.01 to 0.10 (atomic ratio, below) The same).
In addition, if the average layer thickness of the (Cr, Y) N layers constituting the alternately laminated layers is less than 0.01 μm, it is insufficient to improve the characteristics of the hard coating layer due to its excellent heat resistance and lubricity. On the other hand, when the average layer thickness exceeds 0.1 μm, the high-temperature hardness and high-temperature strength of the entire hard coating layer decrease due to a decrease in the ratio of the relative (Cr, Al, M) N thin layer. As a result, in high-speed high-feed cutting of work materials with low and medium hardness, such as copper alloy and carbon steel, which have high weldability, chipping tends to occur at the cutting edge and wear is also promoted. The average layer thickness was determined to be 0.01 to 0.1 μm.

(c)硬質被覆層の合計平均層厚
(Cr,Al,M)N薄層と(Cr,Y)N薄層の交互積層構造からなる硬質被覆層は、その合計平均層厚が1μm未満では、硬質被覆層を構成する(Cr,Y)N層の平均層厚が1μm未満では、長期の使用にわたって十分な耐摩耗性を発揮することができず、一方、合計平均層厚が5μmを越えると、銅合金、炭素鋼等の低中硬度で溶着性が高い被削材の高速高送り切削加工では切刃部にチッピングが発生し易くなることから、その合計平均層厚を1〜5μmと定めた。
(C) Total average layer thickness of hard coating layer A hard coating layer consisting of an alternately laminated structure of (Cr, Al, M) N thin layers and (Cr, Y) N thin layers has a total average layer thickness of less than 1 μm. When the average layer thickness of the (Cr, Y) N layer constituting the hard coating layer is less than 1 μm, sufficient wear resistance cannot be exhibited over a long period of use, while the total average layer thickness exceeds 5 μm. And, in high-speed high-feed cutting of work materials with low and medium hardness, such as copper alloy and carbon steel, which have high weldability, chipping tends to occur at the cutting edge, so the total average layer thickness is 1 to 5 μm. Determined.

(d)そして、上記(Cr,Al,M)N薄層と(Cr,Y)N薄層の交互積層は、例えば図1に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に基体を装入し、ヒータで装置内を、例えば500℃の温度に加熱した状態で、装置内に所定組成のCr−Al−M合金からなるカソード電極(蒸発源)と、所定組成のCr−Y合金からなるカソード電極(蒸発源)とを配置し、まず、アノード電極とCr−Al−M合金からなるカソード電極(蒸発源)との間に、例えば電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば2Paの反応雰囲気とし、一方、上記基体には、例えば−100Vのバイアス電圧を印加した条件で、基体表面に(Cr,Al,M)N薄層を蒸着形成し、アーク放電を停止した後、引き続いて、アノード電極とCr−Y合金からなるカソード電極(蒸発源)との間に、前記と同様にアーク放電を行わせ、基体表面に(Cr,Y)N薄層を蒸着形成し、上記操作を繰り返し行うことにより、所定の一層平均層厚の(Cr,Al,M)N薄層と(Cr,Y)N薄層との交互積層構造からなる、所定合計平均層厚の硬質被覆層を蒸着形成することができる。 (D) And the alternate lamination of the (Cr, Al, M) N thin layer and the (Cr, Y) N thin layer is, for example, arc ion which is a kind of physical vapor deposition apparatus shown schematically in FIG. The substrate is loaded into the plating apparatus, and the inside of the apparatus is heated to a temperature of, for example, 500 ° C. with a heater, and a cathode electrode (evaporation source) made of a Cr—Al—M alloy having a predetermined composition is placed inside the apparatus. A cathode electrode (evaporation source) made of a Cr—Y alloy having a composition is disposed. First, for example, a current of 90 A is provided between the anode electrode and a cathode electrode (evaporation source) made of a Cr—Al—M alloy. At the same time, an arc discharge is generated and nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of, for example, 2 Pa. On the other hand, for example, a bias voltage of −100 V is applied to the substrate surface ( Cr, Al, M After the N thin layer is formed by vapor deposition and the arc discharge is stopped, the arc discharge is subsequently performed between the anode electrode and the cathode electrode (evaporation source) made of the Cr—Y alloy in the same manner as described above, and the substrate surface (Cr, Y) N thin layer is formed by vapor deposition, and the above operation is repeated to obtain a (Cr, Al, M) N thin layer and a (Cr, Y) N thin layer having a predetermined average layer thickness. A hard coating layer having a predetermined total average layer thickness composed of an alternating laminated structure can be formed by vapor deposition.

この発明の被覆工具は、交互積層構造からなる硬質被覆層を(Cr,Al,M)N薄層が、すぐれた高温硬さ、耐熱性、高温強度を有し、あるいは、さらにすぐれた耐摩耗性、高温耐酸化性を有し、また、(Cr,Y)N薄層が、すぐれた潤滑性と耐熱性を兼ね備えていることから、硬質被覆層は全体として、すぐれた高温硬さ、耐熱性、高温強度等に加え、すぐれた潤滑性を備えたものとなり、その結果、特に銅合金、一般鋼、普通鋳鉄などのいわゆるHRC50以下の低中硬度被削材の、大きな発熱を伴い、かつ、切刃に対して高負荷のかかる高速高送り切削加工であっても、すぐれた耐チッピング性を示し、長期に亘ってすぐれた耐摩耗性を発揮するものである。   The coated tool of the present invention has a hard coating layer composed of an alternately laminated structure, and the (Cr, Al, M) N thin layer has excellent high temperature hardness, heat resistance, high temperature strength, or even better wear resistance. Since the (Cr, Y) N thin layer has excellent lubricity and heat resistance, the hard coating layer as a whole has excellent high temperature hardness and heat resistance. In addition to the properties, high temperature strength, etc., it has excellent lubricity. Even in high-speed, high-feed cutting with a heavy load applied to the cutting edge, it exhibits excellent chipping resistance and exhibits excellent wear resistance over a long period of time.

つぎに、この発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、ISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の工具基体A−1〜A−10を形成した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders are blended in the composition shown in Table 1, wet mixed by a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. Medium, sintered at 1400 ° C. for 1 hour, and after sintering, tool bases A-1 to A-10 made of WC-based cemented carbide with ISO standard / CNMG120408 chip shape were formed. .

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比で、TiC/TiN=50/50)粉末、MoC粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、ISO規格・CNMG120408のチップ形状をもったTiCN基サーメット製の工具基体B−1〜B−6を形成した。 In addition, as raw material powders, TiCN (mass ratio, TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC, all having an average particle diameter of 0.5 to 2 μm. Prepare powder, Co powder, and Ni powder, mix these raw material powders into the composition shown in Table 2, wet mix for 24 hours with a ball mill, dry, and press-mold into green compact at 100 MPa pressure Then, the green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, a tool base B made of TiCN-based cermet having an ISO standard / CNMG120408 chip shape was obtained. -1 to B-6 were formed.

(a)ついで、上記の工具基体A−1〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、前記回転テーブルを挟んで相対向する両側にカソード電極(蒸発源)を配置し、その一方にはカソード電極(蒸発源)として所定組成のCr−Al−M合金を配置し、また、その他方にはカソード電極(蒸発源)として所定組成のCr−Y合金を配置し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する工具基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記Cr−Al−M合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面を前記Cr−Al−M合金によってボンバード洗浄し、
(c)次に、装置内に反応ガスとして窒素ガスを導入して4Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−100Vの直流バイアス電圧を印加し、かつカソード電極の前記Cr−Al−M合金とアノード電極との間に120Aの電流を流してアーク放電を発生させ、前記工具基体の表面に、表3、表4に示される目標組成、一層目標層厚の(Cr,Al,M)N薄層を蒸着形成した後、前記Cr−Al−M合金のカソード電極(蒸発源)とアノード電極との間のアーク放電を停止し、
(d)引き続いて装置内雰囲気を2Paの窒素雰囲気に保持したままで、カソード電極(蒸発源)であるCr−Y合金電極とアノード電極との間に120Aの電流を流してアーク放電を発生させて、表3、表4に示される目標組成、一層目標層厚の(Cr,Y)N薄層を蒸着形成し、
上記(c)、(d)の操作を、所定の合計平均層厚になるまで繰り返し行って硬質被覆層を蒸着形成し、本発明被覆工具としての本発明表面被覆スローアウエイチップ(以下、本発明被覆チップと云う)1〜36をそれぞれ製造した。
(A) Next, each of the tool bases A-1 to A-10 and B-1 to B-6 is ultrasonically cleaned in acetone and dried, and then the arc ion plating shown in FIG. Attached along the outer periphery at a predetermined distance in the radial direction from the central axis on the rotary table in the apparatus, cathode electrodes (evaporation sources) are arranged on opposite sides across the rotary table, one of which A Cr—Al—M alloy having a predetermined composition is disposed as a cathode electrode (evaporation source), and a Cr—Y alloy having a predetermined composition is disposed as a cathode electrode (evaporation source) on the other side.
(B) First, the inside of the apparatus is heated to 500 ° C. with a heater while the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, and then the tool base that rotates while rotating on the rotary table is −1000 V. A DC bias voltage is applied and a current of 100 A is applied between the Cr-Al-M alloy of the cathode electrode and the anode electrode to generate an arc discharge, so that the tool base surface is made of the Cr-Al-M alloy. Bombard washed,
(C) Next, nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 4 Pa, a DC bias voltage of −100 V is applied to the tool base that rotates while rotating on the rotary table, and An arc discharge is generated by flowing a current of 120 A between the Cr—Al—M alloy of the cathode electrode and the anode electrode, and the target composition shown in Tables 3 and 4 is formed on the surface of the tool base. After vapor-depositing a thick (Cr, Al, M) N thin layer, the arc discharge between the cathode electrode (evaporation source) and anode electrode of the Cr-Al-M alloy is stopped,
(D) Subsequently, an arc discharge is generated by flowing a current of 120 A between the cathode electrode (evaporation source) Cr—Y alloy electrode and the anode electrode while maintaining the atmosphere in the apparatus in a nitrogen atmosphere of 2 Pa. Then, a target composition shown in Tables 3 and 4 and a (Cr, Y) N thin layer having a target layer thickness are formed by vapor deposition.
The above operations (c) and (d) are repeated until a predetermined total average layer thickness is obtained, and a hard coating layer is formed by vapor deposition, and the present surface-coated throwaway tip (hereinafter referred to as the present invention) as the coated tool of the present invention. 1 to 36 were manufactured.

また、比較の目的で、これら工具基体A−1〜A−10およびB−1〜B−6を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図2に示されるアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として所定組成のCr−Al−M合金を装着し、まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記工具基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極のCr−Al−M合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面を前記Cr−Al−M合金でボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記工具基体に印加するバイアス電圧を−100Vに下げて、前記所定組成の各カソード電極とアノード電極との間にアーク放電を発生させ、前記工具基体A−1〜A−10およびB−1〜B−6のそれぞれの表面に、表5、表6に示される目標組成および目標層厚の(Cr,Al,M)N層で構成された硬質被覆層を蒸着形成することにより、比較被覆工具としての表面被覆スローアウエイチップ(以下、比較被覆チップと云う)1〜16をそれぞれ製造した。   For comparison purposes, these tool bases A-1 to A-10 and B-1 to B-6 were ultrasonically cleaned in acetone and dried, respectively, and the arc ion plating shown in FIG. The device is charged and a Cr-Al-M alloy having a predetermined composition is attached as a cathode electrode (evaporation source). First, the inside of the device is evacuated and kept at a vacuum of 0.1 Pa or less, and the inside of the device is heated with a heater. After heating to 500 ° C., a DC bias voltage of −1000 V is applied to the tool base, and a current of 100 A is passed between the cathode electrode Cr—Al—M alloy and the anode electrode to generate arc discharge, Thus, the surface of the tool base is bombarded with the Cr—Al—M alloy, then nitrogen gas is introduced into the apparatus as a reaction gas to form a reaction atmosphere of 3 Pa, and a via applied to the tool base. The voltage is lowered to −100 V to generate an arc discharge between each cathode electrode and anode electrode of the predetermined composition, and the respective surfaces of the tool bases A-1 to A-10 and B-1 to B-6 A surface-coated throwaway tip as a comparative coating tool is formed by vapor-depositing a hard coating layer composed of (Cr, Al, M) N layers having the target compositions and target layer thicknesses shown in Tables 5 and 6 1 to 16 (hereinafter referred to as comparative coated chips) were produced.

つぎに、上記の各種の被覆チップを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆チップ1〜36および比較被覆チップ1〜16について、
被削材:JIS・FC400の丸棒、
切削速度: 200 m/min.、
切り込み: 2 mm、
送り: 0.5 mm/rev.、
切削時間: 5 分、
の条件(切削条件A)での鋳鉄の乾式連続高速高送り切削加工試験(通常の切削速度および送りは、それぞれ、100m/min.、0.15mm/rev.)、
被削材:JIS・C1100の丸棒、
切削速度: 210 m/min.、
切り込み: 2 mm、
送り: 0.35 mm/rev.、
切削時間: 5 分、
の条件(切削条件B)での銅合金の乾式連続高速高送り切削加工試験(通常の切削速度および送りは、それぞれ、120m/min.、0.15mm/rev.)、
被削材:JIS・SCM440の丸棒、
切削速度: 230 m/min.、
切り込み: 2 mm、
送り: 0.35 mm/rev.、
切削時間: 5 分、
の条件(切削条件C)での合金鋼の乾式連続高速高送り切削加工試験(通常の切削速度および送りは、それぞれ、130m/min.、0.15mm/rev.)、
を行い、いずれの高速高送り切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表7、表8に示した。
Next, in the state where all the above-mentioned various coated chips are screwed to the tip of the tool steel tool with a fixing jig, the present coated chips 1 to 36 and the comparative coated chips 1 to 16 are as follows.
Work material: JIS / FC400 round bar,
Cutting speed: 200 m / min. ,
Incision: 2 mm,
Feed: 0.5 mm / rev. ,
Cutting time: 5 minutes,
(Continuous cutting speed and feed are 100 m / min. And 0.15 mm / rev., Respectively)
Work material: JIS C1100 round bar,
Cutting speed: 210 m / min. ,
Incision: 2 mm,
Feed: 0.35 mm / rev. ,
Cutting time: 5 minutes,
Dry continuous high-speed high-feed cutting test of copper alloy under the conditions (cutting condition B) (normal cutting speed and feed are 120 m / min. And 0.15 mm / rev., Respectively),
Work material: JIS / SCM440 round bar,
Cutting speed: 230 m / min. ,
Incision: 2 mm,
Feed: 0.35 mm / rev. ,
Cutting time: 5 minutes,
(Continuous cutting speed and feed are 130 m / min. And 0.15 mm / rev., Respectively)
The flank wear width of the cutting edge was measured in any high-speed, high-feed cutting test. The measurement results are shown in Tables 7 and 8.




実施例1と同様、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr粉末、TiN粉末、TaN粉末、およびCo粉末からなる原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、直径が13mmの工具基体形成用丸棒焼結体を形成し、さらに前記の丸棒焼結体から、研削加工にて、切刃部の直径×長さが10mm×22mmの寸法、並びにねじれ角30度の4枚刃スクエア形状をもったWC基超硬合金製の工具基体(エンドミル)A−1〜A−10をそれぞれ製造した。 As in Example 1, all of WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder having an average particle diameter of 1 to 3 μm. The raw material powder is blended into the composition shown in Table 1, wet mixed by a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. , Temperature: Sintered at 1400 ° C. for 1 hour to form a round tool sintered body for forming a tool base having a diameter of 13 mm. WC-base cemented carbide tool bases (end mills) A-1 to A-10 having a four-blade square shape with a diameter x length of 10 mm x 22 mm and a twist angle of 30 degrees were manufactured, respectively. .

ついで、これらの工具基体(エンドミル)A−1〜A−10の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、表10に示される目標組成および一層目標層厚の(Cr,Al,M)N薄層、および、同じく表9に示される目標組成および一層目標層厚の(Cr,Y)N薄層の交互積層構造からなる硬質被覆層を蒸着形成することにより、本発明被覆工具としての本発明表面被覆超硬製エンドミル(以下、本発明被覆エンドミルと云う)1〜23をそれぞれ製造した。
Then, the surfaces of these tool bases (end mills) A-1 to A-10 were ultrasonically cleaned in acetone and dried, and then inserted into the arc ion plating apparatus shown in FIG. Under the same conditions as in Example 1, the target composition and the target layer thickness (Cr, Al, M) N thin layer shown in Table 10 and the target composition and target layer thickness (Cr , Y) By forming a hard coating layer having an alternating laminated structure of N thin layers by vapor deposition, the present invention surface-coated carbide end mills (hereinafter referred to as the present invention coated end mills) 1 to 23 as the present coated tool are formed. Each was manufactured.

また、比較の目的で、上記の工具基体(エンドミル)A−1〜A−10の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、表10に示される目標組成および目標層厚の(Cr,Al,M)N層からなる硬質被覆層を蒸着することにより、比較被覆工具としての表面被覆超硬製エンドミル(以下、比較被覆エンドミルと云う)1〜をそれぞれ製造した。
For the purpose of comparison, the surfaces of the tool bases (end mills) A-1 to A-10 are ultrasonically cleaned in acetone and dried, and then mounted on the arc ion plating apparatus shown in FIG. Then, under the same conditions as in Example 1, the hard coating layer composed of the (Cr, Al, M) N layer having the target composition and the target layer thickness shown in Table 10 is vapor-deposited. Surface coated carbide end mills (hereinafter referred to as comparative coated end mills) 1 to 8 were produced.

つぎに、上記本発明被覆エンドミル1〜23および比較被覆エンドミル1〜について、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・FC400の板材、
切削速度: 60 m/min.、
溝深さ(切り込み): 2.5 mm、
テーブル送り: 190 mm/分、
の条件(切削条件D)での鋳鉄の乾式高速高送り溝切削加工試験(通常の切削速度およびテーブル送りは、それぞれ、30m/min.、120mm/分)、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・C1100の板材、
切削速度: 70 m/min.、
溝深さ(切り込み): 3.0 mm、
テーブル送り: 190 mm/分、
の条件(切削条件E)での銅合金の乾式高速高送り溝切削加工試験(通常の切削速度およびテーブル送りは、それぞれ、30m/min.、120mm/分)、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SCM400の板材、
切削速度: 80 m/min.、
溝深さ(切り込み): 3 mm、
テーブル送り: 200 mm/分、
の条件(切削条件F)での合金鋼の乾式高速高送り溝切削加工試験(通常の切削速度およびテーブル送りは、それぞれ、30m/min.、120mm/分)、
をそれぞれ行い、いずれの高速高送り溝切削加工試験でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。この測定結果を表9、表10にそれぞれ示した。
Next, for the present invention coated end mills 1 to 23 and comparative coated end mills 1 to 8 ,
Work material-Plane dimensions: 100 mm x 250 mm, thickness: 50 mm JIS / FC400 plate material,
Cutting speed: 60 m / min. ,
Groove depth (cut): 2.5 mm,
Table feed: 190 mm / min,
A dry high-speed, high-feed groove cutting test of cast iron under the conditions (cutting condition D) (normal cutting speed and table feed are 30 m / min. And 120 mm / min, respectively),
Work material-planar dimensions: 100 mm x 250 mm, thickness: 50 mm JIS C1100 plate material,
Cutting speed: 70 m / min. ,
Groove depth (cut): 3.0 mm,
Table feed: 190 mm / min,
A dry high-speed, high-feed groove cutting test of copper alloy under the above conditions (cutting condition E) (normal cutting speed and table feed are 30 m / min. And 120 mm / min, respectively),
Work material-Plane dimensions: 100 mm x 250 mm, thickness: 50 mm JIS / SCM400 plate material,
Cutting speed: 80 m / min. ,
Groove depth (cut): 3 mm,
Table feed: 200 mm / min,
(High cutting speed and table feed are 30 m / min. And 120 mm / min, respectively)
The cutting groove length was measured until the flank wear width of the outer peripheral edge of the cutting edge reaches 0.1 mm, which is a guide for the service life, in any high-speed, high-feed groove cutting test. The measurement results are shown in Table 9 and Table 10, respectively.



上記の実施例2で製造した直径が13mmの丸棒焼結体を用い、この丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ8mm×22mmの寸法、並びにねじれ角30度の2枚刃形状をもったWC基超硬合金製の工具基体(ドリル)A−1〜A−10をそれぞれ製造した。   Using the round bar sintered body with a diameter of 13 mm manufactured in Example 2 above, from this round bar sintered body, the diameter x length of the groove forming portion is 8 mm x 22 mm, respectively, by grinding, and WC-base cemented carbide tool bases (drills) A-1 to A-10 having a two-blade shape with a twist angle of 30 degrees were manufactured.

ついで、これらの工具基体(ドリル)A−1〜A−10の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、表11に示される目標組成および一層目標層厚の(Cr,Al,M)N薄層、および、同じく表11に示される目標組成および一層目標層厚の(Cr,Y)N薄層の交互積層構造からなる硬質被覆層を蒸着形成することにより、本発明被覆工具としての本発明表面被覆超硬製ドリル(以下、本発明被覆ドリルと云う)1〜22をそれぞれ製造した。 Next, the cutting edges of these tool bases (drills) A-1 to A-10 are subjected to honing, ultrasonically cleaned in acetone, and dried to the arc ion plating apparatus shown in FIG. Under the same conditions as in Example 1, the target composition shown in Table 11 and the (Cr, Al, M) N thin layer having a target layer thickness of one layer, and the target composition and layer shown in Table 11 are also shown. By subjecting the hard coating layer composed of the alternately laminated structure of the (Cr, Y) N thin layers of the target layer thickness to vapor deposition, the surface coated carbide drill of the present invention (hereinafter referred to as the present invention coated drill) 1) to 22 were produced.

また、比較の目的で、上記の工具基体(ドリル)A−1〜A−10の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、表12に示される目標組成および目標層厚を有する(Cr,Al,M)N層からなる硬質被覆層を蒸着形成することにより、比較被覆工具としての表面被覆超硬製ドリル(以下、比較被覆ドリルと云う)1〜をそれぞれ製造した。
For the purpose of comparison, the surfaces of the above-mentioned tool bases (drills) A-1 to A-10 are subjected to honing, ultrasonically cleaned in acetone and dried, and the arc ions shown in FIG. A hard coating layer composed of a (Cr, Al, M) N layer having the target composition and target layer thickness shown in Table 12 is formed by vapor deposition under the same conditions as in Example 1 above. Thus, surface coated carbide drills (hereinafter referred to as comparative coated drills) 1 to 9 as comparative coated tools were manufactured.

つぎに、上記本発明被覆ドリル1〜22および比較被覆ドリル1〜について、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・FC400の板材、
切削速度: 70 m/min.、
送り: 0.5 mm/rev、
穴深さ: 10 mm、
の条件(切削条件G)での鋳鉄の湿式高速高送り穴あけ切削加工試験(通常の切削速度および送りは、それぞれ、30m/min.、0.2mm/rev.)、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・C1100の板材、
切削速度: 80 m/min.、
送り: 0.6 mm/rev、
穴深さ: 10 mm、
の条件(切削条件H)での銅合金の湿式高速高送り穴あけ切削加工試験((通常の切削速度および送りは、それぞれ、30m/min.、0.2mm/rev.)、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SCM440の板材、
切削速度: 90 m/min.、
送り: 0.5 mm/rev、
穴深さ: 10 mm、
の条件(切削条件I)での合金鋼の湿式高速高送り穴あけ切削加工試験(通常の切削速度および送りは、それぞれ、30m/min.、0.2mm/rev.)、
をそれぞれ行い、いずれの湿式高速穴あけ切削加工試験(水溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表11、表12にそれぞれ示した。
Next, the present invention cover the drill 1-22 and Comparative coating Drill 1-9,
Work material-Plane dimensions: 100 mm x 250 mm, thickness: 50 mm JIS / FC400 plate material,
Cutting speed: 70 m / min. ,
Feed: 0.5 mm / rev,
Hole depth: 10 mm,
Wet high-speed high-feed drilling machining test of cast iron under the following conditions (cutting condition G) (normal cutting speed and feed are 30 m / min. And 0.2 mm / rev., Respectively),
Work material-planar dimensions: 100 mm x 250 mm, thickness: 50 mm JIS C1100 plate material,
Cutting speed: 80 m / min. ,
Feed: 0.6 mm / rev,
Hole depth: 10 mm,
Wet high-speed high-feed drilling test of copper alloy under the following conditions (cutting condition H) ((normal cutting speed and feed are 30 m / min. And 0.2 mm / rev., Respectively),
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SCM440 plate material,
Cutting speed: 90 m / min. ,
Feed: 0.5 mm / rev,
Hole depth: 10 mm,
Wet high-speed high-feed drilling test of alloy steel under the following conditions (cutting condition I) (normal cutting speed and feed are 30 m / min. And 0.2 mm / rev., Respectively),
In each wet high-speed drilling test (using water-soluble cutting oil), the number of drilling processes until the flank wear width of the tip cutting edge surface reached 0.3 mm was measured. The measurement results are shown in Tables 11 and 12, respectively.



この結果得られた本発明被覆工具としての本発明被覆チップ1〜36、本発明被覆エンドミル1〜23、および本発明被覆ドリル1〜22の硬質被覆層を構成する(Cr,Al,M)N薄層および(Cr,Y)N薄層の組成、並びに、比較被覆工具としての比較被覆チップ1〜16、比較被覆エンドミル1〜、および比較被覆ドリル1〜の(Cr,Al,M)N層からなる硬質被覆層の組成を、透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。
(Cr, Al, M) N constituting the hard coating layers of the present coated chips 1 to 36 , the present coated end mills 1 to 23 , and the present coated drills 1 to 22 as the present coated tools obtained as a result. Composition of thin layer and (Cr, Y) N thin layer, and (Cr, Al, M) of comparative coated tips 1 to 16, comparative coated end mills 1 to 8 and comparative coated drills 1 to 9 as comparative coated tools When the composition of the hard coating layer composed of the N layer was measured by an energy dispersive X-ray analysis method using a transmission electron microscope, the composition was substantially the same as the target composition.

また、上記の硬質被覆層を構成する各層の平均層厚を走査型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。   Moreover, when the average layer thickness of each layer which comprises said hard coating layer was cross-sectional measured using the scanning electron microscope, all showed the substantially same average value (average value of five places) as target layer thickness. .

表7〜12に示される結果から、本発明被覆工具は、いずれも特に銅合金、一般鋼、普通鋳鉄などのいわゆる低中硬度の被削材の高速高送り切削加工でも、硬質被覆層の交互積層構造を構成する(Cr,Al,M)N薄層が、すぐれた高温硬さ、耐熱性、高温強度、あるいは、これに加えてさらにすぐれた耐摩耗性、高温耐酸化性を有し、同じく交互積層構造を構成する(Cr,Y)N薄層が耐熱性にすぐれ、高温条件下でも前記被削材および切粉との間のすぐれた潤滑性を保持し、その結果、(Cr,Al,M)N薄層に不足する潤滑性が、これに交互に積層される(Cr,Y)N薄層により補完されることによって、硬質被覆層全体として、チッピングの発生なく、長期に亘ってすぐれた耐摩耗性を発揮するのに対して、硬質被覆層が(Cr,Al,M)N層で構成され、(Cr,Y)N層を備えない比較被覆工具においては、いずれも前記被削材の高速高送り切削加工では被削材(難削材)および切粉と前記硬質被覆層との粘着性および反応性が一段と高くなるために、切刃部にチッピングが発生するようになり、比較的短時間で使用寿命に至ることが明らかである。   From the results shown in Tables 7 to 12, all of the coated tools of the present invention have alternating hard coating layers even in high-speed and high-feed cutting of so-called low to medium hardness work materials such as copper alloy, general steel, and ordinary cast iron. (Cr, Al, M) N thin layer constituting the laminated structure has excellent high temperature hardness, heat resistance, high temperature strength, or in addition to this, excellent wear resistance, high temperature oxidation resistance, Similarly, the (Cr, Y) N thin layers constituting the alternately laminated structure have excellent heat resistance and retain excellent lubricity between the work material and the chips even under high temperature conditions. As a result, (Cr, The lack of lubricity of the Al, M) N thin layer is supplemented by the (Cr, Y) N thin layers alternately laminated thereon, so that the entire hard coating layer does not generate chipping and can be used for a long time. The hard coating layer (on the other hand shows excellent wear resistance) (r, Al, M) In the comparative coated tool which is composed of an N layer and does not have a (Cr, Y) N layer, both of the work material (hard-to-cut material) and high-speed high-feed cutting of the work material It is clear that since the adhesiveness and reactivity between the chip and the hard coating layer are further increased, chipping occurs at the cutting edge, and the service life is reached in a relatively short time.

上述のように、この発明の被覆工具は、一般的な被削材の切削加工は勿論のこと、特に上記の低中硬度の被削材の高速高送り切削加工でもすぐれた耐チッピング性と耐摩耗性を発揮し、長期に亘ってすぐれた切削性能を示すものであるから、切削加工装置のFA化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention has excellent chipping resistance and resistance not only for cutting of general work materials, but also for high-speed high-feed cutting of the above-mentioned low to medium hardness work materials. Since it exhibits wearability and exhibits excellent cutting performance over a long period of time, it can be used satisfactorily to cope with the FA of cutting equipment, labor saving and energy saving of cutting processing, and further cost reduction. is there.

本発明被覆工具を構成する硬質被覆層を形成するのに用いたアークイオンプレーティング装置を示し、(a)は概略平面図、(b)は概略正面図である。The arc ion plating apparatus used for forming the hard coating layer which comprises this invention coated tool is shown, (a) is a schematic plan view, (b) is a schematic front view. 比較被覆工具を構成する硬質被覆層を形成するのに用いた従来のアークイオンプレーティング装置の概略説明図である。It is a schematic explanatory drawing of the conventional arc ion plating apparatus used in forming the hard coating layer which comprises a comparative coating tool.

Claims (2)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a)0.01〜0.1μmの一層平均層厚を有し、かつ、
組成式:(Cr1−αAlα)N(但し、αはAlの含有割合を示し、原子比で、0.45≦α≦0.75である)を満足するCrとAlの複合窒化物層からなる(Cr,Al)N薄層、
(b)0.01〜0.1μmの一層平均層厚を有し、かつ、
組成式:(Cr1−γγ)N(但し、γはYの含有割合を示し、原子比で、0.01≦γ≦0.1である)を満足するCrとYの複合窒化物層からなる(Cr,Y)N薄層、
上記(a)、(b)の交互積層からなり、1〜5μmの合計平均層厚を有する硬質被覆層を形成してなる、低中硬度被削材の高速高送り切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具。
On the surface of the tool base composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(A) having an average layer thickness of 0.01 to 0.1 μm, and
A composite nitride of Cr and Al satisfying the composition formula: (Cr 1-α Al α ) N (where α is the Al content ratio and the atomic ratio is 0.45 ≦ α ≦ 0.75) (Cr, Al) N thin layer consisting of layers,
(B) having an average layer thickness of 0.01 to 0.1 μm, and
Cr and Y composite nitride satisfying the composition formula: (Cr 1-γ Y γ ) N (where γ represents the Y content and the atomic ratio is 0.01 ≦ γ ≦ 0.1) (Cr, Y) N thin layer consisting of layers,
The hard coating layer is formed by high-speed high-feed cutting of a low-medium-hardness work material, which is formed by alternately laminating the above (a) and (b) and forming a hard coating layer having a total average layer thickness of 1 to 5 μm. A surface-coated cutting tool with excellent chipping resistance.
炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a)0.01〜0.1μmの一層平均層厚を有し、かつ、
組成式:(Cr1−α−βAlαβ)N(ここで、Mは、Crを除く周期律表4a,5a,6a族の元素、Si、B、Yのうちから選ばれた1種又は2種以上の添加成分を示し、また、αはAlの含有割合、βはMの含有割合をそれぞれ示し、原子比で、0.45≦α≦0.75、0.01≦β≦0.25、α+β<1.00である)を満足するCrとAlとMの複合窒化物層からなる(Cr,Al,M)N薄層、
(b)0.01〜0.1μmの一層平均層厚を有し、かつ、
組成式:(Cr1−γγ)N(但し、γはYの含有割合を示し、原子比で、0.01≦γ≦0.1である)を満足するCrとYの複合窒化物層からなる(Cr,Y)N薄層、
上記(a)、(b)の交互積層からなり、1〜5μmの合計平均層厚を有する硬質被覆層を形成してなる、低中硬度被削材の高速高送り切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具。
On the surface of the tool base composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(A) having an average layer thickness of 0.01 to 0.1 μm, and
Composition formula: (Cr 1-α-β Al α M β ) N (where M is one selected from elements of groups 4a, 5a, and 6a of the periodic table excluding Cr, Si, B, and Y) Seeds or two or more kinds of additive components, α is a content ratio of Al, β is a content ratio of M, and atomic ratio is 0.45 ≦ α ≦ 0.75, 0.01 ≦ β ≦ (Cr, Al, M) N thin layer comprising a composite nitride layer of Cr, Al and M satisfying 0.25 , α + β <1.00 )
(B) having an average layer thickness of 0.01 to 0.1 μm, and
Cr and Y composite nitride satisfying the composition formula: (Cr 1-γ Y γ ) N (where γ represents the Y content and the atomic ratio is 0.01 ≦ γ ≦ 0.1) (Cr, Y) N thin layer consisting of layers,
The hard coating layer is formed by high-speed high-feed cutting of a low-medium-hardness work material, which is formed by alternately laminating the above (a) and (b) and forming a hard coating layer having a total average layer thickness of 1 to 5 μm. A surface-coated cutting tool with excellent chipping resistance.
JP2008139299A 2008-05-28 2008-05-28 A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed, high-feed cutting. Expired - Fee Related JP5234499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008139299A JP5234499B2 (en) 2008-05-28 2008-05-28 A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed, high-feed cutting.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008139299A JP5234499B2 (en) 2008-05-28 2008-05-28 A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed, high-feed cutting.

Publications (2)

Publication Number Publication Date
JP2009285758A JP2009285758A (en) 2009-12-10
JP5234499B2 true JP5234499B2 (en) 2013-07-10

Family

ID=41455492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008139299A Expired - Fee Related JP5234499B2 (en) 2008-05-28 2008-05-28 A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed, high-feed cutting.

Country Status (1)

Country Link
JP (1) JP5234499B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX343044B (en) * 2010-02-04 2016-10-21 Oerlikon Surface Solutions Ag Pfäffikon CUTTING TOOLS WITH Al-Cr-B-N / Ti-Al-N MULTILAYER COATINGS.
JP5692636B2 (en) * 2010-11-16 2015-04-01 三菱マテリアル株式会社 Surface coated cutting tool
JP5973001B2 (en) 2013-02-07 2016-08-17 三菱重工工作機械株式会社 Surface coating material and cutting tool and machine tool using the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4062583B2 (en) * 2001-07-23 2008-03-19 株式会社神戸製鋼所 Hard coating for cutting tool, method for producing the same, and target for forming hard coating
WO2006070730A1 (en) * 2004-12-28 2006-07-06 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool and process for producing the same
JP4645821B2 (en) * 2005-04-08 2011-03-09 三菱マテリアル株式会社 Cutting tool made of surface-coated cemented carbide with excellent wear resistance due to high-speed cutting of heat-resistant alloys
JP4697661B2 (en) * 2005-06-30 2011-06-08 三菱マテリアル株式会社 Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting of heat resistant alloy
JP2009119551A (en) * 2007-11-14 2009-06-04 Mitsubishi Materials Corp Surface-coated cutting tool with hard coating layer exhibiting superior chipping resistance in high-speed feed cutting work

Also Published As

Publication number Publication date
JP2009285758A (en) 2009-12-10

Similar Documents

Publication Publication Date Title
JP2009101491A (en) Surface-coated cutting tool having hard coating layer exerting excellent lubricity and wear resistance in high-speed cutting
JP2009119551A (en) Surface-coated cutting tool with hard coating layer exhibiting superior chipping resistance in high-speed feed cutting work
JP5234499B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed, high-feed cutting.
JP2009101490A (en) Surface-coated cutting tool having hard coating layer exerting excellent lubricity and wear resistance in high-speed cutting
JP5196122B2 (en) Surface coated cutting tool
JP2009125832A (en) Surface-coated cutting tool
JP5783462B2 (en) Surface coated cutting tool
JP2009101475A (en) Surface-coated cutting tool having hard coating layer capable of exhibiting excellent lubricating performance and wear resistance during high-speed cutting
JP2007069276A (en) Surface-coated cutting tool having hard coating layer exerting excellent abrasion resistance in high-speed cutting of high-hardness steel
JP4697662B2 (en) Surface coated cutting tool with excellent wear resistance due to high hard coating layer in high speed cutting of high hardness steel
JP2011240438A (en) Surface coated cutting tool excellent in heat resistance and fusion resistance
JP5234332B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed, high-feed cutting.
JP5975214B2 (en) Surface coated cutting tool
JP4900874B2 (en) Surface coated cutting tool with excellent chipping resistance with hard coating layer in heavy cutting of difficult-to-cut materials
JP4766443B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP5692636B2 (en) Surface coated cutting tool
JP5975338B2 (en) Surface coated cutting tool
JP5077743B2 (en) Surface coated cutting tool with excellent chipping resistance and wear resistance due to hard coating layer
JP4706921B2 (en) Surface-coated cutting tool with excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP4849221B2 (en) Surface coated cutting tool with excellent chipping resistance with hard coating layer in heavy cutting of difficult-to-cut materials
JP2009119550A (en) Surface-coated cutting tool with hard coating layer exhibiting superior chipping resistance
JP2007313582A (en) Surface-coated cutting tool having hard coating layer with excellent chipping resistance in heavy cutting difficult-to-cut material
JP2011240437A (en) Surface coated cutting tool excellent in heat resistance and fusion resistance
JP2011177800A (en) Surface coated cutting tool having excellent heat resistance and welding resistance
JP4771197B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130304

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5234499

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130317

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees