JP2008260097A - Surface-coated cutting tool - Google Patents

Surface-coated cutting tool Download PDF

Info

Publication number
JP2008260097A
JP2008260097A JP2007105335A JP2007105335A JP2008260097A JP 2008260097 A JP2008260097 A JP 2008260097A JP 2007105335 A JP2007105335 A JP 2007105335A JP 2007105335 A JP2007105335 A JP 2007105335A JP 2008260097 A JP2008260097 A JP 2008260097A
Authority
JP
Japan
Prior art keywords
layer
cutting
tool
coated
average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007105335A
Other languages
Japanese (ja)
Inventor
Shinichi Shikada
信一 鹿田
Kazunori Sato
和則 佐藤
Yusuke Tanaka
裕介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2007105335A priority Critical patent/JP2008260097A/en
Publication of JP2008260097A publication Critical patent/JP2008260097A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface-coated cutting tool whose hard coat layer is excellent in abrasion resistance at a high-speed and high-feed cutting operation and so forth of a highly hard material. <P>SOLUTION: The hard coat layer, which comprises: (a) a lower layer made from (Ti, Al)N layer to satisfy a composition formula: (Ti<SB>1-x</SB>Al<SB>x</SB>)N, in which X ranges from 0.30 to 0.70 by atom ratio; (b) an intermediary layer made from CrN layer; (c) an upper layer consisting of alternate laminated layers of a chromium oxide layer and a molybdenum oxide layer or a tungsten oxide layer, is formed on a super-hard substrate consisting of a tungsten carbide group cemented carbide or a titanium carbonitride based cermet. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、特に合金工具鋼や軸受鋼の焼入れ材などの高硬度材の切削加工を、切刃に大きな機械的負荷が加わる高速高送り条件で行った場合にも、すぐれた耐摩耗性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   This invention has excellent wear resistance even when cutting hard materials such as hardened alloy tool steels and bearing steels under high-speed and high-feed conditions where a large mechanical load is applied to the cutting blade. The present invention relates to a surface-coated cutting tool to be exhibited (hereinafter referred to as a coated tool).

一般に、被覆超硬工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに前記被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。   In general, coated carbide tools include a throw-away tip that is attached to the tip of a cutting tool for turning and planing of various steels and cast irons, and drilling of the work material. There are drills and miniature drills used for processing, etc., and solid type end mills used for chamfering, grooving, shoulder processing, etc. of the work material. A slow-away end mill tool that performs cutting work in the same manner as a type end mill is known.

また、被覆超硬工具として、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された工具基体の表面に、
組成式:(Ti1−X Al)N(ただし、原子比で、Xは0.30〜0.70を示す)を満足するTiとAlの複合窒化物[以下、(Ti,Al)Nで示す]層からなる硬質被覆層を0.1〜8.0μmの平均層厚で物理蒸着してなる被覆工具が知られており、かつ前記被覆工具の硬質被覆層である(Ti,Al)N層が、構成成分であるAlによって高温硬さと耐熱性、同Tiによって高温強度を具備することから、これを各種の鋼や鋳鉄などの連続切削や断続切削加工に用いた場合にすぐれた切削性能を発揮することも知られている。
Further, as a coated carbide tool, on the surface of a tool base composed of tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet,
Composite nitride of Ti and Al satisfying the composition formula: (Ti 1-X Al X ) N (where X is 0.30 to 0.70 in atomic ratio) [hereinafter referred to as (Ti, Al) N A coated tool formed by physically vapor-depositing a hard coating layer comprising a layer with an average layer thickness of 0.1 to 8.0 μm is known, and is a hard coating layer of the coated tool (Ti, Al) The N layer has high temperature hardness and heat resistance due to Al as a constituent component, and high temperature strength due to the Ti, so excellent cutting when used for continuous cutting and intermittent cutting of various steels and cast irons. It is also known to perform.

さらに、上記の被覆工具が、例えば図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に上記の超硬基体を装入し、ヒータで装置内を、例えば500℃の温度に加熱した状態で、アノード電極と所定組成を有するTi−Al合金がセットされたカソード電極(蒸発源)との間に、例えば電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば2Paの反応雰囲気とし、一方上記工具基体には、例えば−100Vのバイアス電圧を印加した条件で、前記工具基体の表面に、上記(Ti,Al)N層からなる硬質被覆層を蒸着することにより製造されることも知られている。
特許第2644710号明細書
Further, the above-mentioned coated tool, for example, the above carbide substrate is loaded into an arc ion plating apparatus which is a kind of physical vapor deposition apparatus shown schematically in FIG. An arc discharge is generated between the anode electrode and a cathode electrode (evaporation source) in which a Ti—Al alloy having a predetermined composition is set in a state heated to a temperature of, for example, a current of 90 A, and at the same time, an apparatus Nitrogen gas is introduced as a reaction gas into the reaction atmosphere of, for example, 2 Pa. On the other hand, the tool substrate is subjected to the above (Ti, Al) on the surface of the tool substrate under the condition that a bias voltage of, for example, −100 V is applied. It is also known that it is produced by vapor-depositing a hard coating layer consisting of N layers.
Japanese Patent No. 2644710

近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高速化の傾向にあるが、上記の従来被覆工具においては、これを鋼や鋳鉄などの切削を通常の切削加工条件で行うのに用いた場合には問題はないが、特に合金工具鋼、軸受鋼の焼入れ材などの高硬度材の切削加工を、切刃に対して大きな機械的負荷がかかる高速高送り条件で行なった場合には、切削時に高熱が発生し、切刃部における耐熱性が不十分となり、これが原因で比較的短時間で使用寿命に至るのが現状である。   In recent years, the performance of cutting devices has been dramatically improved, while on the other hand, there is a strong demand for labor saving, energy saving, and cost reduction for cutting, and with this, cutting tends to be faster. In the case of coated tools, there is no problem when this is used to cut steel or cast iron under normal cutting conditions, but cutting of hard materials such as hardened alloy tool steels and bearing steels in particular. When machining is performed under high-speed, high-feed conditions where a large mechanical load is applied to the cutting edge, high heat is generated during cutting, resulting in insufficient heat resistance at the cutting edge, which causes a relatively short period of time. At present, the service life is reached.

そこで、本発明者等は、上述のような観点から、特に高硬度材の高速高送り切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する被覆工具を開発すべく、上記の従来被覆工具に着目し、研究を行った結果、
(a)上記従来被覆工具の硬質被覆層である0.1〜8.0μmの平均層厚を有する(Ti,Al)N層を下部層とし、この上に、酸化クロム(以下、Crで示す)層を同じく0.1〜8.0μmの平均層厚で形成して上部層を構成すると、前記Cr層は、高温強度が大であり、切削加工時に所定の耐摩耗性を示すが、高速高送りなどの高熱発生を伴いかつ切刃に対して大きな機械的負荷がかかる厳しい切削条件下では、特に耐熱性が不足するために、耐摩耗性が十分に満足できるものではないこと。
In view of the above, the present inventors have developed the above-mentioned conventional coated tool in order to develop a coated tool exhibiting excellent wear resistance with a hard coating layer particularly in high-speed high-feed cutting of a hard material. As a result of conducting research with a focus on
(A) A (Ti, Al) N layer having an average layer thickness of 0.1 to 8.0 μm, which is a hard coating layer of the conventional coated tool, is used as a lower layer, and a chromium oxide (hereinafter referred to as Cr 2 O) is formed thereon. 3 ) is similarly formed with an average layer thickness of 0.1 to 8.0 μm to constitute the upper layer, the Cr 2 O 3 layer has a high temperature strength and has a predetermined wear resistance during cutting. However, under severe cutting conditions that involve high heat generation such as high speed and high feed and a large mechanical load on the cutting edge, the heat resistance is insufficient and the wear resistance is sufficiently satisfactory. Not that.

(b)そこで、特に硬質被覆層の耐熱性を改善するため、平均層厚0.01〜1.0μmのCr層と、平均層厚0.01〜1.0μmの酸化モリブデン(以下、MoOで示す)層または酸化タングステン(以下、WOで示す)層とを交互に積層して、合計平均層厚0.1〜8.0μmの、Cr層とMoO層またはWO層との交互積層構造からなる上部層を構成すると、この上部層はCr層の備えるすぐれた高温強度に加えて、すぐれた耐熱性と高温硬さ示すようになること。 (B) Therefore, in order to improve the heat resistance of the hard coating layer in particular, a Cr 2 O 3 layer having an average layer thickness of 0.01 to 1.0 μm and a molybdenum oxide (hereinafter referred to as 0.01 to 1.0 μm). , MoO 2 ) layers or tungsten oxide (hereinafter referred to as WO 3 ) layers, which are alternately stacked to form a Cr 2 O 3 layer and a MoO 2 layer having a total average layer thickness of 0.1 to 8.0 μm or When an upper layer composed of an alternating laminated structure with a WO 3 layer is formed, this upper layer exhibits excellent heat resistance and high temperature hardness in addition to the excellent high temperature strength of the Cr 2 O 3 layer.

(c)しかし、Cr層とMoO層またはWO層との交互積層構造からなる上部層と、(Ti,Al)N層からなる下部層との密着性は十分でなく、特に高速高送り切削加工条件では剥離が発生し易いが、前記上部層と下部層間に窒化クロム(以下、CrNで示す)層を0.1〜3μmの平均層厚で介在させると、前記CrN層は前記上部層および下部層のいずれとも強固に密着することから、前記(Ti,Al)N層が工具基体表面に対してすぐれた密着性を有することと相俟って、前記Cr層とMoO層またはWO層との交互積層構造からなる上部層との間にCrN層を介在させてなる硬質被覆層は、上記高硬度材の高速高送り切削加工でも、層間剥離の発生なく、すぐれた高温強度を示すとともに、すぐれた耐熱性とすぐれた高温硬さをも示し、その結果すぐれた耐摩耗性を長期に亘り発揮するようになること。 (C) However, the adhesion between the upper layer composed of the alternately laminated structure of the Cr 2 O 3 layer and the MoO 2 layer or the WO 3 layer and the lower layer composed of the (Ti, Al) N layer is not sufficient. Peeling is likely to occur under high-speed and high-feed cutting conditions, but when a chromium nitride (hereinafter referred to as CrN) layer is interposed between the upper layer and the lower layer with an average layer thickness of 0.1 to 3 μm, the CrN layer is The Cr 2 O 3 layer is combined with the fact that the (Ti, Al) N layer has excellent adhesion to the surface of the tool base because it is firmly adhered to both the upper layer and the lower layer. The hard coating layer in which the CrN layer is interposed between the upper layer composed of the alternately laminated structure of the MoO 2 layer or the WO 3 layer is free from delamination even in the high-speed high-feed cutting of the high-hardness material. Show excellent high temperature strength and good Also it shows the hot hardness with excellent and heat, to become to exert over the results excellent wear resistance for long-term.

(d)上記(c)の硬質被覆層は、例えば図1(a)に概略平面図で、同(b)に概略正面図で示される構造のアークイオンプレーティング装置(以下、AIP装置と略記する)の中央部に工具基体装着用回転テーブルを設け、前記回転テーブルを挟んで、一方側に前記AIP装置のカソード電極(蒸発源)として金属Cr、他方側に前記AIP装置のカソード電極(蒸発源)として金属Mo(または金属W)を対向配置し、さらに前記回転テーブルに沿って、かつ前記金属Crおよび金属Mo(または金属W)の各カソード電極から90度離れた位置に前記AIP装置のカソード電極(蒸発源)として所定の組成を有するTi−Al合金を配置した蒸着装置を用い、この装置の前記回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部に沿って複数の工具基体をリング状に装着し、この状態で装置内雰囲気を窒素雰囲気として前記回転テーブルを回転させると共に、蒸着形成される硬質被覆層の層厚均一化を図る目的で超硬基体自体も自転させながら、基本的に、まず前記Ti−Al合金のカソード電極(蒸発源)とアノード電極との間にアーク放電を発生させて、前記工具基体の表面に下部層として(Ti,Al)N層を0.1〜8.0μmの平均層厚で蒸着し、ついで、前記Ti−Al合金のカソード電極(蒸発源)とアノード電極との間のアーク放電を停止し、装置内雰囲気を窒素雰囲気に保持したままで、前記AIP装置のカソード電極(蒸発源)である金属Crとアノード電極との間にアーク放電を発生させて、中間層としてCrN層を0.1〜3μmの平均層厚で蒸着した後、前記蒸着装置内の雰囲気を酸素雰囲気とすると共に、前記AIP装置のカソード電極(蒸発源)として配置した金属Crとアノード電極との間にアーク放電を発生させて0.01〜1μmのCr層を蒸着し、次に、同じく酸素雰囲気内で前記AIP装置のカソード電極(蒸発源)である金属Mo(または金属W)とアノード電極との間にアーク放電を発生させて0.01〜1μmのMoO層(またはWO層)を蒸着し、Cr層の蒸着とMoO層(またはWO層)の蒸着を交互に行い、合計平均層厚0.8〜8.0μmの交互積層構造からなる上部層を形成することができること。 (D) The hard coating layer of the above (c) is, for example, an arc ion plating apparatus (hereinafter, abbreviated as AIP apparatus) having a structure shown in a schematic plan view in FIG. 1A and a schematic front view in FIG. A rotary table for mounting the tool base is provided at the center of the metal substrate, and the rotary table is sandwiched between the metal Cr as the cathode electrode (evaporation source) of the AIP device on one side and the cathode electrode (evaporation) of the AIP device on the other side. As a source), metal Mo (or metal W) is disposed oppositely, and further along the rotary table and at a position 90 degrees away from the cathode electrodes of metal Cr and metal Mo (or metal W). Using a vapor deposition apparatus in which a Ti—Al alloy having a predetermined composition is disposed as a cathode electrode (evaporation source), a position that is a predetermined distance in the radial direction from the central axis on the rotary table of the apparatus. A plurality of tool bases are mounted in a ring shape along the outer periphery of the substrate, and the rotary table is rotated with the atmosphere inside the apparatus as a nitrogen atmosphere in this state, and the layer thickness of the hard coating layer formed by vapor deposition is made uniform. First, arc rotation is first generated between the cathode electrode (evaporation source) of the Ti-Al alloy and the anode electrode while rotating the carbide substrate itself as a lower layer on the surface of the tool substrate. (Ti, Al) N layer is deposited with an average layer thickness of 0.1 to 8.0 μm, and then the arc discharge between the cathode electrode (evaporation source) and the anode electrode of the Ti—Al alloy is stopped, While maintaining the atmosphere inside the apparatus in a nitrogen atmosphere, an arc discharge is generated between the metal Cr, which is the cathode electrode (evaporation source) of the AIP apparatus, and the anode electrode, and a CrN layer of 0.1 to 0.1 is formed as an intermediate layer. 3 μm After vapor deposition with a uniform thickness, the atmosphere in the vapor deposition apparatus is changed to an oxygen atmosphere, and an arc discharge is generated between the metal Cr arranged as the cathode electrode (evaporation source) of the AIP apparatus and the anode electrode, thereby reducing 0 .01 to 1 μm Cr 2 O 3 layer is deposited, and then arc discharge is performed between the metal Mo (or metal W), which is the cathode electrode (evaporation source) of the AIP device, and the anode electrode in an oxygen atmosphere. To deposit a 0.01 to 1 μm MoO 2 layer (or WO 3 layer), alternately deposit a Cr 2 O 3 layer and a MoO 2 layer (or WO 3 layer), and obtain a total average layer It is possible to form an upper layer having an alternately laminated structure having a thickness of 0.8 to 8.0 μm.

(e)上記の下部層、中間層および上部層で構成された硬質被覆層を蒸着形成してなる被覆工具は、特に合金工具鋼や軸受鋼の焼入れ材などの高硬度材の高速高送り切削加工でも、下部層である(Ti,Al)N層がすぐれた高温硬さと耐熱性、さらにすぐれた高温強度を有し、かつCrN層からなる中間層が上部層と下部層との密着性、接合強度を確保し、Cr層とMoO層(またはWO層)の交互積層構造からなる上部層が、すぐれた耐熱性とすぐれた高温硬さを有することから、チッピング、層間剥離等の発生なく、すぐれた耐摩耗性を長期に亘って発揮するようになること。
以上(a)〜(e)に示される研究結果を得たのである。
(E) The coated tool formed by vapor-depositing the hard coating layer composed of the lower layer, the intermediate layer, and the upper layer described above is a high-speed high-feed cutting of a hard material such as a hardened material of alloy tool steel or bearing steel. Even in processing, the (Ti, Al) N layer, which is the lower layer, has excellent high-temperature hardness and heat resistance, and further has excellent high-temperature strength, and the intermediate layer composed of the CrN layer has adhesion between the upper layer and the lower layer, Chipping and delamination are ensured because the upper layer consisting of an alternating laminated structure of Cr 2 O 3 layers and MoO 2 layers (or WO 3 layers) has excellent heat resistance and excellent high-temperature hardness. It will exhibit excellent wear resistance over a long period of time without any occurrence.
The research results shown in (a) to (e) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、
「炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、下部層と中間層と上部層からなる硬質被覆層を蒸着形成した表面被覆切削工具において、
上記下部層は、0.1〜8.0μmの平均層厚を有し、かつ、
組成式:(Ti1−X Al)N
を満足する(ただし、原子比で、Xは0.30〜0.70を示す)TiとAlの複合窒化物層からなり、
上記中間層は、0.1〜3μmの平均層厚を有する窒化クロム層からなり、
上記上部層は、0.8〜8.0μmの合計平均層厚を有する、0.01〜1.0μmの平均層厚を有するクロム酸化物層と、0.01〜1.0μmの平均層厚を有するモリブデン酸化物層またはタングステン酸化物層との交互積層構造として構成されている、
ことを特徴とする被覆工具(表面被覆切削工具)」
に特徴を有するものである。
This invention was made based on the above research results,
“In a surface-coated cutting tool in which a hard coating layer composed of a lower layer, an intermediate layer, and an upper layer is vapor-deposited on the surface of a tool base composed of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
The lower layer has an average layer thickness of 0.1 to 8.0 μm, and
Composition formula: (Ti 1-X Al X ) N
(However, in terms of atomic ratio, X represents 0.30 to 0.70) composed of a composite nitride layer of Ti and Al,
The intermediate layer comprises a chromium nitride layer having an average layer thickness of 0.1 to 3 μm,
The upper layer has a total average layer thickness of 0.8 to 8.0 μm, a chromium oxide layer having an average layer thickness of 0.01 to 1.0 μm, and an average layer thickness of 0.01 to 1.0 μm It is configured as an alternately laminated structure with molybdenum oxide layers or tungsten oxide layers having
Coated tool (surface coated cutting tool) "
It has the characteristics.

つぎに、この発明の被覆工具の硬質被覆層の構成層に関し、上記の通りに数値限定した理由を説明する。
(a)下部層
下部層を構成する(Ti,Al)N層におけるAl成分には高温硬さと耐熱性を向上させ、一方同Ti成分には高温強度を向上させる作用があるが、Alの割合を示すX値がTiの合量に占める割合(原子比、以下同じ)で0.30未満になると、相対的にTiの割合が多くなり過ぎて、高硬度材の高速高送り切削で要求されるすぐれた高温硬さと耐熱性を確保することができなくなり、摩耗進行が急激に促進するようになり、一方Alの割合を示すX値が同0.70を越えると、相対的にTiの割合が少なくなり過ぎて、高温強度が急激に低下し、この結果切刃部にチッピングなどが発生し易くなることから、X値を0.30〜0.70と定めた。
また、その平均層厚が0.1μm未満では、自身のもつすぐれた耐摩耗性を長期に亘って発揮するには不十分であり、一方その平均層厚が8.0μmを越えると、切刃部にチッピングが発生し易くなることから、その平均層厚を0.1〜8.0μmと定めた。
Next, regarding the constituent layers of the hard coating layer of the coated tool of the present invention, the reason why the numerical values are limited as described above will be described.
(A) Lower layer The Al component in the (Ti, Al) N layer constituting the lower layer improves the high temperature hardness and heat resistance, while the Ti component has the effect of improving the high temperature strength, but the proportion of Al When the X value indicating the ratio to the total amount of Ti is less than 0.30 (atomic ratio, the same shall apply hereinafter), the ratio of Ti is relatively large, which is required for high-speed, high-feed cutting of high-hardness materials. It becomes impossible to ensure excellent high temperature hardness and heat resistance, and the progress of wear is rapidly promoted. On the other hand, when the X value indicating the proportion of Al exceeds 0.70, the proportion of Ti is relatively high. The X value was determined to be 0.30 to 0.70 because the high-temperature strength suddenly decreased and as a result, chipping and the like were likely to occur at the cutting edge.
Also, if the average layer thickness is less than 0.1 μm, it is insufficient to exhibit its excellent wear resistance over a long period of time, while if the average layer thickness exceeds 8.0 μm, the cutting edge Since the chipping is likely to occur in the part, the average layer thickness was determined to be 0.1 to 8.0 μm.

(b)中間層
CrN層からなる中間層は、その平均層厚が0.1μm未満では、上部層と下部層の間に強固な接合強度を確保することができず、一方その平均層厚が3μmを越えると、硬質被覆層の強度が中間層部分で急激に低下するようになり、これがチッピング発生の原因となることから、その平均層厚を0.1〜3μmと定めた。
(B) Intermediate layer When the average layer thickness of the intermediate layer composed of the CrN layer is less than 0.1 μm, it is not possible to ensure a strong bonding strength between the upper layer and the lower layer, while the average layer thickness is If it exceeds 3 μm, the strength of the hard coating layer suddenly decreases at the intermediate layer portion, which causes chipping, so the average layer thickness was determined to be 0.1 to 3 μm.

(c)上部層
上部層の交互積層構造を構成するCr層は、すぐれた高温硬さを有し、また、MoO層とWO層のいずれの層も、耐熱性とともにすぐれた高温硬さを備えるが、上記Cr層は、その平均層厚が0.01μm未満になるとすぐれた高温硬さを発揮することができなくなり耐摩耗性の向上を期待できず、また、その平均層厚が1.0μmを超えると、チッピングの発生が見られるようになることから、その平均層厚を0.01〜1.0μmと定めた。また、上記MoO層またはWO層は、平均層厚が0.01μm未満では耐熱性の改善と高温硬さの向上を図ることはできず、また、その平均層厚が1.0μmを超えると、チッピングの発生が見られるようになることから、その平均層厚を0.01〜1.0μmと定めた。
また、Cr層と、MoO層またはWO層との交互積層構造からなる上部層の合計平均層厚が0.8μm未満では、高硬度材の高速高送り切削における耐熱性および高温硬さの改善を図ることができず、一方、合計平均層厚が8.0μmを超えると、チッピングの発生が見られるようになることから、合計平均層厚を0.8〜8.0μmと定めた。
なお、酸化モリブデン(MoO)層については、Moと酸素の含有割合は1:2(原子比)であるとして示し、また、酸化タングステン(WO)層については、Wと酸素の含有割合は1:3(原子比)であるとして示したが、酸化モリブデン、酸化タングステンをそれぞれ、
組成式:Mo1−Y
組成式:W1−Z
で表した場合に、Yの値(原子比)は、0.25≦Y≦0.33をとり得るものであり、また、Zの値(原子比)は、0.25≦Z≦0.33をとり得るものであって、厳密にMo:酸素=1:2(原子比)、W:酸素=1:3(原子比)であることを必要としない。
(C) Upper layer The Cr 2 O 3 layer constituting the alternately laminated structure of the upper layer has excellent high-temperature hardness, and both the MoO 2 layer and the WO 3 layer were excellent in heat resistance. Although it has high-temperature hardness, the Cr 2 O 3 layer cannot exhibit excellent high-temperature hardness when its average layer thickness is less than 0.01 μm, and cannot be expected to improve wear resistance. When the average layer thickness exceeds 1.0 μm, the occurrence of chipping can be seen. Therefore, the average layer thickness was determined to be 0.01 to 1.0 μm. In addition, the MoO 2 layer or the WO 3 layer cannot improve heat resistance and high-temperature hardness when the average layer thickness is less than 0.01 μm, and the average layer thickness exceeds 1.0 μm. Then, since the occurrence of chipping is observed, the average layer thickness is determined to be 0.01 to 1.0 μm.
In addition, when the total average layer thickness of the upper layer composed of the alternately laminated structure of the Cr 2 O 3 layer and the MoO 2 layer or the WO 3 layer is less than 0.8 μm, the heat resistance and the high temperature in the high-speed high-feed cutting of the high hardness material. Hardness cannot be improved. On the other hand, when the total average layer thickness exceeds 8.0 μm, chipping is observed. Therefore, the total average layer thickness is 0.8 to 8.0 μm. Determined.
For the molybdenum oxide (MoO 2 ) layer, the content ratio of Mo and oxygen is shown as 1: 2 (atomic ratio), and for the tungsten oxide (WO 3 ) layer, the content ratio of W and oxygen is It was shown as 1: 3 (atomic ratio), but molybdenum oxide and tungsten oxide were respectively
Composition formula: Mo Y O 1-Y
Formula: W Z O 1-Z
In this case, the value of Y (atomic ratio) can be 0.25 ≦ Y ≦ 0.33, and the value of Z (atomic ratio) is 0.25 ≦ Z ≦ 0. 33, and it is not strictly necessary that Mo: oxygen = 1: 2 (atomic ratio) and W: oxygen = 1: 3 (atomic ratio).

この発明の被覆工具は、硬質被覆層を構成する下部層の(Ti,Al)N層がすぐれた高温硬さと耐熱性、さらにすぐれた高温強度を有し、かつ中間層のCrN層が下部層と上部層とを強固に密着接合し、さらに、Cr層とMoO層またはWO層の交互積層構造からなる上部層が、すぐれた耐熱性と高温硬さを有することから、特に合金工具鋼や軸受け鋼の焼入れ材などの高硬度材を、大きな機械的負荷がかかる高速高送り切削条件で加工を行っても、層間剥離の発生なく、すぐれた耐摩耗性を長期に亘って発揮するものである。 In the coated tool of the present invention, the lower layer (Ti, Al) N layer constituting the hard coating layer has excellent high temperature hardness and heat resistance, and excellent high temperature strength, and the intermediate layer CrN layer is the lower layer. In particular, the upper layer composed of an alternating layered structure of Cr 2 O 3 layer and MoO 2 layer or WO 3 layer has excellent heat resistance and high temperature hardness. Even when high hardness materials such as hardened alloy tool steel and bearing steel are processed under high-speed and high-feed cutting conditions where a large mechanical load is applied, delamination does not occur and excellent wear resistance is maintained over a long period of time. It is something that demonstrates.

つぎに、この発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr3 2 粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の工具基体A−1〜A−10を形成した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders are blended in the composition shown in Table 1, wet mixed by a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. Medium, sintered at 1400 ° C for 1 hour, after sintering, WC-based carbide with honing of R: 0.03 on the cutting edge and chip shape of ISO standard CNMG120408 Alloy tool bases A-1 to A-10 were formed.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(重量比でTiC/TiN=50/50)粉末、Mo2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったTiCN系サーメット製の工具基体B−1〜B−6を形成した。 In addition, as raw material powders, all are TiCN (weight ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and then pressed into a compact at a pressure of 100 MPa. The green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, the cutting edge portion was subjected to a honing process of R: 0.03 to obtain ISO standard / CNMG120408. TiCN-based cermet tool bases B-1 to B-6 having the following chip shape were formed.

(a)ついで、上記の工具基体A−1〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示される蒸着装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、一方側のAIP装置のカソード電極(蒸発源)として金属Cr、他方側のAIP装置のカソード電極(蒸発源)として金属Moまたは金属Wを対向配置し、さらに前記回転テーブルに沿って、かつ前記金属Crカソードおよび金属Moカソード(または金属Wカソード)のそれぞれから90度離れた位置にAIP装置のカソード電極(蒸発源)として所定の組成を有する下部層形成用Ti−Al合金を配置し、
(b)まず、装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を700℃に加熱した後、前記回転テーブル上で自転しながら回転する工具基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記金属Crとアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面を前記金属Crによってボンバード洗浄し、
(c)装置内に反応ガスとして窒素ガスを導入して4Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−100Vの直流バイアス電圧を印加し、かつカソード電極の前記Ti−Al合金とアノード電極との間に120Aの電流を流してアーク放電を発生させ、もって前記工具基体の表面に、表3に示される目標組成および目標層厚の(Ti,Al)N層を硬質被覆層の下部層として蒸着形成し、
(d)上記の下部層形成用Ti−Al合金のカソード電極とアノード電極との間のアーク放電を停止し、装置内の雰囲気を同じ4Paの窒素雰囲気に保持すると共に、工具基体への直流バイアス電圧(−100V)も同じくしたままで、カソード電極の前記金属Crとアノード電極との間に120Aの電流を流してアーク放電を発生させ、もって同じく表3に示される目標層厚のCrN層を硬質被覆層の中間層として蒸着形成し、
(e)上記金属Crとアノード電極とのアーク放電を停止し、前記蒸着装置内の雰囲気を1.0〜3.0Paの酸素雰囲気とし、
(f)その後、金属Crカソード電極とアノード電極との間に120Aの電流を流してアーク放電を発生させ、表3に示される目標層厚のCr層を蒸着し、次に、同じく酸素雰囲気内で金属Moカソード(または金属Wカソード)電極とアノード電極との間にアーク放電を発生させて同じく表3に示される目標層厚のMoO層またはWO層を蒸着し、
(g)上記(f)の操作を繰り返して、所定の合計目標層厚のCr層とMoO層またはWO層の交互積層構造からなる上部層を表3に示される合計平均目標層厚で蒸着形成することにより、本発明被覆工具としての本発明被覆スローアウエイチップ(以下、本発明被覆チップと云う)1〜16をそれぞれ製造した。
(A) Next, each of the above-mentioned tool bases A-1 to A-10 and B-1 to B-6 was ultrasonically cleaned in acetone and dried, and then in the vapor deposition apparatus shown in FIG. Attached along the outer periphery at a predetermined distance in the radial direction from the center axis on the rotary table, metal Cr as the cathode electrode (evaporation source) of the AIP device on one side, and the cathode electrode (evaporation) of the AIP device on the other side As a source), metal Mo or metal W is arranged opposite to each other, and further, along the rotary table and at a position 90 degrees away from each of the metal Cr cathode and metal Mo cathode (or metal W cathode), the cathode electrode of the AIP device A lower layer forming Ti—Al alloy having a predetermined composition is disposed as (evaporation source),
(B) First, the inside of the apparatus is evacuated and kept at a vacuum of 0.5 Pa or less, and the inside of the apparatus is heated to 700 ° C. with a heater, and then the tool base that rotates while rotating on the rotary table is −1000 V. A DC bias voltage is applied, and a current of 100 A is passed between the metal Cr and the anode electrode of the cathode electrode to generate an arc discharge, whereby the tool base surface is bombarded with the metal Cr,
(C) Introducing nitrogen gas as a reaction gas into the apparatus to form a reaction atmosphere of 4 Pa, applying a DC bias voltage of −100 V to the rotating tool base while rotating on the rotary table, An arc discharge is generated by flowing a current of 120 A between the Ti-Al alloy and the anode electrode, so that (Ti, Al) N having the target composition and target layer thickness shown in Table 3 is formed on the surface of the tool base. The layer is deposited as a lower layer of the hard coating layer,
(D) The arc discharge between the cathode electrode and the anode electrode of the Ti—Al alloy for forming the lower layer is stopped, the atmosphere in the apparatus is maintained in the same nitrogen atmosphere of 4 Pa, and the DC bias to the tool substrate While maintaining the same voltage (−100V), a current of 120 A was passed between the metal Cr of the cathode electrode and the anode electrode to generate an arc discharge, and thus a CrN layer having the target layer thickness shown in Table 3 was formed. Vapor deposition as an intermediate layer of hard coating layer,
(E) The arc discharge between the metal Cr and the anode electrode is stopped, and the atmosphere in the vapor deposition apparatus is set to an oxygen atmosphere of 1.0 to 3.0 Pa,
(F) Thereafter, a current of 120 A was passed between the metal Cr cathode electrode and the anode electrode to generate arc discharge, and a Cr 2 O 3 layer having a target layer thickness shown in Table 3 was deposited. An arc discharge is generated between a metal Mo cathode (or metal W cathode) electrode and an anode electrode in an oxygen atmosphere to deposit a MoO 2 layer or a WO 3 layer having a target layer thickness also shown in Table 3,
(G) By repeating the operation of (f) above, the total average target shown in Table 3 is an upper layer composed of an alternating laminated structure of a Cr 2 O 3 layer and a MoO 2 layer or a WO 3 layer having a predetermined total target layer thickness. By carrying out vapor deposition with a layer thickness, the present coated throwaway tips (hereinafter referred to as the present coated tips) 1 to 16 as the present coated tools were produced, respectively.

また、比較の目的で、これら工具基体A−1〜A−10およびB−1〜B−6を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図2に示される蒸着装置に装入し、カソード電極(蒸発源)として種々の成分組成をもったTi−Al合金を装着し、まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記工具基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記Ti−Al合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面を前記Ti−Al合金でボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記工具基体に印加するバイアス電圧を−100Vに下げて、前記Ti−Al合金のカソード電極とアノード電極との間にアーク放電を発生させ、もって前記工具基体A−1〜A−10およびB−1〜B−6のそれぞれの表面に、表4に示される目標組成および目標層厚の(Ti,Al)N層を硬質被覆層として蒸着形成することにより、従来被覆超硬工具としての従来表面被覆超硬製スローアウエイチップ(以下、従来被覆チップと云う)1〜16をそれぞれ製造した。   For comparison purposes, these tool bases A-1 to A-10 and B-1 to B-6 were ultrasonically cleaned in acetone and dried, and each was mounted in the vapor deposition apparatus shown in FIG. A Ti—Al alloy having various composition is attached as a cathode electrode (evaporation source). First, the inside of the apparatus is heated with a heater while evacuating the inside of the apparatus and maintaining a vacuum of 0.1 Pa or less. After heating to 0 ° C., a DC bias voltage of −1000 V is applied to the tool base, and a current of 100 A is passed between the Ti—Al alloy of the cathode electrode and the anode electrode to generate an arc discharge. The substrate surface is bombarded with the Ti—Al alloy, then nitrogen gas is introduced as a reaction gas into the apparatus to form a 3 Pa reaction atmosphere, and a bias voltage applied to the tool substrate is −100 V. An arc discharge is generated between the cathode electrode and the anode electrode of the Ti—Al alloy, and the surface of each of the tool bases A-1 to A-10 and B-1 to B-6 is displayed on the surface. (Ti, Al) N layer having the target composition and target layer thickness shown in FIG. 4 is formed as a hard coating layer by vapor deposition to form a conventional surface-coated carbide throwaway tip (hereinafter referred to as conventional coating) as a conventional coated carbide tool. Chips) 1 to 16 were produced.

つぎに、上記の各種の被覆チップを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆チップ1〜16および従来被覆チップ1〜16について、
被削材:JIS・SKD11の焼入れ材(HRC60)の丸棒、
切削速度: 200 m/min.、
切り込み: 1.0 mm、
送り: 0.2 mm/rev.、
切削時間: 10 分、
の条件(切削条件A)での合金工具鋼の乾式連続高速高送り切削加工試験(通常の切削速度および送りは、それぞれ、100m/min.、0.05mm/rev.)、
被削材:JIS・SUJ2の焼入れ材(HRC65)の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 220 m/min.、
切り込み: 1.2 mm、
送り: 0.3 mm/rev.、
切削時間: 10 分、
の条件(切削条件B)での軸受鋼の乾式断続高速高送り切削加工試験(通常の切削速度および送りは、それぞれ、100m/min.、0.05mm/rev.)、
被削材:JIS・SKD61の焼入れ材(HRC61)の丸棒、
切削速度: 180 m/min.、
切り込み: 1.5 mm、
送り: 0.3 mm/rev.、
切削時間: 10 分、
の条件(切削条件C)での合金工具鋼の乾式連続高速高送り切削加工試験(通常の切削速度および送りは、それぞれ、100m/min.、0.05mm/rev.)、
を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表5に示した。
Next, in the state where each of the above-mentioned various coated chips is screwed to the tip of the tool steel tool with a fixing jig, the present coated chips 1-16 and the conventional coated chips 1-16,
Work material: JIS · SKD11 hardened material (HRC60) round bar,
Cutting speed: 200 m / min. ,
Cutting depth: 1.0 mm,
Feed: 0.2 mm / rev. ,
Cutting time: 10 minutes,
(Continuous cutting speed and feed are 100 m / min., 0.05 mm / rev., Respectively)
Work material: JIS / SUJ2 quenching material (HRC65) in the longitudinal direction with four equally spaced round bars,
Cutting speed: 220 m / min. ,
Cutting depth: 1.2 mm,
Feed: 0.3 mm / rev. ,
Cutting time: 10 minutes,
Dry intermittent high-speed high-feed cutting test of bearing steel under the following conditions (cutting condition B) (normal cutting speed and feed are 100 m / min. And 0.05 mm / rev., Respectively),
Work material: JIS · SKD61 hardened material (HRC61) round bar,
Cutting speed: 180 m / min. ,
Cutting depth: 1.5 mm,
Feed: 0.3 mm / rev. ,
Cutting time: 10 minutes,
(Continuous cutting speed and feed are 100 m / min. And 0.05 mm / rev., Respectively)
In each cutting test, the flank wear width of the cutting edge was measured. The measurement results are shown in Table 5.

Figure 2008260097
Figure 2008260097

Figure 2008260097
Figure 2008260097

Figure 2008260097
Figure 2008260097

Figure 2008260097
Figure 2008260097

Figure 2008260097
Figure 2008260097

原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr32粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C[質量比で、TiC/WC=50/50]粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表6に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mm、13mm、および26mmの3種の工具基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表7に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角30度の4枚刃スクエア形状をもったWC基超硬合金製の工具基体(エンドミル)C−1〜C−8をそれぞれ製造した。 As raw material powders, medium coarse WC powder having an average particle diameter of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, ZrC of 1.2 μm Powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C [by mass ratio, TiC / WC = 50/50] powder, and 1 .8 μm Co powders were prepared, each of these raw material powders was blended in the composition shown in Table 6, added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and then shaped into a predetermined shape at a pressure of 100 MPa. The green compacts were press-molded, and these green compacts were heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a rate of temperature increase of 7 ° C./min in a 6 Pa vacuum atmosphere. After holding at temperature for 1 hour, sintering under furnace cooling conditions 3 types of tool bar forming round bar sintered bodies having diameters of 8 mm, 13 mm, and 26 mm were formed, and the combinations shown in Table 7 were obtained by grinding from the above three types of round bar sintered bodies. The diameter x length of the cutting edge is 6 mm × 13 mm, 10 mm × 22 mm, and 20 mm × 45 mm, respectively, and each is made of a WC-based cemented carbide having a four-blade square shape with a twist angle of 30 degrees. Tool substrates (end mills) C-1 to C-8 were produced.

ついで、これらの工具基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示される蒸着装置に装入し、上記実施例1と同一の条件で、表7に示される目標組成および目標層厚の(Ti,Al)N層からなる下部層と、同じく表7に示される目標層厚のCrN層からなる中間層と、同じく表7に示される目標層厚のCr層とMoO層またはWO層の交互積層構造からなる、同じく表7に示される合計平均目標層厚の上部層で構成された硬質被覆層を蒸着形成することにより、本発明被覆工具としての本発明表面被覆超硬製エンドミル(以下、本発明被覆エンドミルと云う)1〜8をそれぞれ製造した。 Next, the surfaces of these tool bases (end mills) C-1 to C-8 were ultrasonically cleaned in acetone and dried, and then charged into the vapor deposition apparatus shown in FIG. Under the same conditions, the lower layer composed of the (Ti, Al) N layer having the target composition and the target layer thickness shown in Table 7, the intermediate layer composed of the CrN layer having the target layer thickness also shown in Table 7, and the same table. A hard coating layer composed of an upper layer of a total average target layer thickness also shown in Table 7 consisting of an alternately laminated structure of Cr 2 O 3 layers and MoO 2 layers or WO 3 layers having a target layer thickness shown in FIG. The surface-coated carbide end mills (hereinafter referred to as the present invention-coated end mills) 1 to 8 as the present invention-coated tools were produced by vapor deposition.

また、比較の目的で、上記の工具基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示される蒸着装置に装入し、上記実施例1と同一の条件で、同じく表7に示される目標組成および目標層厚の(Ti,Al)N層からなる硬質被覆層を蒸着することにより、従来被覆工具としての従来表面被覆超硬製エンドミル(以下、従来被覆エンドミルと云う)1〜8をそれぞれ製造した。   For comparison purposes, the surfaces of the tool bases (end mills) C-1 to C-8 were ultrasonically cleaned in acetone and dried, and charged into the vapor deposition apparatus shown in FIG. By depositing a hard coating layer composed of a (Ti, Al) N layer having the target composition and target layer thickness shown in Table 7 under the same conditions as in Example 1 above, the conventional surface coating superconducting tool as a conventional coating tool is deposited. Hard end mills (hereinafter referred to as conventional coated end mills) 1 to 8 were produced.

つぎに、上記本発明被覆エンドミル1〜8および従来被覆エンドミル1〜8のうち、本発明被覆エンドミル1〜3および従来被覆エンドミル1〜3については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SKD11の焼入れ材(HRC60)の板材、
切削速度: 70 m/min.、
溝深さ(切り込み): 5 mm、
テーブル送り: 100 mm/分、
の条件での合金工具鋼の乾式高速高送り溝切削加工試験(通常の切削速度および送りは、それぞれ、20m/min.、60mm/分)、
本発明被覆エンドミル4〜6および従来被覆エンドミル4〜6については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SUJ2の焼入れ材(HRC65)の板材、
切削速度: 60 m/min.、
溝深さ(切り込み): 6 mm、
テーブル送り: 90 mm/分、
の条件での軸受鋼の湿式(水溶性切削油使用)高速高送り溝切削加工試験(通常の切削速度および送りは、それぞれ、20m/min.、60mm/分)、
本発明被覆エンドミル7,8および従来被覆エンドミル7,8については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SKD61の焼入れ材(HRC61)の板材、
切削速度: 80 m/min.、
溝深さ(切り込み): 5 mm、
テーブル送り: 120 mm/分、
の条件での合金工具鋼の乾式高速高送り溝切削加工試験(通常の切削速度および送りは、それぞれ、20m/min.、60mm/分)、
をそれぞれ行い、いずれの溝切削加工試験でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。この測定結果を表7にそれぞれ示した。
Next, of the present invention coated end mills 1 to 8 and the conventional coated end mills 1 to 8, the present coated end mills 1 to 3 and the conventional coated end mills 1 to 3 are as follows:
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SKD11 quenching material (HRC60),
Cutting speed: 70 m / min. ,
Groove depth (cut): 5 mm,
Table feed: 100 mm / min,
Dry high-speed high-feed grooving test of alloy tool steel under the conditions (normal cutting speed and feed are 20 m / min. And 60 mm / min, respectively)
About this invention coated end mills 4-6 and conventional coated end mills 4-6,
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SUJ2 quenching material (HRC65),
Cutting speed: 60 m / min. ,
Groove depth (cut): 6 mm,
Table feed: 90 mm / min,
Wet steel (using water-soluble cutting oil) high-speed high-feed groove cutting test under normal conditions (normal cutting speed and feed are 20 m / min. And 60 mm / min, respectively)
For the coated end mills 7 and 8 of the present invention and the conventional coated end mills 7 and 8,
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SKD61 quenching material (HRC61),
Cutting speed: 80 m / min. ,
Groove depth (cut): 5 mm,
Table feed: 120 mm / min,
Dry high-speed high-feed grooving test of alloy tool steel under the conditions (normal cutting speed and feed are 20 m / min. And 60 mm / min, respectively)
In each groove cutting test, the cutting groove length was measured until the flank wear width of the outer peripheral edge of the cutting edge reached 0.1 mm, which is a guide for the service life. The measurement results are shown in Table 7, respectively.

Figure 2008260097
Figure 2008260097

Figure 2008260097
Figure 2008260097

上記の実施例2で製造した直径が8mm(工具基体C−1〜C−3形成用)、13mm(工具基体C−4〜C−6形成用)、および26mm(工具基体C−7、C−8形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ4mm×13mm(工具基体D−1〜D−3)、8mm×22mm(工具基体D−4〜D−6)、および16mm×45mm(工具基体D−7、D−8)の寸法、並びにいずれもねじれ角30度の2枚刃形状をもったWC基超硬合金製の工具基体(ドリル)D−1〜D−8をそれぞれ製造した。   The diameters produced in Example 2 above were 8 mm (for forming the tool bases C-1 to C-3), 13 mm (for forming the tool bases C-4 to C-6), and 26 mm (tool bases C-7 and C). -8 for forming), and from these three types of round bar sintered bodies, the diameter x length of the groove forming part is 4 mm x 13 mm (tool base D) by grinding. −1 to D-3), 8 mm × 22 mm (tool base D-4 to D-6), and 16 mm × 45 mm (tool bases D-7 and D-8), and all having a twist angle of 30 degrees 2 WC-base cemented carbide tool bases (drills) D-1 to D-8 having a single-blade shape were produced, respectively.

ついで、これらの工具基体(ドリル)D−1〜D−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示される蒸着装置に装入し、上記実施例1と同一の条件で、表8に示される目標組成および目標層厚の(Ti,Al)N層からなる下部層と、同じく表8に示される目標層厚のCrN層からなる中間層と、同じく表8に示される目標層厚のCr層とMoO層またはWO層の交互積層構造からなる表8に示される合計平均目標層厚の上部層で構成された硬質被覆層を蒸着形成することにより、本発明被覆工具としての本発明表面被覆超硬製ドリル(以下、本発明被覆ドリルと云う)1〜8をそれぞれ製造した。 Next, honing is applied to the cutting edges of these tool bases (drills) D-1 to D-8, ultrasonic cleaning is performed in acetone, and the dried blades are loaded into the vapor deposition apparatus shown in FIG. Under the same conditions as in Example 1, the lower layer composed of the (Ti, Al) N layer having the target composition and target thickness shown in Table 8 and the CrN layer having the target layer thickness also shown in Table 8 are used. It was composed of an intermediate layer and an upper layer having a total average target layer thickness shown in Table 8 consisting of an alternately laminated structure of Cr 2 O 3 layers and MoO 2 layers or WO 3 layers having the target layer thicknesses also shown in Table 8. By subjecting the hard coating layer to vapor deposition, the surface-coated carbide drills (hereinafter referred to as the present invention-coated drills) 1 to 8 as the present invention-coated tools were produced.

また、比較の目的で、上記の工具基体(ドリル)D−1〜D−8の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示される蒸着装置に装入し、上記実施例1と同一の条件で、同じく表8に示される目標組成および目標層厚を有する(Ti,Al)N層からなる硬質被覆層を蒸着形成することにより、従来被覆工具としての従来表面被覆超硬製ドリル(以下、従来被覆ドリルと云う)1〜8をそれぞれ製造した。   For the purpose of comparison, honing is performed on the surfaces of the above-mentioned tool bases (drills) D-1 to D-8, ultrasonic cleaning is performed in acetone, and the vapor deposition apparatus shown in FIG. In the same manner as in Example 1 above, a conventional coating is formed by vapor-depositing a hard coating layer composed of a (Ti, Al) N layer having the target composition and target layer thickness shown in Table 8 as well. Conventional surface-coated carbide drills (hereinafter referred to as conventional coated drills) 1 to 8 as tools were manufactured.

つぎに、上記本発明被覆ドリル1〜8および従来被覆ドリル1〜8のうち、本発明被覆ドリル1〜3および従来被覆ドリル1〜3については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SKD61の焼入れ材(HRC60)の板材、
切削速度: 120 m/min.、
送り: 0.2 mm/rev、
穴深さ: 6 mm、
の条件での合金工具鋼の湿式高速高送り穴あけ切削加工試験(通常の切削速度および送りは、それぞれ、70m/min.、0.15mm/rev.)、
本発明被覆ドリル4〜6および従来被覆ドリル4〜6については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SUJ2の焼入れ材(HRC65)の板材、
切削速度: 130 m/min.、
送り: 0.2 mm/rev、
穴深さ: 5 mm、
の条件での軸受鋼の湿式高速高送り穴あけ切削加工試験(通常の切削速度および送りは、それぞれ、70m/min.、0.15mm/rev.)、
本発明被覆ドリル7,8および従来被覆ドリル7,8については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SKD61の焼入れ材(HRC61)の板材、
切削速度: 140 m/min.、
送り: 0.40 mm/rev、
穴深さ: 7 mm、
の条件での合金工具鋼の湿式高速高送り穴あけ切削加工試験(通常の切削速度および送りは、それぞれ、80m/min.、0.2mm/rev.)、
をそれぞれ行い、いずれの湿式高速高送り穴あけ切削加工試験(水溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表8にそれぞれ示した。
Next, of the present invention coated drills 1 to 8 and the conventional coated drills 1 to 8, the present invention coated drills 1 to 3 and the conventional coated drills 1 to 3 are:
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SKD61 quenching material (HRC60),
Cutting speed: 120 m / min. ,
Feed: 0.2 mm / rev,
Hole depth: 6 mm,
Wet high-speed high-feed drilling test of alloy tool steel under the following conditions (normal cutting speed and feed are 70 m / min. And 0.15 mm / rev., Respectively),
About this invention coated drill 4-6 and conventional coated drills 4-6,
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SUJ2 quenching material (HRC65),
Cutting speed: 130 m / min. ,
Feed: 0.2 mm / rev,
Hole depth: 5 mm,
Wet high-speed high-feed drilling machining test of bearing steel under the conditions of (normal cutting speed and feed are 70 m / min. And 0.15 mm / rev., Respectively),
About this invention covering drills 7 and 8 and conventional covering drills 7 and 8,
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SKD61 quenching material (HRC61),
Cutting speed: 140 m / min. ,
Feed: 0.40 mm / rev,
Hole depth: 7 mm,
Wet high-speed high-feed drilling test of alloy tool steel under the conditions of (normal cutting speed and feed are 80 m / min. And 0.2 mm / rev., Respectively),
In each wet high-speed high-feed drilling test (using water-soluble cutting oil), the number of drilling processes until the flank wear width of the tip cutting edge surface reached 0.3 mm was measured. The measurement results are shown in Table 8, respectively.

Figure 2008260097
Figure 2008260097

この結果得られた本発明被覆工具としての本発明被覆チップ1〜16、本発明被覆エンドミル1〜8、本発明被覆ドリル1〜8、および、従来被覆超硬工具としての従来被覆チップ1〜16、従来被覆エンドミル1〜8、従来被覆ドリル1〜8の硬質被覆層を構成する(Ti,Al)N層(下部層)の組成を、透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。   As a result, the present coated chips 1 to 16 as the present coated tools, the present coated end mills 1 to 8, the present coated drills 1 to 8, and the conventional coated chips 1 to 16 as conventional coated carbide tools. The composition of the (Ti, Al) N layer (lower layer) constituting the hard coating layer of the conventional coated end mills 1 to 8 and the conventional coated drills 1 to 8 is analyzed by energy dispersive X-ray analysis using a transmission electron microscope. As a result of measurement, each showed substantially the same composition as the target composition.

また、上記の硬質被覆層の構成層の平均層厚を走査型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。   Moreover, when the average layer thickness of the constituent layers of the hard coating layer was measured by a cross-section using a scanning electron microscope, all showed an average value (average value of five locations) substantially the same as the target layer thickness.

表3〜8に示される結果から、本発明被覆工具は、いずれも特に合金工具鋼や軸受け鋼の焼入れ材などの高硬度材の、高い熱発生を伴いかつ切刃に大きな機械的負荷がかかる高速高送り切削でも、硬質被覆層の下部層である(Ti,Al)N層がすぐれた高温硬さと耐熱性、さらにすぐれた高温強度を有し、かつ、中間層のCrN層が下部層と上部層とを強固に密着接合し、さらに、Cr層とMoO層またはWO層の交互積層構造からなる上部層が、すぐれた耐熱性とすぐれた高温硬さを有することから、硬質被覆層に層間剥離はなく、すぐれた耐熱性と耐摩耗性を長期に亘って発揮するのに対して、硬質被覆層が(Ti,Al)N層で構成された従来被覆工具においては、高い発熱を伴いかつ大きな機械的負荷がかかる高速高送り切削では、耐熱性と高温硬さが不十分であるために摩耗が進行し、これが原因で、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 3 to 8, all of the coated tools of the present invention are accompanied by high heat generation and high mechanical load on the cutting blade, especially of hard materials such as hardened materials of alloy tool steel and bearing steel. Even in high-speed high-feed cutting, the (Ti, Al) N layer, which is the lower layer of the hard coating layer, has excellent high-temperature hardness and heat resistance, and excellent high-temperature strength, and the intermediate CrN layer is the lower layer. From the fact that the upper layer composed of an alternating laminated structure of Cr 2 O 3 layer and MoO 2 layer or WO 3 layer has excellent heat resistance and excellent high-temperature hardness, and firmly adheres to the upper layer. In the conventional coated tool in which the hard coating layer is composed of a (Ti, Al) N layer, while the hard coating layer has no delamination and exhibits excellent heat resistance and wear resistance over a long period of time, High speed with high heat generation and high mechanical load The feed cutting, wear progresses because heat resistance and high-temperature hardness is insufficient, which causes, it is clear that lead to a relatively short time service life.

上述のように、この発明の被覆工具は、特に各種の鋼や鋳鉄などの通常の切削条件での切削加工は勿論のこと、特に切刃に対し大きな機械的負荷がかかると共に高い熱発生を伴う上記の高硬度材の高速高送り切削加工でも、すぐれた耐摩耗性を発揮し、長期に亘ってすぐれた切削性能を示すものであるから、切削加工装置の高性能化および自動化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention not only performs cutting under normal cutting conditions such as various types of steel and cast iron, but also places a large mechanical load on the cutting blade and generates high heat. Even in the high-speed and high-feed cutting of the above-mentioned high hardness materials, it exhibits excellent wear resistance and excellent cutting performance over a long period of time. It is possible to sufficiently satisfy the labor saving, energy saving, and cost reduction.

被覆工具を構成する硬質被覆層を形成するのに用いた蒸着装置を示し、(a)は概略平面図、(b)は概略正面図である。The vapor deposition apparatus used in forming the hard coating layer which comprises a coating tool is shown, (a) is a schematic plan view, (b) is a schematic front view. 通常のアークイオンプレーティング装置の概略説明図である。It is a schematic explanatory drawing of a normal arc ion plating apparatus.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、下部層と中間層と上部層からなる硬質被覆層を蒸着形成した表面被覆切削工具において、
上記下部層は、0.1〜8.0μmの平均層厚を有し、かつ、
組成式:(Ti1−X Al)N
を満足する(ただし、原子比で、Xは0.30〜0.70を示す)TiとAlの複合窒化物層からなり、
上記中間層は、0.1〜3μmの平均層厚を有する窒化クロム層からなり、
上記上部層は、0.8〜8.0μmの合計平均層厚を有する、0.01〜1.0μmの平均層厚を有するクロム酸化物層と、0.01〜1.0μmの平均層厚を有するモリブデン酸化物層またはタングステン酸化物層との交互積層構造として構成されている、
ことを特徴とする表面被覆切削工具。
In a surface-coated cutting tool in which a hard coating layer composed of a lower layer, an intermediate layer, and an upper layer is deposited on the surface of a tool base composed of a tungsten carbide-based cemented carbide or a titanium carbonitride-based cermet,
The lower layer has an average layer thickness of 0.1 to 8.0 μm, and
Composition formula: (Ti 1-X Al X ) N
(However, in terms of atomic ratio, X represents 0.30 to 0.70) composed of a composite nitride layer of Ti and Al,
The intermediate layer comprises a chromium nitride layer having an average layer thickness of 0.1 to 3 μm,
The upper layer has a total average layer thickness of 0.8 to 8.0 μm, a chromium oxide layer having an average layer thickness of 0.01 to 1.0 μm, and an average layer thickness of 0.01 to 1.0 μm It is configured as an alternately laminated structure with molybdenum oxide layers or tungsten oxide layers having
A surface-coated cutting tool characterized by that.
JP2007105335A 2007-04-12 2007-04-12 Surface-coated cutting tool Withdrawn JP2008260097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007105335A JP2008260097A (en) 2007-04-12 2007-04-12 Surface-coated cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007105335A JP2008260097A (en) 2007-04-12 2007-04-12 Surface-coated cutting tool

Publications (1)

Publication Number Publication Date
JP2008260097A true JP2008260097A (en) 2008-10-30

Family

ID=39982976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007105335A Withdrawn JP2008260097A (en) 2007-04-12 2007-04-12 Surface-coated cutting tool

Country Status (1)

Country Link
JP (1) JP2008260097A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112725792A (en) * 2020-12-28 2021-04-30 成都美奢锐新材料有限公司 Preparation method of chromium nitride-titanium carbonitride base metal ceramic composite coating
CN115418607A (en) * 2022-08-25 2022-12-02 株洲钻石切削刀具股份有限公司 Composite coating cutting tool containing chromium oxide layer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112725792A (en) * 2020-12-28 2021-04-30 成都美奢锐新材料有限公司 Preparation method of chromium nitride-titanium carbonitride base metal ceramic composite coating
CN112725792B (en) * 2020-12-28 2022-07-26 成都美奢锐新材料有限公司 Preparation method of chromium nitride-titanium carbonitride base metal ceramic composite coating
CN115418607A (en) * 2022-08-25 2022-12-02 株洲钻石切削刀具股份有限公司 Composite coating cutting tool containing chromium oxide layer
CN115418607B (en) * 2022-08-25 2024-02-23 株洲钻石切削刀具股份有限公司 Composite coated cutting tool containing chromium oxide layer

Similar Documents

Publication Publication Date Title
JP4702520B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP5594575B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP2010094744A (en) Surface-coated cutting tool with hard coating layer exhibiting excellent wear resistance
JP2007152456A (en) Surface coated cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting high-hardness steel
JP2006001006A (en) Cutting tool made of surface coated cemented carbide with hard coating layer exhibiting excellent wear resistance in high speed cutting of high hardness steel
JP4687965B2 (en) Surface coated cutting tool with excellent wear resistance due to high hard coating layer in high speed cutting of high hardness steel
JP4645820B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP4697662B2 (en) Surface coated cutting tool with excellent wear resistance due to high hard coating layer in high speed cutting of high hardness steel
JP4645819B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP4535255B2 (en) Method for producing a surface-coated cemented carbide cutting tool that exhibits excellent wear resistance and chipping resistance in high-speed cutting of hardened steel
JP4244379B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting
JP4678582B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP2008260097A (en) Surface-coated cutting tool
JP4535250B2 (en) Manufacturing method of surface-coated cemented carbide cutting tool that exhibits excellent wear resistance in high-speed cutting of hardened steel
JP4535249B2 (en) Method of manufacturing a surface-coated cemented carbide cutting tool that exhibits high wear resistance with a hard coating layer in high-speed cutting
JP4697660B2 (en) Surface coated cutting tool with excellent wear resistance due to high hard coating layer in high speed cutting of high hardness steel
JP2008260098A (en) Surface-coated cutting tool
JP5499861B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP2006001005A (en) Cutting tool made of surface coated cemented carbide with hard coating layer exhibiting excellent wear resistance in high speed cutting of high hardness steel
JP2006001004A (en) Cutting tool made of surface coated cemented carbide with hard coating layer exhibiting excellent wear resistance in high speed cutting of high hardness steel
JP2006224216A (en) Cutting tool made of surface coated cemented carbide alloy with hard coating layer displaying excellent abrasion resistance in high speed cutting work of heat resisting alloy
JP4120499B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting
JP4310693B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP4621975B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed cutting and hard coating layer
JP4244378B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100706